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Abstract. In Eurocrypt 2018, Cid et al. proposed a novel notion called
the boomerang connectivity table, which formalised the switch property
in the middle round of boomerang distinguishers in a unified approach.
In this paper, we present a generic model of the boomerang connectivity
table with automatic search technique for the first time, and search for
(related-key) boomerang distinguishers directly by combining with the
search of (related-key) differential characteristics. With the technique,
we are able to find 19-round related-key boomerang distinguishers in the
lightweight block cipher Gift-64 and Gift-128. Interestingly, a transi-
tion that is not predictable by the conventional switches is realised in
a boomerang distinguisher predicted by the boomerang connectivity ta-
ble. In addition, we experimentally extend the 19-round distinguisher by
one more round. A 23-round key-recovery attack is presented on Gift-
64 based on the distinguisher, which covers more rounds than previ-
ous known results in the single-key setting. Although the designers of
Gift do not claim related-key security, bit positions of the key addition
and 16-bit rotations were chosen to optimize the related-key differential
bound. Indeed, the designers evaluated related-key differential attacks.
This is the first work to present better related-key attacks than the sim-
ple related-key differential attack. 4
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1 Introduction

Boomerang connectivity table (BCT) [7] is a novel technique proposed by Cid et
al. in Eurocrypt 2018 on analysing the middle rounds of boomerang distinguish-
ers. Through the boomerang connectivity table of an S-box, the middle round
of a boomerang distinguisher through the S-box layer is described in a unified
model similar to differential cryptanalysis with the difference distribution table.
As a result, previous methods [3, 4, 8] such as ladder switch and S-box switch

4 This is a pre-print of an article published in ACISP 2019. The final authenticated
version is available online at 10.1007/978-3-030-21548-4.



are special cases of the boomerang transitions predicted by the BCT. Moreover,
the boomerang connectivity table reveals new properties in the S-boxes such
that new transitions can be derived which are not detectable by any previous
methods.

Currently, automatic search has been widely adopted in finding distinguish-
ers in cryptographic primitives, including differential characteristics, impossible
differentials and many others [11, 10]. The technique requires an explicit model
on the propagation of the differences through a number of rounds, and solves the
problem with an MILP (Mixed integer linear programming) or an SMT (Satis-
fiability module theory) solver. In the scenario of the boomerang attack, due to
the lack of unified mathematical model for the middle round of the boomerang
distinguishers before the BCT, one searches for differential characteristics in two
parts of the encryption function separately, and concatenates them together by
analysing the property in the middle round. In ToSC 2017, Cid et al. stud-
ied ladder switch for a boomerang attack of Deoxys, searching with an MILP
model [6]. Whereas a general technique for the automatic search on boomerang
distinguishers is still left unsolved.

In this paper, we propose the first model of the BCT theory with automatic
search techniques, and merge it with the search for the related-key differential
characteristics. By converting the boomerang connectivity table of an S-box into
(vectorial) logical constraints, the propagations of differences through an S-box
is completely modeled for the middle round of a boomerang distinguisher. As a
result, we are able to search for boomerang distinguishers with a direct evaluation
of the middle switches.

As an application, we construct boomerang distinguishers for a recently pro-
posed block cipher Gift. Proposed by Banik at CHES 2017 [1], Gift is an
improved version of the lightweight block cipher PRESENT [5] with a novel
design strategy on the bit-shuffle layer. Gift-64 and Gift-128 support 64-bit
and 128-bit block sizes, respectively, while both members support the 128-bit
key size. With the optimisation on the diffusion of single-bit differences/masks,
the number of rounds for Gift-64 is largely reduced comparing with that of
PRESENT. Shortly after the proposal of Gift, Zhu et al. report a differential
attack on 19-round of Gift-64 based on a 12-round differential distinguisher
under the single-key setting [14]. In addition, the security of the cipher against
MITM attack and integral cryptanalysis has been studied as well [1, 9]. As far as
we know, there is few result on evaluating the cipher in the related-key model.
Notice that the key schedule of the Gift cipher is linear, the attacks under the
related-key setting may penetrate more rounds, and reveal a better picture of
its security.

Our second contribution is the first third-party security evaluation of the
Gift block cipher in the related-key setting. Based on the automatic search
model developed for boomerang distinguishers, we obtain boomerang distin-
guishers for Gift-64 (consisting of 28 rounds) and Gift-128 (consisting of 40
rounds), both cover 19 rounds with two parts of 9-round encryptions and one
middle part of 1 round. In addition, with an experimental approach, we extend
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the 19-round boomerang distinguisher of Gift-64 to several 20-round ones, each
with probability 2−62.6. Afterwards, a key-recovery attack is launched for Gift-
64 reduced to 23 rounds, with data complexity 263.3 and time complexity 296.
The attack covers about 82% of the entire construction, which well-illustrates
the security margin of Gift-64 in the related-key setting. In addition, we give
a 21-round attack on Gift-128 based on a 19-round boomerang distinguisher.
The attack only reaches (52.5%) of the entire construction. Our analysis implies
that the security margin of Gift-128 is better than that of the smaller version.
A comparison of our attacks with previous works is summarised in Table 1.

