
How Diversity Affects Deep-Learning Side-Channel
Attacks

Huanyu Wang, Martin Brisfors, Sebastian Forsmark, Elena Dubrova

Royal Institute of Technology (KTH), Stockholm, Sweden
{huanyu,brisfors,sforsm,dubrova}@kth.se

Abstract. Deep learning side-channel attacks are an emerging threat to the se-
curity of implementations of cryptographic algorithms. The attacker first trains a
model on a large set of side-channel traces captured from a chip with a known
key. The trained model is then used to recover the unknown key from a few traces
captured from a victim chip. The first successful attacks have been demonstrated
recently. However, they typically train and test on power traces captured from
the same device. In this paper, we show that it is important to train and test on
traces captured from different boards and using diverse implementations of the
cryptographic algorithm under attack. Otherwise, it is easy to overestimate the
classification accuracy. For example, if we train and test an MLP model on power
traces captured from the same board, we can recover all key byte values with 96%
accuracy from a single trace. However, the single-trace attack accuracy drops to
2.45% if we test on traces captured from a board different from the one we used
for training, even if both boards carry identical chips.

Keywords: Side-channel attack, power analysis, deep learning, MLP, CNN, AES.

1 Introduction

Side-channel attacks were introduced by Paul Kocher in his seminal paper on timing
analysis [16] where he has shown that non-constant running time of a cipher can leak
information about its key. Kocher has also pioneered power analysis [15] which ex-
ploits the fact that circuits typically consume differing amounts of power based on their
input data. The power consumption remains one of the most successfully exploited
side-channels today. Hardware and software implementations of many important cryp-
tographic algorithms, including the Advanced Encryption Standard (AES) [7], have
been broken by power analysis [6, 21, 23].

With advances in Machine Learning (ML) side-channel attacks got a powerful ally.
ML techniques are good at finding correlations in raw data, making side-channel anal-
ysis considerably more efficient. ML enables an attacker to bypass many existing side-
channel countermeasures and break protected implementations. Given huge investments
in ML, we are likely see an explosion of ML-based security breaches unless appropriate
measures are taken. Therefore, it is important to understand capabilities and limitations
of ML side-channel attacks.
Previous Work. Different types ML side-channel attacks have been demonstrated in
recent years. Unsupervised learning techniques such as clustering (e.g. K-means) and

dimensionality reduction (e.g. principal component analysis) were used to perform ei-
ther key recovery [12, 30] or pre-processing of the side-channel traces [1]. Supervised
learning techniques such as support vector machines, self-organizing maps, random
forests and different types of artificial neural networks were successful in recovering
the key not only from unprotected [2, 11, 13, 18], but also from protected [8, 11, 19, 31]
implementations of cryptographic algorithms.

Multiple Layer Perceptron (MLP) and Convolutional Neural Networks (CNNs)-
based side channel attacks seem to be particularly powerful. CNNs can overcome trace
misalignment and jitter-based countermeasures [4] and break masked AES implementa-
tions [24]. MLP and CNN-based attacks significantly outperform template attacks when
applied on noisy traces [26]. A reason for this might be that template attacks approxi-
mate the data distribution by a multivariate Gaussian distribution whose parameters (i.e.
the mean vector and the covariance matrix) are estimated during the profiling phase [1].
This implies that higher-order statistical moments of the leakage distribution are not
exploited in the attack, making it sub-optimal or ineffective [20]. Contrarily, MLP- and
CNN-based attacks make no assumption on the data distribution and build classifiers
directly from a raw data set.
Our Contribution. The majority of previously reported MLP- and CNN-based at-
tacks [4, 14, 20, 25, 26, 29] train and test their networks using traces captured from the
same device. These attacks do not take into account the impact of inter-device process
variation, which can be significant in advanced technologies as previous work on tem-
plate attacks shows [5, 10, 22, 27]. In this paper, we go one step further and test MLP
and CNN models on traces captured from a printed circuit board different from the one
we used for training (see Fig. 1 and 2). We show that ignoring board’s diversity can
easily lead to an overestimation of classification accuracy. (see Fig. 1 and 2)

We also investigate how cryptographic algorithm implementation diversity affects
classification accuracy. It is unlikely that the attacker will know exactly which imple-
mentation of the algorithm is executed on the victim chip. We have not seen this prob-
lem being addressed before.

