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Abstract. We revisit the definition of Transparency Order (TO) and
that of Modified Transparency Order (MTO) as well, which were pro-
posed to measure the resistance of an S-box against Differential Power
Analysis (DPA). We spot a definitional flaw in original TO, which is
proved to have significantly affected the soundness of TO and hinder
it to be a good quantitative security criterion. Regretfully, the flaw it-
self remains virtually undiscovered in MTO, either. Surprisingly, MTO
overlooks this flaw and yet it happens to incur no bad effects on the
correctness of its formulation, even though the start point of this formu-
lation is highly questionable. It is also this neglect of the flaw that made
MTO take a variant of multi-bit DPA attack into consideration, which
was mistakenly thought to appropriately serve as an alternative power-
ful attack. Based on this observation, we also find that MTO introduces
such an alternative adversary that it might overestimate the resistance
of an S-box in some cases, as the variant of multi-bit DPA attack con-
sidered in MTO is not that powerful as one may think. This implies the
soundness of MTO is also more or less arguable. Consequently, we fix
this definitional flaw, and provide a revised definition in which a power-
ful adversary is also involved. For demonstrating validity and soundness
of our revised TO (RTO), we adopt both optimal 4×4 S-boxes and 8×8
S-boxes as study cases, and present simulated and practical DPA attacks
as well on implementations of those S-boxes. The results of our attacks
verify our findings and analysis as well. Furthermore, as a concrete appli-
cation of the revised TO, we also present the distribution of RTO values
for sixteen optimal affine equivalence classes of 4 × 4 S-boxes. Finally,
we give some recommended guidelines on how to select optimal 4 × 4
S-boxes in practical implementations.

Keywords: Transparency order · Differential power analysis · S-box ·
Hamming weight leakage model.

1 Introduction

When discussing the security of modern ciphers, it is often natural to discuss
their resistance to certain cryptanalytic attacks. Broadly speaking, symmetric ci-
phers embedded in cryptographic devices are prone to two main kinds of attacks.
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The first one is called classical cryptanalytic attacks like linear cryptanalysis [25]
and differential cryptanalysis [2], which basically rely on the mathematical prop-
erties of those cryptographic primitives involved in cryptosystems. The second
one is called Side-Channel Attacks (SCAs), which essentially exploit physical
leakages from actual implementations of ciphers. And the efficiency of SCAs is
usually higher than the one of classical cryptanalytic attacks in the cases which
side-channel leakages can be obtained by adversaries [5]. Since timing attack was
introduced by Kocher [20] in the year 1996, SCAs have become an active research
area. Besides running time, other typical kinds of physical leakages such as power
consumption [19] and electro-magnetic emanations [7] can also be utilized to re-
cover the sensitive data of the underlying cryptosystems. Among those numerous
SCA methods, power analysis attacks are one of the most effective methods, of
which DPA is a very basic one.

To counteract classical cryptanalytic attacks, Substitution Boxes (S-boxes)
used in symmetric ciphers as primitives are often designed to fulfill some cryp-
tographic criteria such as high nonlinearity and high algebraic degree [11]. On
the other hand, it is evident that S-boxes could also be the primary target of
DPA attacking process, and the side-channel resistance of a cipher component is
roughly inversely proportional to the nonlinearity degree of S-boxes [5, 37]. Sev-
eral studies have shown that with respect to DPA, some S-boxes leak more than
others [36, 33], even those S-boxes with identical mathematical properties which
are considered in classical cryptanalysis. From the designer’s point of view, be-
fore using other countermeasures against DPA (e.g., hiding and masking schemes
[9, 10, 24]), the S-boxes must be chosen carefully to have high DPA resistance in
addition to good resistance to classical cryptanalytic attacks. Therefore, how to
measure the intrinsic resistance of S-boxes against DPA is an important issue.

Regarding the resistance of S-boxes against DPA, there are three metrics
so far, namely the DPA signal-to-noise ratio (SNR), (Modified) Transparency
Order and confusion coefficient. SNR was first proposed to measure the level
of leakages expected from an S-box design, which is highly correlated with the
implementation and device of the cryptosystem [17]. Then, under the assumption
of Hamming weight leakage model, Prouff introduced the notion of transparency
order (TO) [37], which quantifies the basic DPA resilience from mathematical
properties of the S-box itself. In 2012, Fei et al. presented confusion coefficients to
evaluate the SCA success rate of a cryptographic system [15]. However, the main
contribution of this work is to explicitly decouple contributions from physical
implementations and cryptographic algorithms on the leakages. For DPA attacks,
the confusion coefficient indictor can only quantify the resistance of S-boxes
against single-bit DPA. Therefore, if only the S-box property is considered to
evaluate the DPA resistance of cryptosystems, the transparency order is the
most appropriate metric among the above three metrics.

Interestingly, the notion of TO did not attract much attention in the first few
years, even though it was proposed in 2005. Until 2012, there began to be some
research works exploring this property and verifying its effectiveness. Generally
speaking, TO is mainly used to select optimal S-boxes for cryptographic algo-
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rithms. In [27], [28] and [29], Mazumdar et al. constructed a variety of rotation
symmetric S-boxes and 8×8 S-boxes with high nonlinearity and DPA resistance
in terms of TO property. Picek et al. used genetic algorithms to search Boolean
functions [31], 8 × 8 S-boxes [32] and 4 × 4 S-boxes [33] with smaller TO val-
ues. In addition, Evci et al. and Kavut et al. constructed rotation symmetric
S-boxes with lower TO values for 8× 8 size [13] and 6× 6 size [18], respectively.
The above work also confirmed the effectiveness of TO in some scenarios with
several implementation results on cryptographic devices such as SASEBO-GII
board [28, 29] and ATmega163 smartcard [32, 33]. However, in 2014 Chakraborty
et al. showed that the original TO is flawed and consequently they suggested the
modified transparency order (MTO) [8] to quantify the resistance of S-boxes
against a variant kind of DPA attack [1] in Hamming weight leakage model.
The proposal of MTO has an important impact on the study of transparency
order. Since then, many researches of constructing or searching for S-boxes with
high DPA resistance adopted MTO as a metric, such as the generation of 8× 8
S-boxes and 4× 4 S-boxes [34, 36], and construction of 8× 8 rotation symmetric
S-boxes [26].

