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Abstract. We present a server-supported, hash-based digital signature
scheme. To achieve greater efficiency than current state of the art, we
relax the security model somewhat. We postulate a set of design require-
ments, discuss some approaches and their practicality, and finally reach a
forward-secure scheme with only modest trust assumptions, achieved by
employing the concepts of authenticated data structures and blockchains.
The concepts of blockchain authenticated data structures and the pre-
sented blockchain design could have independent value and are worth
further research.

1 Introduction

Buldas, Laanoja, and Truu [14] recently proposed a new type of signature scheme
(which we will refer to as the BLT scheme in the following) based on the idea of
combining one-time time-bound keys with a cryptographic time-stamping ser-
vice. The scheme is post-quantum secure against known attacks and the integrity
of the signatures does not depend on the secrecy of any keys. However, the keys
have to be pre-generated for every possible signing time slot and this creates
some implementation challenges. In particular, key generation on smart-cards
would be prohibitively slow in real-world parameters.

In order to avoid the inherent inefficiency of pre-assigning individual keys to
every time slot, we propose ways to spend such keys sequentially, one-by-one, as
needed. This approach is particularly useful for real-world use-cases by human
end-users where signing is performed in infrequent batches, e.g. paying monthly
bills, and vast majority of the time-bound keys would go unused.

Sequential key use needs more elaborate support from the server. In particu-
lar, it is necessary to keep track of spent keys by both the signer and the server,
and to avoid successful re-use of the spent keys. We will observe some ways to
manage these keys sequentially and finally reach a solution where the server does
not have to be trusted.
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The proposed signature scheme can be considered practical. It provides for-
ward security, non-repudiation of the origin via efficient revocation; there are no
known attacks by quantum computers; it comes with “free” cryptographic time-
stamping. Key and signature sizes and computational efficiency are comparable
with state-of-the-art hash-based signature schemes. The scheme is stateful and
maximum number of signatures created using a set of keys is determined at the
key-generation time. Like other non-hierarchical hash-based signature schemes,
the key generation time becomes noticeable when more than ∼ 220 signatures
have to be created using a set of keys.

The rest of the paper is organized as follows. In Sec. 2 we survey the state of
the art in hash-based signature schemes, server-assisted signature schemes, and
authenticated data structures. In Sec. 3 we define the design goals and outline
the reasoning that led us to the new scheme. In Sec. 4 we specify the design of
the new scheme and in Sec. 5 provide some notes on implementation. We wrap
up with conclusions in Sec. 6.

2 Related Work

2.1 Hash-Based Signatures

The earliest signature scheme constructed from hash functions is due to Lam-
port [30, 22]. His scheme, as well as the refinements proposed in [33, 24, 23, 7, 27],
are one-time: they require generation of a new key pair and distribution of a
new public key for each message to be signed.

Merkle [33] introduced the concept of hash tree which aggregates a large
number of inputs into a single root hash value so that any of the N inputs
can be linked to it with a proof consisting of log2 N hash values. This allowed
combining N instances of a one-time signature scheme into an N -time scheme.
This approach has been further studied in [17, 19, 39, 21]. A common drawback
of these constructs is that the whole tree has to be built at once.

Merkle [34] proposed a method to grow the tree gradually as needed. How-
ever, to authenticate the lower nodes of the tree, a chain of one-time signatures
(rather than a sequence of sibling hash values) is needed, unless the scheme
is used in an interactive environment and the recipient keeps the public keys
already delivered as part of earlier signatures. This multi-level approach has
subsequently been refined in [32, 6, 9, 8, 28, 29].

A complication with the N -time schemes is that they are stateful : as each
of the one-time keys may be used only once, the signer has to keep track of
them. If this information is lost (for example, when a previous state is restored
from a backup), key re-use may result in a catastrophic security loss. Perrig [35]
proposed a few-time scheme where a private key can be used to sign several
messages, and the security level decreases gradually with each additional use.

Bernstein et al. [3] combined the optimized few-time scheme of [38] with the
multi-level tree of [8] to create SPHINCS, a stateless scheme that uses keys based
on a pseudo-random schedule, making the risk of re-use negligible even without
tracking the state.



2.2 Server-Assisted Signatures

In server-assisted schemes the signer has to co-operate with a server to produce
a signature. The two main motivations for such schemes are: (a) performance:
costly computations can be offloaded from an underpowered signing device (such
as a smart-card) to a more capable computer; and (b) security: risks of key misuse
can be reduced by either keeping the keys in a server environment (which can
presumably be managed better than an end-user’s personal computer) or by
having the server perform additional checks as part of the signature generation
protocol.