The research on deep learning side-channel attacks just started and many questions
are open, including how many classifiers are required to recover a full key. According
to [24], for AES, “the amount of times that a neural network must be trained is equiva-
lent to the number of bytes in the key”. We investigate if MLP and CNN models trained
on a fixed key byte position can recover key bytes in other positions.
Paper Outline. The paper is organized as follows. Section 2 gives the background on
deep learning, MLP, CNN and AES. Section 3 introduces deep-learning side-channel
attacks. Section 4 provides details of the presented attacks on AES-128. Section 5 de-
scribes the experimental results. Section 6 concludes the paper and discusses open prob-
lems.

2 Background

In this section, we describe how deep learning is used for data classification, give an
introduction to MLP and CNN networks and review the AES-128 algorithm. For a
broader introduction to deep learning the reader is referred to [9].

2

Fig. 1. The first board with ATxmega128D4 microcontroller (right) connected to the ChipWis-
perer (left).

2.1 Deep Learning for Data Classification

Deep learning is a branch of machine learning which uses deep neural networks as
models.

The objective of data classification is to classify data x ∈ Rk based on their labels
l(x)∈C, where k is the number of points in the data and C = {0,1, . . . , |C|−1} is the set
of classification classes. A neural network can be viewed as a mapping N : Rk → R|C|

which takes as input data x to classify, and produces as output a score vector s = N(x)∈
R|C|.

Each label l(x) ∈ C can be represented as a one-hot encoded ground truth vector
t ∈ {0,1}|C| defined by:

ti =
{

1 if i = l(x)
0 overwise,

where i ∈C.
To quantify the classification error of the network, different types of loss functions

are used, in this work we are using categorical cross-entropy loss:

CE =−∑
i∈C

ti log
(

esi

∑ j∈C es j

)
where ti and si are the ground truth and the classifier score for each class i ∈C. CE loss
is often used for multi-class classification, in which each sample can belong to one of
|C| classes. In this case, the network outputs a probability over the |C| classes for each
sample.

3

Fig. 2. The second board with ATxmega128D4 microcontroller (right) connected to the ChipWis-
perer (left).

To minimize the loss, the gradient of CE with respect the score s is computed and
back-propagated through the network to tune its internal parameters according to the
Stochastic Gradient Descent (SGD) algorithm [28] or one its advanced adaptations, e.g.
RMSprop which we are using in this work. This is repeated for a chosen number of
iterations called epochs.

Once the network is trained, to classify a data x whose label l(x) is unknown, we
compute

l = argmax
i∈|C|

si

If l = l(x), the classification is successful.

2.2 Multiple Layer Perceptron

Multiple Layer Perceptron (MLP) is one of the basic types of deep learning architec-
tures.

MLP is a class of feed-forward neural networks composed of multiple layers with
linear and non-linear activation functions. Every layer of an MLP consists of basic
elements, called neurons. Every neuron is fully connected to all the neurons in the
previous and the next layers.

Each neuron in the network has a bias value, b, and an activation function, f . The
connections of the neuron to neurons in the previous layer are defined by the connection
weights, wi ∈ R, i ∈ {1, . . . ,n}. These parameters are updated during training of the
MLP. Popular activation functions are Rectified Linear Unit (ReLU), hyperbolic tangent
(TANH), sigmoid, and softmax.

4

The output value of a neuron, y, is defined as follows:

y = f (
n

∑
i=1

wixi +b), (1)

where xi is the output value of the neuron i in the previous layer, i ∈ {1,2, . . . ,n}.
An MLP network usually contains an input layer, an output layer and one or more

dense layers.