Our contributions. In this paper, we revisit the notions of TO and MTO.
We spot a definitional flaw in the work of TO in addition to limitations pointed
out in MTO, which seriously affected the soundness of TO. The work of MTO
did not discover this flaw but coincidentally bypass it by applying a less pow-
erful DPA attack. However, the “enhanced” DPA attack considered in MTO
is actually not as powerful as the original DPA. Consequently, we argue that,
MTO actually overestimates the resistance of S-boxes against DPA attacks in
Hamming weight leakage model. On this basis, this work essentially amends TO
and MTO, and proposes the notion of revised transparency order (RTO). We
verify the soundness of RTO through simulated and practical experiments. Fur-
thermore, this paper studies the distribution of RTO values in sixteen optimal
affine equivalence classes of 4× 4 S-boxes, and makes some recommendations on
how to select optimal 4× 4 S-boxes in practical implementations.

The rest of the paper is organized as follows. Notations and preliminaries
are reviewed in Section 2. Section 3 revisits the definition of TO and MTO,
and points out a flaw in TO and one weakness of MTO respectively. Then we
amends TO and MTO, and the definition of revised transparency order (RTO)
is proposed in Section 4. In Section 5, we verify the validity and soundness of
RTO in combination with simulated and practical experiments. Section 6 shows
the distribution of S-boxes with different RTO values in the range of sixteen
optimal affine equivalence classes of 4×4 S-boxes and makes some recommended
guidelines on the selection of 4 × 4 S-boxes. Finally, we conclude our work in
Section 7.
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2 Notations and preliminaries

In this section, we give basic notions about cryptographic properties of S-boxes
and necessary information about DPA attacks. In particular, we introduce the
notions of transparency order (TO) and modified transparency order (MTO).

2.1 Boolean functions and S-boxes

Let Fn2 be the vector space that contains all the n-bit binary vectors, where n
is a positive integer. For every vector u ∈ Fn2 , we denote by H(u) the Hamming
weight of u. A Boolean function on n variables can be viewed as a mapping from
Fn2 to F2, and the mappings from the vector space Fn2 to the vector space Fm2 are
called (n, m)-vectorial Boolean functions where m 6 n. An (n, m)-function F is
said to be balanced if every element y ∈ Fm2 admits the same number 2n−m of
pre-images by F. Such a function F that satisfies cryptographic properties like
resisting linear and differential cryptanalysis is called an n×m S-box.

The inner product of each pair of vectors x = {x1, . . . , xn} and u = {u1, . . . ,
un} both belonging to Fn2 is defined as x · u =

⊕n
i=0 xiui, where ⊕ denotes the

additions mod 2. The Walsh transform of the Boolean function f(x) is an integer

valued function over Fn2 which is defined as Wf (u) =
∑
x∈Fn

2
(−1)f(x)⊕x·u for

every u ∈ Fn2 . The autocorrelation transform of the function f(x) with respect

to u is defined as Af (u) =
∑
x∈Fn

2
(−1)f(x)⊕f(x⊕u). And the cross-correlation

spectrum between two Boolean functions f1, f2 is defined as the value Cf1,f2(u) =∑
x∈Fn

2
(−1)f1(x)⊕f2(x⊕u) for every u ∈ Fn2 (note that we have Cf,f (u) = Af (u)).

Particularly, we denote Cf1,f2(0) as Cor(f1, f2). The Walsh and autocorrelation
spectra are important properties for quantifying the cryptographic resistance of
Boolean functions that be used as cryptographic primitives, and it is generally
expected that the maximum absolute value in these two spectra should be low
for better resistance against classical cryptanalysis [6].

For each (n, m)-function F, the Boolean functions f1, . . . , fm defined for
every x ∈ Fn2 by F (x) = (f1(x), . . . , fm(x)) are called the coordinate functions
of F. The j-th component function of the function F is a single output Boolean
function u · F , which can be denoted as Fj . For every Fj , we have:

Fj =
1

2
− 1

2
(−1)Fj , (1)

Proposition 1. An (n, m)-function F is balanced if and only if WFj (0) equals
to zero for every j ∈ {1, . . . ,m}.

2.2 Basics of DPA attacks

DPA performs statistical analysis (calculate the difference of means) to retrieve
secret keys from the power consumption of cryptographic devices. It exploits
the fact that the power consumption of cryptographic devices is dependent on
the activity of devices and in particular is dependent on the value of temporary
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variables in cryptographic algorithms. Initial results in this direction have been
presented by Kocher et al. [19]. The attackers need to measure a sample of
power traces TK̇(x) related to a sufficiently large number of public data x (e.g.

plaintexts or ciphertexts) and a constant secret key K̇. Then a DPA attack can
be done by computing a so-called differential trace.

In a single-bit DPA, a particular bit of the intermediate value is considered.
The attackers partition the power traces in two bins by predicting whether the
bit value is zero or one, corresponding to the guessed key K. One usually uses
a Boolean function D called selection function to calculate this bit value. For
every 3-tuple (x,K, j) ∈ Fn2 × Fn2 × {1, . . . ,m} which denotes the value of the
jth bit of F (x ⊕ K), the selection function can be written as D(x,K, j). Let
X(i) denote the ith public data, and j denote the index of the targeted bit.
K ∈ Fn2 and K̇ ∈ Fn2 denote the guessed key and secret key, respectively. Then
the differential trace ∆K,K̇(N, j) can be calculated by:

∆K,K̇(N, j)=

N∑
i=1

D (X(i),K, j)TK̇ (X(i))

N∑
i=1

D (X(i),K, j)

−

N∑
i=1

(1−D (X(i),K, j))TK̇ (X(i))

N∑
i=1

(1−D (X(i),K, j))

,

(2)
Using Eq. (2), one can calculate a differential trace for each guessed key, and
the vector ∆K,K̇(N, j) should show a peak for the correct key K = K̇. For a
large value N , the value ∆K,K̇(N, j) approximately equals to ∆K,K̇(2n, j), and
the inputs of D loop through Fn2 . To simplify notations, we denote ∆K,K̇(2n, j)
by ∆K,K̇(j).

Since the single-bit DPA only utilizes the information of a certain bit of the
intermediate value, in order to improve the efficiency of attack, Messerges pro-
posed multi-bit DPA to simultaneously consider several bit indices j [30]. The
multi-bit DPA attack is done by computing the absolute value of the sum of
∆K,K̇(N, j) for several indices j ∈ {1, . . . ,m} (all m indices for m-bit interme-

diate in general) to obtain δK,K̇ = |
∑m
j=1∆K,K̇(N, j)|. As in the single-bit case,

δK,K̇ is expected to show a peak when K = K̇. This attack has been proved to
be the most efficient attack in Hamming weight leakage model (with Gaussian
noise or not) [12].