The rest of this paper is organised as follows. In Section 2, an overview of
boomerang attacks and the BCT theory is given, as well as an description of
the Gift cipher. The mathematical description of the BCT table is converted
into an automatic search model in Section 3, with applications to search for
boomerang distinguishers in Gift-64 and Gift-128 in Section 4. We extend the
boomerang distinguisher into a key-recovery attack for Gift-64 in Section 5.
Section 6 concludes the paper.

Table 1. A comparison of attacks on Gift-64 and Gift-128. DC stands for differen-
tial cryptanalysis; IC stands for integral cryptanalysis; MITM stands for meet-in-the-
middle attack; RK-B stands for related-key boomerang attack.

Type #rd Prob. Attack #rd Data Time cf.

Gift-64 DC 13 2−62 - - - [13]
(28 rounds) DC 12 2−60 19 263 2112 [14]

IC 10 2−63 14 263 297 [1]
MITM 15 264 2120 [1]
MITM 15 2112 [9]
RK-B 20 2−62.6 23 263.3 2126.6 This paper

Gift-128 DC 18 - 23 2120 2120 [14]
(40 rounds) RK-B 19 2−121.2 21 2126.6 2126.6 This paper

2 Preliminaries

2.1 Boomerang Attacks

Boomerang attack [12] is an effective cryptanalysis tool, especially for ciphers
where the probabilities of the differential characteristics decrease exponentially
with respect to the growth of rounds. As a result, the concatenation of two short
characteristics may possess a better probability. The diagram of a (related-key)
boomerang distinguisher can be illustrated as shown in Figure 1.(1).

The target cipher E is decomposed into two parts E0 and E1. Assume that
a differential characteristic (α, β) with probability p is found for E0, and (γ, δ)
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Fig. 1. An illustration of a related-key boomerang (1) and a related-key sandwich (2).

with probability q for E1. Then the probability of the boomerang distinguisher
is

Pr[E−1(E(x)⊕ δ)⊕ E−1(E(x⊕ α)⊕ δ) = α] = p2q2.

The boomerang attack works in a chosen-plaintext and chosen-ciphertext
model. In 2001, Biham et al. showed that it is possible to construct a rectangle
attack [2] based on a boomerang distinguisher where only the chosen-plaintext
setting is required. The technique exploits the fact that a pair of paired values
(x, x ⊕ α) and (x′, x′ ⊕ α), x, x′ ∈ {0, 1}n satisfies the boomerang structure,
i.e. E(x) ⊕ E(x′) = δ and E(x ⊕ α) ⊕ E(x′ ⊕ α) = δ with probability p2q22−n,
thus may be generated after querying p−1q−12n/2 chosen-plaintext pairs.

2.2 Boomerang Connectivity Table

The partition in the boomerang attack can be extended by decomposing the
encryption function into three parts, where the middle round Em contains many
useful transitions. A number of observations and generalisations on boomerang
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Table 2. DDT of the Gift S-box

∆o

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 2 2 0 2 2 2 2 2 0 0 2

2 0 0 0 0 0 4 4 0 0 2 2 0 0 2 2 0

3 0 0 0 0 0 2 2 0 2 0 0 2 2 2 2 2

4 0 0 0 2 0 4 0 6 0 2 0 0 0 2 0 0

5 0 0 2 0 0 2 0 0 2 0 0 0 2 2 2 4

6 0 0 4 6 0 0 0 2 0 0 2 0 0 0 2 0

∆i 7 0 0 2 0 0 2 0 0 2 2 2 4 2 0 0 0

8 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4

9 0 2 0 2 0 0 2 2 2 0 2 0 2 2 0 0

a 0 4 0 0 0 0 4 0 0 2 2 0 0 2 2 0

b 0 2 0 2 0 0 2 2 2 2 0 0 2 0 2 0

c 0 0 4 0 4 0 0 0 2 0 2 0 2 0 2 0

d 0 2 2 0 4 0 0 0 0 0 2 2 0 2 0 2

e 0 4 0 0 4 0 0 0 2 2 0 0 2 2 0 0

f 0 2 2 0 4 0 0 0 0 2 0 2 0 0 2 2

Table 3. BCT of the Gift S-box

∇o

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 1616 16 16 1616 16 1616161616161616