1. Input layer: The number of neurons in the input layer is determined by the number
of points k in the input data.

2. Dense layers: These are the fully-connected layers between the input and the output
layers.

3. Output layer: The number of neurons in the output layer is determined by number
of classes |C| which needs to be identified in the input data set.

During the training of an MLP, the weights and bias parameters are updated at every
iteration to minimize the loss function.

2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNN) can be considered as a variant of MLP which
uses one or more convolution layer in addition to the input layer, dense layers, and
the output layer. CNNs were originally proposed for object recognition in images [17].
They have the ability to develop an internal representation of a multi-dimensional data.
This allows a trained network to recognize patterns in the data.

The convolution layer usually consists of a convolutional operation followed by
an activation function such as ReLU, and a pooling layer. The pooling layer is used
for dimensionality reduction. In its essence, the convolution layer implements several
convolution filters with the same kernel size. The convolution operation is performed
between the filter and the input data.

As in the MLP case, the weights and bias parameters are updated at every iteration
during training to minimize the loss function.

2.4 AES-128

The AES [7] is a symmetric encryption algorithm standardized by NIST in FIPS 197
and included in ISO/IEC 18033-3. It takes a 128-bit block of plaintext and an n-bit key
K, n = {128,192,256}, as input and computes a 128-bit block of ciphertext as output.
We use the AES with the key size n = 128, AES-128.

The pseudo-code for AES-128 encryption algorithm is shown in Algorithm 1. AES
performs encryption iteratively, in 10 rounds for the 128-bit key. Each round except
the last repeats the four steps: non-linear substitution, transposition of rows, mixing of
columns, and round key addition, but uses a different round key derived from the key
K. The last round does not mix columns.

As any block cipher, AES can be used in several modes of operation, including:

5

Algorithm 1 Pseudo-code of the AES-128 algorithm.
// AES-128 Cipher
// in: 128 bits (plaintext)
// out: 128 bits (ciphertext)
// Nr: number of rounds, Nr = 10 for AES-128
// Nb: number of columns in state, Nb = 4
// w: expanded key K, Nb∗ (Nr+1) = 44 words, (1 word = Nb bytes)

state = in;
AddRoundKey(state, w[0,Nb−1]);
for round = 1 step 1 to Nr−1 do

SubBytes(state); // Point of attack in round 1
ShiftRows(state);
MixColumns(state);
AddRoundKey(state, w[round∗Nb,(round+1)∗Nb−1]);

end for
SubBytes(state);
ShiftRows(state);
AddRoundKey(state, w[Nr ∗Nb,(Nr+1)∗Nb−1]);
out = state;

1. In the Electronic Codebook (ECB) mode, the message is divided into blocks and
each block is encrypted separately.

2. In the Cipher Block Chaining (CBC) mode, each plaintext block is XORed with
the previous ciphertext block before being encrypted. The first plaintext block is
XORed with the Initialization Vector (IV).

3. In the Counter (CTR) mode, pseudo-random keystream blocks are generated by
encrypting consecutive values of a counter. These blocks are then XORed with the
plaintext to get the ciphertext. The counter can be any function which produces a
sequence which has a guaranteed long period.

4. In the Output Feedback (OFB) mode, keystream blocks are generated based on the
key, IV, and previous ciphertext blocks. The keystream blocks are then XORed with
the plaintext to get the ciphertext.

5. In the Cipher Feedback (CFB), first the IV is encrypted and the result is XORed
with a block of the plaintext to produce a block of ciphertext. The process is re-
peated for the next plaintext block using the previous ciphertext block instead of
the encrypted IV.

3 Deep-Learning in Side-Channel Analysis

In this section, we describe how deep-learning is used in side-channel analysis.
The aim of side-channel analysis is to find the secret key stored on a victim de-

vice implementing some cryptographic algorithm. In this paper, we focus on AES [7]
because it is the most popular cryptographic algorithm at present.