In [1], a variant multi-bit DPA attack has been proposed to add the abso-
lute values of the ∆K,K̇(N, j) instead of the values themselves to build δ′

K,K̇
=∑m

j=1 |∆K,K̇(N, j)|. This approach might be a valuable alternative of multi-bit
DPA in practice such as when the device leaks information in random linear
model rather than Hamming weight model [12].

2.3 Transparency order and modified transparency order of S-boxes

2.3.1 Transparency order

As mentioned above, DPA attacks provide attackers several kinds of distinguish-
ers based on differential traces ∆K,K̇(N, j) to recover the secret key K̇. The
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distinguishers take the maximum value when hypothesis key is equal to correct
key. From the designer’s point of view, the smaller the difference between the
score of the distinguisher for the correct key and the average score for the other
hypotheses, the more difficult it is for attackers to identify the correct secret key.
Based on this basic idea, transparency order (TO) [37] was introduced to mea-
sure the resistance of S-boxes against multi-bit DPA attack in Hamming weight
model. This model assumes that the cryptographic device leaks information in
the form of TK̇(x) = H(F (x⊕ K̇)⊕ β) + ω, where x and K̇ respectively denote
the public data and the secret key, where β ∈ Fm2 denotes the register initial
state which is assumed to be constant, and ω denotes an independent noise. TO
not only depends on the S-box’s algebraic properties but also depends on the
value of β. After derivation based on certain assumptions, the TO property of
a n×m S-box F is defined as follows. The S-box will be more resistant against
DPA attacks if it shows a low TO value.

TO(F) = max
β∈Fm

2

|m− 2H(β)| − 1

22n − 2n

∑
a∈Fn∗

2

∣∣∣∣∣
m∑
i=1

(−1)βiAFi
(a)

∣∣∣∣∣
 . (3)

2.3.2 Modified transparency order

In [8], Chakraborty et al. pointed out that TO is based on the assumption that
coordinates of an S-box are uncorrelated with each other, which means that
for every i 6= j and every (K, K̇), cross-correlation terms CFi,Fj

(K ⊕ K̇) of an
n ×m S-box F can be considered to be zero. The authors explained that this
assumption cannot be satisfied in real world S-boxes (such as AES S-box), and
then presented the notion of modified transparency order (MTO). Different from
TO, MTO quantifies the resistance of S-boxes against the variant multi-bit DPA
rather than multi-bit DPA attack in Hamming weight model. This new notion
is defined in Eq. (4), and has been shown to be more useful for quantifying the
DPA resistance of S-boxes than TO [34].

MTO(F) = max
β∈Fm

2

m− 1

22n − 2n

∑
a∈Fn∗

2

m∑
j=1

∣∣∣∣∣
m∑
i=1

(−1)βi⊕βjCFi,Fj(a)

∣∣∣∣∣
 . (4)

3 A flaw in TO and one weakness of MTO

In this section, we first revisit TO and point out its definitional flaw in DPA
formulation, which significantly affects the soundness of TO. In Section 3.2,
by revisiting MTO, we argue that it virtually overlooks this flaw and might
overestimate the resistance of S-boxes being exposed to DPA attacks.

3.1 A definitional flaw in TO

As mentioned in Section 2.3.2, Chakraborty et al. have pointed out that the
notion of TO is based on a certain unrealistic assumption [16]. Although this
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unreasonable assumption is fixed in the work of MTO, another definitional flaw
in DPA formulation is still overlooked.

To illustrate this serious flaw in DPA formulation, let us first review the
formulation of single-bit DPA. Assuming the leakage model of device is Hamming
distance model, for every pair (x, K̇), the power consumption TK̇(x) in Eq. (2)

satisfies the relation TK̇(x) = H(F (x⊕ K̇)⊕ β) + ω, where β denotes the initial

state of the register before updating with F (x⊕ K̇), and ω denotes a zero-mean
Gaussian random noise. Since E(TK̇(x)) = H(F (x⊕ K̇)⊕ β), we omit the noise

in the following, and TK̇(x) turns into H(F (x⊕ K̇)⊕β). Naturally, for selection

function D, we should have D(X(i),K, j) = Fj(X(i) ⊕ K̇) ⊕ βj . However, the
item βj , which is associated with the jth bit of the initial state, is overlooked
in the work of TO [37]. This flaw directly leads to the wrong formulation of
single-bit DPA. And since the multi-bit DPA considered in TO is based on the
combination and transformation of single-bit DPA, the validity of TO is also
affected by this flaw. In [37], for an (n, m)-function F, the single-bit DPA is

represented as ∆K,K̇(j) = 1
2n

∑m
i=1 Cor

(
Fj(x⊕K), (F (x⊕ K̇)⊕ β)i

)
. In the

following, we will show the flaw in this formulation and fix it. Consistent with the
assumption in [37], we assume that the initial state β is constant. It is realistic in
some implementations with pre-charged logic, where the bus is cleared between
each significant transferred value or when the previous operation concerning the
bus is an opcode loading.

Proposition 2. Let F (x⊕K) be a family of (n, m)-functions. Let β denote a
constant initial state of a cryptographic system implementing functions F (x⊕K).
If all functions F (x⊕K) are balanced, then for every pair (K, K̇) and for every
positive integer j 6 m, we have:

∆K,K̇(j, β) =
1

2n

m∑
i=1

Cor
(

(F (x⊕K)⊕ β)j , (F (x⊕ K̇)⊕ β)i

)
. (5)

Proof. Due to Eq. (1), the power consumption TK̇(x) = H(F (x ⊕ K̇) ⊕ β) can
be rewritten as:

TK̇(x) =
m

2
− 1

2

m∑
i=1

(−1)(F (x⊕K̇)⊕β)i . (6)

And we have D(x,K, j) = Fj(x ⊕ K) ⊕ βj , which implies equalities
∑2n

i=1

D(x,K, j) = # Supp (Fj(x⊕K)⊕ βj) and Σ2n
i=1(1−D(x,K, j)) = 2n −# Supp

(Fj(x ⊕ K) ⊕ βj). Because we assume that each F (x ⊕ K) is balanced, it fol-
lows that cardinality of Supp (Fj(x⊕K)⊕ βj) equals to 2n−1 for every pair
(j,K). Thus, Eq. (2) applied for N = 2n implies the equation ∆K,K̇(j, β) =
−1

2n−1 (
∑
x∈Fn

2
(1−2(Fj(x⊕K)⊕βj))TK̇(x)). Using Eq. (1), we obtain ∆K,K̇(j, β)

= −1
2n−1 (

∑
x∈Fn

2
((−1)Fj(x⊕K)⊕βjTK̇(x))). This equation and Eq. (6) imply
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∆K,K̇(j, β) =
−m
2n

∑
x∈Fn

2

(−1)Fj(x⊕K)⊕βj

+
1

2n

∑
x∈Fn

2

m∑
i=1

(−1)(Fj(x⊕K)⊕βj)⊕(Fi(x⊕K̇)⊕βi) .