An obvious solution is to just have the server handle all asymmetric-key
operations based on requests from the signers [37]. In this case the server has to
be completely trusted, but it’s not clear whether that is in fact less secure than
letting end-users manage their own keys [16].

To reduce the need to trust the server, Asokan et al. [2] proposed and others
in [4, 25] improved methods where asymmetric-key operations are performed by
a server, but a user can prove the server’s misbehavior when presented with
a signature that the server created without the user’s request. However, such
signatures appear to be valid to a verifier until challenged by the user. Thus,
these protocols are usable in contexts where a dispute resolution process exists,
but unsuitable for applications with immediate and irrevocable effects, such as
authentication for access control purposes.

Several methods have been proposed for outsourcing the more expensive
computation steps of specific signature algorithms, notably RSA, but most early
schemes have subsequently been shown to be insecure. In recent years, probably
due to increasing computational power of handheld devices and wider availability
of hardware-accelerated implementations, attention has shifted to splitting keys
between end-user devices and back-end servers to improve the security of the
private keys [18, 10].

2.3 Interactive Signature Protocols

Interactive signature protocols, either by interaction between parties or with an
external time-stamping service, were considered by Anderson et al. [1]. They
proposed the “Guy Fawkes Protocol”, where, once bootstrapped, a message is
preceded by publishing the hash of the message and each message is authenti-
cated by accompanying it with a secret whose hash was published together with
an earlier message. Although the verification is limited to a single party, the
protocol is shown to be a signature scheme according to several definitions. The
broadcast commitment step is critical for providing non-repudiation of origin.
Similar concept was first used in the TESLA protocol [36], designed to authen-
ticate parties who are constantly communicating with each other. Due to this,
it has the same inflexibility of not supporting multiple independent verifiers.

Buldas et al. [14] presented a generic hash-based signature scheme which
depends on interaction with a time-stamping service. In the following we call
this scheme the BLT scheme. The principal idea of the scheme is to have the



signer commit to a sequence of secret keys so that each key is assigned a time
slot when it can be used to sign messages and will transition from signing key
to verification key at the end of the time slot. In order to prove timely usage of
the keys, a cryptographic time-stamping service is used. It is possible to provide
suitable time-stamping service [11] with no trust in the service provider [12, 13],
using hash-linking and hash-then-publish schemes [26]. Signing then comprises
of time-stamping the message-key commitment in order to prove that the signing
operation was performed at the correct time.

2.4 Authenticated Data Structures

An authenticated data structure is a data structure whose operations can be
performed by an untrusted prover (server) and the integrity of the results can
be verified efficiently by a verifier. We do not follow the less general 3-party
model where trusted clients modify data on an untrusted server, and the query
responses are accompanied with proof of correct operation based on server’s data
structure [40].

Authenticated data structures in the sense used here were first proposed for
checking the correctness of computer memory [5]. Thorough analysis of appli-
cations in the context of tamper-evident logging was performed in [20]. The
concept found its practical use-case in PKI certificate management: first pro-
posed as “undeniable attesters” [15], where PKI users receive attestations of
their certificates’ inclusion in or removal from the database of valid certificates,
and then the “certificate transparency” framework [31], which facilitates public
auditing of certification authority operations.

3 Approach

3.1 Preliminaries

Hash Trees. Introduced by Merkle [33], a hash tree is a tree-shaped data
structure built using a 2-to-1 hash function h : {0, 1}2k → {0, 1}k. The nodes of
the tree contain k-bit values. Each node is either a leaf with no children or an
internal node with two children. The value x of an internal node is computed
as x ← h(xl, xr), where xl and xr are the values of the left and right child,
respectively. There is one root node that is not a child of any node. We will use
r ← Th(x1, . . . , xN ) to denote a hash tree whose N leaves contain the values
x1, . . . , xN and whose root node contains r.