1 16 0 0 0 0 2 2 0 2 2 2 2 2 0 0 2

2 16 0 4 4 0 8 4 4 0 2 2 0 0 2 2 0

3 16 0 0 0 0 2 2 0 2 0 0 2 2 2 2 2

4 16 4 4 10 4 8 8 6 0 2 0 0 0 2 0 0

5 16 0 2 0 4 2 0 0 2 0 0 4 2 2 2 4

6 16 4 8 6 4 8 4 10 0 0 2 0 0 0 2 0

∆i 7 16 0 2 0 4 2 0 0 2 2 2 4 2 0 0 4

8 16 0 0 8 16 0 0 8 0 0 0 8 0 0 0 8

9 16 2 0 2 0 0 2 2 2 0 2 0 2 2 0 0

a 16 8 4 4 0 0 4 4 0 2 2 0 0 2 2 0

b 16 2 0 2 0 0 2 2 2 2 0 0 2 0 2 0

c 16 4 4 8 4 0 0 4 2 0 2 0 2 0 2 0

d 16 2 2 0 4 0 0 0 0 0 2 6 0 2 0 6

e 16 4 0 4 4 0 4 8 2 2 0 0 2 2 0 0

f 16 2 2 0 4 0 0 0 0 2 0 6 0 0 2 6

attack focus on the margin of the decomposition with techniques such as S-
box switch, boomerang switch and sandwich attack [4, 8], see Figure 1.(2) for
a diagram of a sandwich. Differential behaviours through the S-box are usu-
ally summarised in the precomputed table called differential distribution table
(DDT). Those research results imply that the transitions of differences in the
middle part of a boomerang distinguisher through the S-boxes differ from the
prediction from the DDT. In Eurocrypt 2018, Cid et al. proposed a novel notion
called boomerang connectivity table (BCT), which systematically characterised
the propagation of differences and the corresponding probabilities.

Definition 1 (BCT [7]). Let S : {0, 1}n → {0, 1}n be an invertible func-
tion. For input difference ∆i and output difference ∇o, the entry (∆i,∇o) in the
boomerang connectivity table T (∆i,∇o) of S is given by

T (∆i,∇o) = #{x ∈ {0, 1}n |S−1(S(x)⊕∇o)⊕ S−1(S(x⊕∆i)⊕∇o) = ∆i}.

The above definition implies an important feature that the middle round Em
does not require the squared probability p2 or q2 because the generation of a
right quartet is the probabilistic event over 2n possibilities. As an example, the
DDT and BCT of the Gift S-box are given in Tables 2 and 3.

The proposal of boomerang connectivity table enables an unified view on the
behaviour of the boomerang distinguishers in the middle round(s). Apart from
explaining previous results in the literature, the BCT table provides guidance in
new improvements on boomerang attacks for certain ciphers.

2.3 The Specification of GIFT

Proposed by Banik et al. in CHES 2017, Gift [1] is a lightweight block cipher
which is a descendent of PRESENT [5]. The block size n of Gift takes 64 bits
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or 128 bits, and the key size is 128 bits. We denote the corresponding ciphers
by Gift-64 and Gift-128. One round of Gift contains only an S-box layer
(SubCells), a bit-shuffle (BitPerm) and a round-key injection (AddKey). The
round function of Gift-64 is depicted in Figure 2.
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Fig. 2. Two rounds of the block cipher Gift-64.

Both versions of Gift adopt the same 4-bit S-box that is different from the
S-box in PRESENT.

S[16] = {1, a, 4, c, 6, f, 3, 9, 2, d, b, 7, 5, 0, 8, e}.

The bit permutation used in GIFT follows a new strategy called BOGI (Bad
Output must go to Good Input) to overcome the existence of single active bit
path in characteristics. The detail of the permutations can be found in the spec-
ification of the cipher [1].

The round keys are XORed to two bits of the 4-bit cells. An s(= n/2)-bit
round key RK = U ||V = k1||k0 = us−1 · · ·u0||vs−1 · · · v0 is obtained from the
key state. For Gift-64, the 128-bit key state is updated as follows,

b4i+1 ← b4i+1 ⊕ ui, b4i ← b4i ⊕ vi, i ∈ {0, · · · , 15}.

For Gift-128, RK = U ||V = (k5||k4)||(k1||k0) = us−1 · · ·u0||vs−1 · · · v0

b4i+2 ← b4i+2 ⊕ ui, b4i+1 ← b4i+1 ⊕ vi, i ∈ {0, · · · , 31}.

The 128-bit key state is updated as follows,

k7||k6|| · · · ||k1||k0 ← (k1 ≫ 2)||(k0 ≫ 12)|| · · · ||k3||k2.

The total number of rounds in Gift-64 is 28, while the 128-bit version has
40 rounds.
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Differential Property. The notable feature of Gift is that the maximum
differential probability for the S-box is 2−1.4, which is higher than 2−2 ensured
by many other lightweight block ciphers. In fact, in Table 2, two entries have the
value 6, which implies that the transition is satisfied with probability 6/16 ≈
2−1.4. This contributes relatively larger numbers in BCT, in particular it includes
one non-trivial entry that is propagated with probability 1.

3 Automatic Search of (Related-key) Boomerang Based
on Boomerang Connectivity Table

In this section, we transform the mathematical description of the boomerang
connectivity table into an automatic search model for boomerang distinguishers
in block ciphers.

The boomerang connectivity table shares some similarity with difference dis-
tribution tables, therefore, it is possible to convert BCT tables into constraints,
similar to several previous techniques for DDT tables when dealing with S-boxes
in automatic search. As a typical technique which is proposed by Sun et al. [11],
legal transitions of the differences are modeled as a convex hull and described
by a set of linear inequalities. To include the probability information to the
model, an additional variable can be allocated to represent the abstract binary
logarithm of the probability. As a result, this will probably lead to an increased
number of linear inequalities in the model of the Sbox. We notice that a BCT
table often encompass more values than the corresponding DDT table, for in-
stance, a differentially 4-uniform S-box may have entries being 6 in its BCT. As
a result, it takes more conditions to accurately describe the propagation rules
and the corresponding probabilities in a BCT than the corresponding DDT.