(7)

Due to the balancedness of F (x⊕K) and Proposition 2, the first summation
in Eq. (7) is null for every guessed key K and for every bit j. Because the second
summation in Eq. (7) equals to 1

2n

∑m
i=1 Cor((F (x⊕K)⊕β)j , (F (x⊕ K̇)⊕β)i),

Eq. (7) and Eq. (5) are equivalent. �

3.2 One weakness of MTO

As described in Section 2.3.2, Chakraborty et al. [8] pointed out that TO ig-
nores the correlation spectrum between paired coordinate functions of an S-box.
At first, attempts were made in [8] to achieve a more precise measurement on
the resistance of S-boxes by introducing items related to cross-correlation (i.e.
(−1)βiCFi,Fj (K ⊕ K̇) for every i ∈ {1, . . . ,m} and i 6= j) into TO. However,
since the definitional flaw in TO is overlooked, there are still certain flaws in the
items which were added to TO. Specifically, the correct form of cross-correlation
items should be (−1)βi⊕βjCFi,Fj

(K ⊕ K̇), which will be shown in Eq. (10), Sec-
tion 4.1. For this reason, there are still certain limitations in the TO with added
items (such as when β takes certain values, the value of TO is negative, which
makes the definition unacceptable from the cryptanalyst’s point of view). The
work of MTO also discovered this limitation, but it mistakenly explained that
the limitation is due to the insufficient power of the attacker. Hence it changed
the ability of attackers and proposed MTO which considers the resistance of
S-boxes towards the variant multi-bit DPA rather than original multi-bit DPA
attack. The notion of MTO is correct from the perspective of formula, because
when considering the variant multi-bit DPA, the flawed DPA formulation does
not affect the validity of it. However, MTO did not virtually find the root cause
of the flaw in TO, so it did not essentially fix it. Furthermore, both TO and MTO
are defined under the Hamming weight leakage model, and yet Doget et al. have
demonstrated that multi-bit DPA is actually more effective than the variant
multi-bit DPA in Hamming weight leakage model [12]. Therefore, it seems not
so reasonable to consider a variant multi-bit DPA in the notion of MTO.

In order to verify that multi-bit DPA is a more effective attack method than
variant multi-bit DPA under Hamming weight leakage model, we perform sim-
ulated experiments using these two attack methods on eight S-box instances
respectively. The chosen S-boxes are listed in the first 8 rows of Table 7 (Ap-
pendix A), which are representatives of the eight optimal classes of S-boxes
fulfilling PRINCE S-box selection criteria up to affine equivalence [4]. We sim-
ulate the leakages as L(x ⊕ K̇) = H(F (x ⊕ K̇)) + ω, where F (x ⊕ K̇) denotes
the S-box output, and ω denotes a Gaussian random variable with zero mean
and standard deviation σ. In the experimental setup, the value of σ varies from
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1 to 5. For each attack, we evaluate the minimum number of traces N required
to achieve attack success rate of 80% as it has been shown to be a sound way
to evaluate the efficiency of a side-channel attack [23, 38]. The attack results of
multi-bit DPA and variant multi-bit DPA are shown in Fig. 1(a) and Fig. 1(b),
respectively. It can be clearly seen that under the same conditions, the number
of traces N required for multi-bit DPA is smaller than that for variant multi-bit
DPA, and the gap between two attack methods becomes more obvious with the
increase of noise level.
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(a) Multi-bit DPA.
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(b) Variant multi-bit DPA.

Fig. 1. Comparison of two kinds of DPA. The multi-bit DPA is involved in TO and
RTO, and the variant multi-bit DPA is involved in MTO.

Further, we use an extreme example to illustrate the limitation of MTO.
Consider a linear S-box with MTO value of 0 (although it cannot be used in
practical for cryptographic reasons). According to the basic idea of MTO, it
means that the linear S-box is completely resistant to the variant multi-bit DPA
attack. However, using the multi-bit DPA distinguisher, one can easily obtain a
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key candidate subset containing K̇ and K̇ only, where K̇ denotes the correct key

and K̇ denotes the bit-reversed of K̇. Thus, the linear S-box is prone to DPA
attacks, although its MTO value is 0.

Through the above reasons, we demonstrated that MTO does overestimate
the resistance of S-boxes being subjected to DPA attacks in Hamming weight
leakage model. It is worth noting that it does not mean MTO is useless. Under
other leakage models such as random linear model, MTO may still be an effective
indicator. However, under the assumed Hamming weight leakage model, it is
necessary to consider a more effective attack method, namely multi-bit DPA, to
measure the DPA resistance of S-boxes in the worst case.

4 Redefining transparency order

Since the definitional flaw in TO and the weakness of MTO are presented in
Section 3.1 and Section 3.2 respectively, in order to provide a sound quantitative
security criterion, we amend TO and MTO, and propose the notion of revised
transparency order (RTO) in this section.

4.1 The notion of revised TO

As discussed in Section 3.1, the root cause of the flaw in TO is that its single-bit
DPA formulation is incorrect. Therefore, we fix this flaw and propose the notion
of RTO based on the correct DPA formulation in this subsection.

According to Eq. (5), for a balanced n×m S-box F , the single-bit DPA can
be rewritten as:

∆K,K̇(j, β) =
1

2n

m∑
i=1

(−1)βi⊕βjCFi,Fj
(K ⊕ K̇) .