Hash Chains. In order to prove that a value xi participated in the computation
of the root hash r, it is sufficient to present values of all the siblings of the nodes
on the unique path from xi to the root in the tree. For example, to claim that x3

belongs to the tree shown on the left in Fig. 1, one has to present the values x4

and x1,2. This enables the verifier to compute x3,4 ← h(x3, x4), r ← h(x1,2, x3,4),
essentially re-building a slice of the tree, as shown on the right in Fig. 1. We will
use x

c
 r to denote that the hash chain c links x to r in such a manner.



r = h(x1,2, x3,4)

x1,2 = h(x1, x2)

x1 x2

x3,4 = h(x3, x4)

x3 x4

r

x1,2 x3,4

x3 x4

Fig. 1. The hash tree Th(x1, . . . , x4) and the corresponding hash chain x3  r.

3.2 The BLT Signature Scheme
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Fig. 2. Components of the BLT signature
scheme.
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Fig. 3. Computation of public key
for N = 4.

We start from the BLT scheme [14] with the following parties (Fig. 2):

– The signer who uses trusted functionality in secure device D to manage
private keys.

– Server S that aggregates key usage events from multiple signers in fixed-
length rounds and posts the summaries to append-only repository R.

– Verifier V who can verify signatures against the signer’s public key p and
the round summaries rt obtained from the repository.

Note that S and R together implement a hash-and-publish time-stamping service
where neither the signer nor the verifier needs to trust S; only R has to operate
correctly for the scheme to be secure.

Key generation. To prepare to sign messages at times 1, . . . , T , the signer:

1. Generates T unpredictable k-bit signing keys: (z1, . . . , zT )← G(T, k).
2. Binds each key to its time slot: xt ← h(t, zt) for t ∈ {1, . . . , T}.
3. Computes the public key p by aggregating the key bindings into a hash tree:

p← Th(x1, . . . , xT ).



The purpose of the resulting data structure (Fig. 3) is to be able to extract the

hash chains ct linking the private key bindings to the public key: h(t, zt)
ct p

for t ∈ {1, . . . , T}.

Signing. To sign message m at time t, the signer:

1. Uses the appropriate key to authenticate the message: y ← h(m, zt).

2. Time-stamps the authenticator by submitting it to S for aggregation and
getting back the hash chain at linking the authenticator to the published
summary: y

at rt.

3. Outputs the tuple (t, zt, ct, at).

Note that the signature is composed and emitted after the time-stamping step,
which makes it safe for the signer to release the key zt as part of the signature:
the aggregation round t has ended and any future uses of the key zt can no
longer be stamped with time t.

Verification. To verify the message m and the signature s = (t, z, a, c) with
the public key p and the aggregation round summary rt, the verifier:

1. Checks that z was committed as signing key for time t: h(t, z)
c
 p .

2. Checks that m was authenticated with the key z at time t: h(m, z)
a
 rt .

3.3 Desired Properties

The components of BLT can in fact be used to create a variety of signing schemes.
In the following we draft some of them and explain the necessary compromises
compared to the ideal properties:

– Early forgery prevention: it is better to block revoked or expired keys at
signing time (so that signature can’t be created) than to leave key status
detection to verification time; the least desired is a scheme where forgery is
detected only eventually during an audit.

– Minimal number and resource requirements of trusted components: these
have to be implemented using secure hardware or distributed consensus
which are both expensive.

– Minimal globally shared data: authenticated distribution is expensive.

– Well-defined security model: assumptions, root of trust, etc.

– Efficiency: many signers, few servers, single shared root of trust.

– Privacy: signing events should ideally be known only to verifiers.

Note that providing higher-level properties like key revocation and proof of sign-
ing time almost certainly requires some server support.



3.4 Design of the Proposed Scheme

One-Time Keys. The signing keys in BLT are really not one-time, but rather
time-bound: every key can be used for signing only at a specific point of time.
This incurs quite a large overhead as keys must be pre-generated even for time
periods when no signatures are created. The schemes discussed below use one-
time keys sequentially instead.

As the first idea, we can have the signer time-stamp each signature, just as
in the basic BLT scheme; in case of a dispute, the signature with the earlier
time-stamp wins and the later one is considered a forgery. This obviously makes
verification very difficult and in particular gives the signer a way to deny any
signature: before signing a document d with a key z, the signer can use the same
key to privately sign some dummy value x; when later demanded to honor the
signature on document d, the signer can show the signature on x and declare
the signature on d a forgery.

To prevent this, we assign every signer to a designated server which allows
each key to be used only once. A trivial solution would be to just trust the
server to behave correctly. This would still not achieve non-repudiation, as the
server could collect spent keys and create valid-looking signatures on behalf of
the signer.