6

3.1 Settings
Deep learning can be used in side-channel analysis in two settings: profiling and non-
profiling. Profiling attacks [4, 14, 20, 24–26, 29] first learn a leakage profile of the cryp-
tographic algorithm under attack, and then attack. Non-profiling attacks [31] attack di-
rectly, as the traditional Differential Power Analysis [15] or Correlation Power Analysis
(CPA) [3]. We focus on profiling attacks because we believe that they utilize the poten-
tial of deep learning to a larger extent.

Side-channel analysis can be done based on different side-channels, including power
consumption, electromagnetic emission, or timing. In our experiments, power con-
sumption is used.

3.2 Assumptions
Profiling deep-learning side-channel attacks assume that:
1. The attacker has a device, called the profiling device, which is similar to the device

under attack and implements the same cryptographic algorithm.
2. The attacker has full control over the profiling device (can apply chosen plaintext,

program chosen keys, and capture power traces).
3. The attacker has physical access to the victim device to capture at least one power

trace during the execution of the cryptographic algorithm.

3.3 Attack Stages
A profiling deep-learning side-channel attack is done in two stages.

At the profiling stage, the selected deep-learning network is trained to learn a leak-
age profile of the cryptographic algorithm under attack for all possible values of the
sensitive variable. For AES, the sensitive variable is typically a key byte. The training
is done using a large number of traces captured from the profiling device which are
labeled according to the selected power model.

At the attack stage, the trained model is used to classify the traces captured from
the victim device.

3.4 Power Models
A power model describes the power consumption of a device at a selected intermediate
point, called the attack point, during the execution of the algorithm. If the intermediate
result is x, then the power consumption is modelled as f (x), where f is defined by the
model.

Common power models for deep-learning side-channel attacks on software imple-
mentations of AES are the identity and the Hamming weight.

The Identity power model assumes that the power consumption is proportional to
the value of the data processed at the attack point.

The Hamming weight power model assumes that the power consumption is propor-
tional to the number of 1s in the data processed at the attack point.

A power model defines the number of outputs in a classifier. If the data is a byte,
the identity model leads to the set of 256 classes C = {0,1, . . . ,255} and the Hamming
weight model to the set of 9 classes C = {0,1, . . . ,8}.

7

4 Attacking AES-128

In this section, we give details of the presented attacks on AES-128.

4.1 Attack Point and Power Model

We use the state after the first SubBytes() step in round 1 as the attack point (see marked
line in pseudocode 1). The function SubBytes() applies the AES 8-input 8-output substi-
tution box SBox to state byte-by-byte. After the first SubBytes() step, the state becomes

state = SBox[in⊕key],

where “⊕” is the bitwise XOR and key = w[0,Nb−1].
The output of the S-box is a suitable attack point for software implementations of

AES because its value needs to be loaded from a memory onto a data bus.
We use the identity power model.

4.2 Attack Steps

Profiling stage:

1. Use the profiling device to encrypt a large number of random plaintexts P= {p1, . . . , pn}
for known random keys K = {k1, . . . ,kn} and record the resulting power traces
T = {t1, . . . , tn}.

2. Partition the secret key into bytes and select one byte position j, for any j ∈
{1, . . . ,16}.

3. Let pi, j and ki, j be the jth byte of the plaintext pi and the key ki, respectively, for
i ∈ {1, . . . ,n}. Assign to each trace ti ∈ T a label li, j equal to the value of the SBox
output byte computed for pi, j and ki, j.

4. Use the labeled power traces to train a classifier to learn the leakage profile of AES
for all possible byte values of the SBox output. The training strategy is described in
the next subsection.

Attack stage:

1. Use the victim device to encrypt a small number of random plaintexts P= {p1, . . . , pm}
for the unknown key and record the resulting power traces T = {t1, . . . , tm}.