Combined with the description in Section 2.3, the multi-bit DPA δK,K̇(β) =

|
∑m
j=1∆K,K̇(j, β)| can be calculated by:

δK,K̇(β) =
1

2n

∣∣∣∣∣∣
m∑
j=1

m∑
i=1

(−1)βi⊕βjCFi,Fj (K ⊕ K̇)

∣∣∣∣∣∣ . (8)

Since n×m S-boxes we considered are balanced, we have Fi⊕Fj is balanced
for every i, j ∈ {1, . . . ,m} with i 6= j. Thus, we have CFi,Fj

(0) = 0 for every pair

of distinct indices i and j. For K = K̇ we have:

δK̇,K̇(β) =
1

2n

∣∣∣∣∣∣
m∑
j=1

(−1)βj⊕βjCFj ,Fj
(0)

∣∣∣∣∣∣ = m . (9)

From Eq. (8) and Eq. (9), and according to the basic idea of transparency
order which measures the difference between the score for the correct key and
the average score for the other hypotheses, we have:
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RTO(F, β) =
1

2n − 1

∑
K∈Fn

2−{K̇}

(
δK̇,K̇(β)− δK,K̇(β)

)
=

1

2n − 1

∑
a∈Fn∗

2

(δ0,0(β)− δa,0(β))

= m− 1

2n (2n − 1)

∑
a∈Fn∗

2

∣∣∣∣∣∣
m∑
j=1

m∑
i=1

(−1)βi⊕βjCFi,Fj
(a)

∣∣∣∣∣∣ ,
(10)

where a plays the role of K ⊕ K̇ in Eq. (8).

Remark 1. We have RTO(F, β) = RTO(F, β), where β denotes the bit-reversed
of β.

By traversing the register initial state β, we eventually deduce the following
new definition of RTO:

Definition 1. (Revised Transparency Order) Let F be a balanced n × m
function. Its revised transparency order is the coefficient RTO(F ) defined by:

RTO(F ) = max
β∈Fm

2

m− 1

22n − 2n

∑
a∈Fn∗

2

∣∣∣∣∣∣
m∑
j=1

m∑
i=1

(−1)βi⊕βjCFi,Fj
(a)

∣∣∣∣∣∣
 . (11)

Remark 2. The value of RTO(F ) means the DPA resistance of the S-box in the
worst case in the pre-charged logic (i.e., the value of β maximizes the RTO value).
Thus, from designers’ point of view, the value of β should be chosen carefully to
minimize RTO(F, β), in which case the attacker’s advantage is minimal. Similar
to the work in [37], the value minβ∈Fm

2
RTO(F, β) is denoted by RTOmin(F ) and

called minimum revised transparency order.

We exhibit a lower bound on RTO(F ) in Appendix E. In this bound, all
the cross correlation terms are replaced by Walsh spectrum values. This may
make sense because the main cryptographic properties of S-boxes (nonlinearity,
resiliency, balancedness and propagation criteria) are characterized through the
Walsh transform.

In Table 1, a comparison of TO, MTO and RTO is listed. We analyze the
soundness of the three notions from the perspective of leakage model, DPA for-
mulation, S-box assumptions and power of adversaries. All the three notions are
based on the Hamming weight leakage model, and both TO and RTO measure
the resistance of S-boxes against a powerful DPA attack (i.e., multi-bit DPA).
However, due to the flaw in DPA formulation and the impractical S-box as-
sumption (i.e., the coordinates of S-boxes are uncorrelated with each other), the
notion of TO has certain limitations. MTO fixed the flaw in S-box assumption,
but the definitional flaw in DPA formulation is still overlooked. The validity
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of MTO is not affected by this flaw because the variant multi-bit DPA attack
is considered. However, since the variant multi-bit DPA attack is less powerful
than multi-bit DPA, it underestimates the risk of S-boxes being subjected to
DPA attacks and may result in inaccurate evaluation of S-boxes. Finally, we fix
this definitional flaw in DPA formulation and propose the notion of RTO.

Table 1. Comparison of the theoretical basis of TO, MTO and RTO

Leakage Model Formulation S-box Assumptions Power of Adversary Soundness

TO HW Flawed Flawed Powerful DPA Flawed

MTO HW Flawed Sound Less powerful DPA Flawed

RTO HW Correct Sound Powerful DPA Sound

4.2 Affine invariance of RTO

It is well known that when an invertible affine transformation is applied before
and after the S-box, the resistance of S-boxes against most classical cryptanalytic
attacks remains unchanged. Based on this, studying the effect of affine transfor-
mations on other properties of S-boxes can simplify the evaluation of the security
of S-boxes, and can also simplify the task of generating optimal S-boxes. There-
fore, it is significant to exploring how the values of RTO change under affine
transformations. Here we first give the definition of affine equivalence. Then the
affine invariance of RTO is stated in Proposition 3.

For two n×n S-boxes F and G to be affine equivalent, the following equation
needs to hold:

G(x) = B(F (A(x)⊕ d))⊕ e , (12)

where A and B are invertible n× n matrices and d, e are constants in Fn2 .

Proposition 3. Let S(x) be an n × n S-box and RTO(S) be its revised trans-
parency order. Then, the revised transparency order RTO(T ) of T (x) = S(A(x)
⊕ d) ⊕ e is equal to RTO(S), where A is an invertible n × n matrix and d, e ∈
{0, 1}n.

Proof. Let T (x) = B(S(A(x) ⊕ d)) ⊕ e, i.e., T (x) is any S-box that is affine
equivalent to S(x), where B is a nonsingular binary matrix. For simplicity, let

RTO(T ) = max
β∈Fn

2

(
n− QT

22n − 2n

)
,

where QT =
∑
a∈Fn∗

2

∣∣∣∑n
j=1

∑n
i=1(−1)βi⊕βjCTiTj

(a)
∣∣∣. Then, it follows that,
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QT =
∑
a∈Fn∗

2

∣∣∣∣∣∣
n∑
j=1

n∑
i=1

(−1)βi⊕βj

∑
x∈Fn

2

(−1)(B(S(A(x)⊕d))⊕e)i⊕(B(S(A(x⊕a)⊕d))⊕e)j

∣∣∣∣∣∣
=
∑
a∈Fn∗

2

∣∣∣∣∣∣
n∑
j=1

n∑
i=1

(−1)βi⊕βj⊕ei⊕ej
∑
y∈Fn

2

(−1)(B(Si(y)⊕Sj(y⊕A(a)))

∣∣∣∣∣∣
=
∑
a∈Fn∗

2

∣∣∣∣∣∣
n∑
j=1

n∑
i=1

(−1)βi⊕βj⊕ei⊕ej
∑
y∈Fn

2

(−1)(B(Si(y)⊕Sj(y⊕u))

∣∣∣∣∣∣
=
∑
a∈Fn∗

2

∣∣∣∣∣∣
n∑
j=1

n∑
i=1

(−1)β
′
i⊕β

′
jCBSi,BSj

(a)

∣∣∣∣∣∣ ,
which gives RTO(T ) = RTO(S) if B is the identity matrix, where β′ ∈ Fn2

satisfies Eq. (11). �

5 Practical soundness of RTO: case studies

To evaluate the validity and soundness of RTO, we perform simulated and prac-
tical attacks against 4× 4 and 8× 8 S-boxes, respectively.