In the following, we propose an alternative method to model the BCT table
of an S-box with boolean constraints. Assume that for an input difference ∆,
there exist l possible output differences {∇0, . . . ,∇l−1} = Dt(∆) where the BCT
entries equal to t. We describe the transition (x → y) with the following logic
expression, which evaluates to 1 when x = ∆ and y ∈ Dt(∆), otherwise 0.

(x = ∆) ∧ ((y = ∇0) ∨ · · · ∨ (y = ∇l−1)) = (x = ∆) ∧ (
∨

∇∈Dt(∆)

(y = ∇)).

In addition, a binary variable wt is allocated to store the probability infor-
mation for the BCT entry t. To be specific, when the difference transition is
(x→ y), we define wt as

wt =
∨
∆

((x = ∆) ∧ (
∨

∇∈Dt(∆)

(y = ∇))).

From the expression, wt evaluates to 1 if one of the possible transitions with
BCT value being t is taken.

For instance, in the BCT table of the Gift S-box (Table 3), when the BCT
value t equals 10, there are two possible transitions, namely, (4→ 3) and (6→ 7).
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So we have
w10 = ((x = 4) ∧ (y = 3)) ∨ ((x = 6) ∧ (y = 7)).

It means that if any of the two possible transitions is taken, the variable w10

evaluates to 1, which indicates a probability of 10/16 through the S-box.
It is clear that the number of clauses in describing an S-box depends on the

nonzero entries of the BCT, corresponding to the variables wt. In the case of the
Gift Sbox, the number of clauses is 7, where t = 0, 2, 4, 6, 8, 10, 16. Therefore,
the transitions and their probabilities may be modeled with fewer conditions
with our encoding method than before. This is beneficial especially when the
number of rounds and the block size are large enough.

To search for a boomerang distinguisher in a block cipher E which is decom-
posed into three parts E0, Em, E1, one first sets the conditions for valid difference
transitions in E0 and E1 through the round functions. For the middle round Em,
the propagation through the S-box layer can be modelled with the encoding of
BCT discussed above; and we take the linear layer into consideration to connect
the characteristics in E0 and E1. The probability of the difference propagation
through an Sbox can be deduced from the binary variables wt, which is∑

t

wt ∗ (t/16).

Take the abstract binary logarithm being its weight, and assume that the total
weights of the characteristics in E0, E1 and Em areW0,W1 andWm, respectively.
The weight of the boomerang is

2 ∗ (W0 +W1) +Wm.

By optimising it, we can directly find a boomerang distinguisher with optimal
probability in E.

Remark 1. With related-key differential characteristics, we are able to find related-
key boomerang distinguishers. The distinguisher involves four different keys: k
and k ⊕∆k for a related-key differential characteristic in E0, and k ⊕∆k′ and
k ⊕∆k ⊕∆k′ in E1, as shown in Figure 1.

4 Automatic Search of Boomerang Distinguishers in
GIFT

In this section, our aim is to apply the automatic search model to search for
related-key boomerang distinguishers in Gift-64 and Gift-128.

Intuition: Why Boomerang Attacks Can be Strong? We start with find-
ing optimal related-key differential characteristics. Due to the design of the key
schedule in Gift-64, the first four round keys are independent of each other.
Thus the number of active S-boxes can be 0 up to 3 rounds by canceling the
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Table 4. The minimum number of active S-boxes in related-key differential character-
istics of Gift-64.

#rounds 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

#AS 1 1 2 3 4 6 9 11 13 15 17 19 21 23 25 27

plaintext difference with the first round key. Table 4 shows the minimum num-
ber of active S-boxes in related-key differential characteristics of Gift-64 from
4 rounds.

We observe that the number of active S-boxes slowly increases when the
number of rounds is small, especially up to 8 rounds. In contrast, the num-
ber of active S-boxes rapidly increases when the number of rounds is large.
This is a typical case that the related-key boomerang distinguisher may have
a much higher probability than the related-key differential characteristics cov-
ering the same number of rounds, by concatenating two short characteristics
with high probabilities. Let pi be the probability of the differential propagation
in round i. Then the probability of the differential distinguisher for x rounds
is denoted by

∏x
r=0 pi. In contrast, the boomerang distinguisher basically con-

catenates two x/2-round trail by considering the squared probability, namely(∏x/2
r=0 p

2
i

)2

. From Table 4, when we increase the number of attacked rounds

by 1, the boomerang distinguisher will involve 1 more active S-box with the
squared probability and the differential distinguisher will involve 2 more active
S-boxes with the normal probability. Those would give almost the same impact
to the attack complexity. As a result, the boomerang distinguisher can be more
efficient than the differential distinguisher because the boomerang distinguisher
can include 3 blank rounds twice (in E0 and in E1) and the middle rounds Em
do not require the squared probability.