2. Use the trained network to classify the traces in T .

4.3 Training MLP and CNN Models

In this section, we describe the how we trained MLP and CNN models.
During the first round of an AES, the SBox operation is executed within the first

3000 data points. Using CPA, we manually identified the positions of leakage points
for each key byte. This allowed us to reduce the number of points in the input data to
k = 150 for MLP and k = 50 for CNN. Obviously, reducing the size of the input layer

8

Layer Type Output Shape Parameter #

Input (Dense) (None, 200) 30200
Dense 1 (None, 200) 40200
Dense 2 (None, 200) 40200
Dense 3 (None, 200) 40200
Dense 4 (None, 200) 40200
Output (Dense) (None, 256) 51456

Total Parameters: 242,456
Table 1. MLP architecture summary.

Layer Type Output Shape Parameter #

Input (Dense) (None, 50, 1) 0
Conv1D 1 (None, 50, 64) 768
AveragePooling1 1 (None, 25, 64) 0
Conv1D 2 (None, 25, 128) 90240
AveragePooling1 2 (None, 12, 128) 0
Conv1D 3 (None, 12, 256) 360704
AveragePooling1 3 (None, 6, 256) 0
Conv1D 4 (None, 6, 512) 1442304
AveragePooling1 4 (None, 3, 512) 0
Conv1D 5 (None, 3, 512) 2884096
AveragePooling1 5 (None, 1, 512) 0
Flatten (None, 512) 0
Dense 1 (None, 4096) 2101248
Dense 2 (None, 4096) 16781312
Output (Dense) (None, 256) 1048832

Total Parameters: 24,709,504
Table 2. CNN architecture summary.

reduces the model complexity and training time. We trained MLP on the 1st key byte
and CNN on the 3rd key byte. The position of the byte does not seem to matter.

Architectures of the best models which we use in the experiments in Section 5
(unless specified otherwise) are show in Tables 1 and 2. The CNN architecture is the
same as the one in [26] except for the input layer size. The optimal input layer size
depends on the implementation of the cryptographic algorithm under attack. 50K traces
were used of training and 1K traces for validation.

The MLP architecture is an evolved version of the MLP architecture in [26]. We
searched for the best parameters to use for learning rate, number of epochs, validation
split and number of layers as well as tested using dropout regularization, learning rate
decay and changing the input. Further optimization could be done; indeed parallel to
performing our tests a marginally better model was trained, but the model presented
here was the best at the time. The RMSprop optimizer was used with a learning rate of
0.00008 and no learning rate decay. The model was trained for 2000 epochs on 175K

9

0 50 100 150 200 250
keybyte value

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s r

at
e

Fig. 3. Probability of recovering the 1st key byte from a single trace of XMEGA1 AES by MLP
trained on XMEGA1 AES for different byte values.

traces with 75K traces set aside for validation. No dropout was used. Finally, we settled
on 4 dense hidden layers plus an input and an output layer, as shown in Table 2.

5 Experimental Results

We used the ChipWhisperer board to capture traces from the profiling and victim de-
vices. Two identical 8-bit Atmel microcontrollers ATxmega128D4 placed on different
types of printed circuit boards (see Fig. 1 and 2) were used in the experiments. In this
section, we refer to the devices shown in Fig. 1 and 2 as XMEGA1 and XMEGA2,
respectively.

5.1 Inter-Board Diversity

The attacker may not be able to acquire exactly the same board as the victim chip
for training. The aim of this experiment was to evaluate how the inter-board diversity
affects MLP and CNN classification accuracy.

We used XMEGA1 and XMEGA2 programmed to the same version of AES to en-
crypt 600K random plaintexts and random keys and recorded their power traces. Then,
we checked how often the MLP and CNN models trained on XMEGA1 can recover the
1st key byte from a single power trace in both cases.

The MLP model was able to recover the 1st key byte from a single power trace from
XMEGA1 in 96.1% of cases. However, for XMEGA2, the success rate is only 2.45%.

10

0 50 100 150 200 250
keybyte value

0.000

0.005

0.010

0.015

0.020

0.025

0.030

su
cc

es
s r

at
e

Fig. 4. Probability of recovering the 1st key byte from a single trace of XMEGA2 AES by MLP
trained on XMEGA1 AES for different byte values. Note that the range of Y-axis is [0;0.03],
while in Fig. 3 it is [0;1].