5.1 Validity of RTO: real world 4 × 4 S-boxes

In this subsection, we compare the notions of TO, MTO and RTO to illus-
trate the validity of RTO. The experiments correspond to multi-bit DPA attacks
against nine 4× 4 S-boxes, which are actually used in cryptographic algorithms.
The nine S-boxes are listed in Table 2 [41, 22, 3, 42, 4].

We use difference value indicator (DVI) to evaluate the validity of the three
transparency order. The value of DVI can be calculated according to

DVI(F, trace ) =
1

2n − 1

∑
K∈Fn

2−{K̇}

(
δK̇,K̇ − δK,K̇

)
,

where δK̇,K̇ denotes the score of the correct key, and δK,K̇ denotes the score
of key hypothesis K. In essence, the DVI and (revised) transparency order are
based on the same basic idea, except that DVI is calculated using collected
traces.

Simulated experiments. In simulated experiments, leakages are simulated
as

L(x⊕ K̇) = H(F (x⊕ K̇)⊕ β) + ω ,

where F (x ⊕ K̇) denotes the sensitive variable, and ω denotes a Gaussian
random variable centered in zero with a standard deviation σ. The value β
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Table 2. Nine 4× 4 S-boxes which are actually used in cryptographic algorithms

Algorithm Notation S-box

ICEBERG
ICEBERGS0 13, 7, 3, 2, 9, 10, 12, 1, 15, 4, 5, 14, 6, 0, 11, 8
ICEBERGS1 4, 10, 15, 12, 0, 13, 9, 11, 14, 6, 1, 7, 3, 5, 8, 2

mCrypton

mCryptonS0 4, 15, 3, 8, 13, 10, 12, 0, 11, 5, 7, 14, 2, 6, 1, 9
mCryptonS1 1, 12, 7, 10, 6, 13, 5, 3, 15, 11, 2, 0, 8, 4, 9, 14
mCryptonS2 7, 14, 12, 2, 0, 9, 13, 10, 3, 15, 5, 8, 6, 4, 11, 1
mCryptonS3 11, 0, 10, 7, 13, 6, 4, 2, 12, 14, 3, 9, 1, 5, 15, 8

PRESENT PRESENT 12, 5, 6, 11, 9, 0, 10, 13, 3, 14, 15, 8, 4, 7, 1, 2

PRINCE PRINCE 11, 15, 3, 2, 10, 12, 9, 1, 6, 7, 8, 0, 14, 5, 13, 4

RECTANGLE RECTANGLE 6, 5, 12, 10, 1, 14, 7, 9, 11, 0, 3, 13, 8, 15, 4, 2

corresponds to the initial state of the register before updating with F (x ⊕ K̇).
According to the discussion in previous sections, we assume that β is a constant
and can be set by the designer. For clear comparison, the value of β for each S-box
implementation is set to zero. The corresponding values of TO(F, β), MTO(F, β)
and RTO(F, β) (denoted as TO0(F ), MTO0(F ), RTO0(F ), respectively) are
calculated.

Attacks are performed on 500,000 simulated traces with different leakage
noise levels (σ = 1, σ = 2, and σ = 5). The DVI values of each S-box in
the three simulation attacks with different noise levels are denoted as DVISA1,
DVISA2 and DVISA3, respectively. The values of DVI and three transparency
order for the nine S-boxes are shown in Fig. 2.

ICEBERG
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ICEBERG
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mCrypton
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mCrypton
S1
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mCrypton
S3

PRESENT PRINCE RECTANG
1.6
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2.6

2.8

3

3.2

3.4

3.6
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TO

DVI
SA1

DVI
SA2

DVI
SA3

Fig. 2. Values of DVI, TO, MTO and RTO of nine S-boxes.

Simulated results. It can be clearly seen that the values of DVI for the
nine S-boxes are substantially consistent with RTO, which verifies the validity
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of RTO. In contrast, the obvious difference between the values of TO and DVI
shows the limitation of TO, because both TO and RTO quantify the resistance
of S-boxes against multi-bit DPA attack under Hamming weight leakage model.
Furthermore, it can be observed that the values of MTO for all the nine S-boxes
are lower than DVI, which confirms MTO does underestimate the risk of S-boxes
being subjected to DPA attacks. And the inconsistency between the values of
MTO and DVI (such as ICEBERGS0 and ICEBERGS1) also indicates that, in
some cases, evaluating the DPA resistance of S-boxes in terms of MTO may
result in inaccurate results.

Practical experiments. In practical experiments, all the nine S-boxes are
implemented on a FunCard with an Atmel ATmega 163 microprocessor. Same
as the simulated experiments, we set the register initial state β equals to 0. The
traces are obtained from a SASEBO-W platform with a lower pass filter (BLP-
90+) and an amplifier, and the sampling rate is set to 20MHz. 4,000 points
around the sensitive operations are taken to attack. Similar to the simulated
experiments above, we calculate the value of DVI for each S-box based on 3,000
collected traces. In order to study the performance of three transparency order
with different noise levels, the attacks are performed based on the raw traces
and traces with added Gaussian noise (σ = 2 and σ = 3), respectively. The DVI
values of each S-box in the three attacks with different noise levels are denoted
as DVIPA1, DVIPA2 and DVIPA3. Since the value of DVI is directly related to the
magnitude of collected traces, we calculate the Pearson correlation coefficients
between the values of three transparency order and DVI based on the nine S-
boxes. The results are listed in Table 3.