Finding Boomerang Distinguishers. In this section, we focus on boomerang
distinguishers that divide the entire encryption into three parts E0, Em and E1,
denoted by X + 1 + Y where X and Y stands for the number of round covered
by the differential characteristics in E0 and E1, respectively. For instance, an
optimal 4-round related-key differential characteristic in Gift-64 has a proba-
bility of 2−1.4, and it is possible to find a related-key boomerang distinguisher
covering 9 rounds with the form 4 + 1 + 4, where the total probability of the
boomerang distinguisher is (2−1.4)2 × 1× (2−1.4)2 = 2−5.6.

The strategy of finding boomerang distinguishers follows the theory of the
boomerang connectivity table and the model of BCT tables in automatic search
techniques. In order to find boomerang distinguishers automatically, our search
techniques are based on the model of searching related-key differential charac-
teristics and the translation of BCT table into a solver-friendly language with
respect to SMT solvers as explained in Section 3.
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The boomerang connectivity table of Gift S-box is shown in Table 3. For
each value in the table, we describe the constraints for valid difference transitions
in BCT. For instance, for all the entries (a→ b) taking the value 6, the constraint
in SMTLIB-2 language is

(= w (bvor (bvand (= a #x2) (= b #x5))

(bvor (bvand (= a #x4) (bvor (= b #x5) (= b #x6)))

(bvor (bvand (= a #x6) (bvor (= b #x2) (= b #x5)))

(bvor (bvand (= a #x8) (bvor (= b #x3) (bvor (= b #x7)

(bvor (= b #xb) (= b #xf)))))

(bvor (bvand (= a #xa) (= b #x1))

(bvor (bvand (= a #xc) (= b #x3))

(bvand (= a #xe) (= b #x7))

))))))),

where one of the transitions is taken if w = 1.
With the transitions of differences in boomerang distinguishers characterised,

we execute the model of Gift-64 for searching boomerang distinguishers with
the form X + 1 +X, where X = 4, 5, 6, 7, 8, 9, 10. The probability of the optimal
related-key boomerang distinguishers in Gift-64 which takes the form X+1+X
can be found in the following Table 5.

Table 5. The probability of the optimal related-key boomerang distinguishers in Gift-
64 which takes the form X+1+X, with a comparison to the probability of the optimal
related-key differential characteristics.

#rounds 9 11 13 15 17 19 21

Pr. of RK-boomerang 2−5.6 2−5.6 2−13.6 2−21.6 2−32 2−53.6 2−79.2

Pr. of RK-differential 2−13.4 2−28.8 2−39 2−50 2−61 2−78 2−89

It can be seen that the distinguishers cover up to 19 rounds of Gift-64 with
a probability larger than 2−64, whereas the probability of the optimal 19-round
differential characteristic might be much lower, given that 27 S-boxes are active.
We actually searched for the maximum differential characteristic probability
for 19 rounds, which was turned out to be 2−78. In Figure 3, we illustrate the
comparison between the probabilities of related-key boomerangs and related-key
differential characteristics.

Note that we confirmed that the distinguisher does not reach 20 rounds even
by relaxing the search space to X + 1 + Y,X 6= Y .

Details of the Detected Trail. In Figure 4, we show the detail of a 19-round
related-key boomerang distinguisher in Gift-64. We concatenate two 9-round
characteristics of probability 2−13.4. The transition in the middle round Em has
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Fig. 3. The comparison between the probabilities of related-key boomerangs and
related-key differential characteristics in Gift-64. The probabilities are shown as the
abstract binary logarithm − log2(p).

a probability of 2−5, due to the propagation of differences in the BCT table. It
is interesting to notice that the transitions (1→ 8) and (4→ 1) take advantage
of the new properties predicted by the BCT than previous techniques of finding
boomerang distinguishers.

Application to GIFT-128. Similarly, we are able to search for boomerang dis-
tinguishers in Gift-128. Usually, the complexity of the problem is proportional
to the size of constraints and variables. It is generally more difficult to find char-
acteristics for ciphers with large block size. Therefore, we terminate the program
and return the best found solution if necessary. Table 6 shows the probability of
the best-found boomerang distinguishers up to 19-rounds for Gift-128.

Table 6. The probability of the related-key boomerang distinguishers in Gift-128
which takes the form X + 1 +X. Only the 19-round one is not optimal.

#rounds 9 11 13 15 17 19

Pr. of RK-boomerang 2−13.6 2−24 2−40 2−59.2 2−83.2 2−121.2
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Fig. 4. A 19-round boomerang distinguisher with the form X + 1 + X in Gift-64,
where X = 9. The probability is 2−58.6.

5 Boomerang attack on GIFT-64 and GIFT-128

5.1 Extension of the Distinguisher

As shown by the automatic search, the optimal boomerang distinguisher that
covers 19-round Gift-64 has the probability 2−53.6, which is obtained by con-
necting two 9-round related-key characteristics of probability 2−13.4. The tran-
sition probability in the middle round is 1, which largely depends on the output
and input differences in E0 and E1. For instance, the probability of the middle
round in the characteristic in Figure 4 is 2−5.