Figures 3 and 4 show the distribution of probabilities of recovering different key byte
values of the 1st key byte for both cases. We can conclude that it is easy to overestimate
the classification accuracy if the training and testing are done on the same board.

The CNN model was able to recover the 1st key byte from a single power trace from
XMEGA1 and XMEGA2 in 1.9% and 1.4% of cases, respectively. CNNs seem not to
be suitable for single-trace attacks.

5.2 Implementation Diversity

AES can be implemented in many different versions and several modes of block cipher
operation. The attacker may not know exactly which AES implementation is run by
the victim chip. The aim of this experiment was to investigate how different modes of
operation affect classification accuracy.

We used XMEGA1 programmed to 5 different modes of operation: ECB, CBC,
CFB, CTR, and OFB, to encrypt 100 random plaintexts with a fixed key and recorded
the power traces. Then, we evaluated if the MLP and CNN models trained on XMEGA1
AES-ECB can recover the 1st key byte. As expected, both the MLP and CNN models
were able to recover the key byte correctly only in the ECB mode.

For the MLP, the results of the 1st key byte ranking are shown in Fig. 5. When the
rank of a byte reaches zero, the byte is known.

For the CNN, the results are shown in Fig. 7.
We would like to stress that we do not recommend using variable modes of operation

as a countermeasure against side-channel attacks. The number of modes is small and

11

0 20 40 60 80 100
number of traces

0

50

100

150

200

250

ra
nk

CBC
CFB
CTR
ECB
OFB

Fig. 5. Results of the 1st key byte ranking for n traces of XMEGA1 AES in different modes of
operation by MLP trained on XMEGA1 AES-ECB, for 1≤ n≤ 100.

0 500 1000 1500 2000 2500 3000

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

Fig. 6. The first 3000 data points of a power trace of XMEGA1 during the execution of AES-ECB.

power traces for different modes look different (see Fig. 6 and 8 comparing power traces
of ECB to CTR modes). So, an experienced attacker might be able to analyze a power

12

0 20 40 60 80 100
number of traces

0

50

100

150

200

250

ra
nk

CBC
CFB
CTR
ECB
OCB

Fig. 7. Results of the 1st key byte ranking for n traces of XMEGA1 AES in different modes of
operation by CNN trained on XMEGA1 AES-ECB, for 1≤ n≤ 100.

trace from the victim device, deduce which mode of operation is used, and adjust the
attack strategy accordingly. For example, in the CBC mode, the first plaintext block
is XORed with an IV before being encrypted. So, if the IV is public, the attacker can
re-map the labels of ECB into the labels of CBC. Alternatively, the attacker can re-train
the network for the targeted mode.

5.3 Full Key Recovery

The aim of this experiment was to determine if a network trained on one key byte
position can recover key bytes in other positions. We evaluated how often the MLP and
CNN models trained on XMEGA1 power traces, on a fixed key byte, can recover all
key bytes from XMEGA1 and XMEGA2.

It is important to mention that a CPA attack on XMEGA1 or XMEGA2 implemen-
tations of AES takes about 50 traces (for the default ECB mode). If an attacker can
capture that many traces from a victim device, the attacker can simply use CPA to re-
cover all key bytes directly. Therefore, we limit the number of traces given to MLP and
CNN models to 50.

The CNN model was not able to recover all key bytes from 50 power traces from
neither XMEGA2, nor XMEGA1. We increased the number of traces to 1K to see if
the CNN will be able to recover the full key from XMEGA2 using more traces. Indeed,
with 398 traces on average, the CNN model can recover the full key from XMEGA2
and with 159 traces on average from XMEGA1. However, given that CPA can recover
the full key from 50 traces, using CNN for attacks on unprotected AES does not seem

13

0 500 1000 1500 2000 2500 3000

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

Fig. 8. The first 3000 data points of a power trace of XMEGA1 during the execution of AES-CTR.

useful. Note, though, that the CNNs can break protected implementations of AES, while
CPA cannot. So, the full power of CNN becomes apparent on more difficult problems.
We included CNNs in our experiments for completeness.