Table 3. The Pearson correlation coefficients between the values of three transparency
order and DVI

Notion
DVI

DVIPA1 DVIPA2 DVIPA3

TO 0.15 0.01 0.06

MTO 0.81 0.67 0.72

RTO 0.85 0.89 0.80

Practical results. It can be observed that the Pearson correlation coeffi-
cients between the values of RTO and DVI are the highest in all the three attack
groups, which shows the superiority of RTO. However, the values of RTO and
DVI are not exactly matched as in the simulated experiments. We argue that
the main reason is the number of the traces used for attacks is limited, because
in the notion of RTO, it is assumed that the number of traces is sufficient so that
the noise can be omitted. Besides, the leakages in real environment do not fully
satisfy Hamming weight leakage model and the noise does not fulfill Gaussian
noise assumption, which may also lead to inconsistent results.
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Remark 3. We also compare the notions of TO, MTO and RTO based on the
8 × 8 S-boxes. Since the results are consistent with that of the 4 × 4 S-boxes,
they are not specifically shown here.

5.2 Soundness of RTO

5.2.1 Real world 4 × 4 S-boxes

In Section 5.1, through simulated and practical experiments, the validity of RTO
has been confirmed by comparing the values of RTO and DVI indicators of nine
4 × 4 S-boxes. Although DVI could be used to quantify the DPA resistance of
S-boxes, it is not a metric commonly used in the field of side-channel analysis
such as success rate and guess entropy. Therefore, in this section, we demonstrate
the soundness of RTO by evaluating the minimum number of traces required for
achieving attack success rate of 80%. The experimental setup of simulated and
practical attacks is the same as in Section 5.1, and results are reported in Fig. 3
and Fig. 4, respectively.

(a) Simulated traces (  = 1)
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(b) Simulated traces (  = 5)
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Fig. 3. Simulated multi-bit DPA attacks on nine 4× 4 S-boxes.

Simulated results. From Fig. 3, it is clear that the results of simulated
experiments are basically consistent with theoretical analysis. In other words,
S-boxes with lower RTO0 values are more resistant against DPA. Specifically,
when the difference of the RTO0 values of the two S-boxes is relatively large,
the S-box with a lower RTO0 value is generally more resistant to DPA attack.
The S-box (e.g. mCryptonS1) with the lowest RTO0 value requires the largest
number of traces for successful attacks. In conclusion, the results confirm that
RTO does reflects the DPA resistance of an S-box implementation. However,
one may also note that the RTO alone does not fully capture the resistance
of S-boxes against DPA, because the number of traces required for success at-
tack of S-boxes with the same RTO0 value are different more or less (such as
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mCryptonS2, mCryptonS3, the S-box of PRINCE and the S-box of RECTANG).
We argue that the main reason for this phenomenon is the different perspectives
of RTO and success rate metric when quantifying the DPA resistance of S-boxes.
As introduced in Section 2.3.1, the basic idea of RTO is quantifying the differ-
ence between the score for the correct key and the average score for the other
hypotheses, however, the success rate metric quantifies the number of successful
attacks (i.e., the number of attacks in which the correct key is ranked first) in
all attacks performed.

(a) Practical traces with added noise (  = 1)
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(b) Practical traces with added noise (  = 5)
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Fig. 4. Practical multi-bit DPA attacks on nine 4× 4 S-boxes.

Practical results. In Fig. 4, for most S-box examples, those S-boxes with
lower RTO0 values still have higher DPA resistance in real environments. How-
ever, one may also note that for certain S-boxes such as PRESENT and mCrypton

S2, the results obtained are not consistent with simulated results. Besides the
different perspectives of RTO and success rate, we infer the reasons for the incon-
sistent results are the same as discussed in Section 5.1. So far, we can conclude
that the soundness RTO is still true in practical attacks.

5.2.2 8 × 8 S-boxes

We perform DPA attacks against 8× 8 S-boxes to verify the soundness of RTO
when the size of S-boxes is changed. The five S-boxes are as follows, three of
which are used in cryptographic algorithms and the other two are constructed
S-boxes.

- S-box of AES [39];
- SBoxevolved [35], which reaches the best confusion coefficient variance, but

has nonlinearity 98 and δ-uniformity 12 (AES has nonlinearity 112 and δ-
uniformity 4);
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- AEScc [35], which is the affine transformation of AES S-box with improved
confusion coefficient;

- S-box of SCREAMv3 [16];
- S-box of STRIBOB [40].

Simulated and practical experiments. Similar to Section 5.1, the ini-
tial state β of each S-box implementation is set to zero, and the corresponding
RTO(F, β) value (denoted as RTO0(F)) is calculated. In simulated experiments,
standard deviation σ of noise equals to 0, 2 and 5, respectively. And in practical
experiments, the experimental setup is the same as in Section 5.1. The attacks
are performed on the raw traces and traces with Gaussian noise added (σ = 2),
respectively. For each attack, we use success rate as a metric. The results are
shown in Fig. 5 and Fig. 6.
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(a) Simulated traces (σ = 0)
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(b) Simulated traces (σ = 2)
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(c) Simulated traces (σ = 5)

Fig. 5. Simulated DPA attacks on five 8× 8 S-boxes.
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(a) Practical traces
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(b) Practical traces with added noise (σ = 2)

Fig. 6. Practical DPA attacks on five 8× 8 S-boxes.

Simulated and practical results. It can be clearly seen that attack results
are consistent with theoretical analysis in both simulated and practical experi-
ments. Except for the SBoxevolved, the RTO0 values of the other four S-boxes are
very close to each other. Correspondingly, the implementation of SBoxevolved is
more difficult to attack successfully. Based on the above results, we draw the con-
clusion that it is sound to quantify the DPA resistance of S-boxes with different
sizes in terms of RTO.
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6 Recommendations on selecting optimal 4 × 4 S-boxes

As an indicator to measure the DPA resistance of S-boxes, a specific application
of RTO is to guide the construction of optimal S-boxes. To generate S-boxes
with high DPA resistance, one feasible method is selecting S-boxes with low
RTO values from those S-boxes that fulfill cryptographic criteria such as high
nonlinearity and high algebraic degree. Under affine transformations, the prop-
erties of most cryptographic criteria have been studied relatively thoroughly,
and with respect to linear and differential cryptanalyses, optimal 4× 4 S-boxes
up to affine equivalence are shown in [21]. Therefore, this section takes 4 × 4
S-boxes as an example to illustrate how to select optimal S-boxes in terms of
RTO. We first present the distribution of RTO values for sixteen optimal affine
equivalence classes, and then illustrate the important influence of register ini-
tial state β. Finally, we explore the selection of optimal S-boxes and make some
recommendations from the perspective of RTO.