We extend the 19-round distinguisher for more rounds by using an experimen-
tal approach. We enumerate all 9-round characteristics in Gift-64 with probabil-
ity 2−13.4. There are in total 120 such characteristics Ω0, · · · , Ω119. We consider
usingΩi, i ∈ {0, 1, . . . , 119} for the first 9 rounds of E0 andΩj , j ∈ {0, 1, . . . , 119}
for the last 9 rounds of E1. We have 14, 400 combinations. For each combination,
the input and output differences for the middle part Em are fixed, thus the con-
necting probability in the middle round(s) can be experimentally found. Notice
that many characteristics share the same input and output differences. After
removing the duplicated patterns, there are 16 distinct output differences from
E0 and 58 distinct input difference to E1. Hence, the total number of patterns
to be checked is reduced to 16× 58 = 928.

12



Table 7. All Distinct Input and Output Differences of Ω0, · · · , Ω119

ID Output Diff from E0 ID Output Diff from E0 ID Output Diff from E0 ID Output Diff from E0

01 0100040000000102 05 4000000010000201 09 0040000000120100 13 2010004000200000

02 0100040002000002 06 4000200000000201 10 0040002000020100 14 2010004000000010

03 0004000200002010 07 1000400000001020 11 0201000400020000 15 0400020000201000

04 0004000000012010 08 1000400020000020 12 0201000400000001 16 0400000001201000

ID Input Diff to E1 ID Input Diff to E1 ID Input Diff to E1 ID Input Diff to E1

01 0000600e00000006 16 000c0000d6000000 31 600c0000000c0000 46 000000600000600d

02 0000600f00000006 17 0000000c0000d600 32 600d0000000c0000 47 000000c00000600c

03 0000600e0000000c 18 0000000c0000f600 33 0000e60000006000 48 000000c00000600d

04 0000600f0000000c 19 0000000c0000e600 34 0000f60000006000 49 00c00000600c0000

05 0000600c00000006 20 0000000c0000c600 35 0000e6000000c000 50 00c00000600d0000

06 0000600d00000006 21 000000060000e600 36 0000f6000000c000 51 00c00000600e0000

07 0000600c0000000c 22 000000060000c600 37 0000c6000000c000 52 00c00000600f0000

08 0000600d0000000c 23 000000060000d600 38 0000d6000000c000 53 00600000600c0000

09 00060000e6000000 24 000000060000f600 39 0000c60000006000 54 00600000600d0000

10 00060000f6000000 25 600e000000060000 40 0000d60000006000 55 00600000600e0000

11 000c0000e6000000 26 600f000000060000 41 000000600000600e 56 00600000600f0000

12 000c0000f6000000 27 600e0000000c0000 42 000000600000600f 57 c600000060000000

13 00060000c6000000 28 600f0000000c0000 43 000000c00000600e 58 c6000000c0000000

14 00060000d6000000 29 600c000000060000 44 000000c00000600f 59

15 000c0000c6000000 30 600d000000060000 45 000000600000600c 60

For each of the patterns, we generate 213(= 8, 192) random keys and state
values to experimentally check the probability that the middle round is satisfied.
The number of rounds for Em is a parameter. When we set the number of rounds
for Em is 1, namely when the boomerang characteristic has the form 9 + 1 + 9,
we have 34 combinations such that the probability of the middle round is 1.

The experiment can be extended for boomerang distinguishers with the form
9+Y +9, where the middle part contains Y = 2, 3 rounds. Only 10 combinations
result in a probability larger than 2−10 when Y = 2, while all combinations have
a probability lower than 2−15 for Y = 3. As a consequence, we are able to push
the 19-round boomerang distinguisher for one round more, and obtain 20-round
distinguishers with probability 2−62.6 as shown in Table 8.

5.2 Key Recovery Attacks

The boomerang distinguisher found above can be extended to a 23-round key-
recovery attack against Gift-64 by adding one round in the beginning and two
rounds at the end.

The linear layer in the last round does not impact to our attack. We omit
in order to keep the description of the attack procedure as simple as possible.
Note that the bit positions of the key injection need to change accordingly to the
BitPerm operation. However, BitPerm is designed to be closed in each register
in the bit-slice implementation. Namely, the first and the second bits of each
S-box is XORed by the round key. Indeed, bit-positions 4i for i = 0, 1, ..., 15
move to bit-position 4j for j = 0, 1, ..., 15 and the same applies to bit-positions
from 4i+ 1 to 4j + 1.
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Table 8. A 20-round boomerang distinguisher of the form 9 + 2 + 9 by concatenating
two 9-round characteristics with probability 2−13.4. The probability of the middle con-
nection is 2−8.34. The difference nibbles x ∈ {6, c}, y ∈ {c, d, e, f}, (w, z) ∈ (2, 0), (0, 1).
The key differences in the two middle rounds follow those in E1.