For the MLP model, the success rate was also 0 for both XMEGA1 and XMEGA2.
To further investigate this problem, we trained a new MLP model using a union of
16 sets of power traces Ti = {t1,i, . . . , tn,i} from XMEGA1 in which each trace t j,i ∈ Ti
contains 95 points corresponding to the time interval when SBox evaluates the ith byte,
i ∈ {1, . . . ,16}, j ∈ {1, . . . ,n}, n = 70K. This MLP model was always able to recover
all key bytes from 5 power traces from XMEGA1 (using 2 traces on average), and was
never able to recover all key bytes from 50 power traces from XMEGA2.

These results re-confirm the results of our experiment in subsection 5.1 - it is easy
to overestimate the classification accuracy if training and testing are performed on the
same board.

6 Conclusion

In this paper, we show that it is important to train and test neural network models on
traces captured from different boards and using diverse implementations of the crypto-
graphic algorithm under attack. Otherwise, it is easy to overestimate the classification
accuracy of the trained network.

Many interesting open problems remain, including understanding why some key
byte values are easier to learn than others, comparing 256- and 9-classifiers, and investi-
gating if classification accuracy can be improved by introducing diversity at the training

14

stage. Certainly the most important open problem is how deep-learning side-channel at-
tacks can be mitigated. Assuring a unique per device implementation diversity seems to
be a way to go.

Acknowledgement

This work was supported in part by the research grant No 2018-04482 from the Swedish
Research Council.

References

1. Archambeau, C., Peeters, E., Standaert, F.X., Quisquater, J.J.: Template attacks in principal
subspaces. In: L. Goubin, M. Matsui (eds.) Cryptographic Hardware and Embedded Systems
- CHES 2006, pp. 1–14. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

2. Bartkewitz, T., Lemke-Rust, K.: Efficient template attacks based on probabilistic multi-class
support vector machines. In: S. Mangard (ed.) Smart Card Research and Advanced Applica-
tions, pp. 263–276. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

3. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In:
M. Joye, J.J. Quisquater (eds.) Cryptographic Hardware and Embedded Systems - CHES
2004, pp. 16–29 (2004)

4. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data augmentation
against jitter-based countermeasures. In: W. Fischer, N. Homma (eds.) Cryptographic Hard-
ware and Embedded Systems – CHES 2017, pp. 45–68. Springer International Publishing,
Cham (2017)

5. Choudary, M.O., Kuhn, M.G.: Efficient, portable template attacks. IEEE Trans. Information
Forensics and Security 13(2), 490–501 (2018)

6. Clavier, C., Danger, J.L., Duc, G., Elaabid, M.A., Gérard, B., Guilley, S., Heuser, A., Kasper,
M., Li, Y., Lomné, V., et al.: Practical improvements of side-channel attacks on AES: feed-
back from the 2nd DPA contest. Journal of Cryptographic Engineering 4(4), 259–274 (2014)

7. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer-Verlag New York, Inc., Secaucus,
NJ, USA (2002)

8. Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a masked implemen-
tation of AES. In: 2015 IEEE International Symposium on Hardware Oriented Security and
Trust (HOST), pp. 106–111 (2015)

9. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016).
http://www.deeplearningbook.org

10. Hanley, N., O’Neill, M., Tunstall, M., Marnane, W.P.: Empirical evaluation of multi-device
profiling side-channel attacks. In: 2014 IEEE Workshop on Signal Processing Systems
(SiPS), pp. 1–6 (2014). DOI 10.1109/SiPS.2014.6986091

11. Heuser, A., Zohner, M.: Intelligent machine homicide. In: W. Schindler, S.A. Huss (eds.)
Constructive Side-Channel Analysis and Secure Design, pp. 249–264. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2012)