Situation can be improved with trusted logging and auditing. If either the
signer or the server published all signing events, including the key index for each
one, then the server could not reuse keys and would not have to be treated
as a trusted component. This would be quite inefficient, though, because of
the amount of data that would have to be distributed and processed during
verification, and would also leak information about the signer’s behavior.

Validating the Server’s Behavior. In this section we discuss some ways to
avoid publishing all transactions while still not having to trust the server. As a
common feature, we use spent key counters both at the signer and the server
side. The server periodically creates hash trees on top of its set of counters and
publishes the root hashes to a public repository.

If we could assume no collaboration between the server and any verifier, the
server would not learn the keys and thus could not produce valid signatures. This
is quite unrealistic, though. We must assume that signatures can be published,
and the server may have access to spent keys. So, we must eliminate the attack
where the server decrements a spent key counter for a client from k to i < k,
signs a message using captured zi, and then increments the counter back to k.

On assumption that the server and (other) signers do not cooperate mali-
ciously, a “neighborhood watch” could be a solution: all signers observe changes
in received hash chains and in committed roots and request proofs from the
server that all changes were legitimate (i.e. that key counters of signers assigned
to neighboring leaves were never decreasing). This approach would only detect
forgeries but not block them, and also would not give very strong guarantees: it
is not realistic to exclude malicious cooperation between the server and some of
its clients.



The concept of authenticated data structures could be used for checking
the server. If proofs of correct operation were included in signatures, verifiers
could reject signatures without valid proofs. This approach would have quite
large overhead, however, as the verifiers would have to be able to validate the
counters throughout their entire lifetime. Other parties who could perform such
validation are the repository, the signers, or independent auditors. Both signers
and auditors could only discover a forgery after the fact, not early enough to
avoid creation of forged signatures.

Pre-Validation by the Repository. A promising idea is to validate the
server’s correct operation by the repository itself. We require the server to pro-
vide a proof of correctness with each update to the repository. The repository
accepts the update only after validating the proof. Accepted root hashes are
made immutable using cryptographic techniques and widely distributed. Be-
cause signatures are verified based on published root hashes in the repository,
forgery by temporarily decrementing key usage counters is prevented.

This solution has most of the desired properties from Sec. 3.3: it is efficient, as
the amount of public data (the blockchain) grows linearly in time, independent of
the number of signers or their activity; there is reasonably low number of trusted
components; the blockchain, including its input validation is forward secure;
server’s forgery attempts will be prevented at signing time; it is not necessary
to have a long-term log of private data. The repository can be implemented as
a byzantine fault tolerant distributed state machine, so we do not have to trust
a single party. We describe this scheme in more detail in the following.

4 New Signature Scheme

4.1 Components

Our proposed scheme (Fig. 4) consists of the following parties:

– The signer uses trusted device D to generate keys and then sign data. We
assume there is an authenticated way to distribute public keys. We also
assume the connection between D and S and the connection between D and
R use authenticated channels implemented at another layer of the system
(for example, using pre-distributed HMAC keys).

– Server S assists signers in generating signatures. S keeps a counter of spent
keys for each signer and sends updates to the repository.

– The repository performs two tasks. The layer Rv verifies the correctness
of each operation of S before accepting it and periodically commits the
summary of current state to a public append-only repository R.

– Verifier V is a relying party who verifies signatures.

The server maintains a hash tree with a dedicated leaf for each client (Fig. 5).
The value of the leaf is computed by hashing the pair (i, y) where i is the spent
key counter and y is the last message received from the client (as detailed in
Sec. 4.3).
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Fig. 5. Server tree for round t,
showing key counter and input of
the second client only.

Each public key must verifiably have just one leaf assigned to it. Otherwise,
the server could set up multiple parallel counters for a client, increment only one
of them in response to client requests, and use the others for forging signatures
with keys the signer has already used and released.

One way to achieve that would be to have the server return the shape (that
is, the directions to move to either the left or the right child on each step) of the
path from the root of the tree to the assigned leaf when the client registers for
service, and the client to include that shape when distributing its public key to
verifiers. Another option would be to use the bits of the public key itself as the
shape. Because most possible bit sequences are not actually used as keys, the
hash tree would be a sparse one in this case.

4.2 Setup

Signer. To prepare to sign up to N messages, the signer:

1. Generates N unpredictable k-bit signing keys: (z1, . . . , zN )← G(N, k).
2. Binds each key to its sequence number: xi ← h(i, zi) for i ∈ {1, . . . , N}.
3. Computes the public key p by aggregating the key bindings into a hash tree:

p← Th(x1, . . . , xN ).
4. Registers with the server S.