Round Characteristic Key difference k7 k6 · · · k1 k0

0 00x00000600y0000 0040 0000 0000 0000 0004 0000 0008 0020

1 0000006000000000 0002 0200 0040 0000 0000 0000 0004 0000

2 0000000000000000 0001 0000 0002 0200 0040 0000 0000 0000

3 0000000000000000 0000 0000 0001 0000 0002 0200 0040 0000

4 0000000002000000 0010 0000 0000 0000 0001 0000 0002 0200

5 0000000000000060 8000 2000 0010 0000 0000 0000 0001 0000

6 0000000000000000 4000 0000 8000 2000 0010 0000 0000 0000

7 0000000000000000 0000 0000 4000 0000 8000 2000 0010 0000

8 0000000000020000 0004 0000 0000 0000 4000 0000 8000 2000

9 2010004000200000 2000 0002 0004 0000 0000 0000 4000 0000

10 2-round BCT 1000 0000 2000 0002 0004 0000 0000 0000

11 0000600d00000006 0400 0000 0000 0000 4000 0000 0010 0040

12 0000060000000000 0004 0400 0400 0000 0000 0000 4000 0000

13 0000000000000000 1000 0000 0004 0400 0400 0000 0000 0000

14 0000000000000000 0000 0000 1000 0000 0004 0400 0400 0000

15 0000020000000000 0100 0000 0000 0000 1000 0000 0004 0400

16 0000000000000600 0001 4000 0100 0000 0000 0000 1000 0000

17 0000000000000000 0400 0000 0001 4000 0100 0000 0000 0000

18 0000000000000000 0000 0000 0400 0000 0001 4000 0100 0000

19 0000000200000000 0040 0000 0000 0000 0400 0000 0001 4000

20 010004000w000z02

The distinguisher covers the segment from round 2 to round 21. We prepare
the plaintext quartets with the desired input difference at the first round, and
perform 2-round partial decryptions on the ciphertexts under the guessed key.
To produce the output difference as predicted, we need to make Q = 2np−2

b

quartets, where n is the block size and pb is the probability of the boomerang
distinguisher. By birthday paradox, the quartets can be generated by making
pairs between p1 and p2 as well as p3 and p4, separately. Each case requires Q1/2

queries. After combining them, we get Q quartets with 2× (Q1/2 +Q1/2) queries
in total, where a pair requires 2 queries. Unfortunately, a direct estimation of
the data complexity turns out to exceed the total data available. Therefore, we
need to utilise the input differences of the boomerang distinguishers in Table 8,
and generate the required quartets with fewer queries. In the following, let the
output difference be 0100040000000102.

The detail of the attack procedure is as follows.
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Step 1: (Offline) We have SubCells, BitPerm and AddKey before the 20-round
distinguisher. Since the round-key difference can be derived through the linear
key schedule, the difference after SubCells in the first round is known. When we
choose plaintext, we choose the internal state values after SubCells in the first
round to satisfy this difference. We then compute the inverse of SubCells offline
to generate the plaintext.
Step 2: (Online) The goal of this step is to make D = 263.3 queries to generate
Q = 2126.6 quartets. With a probability of 2−64, the encryptions with E0 of
the quartets match the intermediate difference γ, thus we can expect one right
quartet satisfying the boomerang distinguisher. The procedure is shown below.

2.(a): At the beginning of the boomerang distinguisher, fix x to 6. Then the
truncated differences is 00600000600y0000, where y ∈ {c, d, e, f}. Notice that
the difference on the 16-th and 17-th bit can take any value.

2.(b): Fix a plaintext value p1 and take all four cases of the 16-th and 17-th
bits. Query those 4 plaintexts to the oracle with key K.

2.(c): Compute p2 by p2 = p1 ⊕ α. Then, make 4 queries to the oracle with
K⊕∆k by testing all the four cases for the 16-th and 17-th bits.

2.(d): Generate 4× 4 = 16 pairs from the above 8 queries.
2.(e): Repeat the process for 259.3 different values of p1 (262.3 queries in

total) to generate 263.3 pairs of p1, p2.
2.(f): Prepare the pairs between p3 and p4 analogously, with 262.3 queries we

generate 263.3 pairs of p3, p4. By birthday paradox, we getQ quartets p1, p2, p3, p4

by combining the pairs p1, p2 and p3, p4.
Step 3: The differential propagation for the extended two rounds after the 20-
round distinguisher is shown in Fig. 5.

Collect right quartet candidates where the outputs after 23-rounds of encryp-
tion have inactive nibbles at the 1st, 5th, 11th and 13th nibbles for both pairs
of c1, c3 and c2, c4.
Step 4: Guess 8 key-bits at round 22 and 24 key-bits at round 23 for the
partial decryption of the ciphertext quartets c1, c2, c3, c4, which leads to the
middle states m1,m2,m3,m4 having the output difference from the 20-round
distinguisher. The positions of the involved key-bits are shown in Figure 5.
Step 5: Exhaustively search for the remaining 128− 32 = 96 bits of the key.