12. Heyszl, J., Ibing, A., Mangard, S., Santis, F.D., Sigl, G.: Clustering algorithms for non-
profiled single-execution attacks on exponentiations. IACR Cryptology ePrint Archive,
2013:438

13. Hospodar, G., Gierlichs, B., De Mulder, E., Verbauwhede, I., Vandewalle, J.: Machine learn-
ing in side-channel analysis: a first study. Journal of Cryptographic Engineering 1(4), 293
(2011)

15

14. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise: Unleashing the
power of convolutional neural networks for profiled side-channel analysis. IACR Cryptology
ePrint Archive, 2018:1023 (2018)

15. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. pp. 388–397. Springer-Verlag
(1999)

16. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems. In: Proc. of the 16th Annual Int. Cryptology Conf. on Advances in Cryptology, pp.
104–113 (1996)

17. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. In: Proceedings of the IEEE, pp. 2278–2324 (1998)

18. Lerman, L., Bontempi, G., Markowitch, O.: Power analysis attack: An approach based on
machine learning 3, ied Cryptography (2014)

19. Lerman, L., Bontempi, G., Markowitch, O.: A machine learning approach against a masked
AES. Journal of Cryptographic Engineering 5(2), 123–139 (2015). DOI 10.1007/s13389-
014-0089-3. URL https://doi.org/10.1007/s13389-014-0089-3

20. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using deep
learning techniques. In: 6th International Conference on Security, Privacy, and Applied Cryp-
tography Engineering, pp. 3–26 (2016)

21. Mangard, S., Pramstaller, N., Oswald, E.: Successfully attacking masked AES hardware im-
plementations. In: International Workshop on Cryptographic Hardware and Embedded Sys-
tems, pp. 157–171. Springer (2005)

22. Montminy, D.P., Baldwin, R.O., Temple, M.A., Laspe, E.D.: Improving cross-device attacks
using zero-mean unit-variance normalization. Journal of Cryptographic Engineering 3(2),
99–110 (2013). DOI 10.1007/s13389-012-0038-y. URL https://doi.org/10.1007/s13389-
012-0038-y

23. Ors, S.B., Gurkaynak, F., Oswald, E., Preneel, B.: Power-analysis attack on an ASIC AES
implementation. In: Proc. Int. Conf. on Information Technology: Coding and Computing,
vol. 2, pp. 546–552 Vol.2 (2004)

24. Perin, G., Ege, B., van Woudenberg, J.: Lowering the bar: Deep learning for side-channel
analysis (white paper) (2018). BlackHat’2018

25. Pfeifer, C., Haddad, P.: Spread: a new layer for profiled deep-learning side-channel attacks.
IACR Cryptology ePrint Archive, 2018:880 (2018)

26. Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Canovas, C.: Study of deep learning tech-
niques for side-channel analysis and introduction to ascad database. IACR Cryptology ePrint
Archive, 2018:053 (2018)

27. Renauld, M., Standaert, F.X., Veyrat-Charvillon, N., Kamel, D., Flandre, D.: A formal study
of power variability issues and side-channel attacks for nanoscale devices. In: K.G. Paterson
(ed.) Advances in Cryptology – EUROCRYPT 2011, pp. 109–128. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2011)

28. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Statist. 22, 400–
407 (1951)

29. Samiotis, I.P.: Side-channel attacks using convolutional neural networks. MSc Thesis,
TUDelft (2018)

30. Souissi, Y., Nassar, M., Guilley, S., Danger, J.L., Flament, F.: First principal components
analysis: A new side channel distinguisher. In: K.H. Rhee, D. Nyang (eds.) Information
Security and Cryptology - ICISC 2010, pp. 407–419. Springer Berlin Heidelberg, Berlin,
Heidelberg (2011)

31. Timon, B.: Non-profiled deep learning-based side-channel attacks. IACR Cryptology ePrint
Archive, 2018:196 (2018)

16