The data structure giving the public key is similar to the one in the original
BLT scheme (Fig. 3), and also has the same purpose: to be able to extract the

hash chains ci linking the private key bindings to the public key: h(i, zi)
ci p for

i ∈ {1, . . . , N}.

Server. Upon receiving registration request from a signer, the server dedicates
a leaf in its tree and sets i to 0 and y to an arbitrary value in that leaf.



4.3 Signing

Signer. Each signer keeps the index i of the next unused key zi in its state. To
sign message m, the signer:

1. Uses the current key to authenticate the message: y ← h(m, zi).
2. Sends the authenticator y to the server.
3. Waits for the server to return the hash chain at linking the pair (i, y) to the

new published summary rt: h(i, y)
at rt.

4. Checks that the shape of the received hash chain is correct and its output
value matches the authentic rt acquired directly from the repository.

5. If validation succeeds then outputs the tuple (i, zi, ci, t, at), where i is the
key index, zi is the i-th signing key, ci is the hash chain linking the binding
of the key zi and its index i to the signer’s public key p, and at is the hash
chain linking (i, y) to the published rt.

6. Increments its key counter: i← i + 1.

Server. Upon receiving request y′ from a signer, the server:

1. Extracts the hash chain a linking the current state of the client record (i, y)

to the current root r of the server tree: h(i, y)
a
 r.

2. Updates the client’s record from (i, y) to (i′ ← i + 1, y′) and computes the
corresponding new root hash r′ of the server tree.

3. Submits the tuple (i, y, a, r, y′, r′) to the repository for validation and pub-
lishing.

4. Waits for the repository to end the round and publish rt.
5. Uses the state of its hash tree corresponding to the published rt to extract

and return to all clients with pending requests the hash chains at linking
their updated (i′, y′) records to the published rt: h(i′, y′)

at rt.

Repository. The validation layer Rv of the repository R keeps as state the
current value r? of the root hash of the server tree. Upon receiving the update
(i, y, a, r, y′, r′) from S, the validator verifies its correctness:

1. The claimed starting state of the server tree must match the current state
of Rv: r = r?.

2. The claimed starting state of the signer record must agree with the starting
state of the server tree: h(i, y)

a
 r.

3. The update of the client record must increment the counter: i′ ← i + 1.
4. The new state of the server tree must correspond to changing just this one

record: h(i′, y′)
a
 r′.

5. If all the above checks pass, Rv updates its own state accordingly: r? ← r′.

Rv operates in rounds. During a round, it receives updates from the server,
validates them, and updates its own state accordingly. At the end of the round,
it publishes the current value of its state as the new round commitment rt in
the append-only public repository R.



Note that the hash chain a is the same in the verification of the starting
state of the signer record against the starting state of the server tree and in the
verification of the new state of the signer record against the new state of the
server tree. This ensures no other leaves of the server tree can change with this
update.

4.4 Verification

To verify that the message m and the signature s = (i, z, c, t, a) match the public
key p, the verifier:

1. Checks that z was committed as the i-th signing key: h(i, z)
c
 p.

2. Retrieves the commitment rt for the round t from repository R.
3. Checks that the use of the key z to compute the message authenticator

y ← h(m, z) matches the key index i: h(i, y)
a
 rt.

Note that the signature is composed and sent to verifier only after the verification
of rt, which makes it safe for the signer to release the key zi as part of the
signature: the server has already incremented its counter i so that only zi+1

could be used to produce the next valid signature.

5 Discussion

5.1 Server-Supported Signing

The model of server-supported signing is a higher-level protocol and is not di-
rectly comparable to traditional signature algorithms like RSA. To justify use-
fulness of the model, we will nonetheless highlight some distinctive properties:

– It is possible to create a server-side log of all signing operations, so that in
the case of either actual or suspected key leak there is a complete record,
making damage control and forensics manageable.

– Key revocation is implemented as blocking the access by the server, thus
no new signatures can be created after the revocation, making key life-cycle
controls much simpler. Note that the server can naturally record the revoca-
tion by setting the client’s counter to some sentinel “infinite” value, and also
return a proof of the update after it has been committed to the repository.