From the procedure of Step 2, the data complexity of the attack D is 262.3 +
262.3 = 263.3 queries in total. After the filter by the ciphertext difference at Step
3, we obtain Q× 2−16−16 = 294.6 right quartet candidates. At Step 4, we guess
8 + 24 = 32 key bits and apply partial decryption for all 294.6 candidates, it will
take 294.6 × 232 = 2126.6 2-round decryptions. Step 4 involves 16 S-boxes and
the probability that all the 16 S-boxes will behave as expected is 2−128 for each
wrong guess. Hence, we expect the only 1 key survives after Step 4.

5.3 21-Round Key Recovery on GIFT-128.

Note that the optimal boomerang distinguisher we obtained in the previous
section for Gift-128 covers the same number of rounds as that of Gift-64 even
though the attacker can make queries up to 2128 plaintexts. Such inefficiency
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Fig. 5. The difference propagation in the final two rounds when the output difference
of the boomerang is 0100040000000102. The blue triangles label the positions of the
guessed key bits.

in Gift-128 comes from the larger round key size. Gift-128 injects 64 key
bits in every round, which is double of the Gift-64. This significantly improves
the speed of differential diffusion, which only allows the attack up to the same
number of rounds as Gift-64.

We present the 21-round attack on Gift-128 based on the 19-round boomerang
distinguisher found in the previous section. Table 9 shows the 9-round differen-
tial characteristic used for the concatenation of the 19-round boomerang. The
probability of the 19-round boomerang distinguisher is 2−121.2, where the middle
round switch takes a probability of 2−2 as predicted by the BCT.

Table 9. A 9-round differential characteristic of probability 2−29.8 which can be ex-
tended into a 19-round boomerang distinguisher with the form 9+1+9. The column of
the key differences shows the values (k5, k4, k1, k0) for generating the differences used
in round keys.

Round Characteristic Key difference (k5 k4 k1 k0)

0 000006000000e0000000000000000060 1000 0000 4000 0001

1 00000000000000000000000000000000 0008 0000 0000 0000

2 00000000000040000000000000000000 0000 1000 0010 4000

3 00000000000000000205000000000000 0000 0008 0000 0000

4 00000000000010000000200000000000 0400 0000 0004 0010

5 000000000000000000000000000a0000 0002 0000 0000 0000

6 00000000000000000000002000000000 0000 0400 0100 0004

7 00000002000000000000000000000000 0000 0002 0000 0000

8 00000000040000000200000000000040 0100 0000 0040 0100

9 00200005021010000000000600404002
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Fig. 6. The difference propagation in the final round when the output difference of
the boomerang is 00200005021010000000000600404002. The blue triangles label the
positions of the guessed key bits in 9 S-boxes with nonzero differences.

The distinguisher can be extended to a 21-round attack (one round before
and one round after the distinguisher, the final round has no permutation layer)
on Gift-128 with the following procedure.
Step 1: (Offline) This stage is similar to the attack on Gift-64, where the
attacker prepares the input quartets offline to extend the distinguisher by one
round at the beginning.
Step 2: (Online) We make 2126.6 queries to generate 2249.2 quartets. With a
probability of 2−128, the encryptions with E0 of the quartets match the inter-
mediate difference γ, and it is sufficient to produce one right quartet satisfying
the boomerang distinguisher.

2.(a): Take the difference 000006000000e0000000000000000060 at the be-
ginning of the boomerang distinguisher.

2.(b): We need 2125.6 queries to generate 2124.6 pairs between p1 and p2.
Similarly for p3 and p4.

2.(c): By birthday paradox, we get 2249.2 quartets p1, p2, p3, p4 by combining
the pairs p1, p2 and p3, p4.
Step 3: Collect the outputs after 23-rounds of encryption. Guess 18 key-bits at
round 21 for the partial decryption of the ciphertext quartets c1, c2, c3, c4, and
we obtain the middle states m1,m2,m3,m4. The guessed key bits are located
in those 9 S-boxes with a nonzero difference in the output difference as shown
in Figure 6. With the ciphertext filtering technique, we have a gain of 292 since
there are 23 nibbles with no difference after the S-box layer.
Step 4: Check the differences among the quartets of the middle states, if the
difference match the boomerang distinguisher, the guessed key bits are the can-
didates for the right keys.
Step 5: The remaining 128 − 18 = 110 bits of the key is recovered by an
exhaustive search.

The data complexity of the attack is 2126.6. And the time complexity is
2126.6×218×2−92 + 2110 ≈ 2110 partial encryptions. Hence the bottleneck of the
complexity is the memory accesses to 2126.6 queried data.

6 Conclusion

In this paper, we study the automatic search model of boomerang connectivity
table and its applications. By converting the boomerang connectivity table into
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SMT language, we are able to directly model the propagations in boomerang
distinguishers with an automatic search based on the search of differential char-
acteristics. It enables us to find optimal switches in the middle round(s) which
may not be predictable by previous techniques. As an application, our target
is a recently proposed block ciphers family Gift, and related-key boomerang
distinguishers covering 19 rounds of Gift-64 and Gift-128 are found with the
automatic search model. Moreover, we experimentally extended the 19-round
distinguisher of Gift-64 into a 20-round one, and launched a key-recovery at-
tack against Gift-64 reduced to 23 rounds. Our analysis shows that Gift-64
seems to have a smaller security margin than that of Gift-128.
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