– The server can add custom attributes, and even trusted attributes which can’t
be forged by the server itself: cryptographic time-stamp, address, policy ID,
etc.

– The server can perform data-dependent checks, such as transaction valida-
tion, before allowing a signing. Note that normally the server receives only
a hash value of the data, and the signed data itself does not have to be
revealed.

Finally, in scenarios where non-repudiation must be provided, all traditional
schemes and algorithms must be supplemented with some server-provided func-
tionalities like cryptographic time-stamping.



5.2 Implementation of the Repository

The proposed scheme dictates that the repository must have the following prop-
erties:

– Updates are only accepted if their proof of correctness is valid.
– All commitments are final and immutable.
– Commitments are public, and their immutability is publicly verifiable.

To minimize trust requirements on the repository, we propose to re-use the pat-
terns used for creating blockchains. We do not consider proof-of-work, focusing
on byzantine fault tolerant state machine replication model.

Instead of full transactions, we record in the blockchain only aggregate hashes
representing batches of transactions. This provides two benefits: (1) the size of
the blockchain grows linearly in time, in contrast with the usual dependency on
the number and storage size of transactions; and (2) recording and publishing
only aggregate hashes provides privacy. Such a blockchain design is an interesting
research subject by itself.

A blockchain validates all transactions before executing them. An exam-
ple of such validation is double-spending prevention in crypto-currency specific
blockchains. We validate correctness proofs presented by signing servers. Such a
model—where authenticated data structures are validated by a blockchain—is
another potential research subject of independent interest.

The repository, when implemented as a byzantine fault tolerant blockchain,
does not have trusted components.

5.3 Practical Setup

Although presented above as a list of components, envisioned real-life deploy-
ment of the scheme is hierarchical, as shown on Fig. 6.

R

rt
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. . .
Sn

D11

. . .

D1m

. . .

Dn1

. . .

Dnm

Fig. 6. A scalable deployment architecture for the new scheme.

The topmost layer is a distributed cluster of blockchain consensus nodes, each
possibly operated by an independent “permissioned” party. The blockchain can
accept inputs from multiple signing servers, each of which may in turn serve many



clients. Because of this hierarchical nature the scheme scales well performance-
wise. In terms of the amount of data, as stated earlier, the size of blocks and
the number of blocks does not depend on the number of clients and number of
signatures issued.

The system assumes that the certification service assigns each signer a dedi-
cated signing server and a dedicated leaf position in this server’s hash tree.

5.4 Efficiency

The efficiency of our proposed signature scheme for both signers and verifiers is
at least on par with the state of the art.

The considerations for key generation and management on the client side
are similar to the original BLT scheme [14], except the number of private keys
required is much smaller (assuming 10 signing operations per day, just 3 650 keys
are needed for a year, compared to the 32 million keys in BLT) and the effort
required to generate and manage them, which was the main weakness of BLT,
is also correspondingly reduced.

Like in the original BLT scheme, the size of the signature in our scheme is also
dominated by the two hash chains. The key sequence membership proof contains
log2N hash values, which is about 12 for the 3 650-element yearly sequence. The
blockchain membership proof has log2K hash values, where K is the number of
clients the service has. Even when the whole world (8 billion people) signs up,
it’s still only about 33 hash values. Conservatively assuming the use of 512-bit
hash functions, the two hash chains add up to less than 3 kB in total.

Verification of the signature means re-computing the two hash chains and
thus amounts to about 45 hash function evaluations.

Admittedly, the above estimates exclude the costs of querying the blockchain
to acquire the committed rt that both the signer and the verifier need. However,
that is comparable to the need to access a time-stamping service when signing
and an OCSP (Online Certificate Status Protocol) responder when verifying
signatures in the traditional PKI setup.

6 Conclusions and Outlook

We have proposed a novel server-assisted signature scheme based on hash func-
tions as the sole underlying cryptographic primitive. The scheme is computation-
ally efficient for both signers and verifiers and produces small signatures with
tiny public keys.

Due to the server-assisted and blockchain-backed nature, the scheme provides
instant key revocation and perfect forward security without the need to trust
the server or any single component in the blockchain.

Formalizing and proving the security properties of the scheme in composition
with different implementation architectures of the blockchain consensus is an
interesting future research topic.



The concept of a blockchain containing only aggregate hashes of batches of
transactions instead of full records and the notion of a blockchain based on pre-
validation of correctness proofs of transactions before admitting them to the
chain could both be of independent interest.
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