6.1 RTO values of 4 × 4 S-boxes in optimal classes

In [21], Leander et al. classified all optimal 4×4 S-boxes into 16 classes up to affine
equivalence with respect to linear and differential cryptanalyses. Representatives
for all 16 optimal classes proposed in [21] are listed in Table 7 of Appendix A.
Note that we reorder the rank of these S-boxes according to the algebraic degree
of them, where each of the 15 non-zero component functions of S0 to S7 has
algebraic degree 3, while S8 to S15 do not fulfill this criteria. This classification
simplifies the task of generating optimal 4 × 4 S-boxes since it is well known
that the resistance of S-boxes against most cryptanalyses remains unchanged
under affine transformations. However, it has been shown in Section 4.2 that the
RTO values of S-boxes are not always affine invariant under all types of affine
transformations. Therefore, it is necessary to conduct an exhaustive search in
the 16 optimal classes and explore the frequency distribution of RTO values.

According to Proposition 3, RTO remains affine invariant only under certain
affine transformations which are based on S2(x) = S1(A(x)⊕ d)⊕ e. Therefore,
we can apply transformations in the form of S2(x) = B(S1(x)) to conduct an
exhaustive search for each optimal affine equivalence class, where B denotes an
invertible n× n matrix. Note that this affine transformation is the special form
of Eq. (12) where constants d and e equal to 0 and matrix A is the identity
matrix. TO and MTO are demonstrated to have similar properties [13, 34].

Results of exhaustive search for all 16 optimal classes’ lower and upper
bounds are given in Table 4. Additionally, the frequency distribution of RTO
values is shown in Fig. 7.

It can be observed that there are 11 different RTO values for all optimal
S-boxes, and there are four classes that reach the minimal value of 2.6. Among
all S-boxes in the optimal classes, only about 0.1% of them reach this value.
However, none of these S-boxes have high algebraic degree, which is a frequently
used criterion for good S-boxes. For S-boxes with high algebraic degree, the
minimal RTO value that can be obtained is 2.933, and four classes reach this
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Table 4. RTO values of optimal S-boxes

S-box #deg(Sb) = 31 RTO value
S-box #deg(Sb)=3

RTO value

Min Max Min Max

S0 15 3.133 3.333 S8 12 2.600 3.533
S1 15 2.933 3.533 S9 12 2.600 3.533
S2 15 3.067 3.533 S10 12 2.867 3.533
S3 15 3.000 3.533 S11 12 2.600 3.533
S4 15 2.933 3.533 S12 12 2.933 3.533
S5 15 2.933 3.533 S13 12 2.933 3.533
S6 15 3.067 3.533 S14 12 2.933 3.533
S7 15 2.933 3.533 S15 12 2.600 3.533

1 Number of b ∈ F4
2\{0} such that deg(Sb) = 3.

0.1% 0.17%
1.13%

2.04%

3.7%

23.83%

17.92%

20.77% 21.27%

6.16%

2.9%

2.6 2.867 2.933 3 3.067 3.133 3.2 3.267 3.333 3.467 3.533

Values of RTO

0%

5%

10%

15%

20%

25%

30%

T
h
e
 p

ro
p
o
rt

io
n
 o

f 
n
u
m

b
e
r 

o
f 
S

-b
o
x
e
s

Fig. 7. Frequency distribution of RTO values of optimal S-boxes.

value. Except for class S0, the maximal value of all the remaining 15 classes
is 3.533. In order to facilitate the comparison, results of the exhaustive search
according to TO and MTO are given in Appendix C.

As mentioned in Remark 2, RTOmin value is equal to the minimum value of
RTO(F, β) obtained by traversing the register initial state β. For pre-charged
platforms, it is reasonable to assume that β is a constant and can be set by
the designer. Therefore, it is meaningful to explore the frequency distribution of
RTOmin values. Similar to RTO, we apply transformations in the form of S2(x) =
B(S1(x)) to conduct an exhaustive search for each optimal affine equivalence
class, and results are given in Table 5 and Fig. 8, respectively.

It can be seen that there are 10 different RTOmin values for all optimal
S-boxes, and unlike the distribution of RTO values, each class can reach the
minimal value of 1.867. Among all S-boxes, about 28% of them reach this value.
That is, if the value of register state β can be set by the designer, then more
than a quarter of the S-boxes are optimal in terms of RTOmin. Similarly, results
of the exhaustive search according to MTOmin are given in Appendix D. We
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Table 5. RTOmin values of optimal S-boxes

S-box #deg(Sb)=3
RTOmin value

S-box #deg(Sb)=3
RTOmin value

Min Max Min Max

S0 15 1.867 2.933 S8 12 1.867 3.133
S1 15 1.867 2.933 S9 12 1.867 3.133
S2 15 1.867 2.933 S10 12 1.867 3.067
S3 15 1.867 2.933 S11 12 1.867 3.067
S4 15 1.867 2.933 S12 12 1.867 2.933
S5 15 1.867 2.933 S13 12 1.867 2.933
S6 15 1.867 2.867 S14 12 1.867 2.933
S7 15 1.867 2.933 S15 12 1.867 3.067
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28.37%

33.64%
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Fig. 8. Frequency distribution of RTOmin values of optimal S-boxes.

do not give the results for TOmin, because the TOmin values of all optimal S-
boxes are negative, which confirms that the notion of TO does have unacceptable
limitations.

6.2 Effect of β on RTO of S-boxes

As can be seen from the above analysis, the difference between the range of
RTO and RTOmin values is obvious for all optimal S-boxes. Therefore, it can be
inferred that the register state β significantly affects the DPA resistance of an
S-box. This effect will be verified by simulated and practical experiments in the
following.

We take S-boxes with high algebraic degree as examples, that is, the S-boxes
are selected from S0 to S7 classes. Since there are 7 different RTOmin values
for optimal S-boxes belonging to class S0 to S7, we first divide the S-boxes into
7 groups based on their RTOmin values. Then we randomly select an S-box as
a representative in each group. The selected S-boxes are listed in Table 8 of
Appendix B.
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Simulated experiments. We perform multi-bit DPA simulated attacks
against the seven selected S-boxes in two different experimental setups. The
leakages are simulated as L(x ⊕ K̇) = H(F (x ⊕ K̇) ⊕ β) + ω. The value β cor-
responds to the initial state of the register before updating with F (x ⊕ K̇). In
the two experimental setups, we set β to reach the value of RTOmin and RTO
respectively, and the corresponding β values are denoted as βmin and βmax. The
integer values of βmin and βmax of each S-box are shown in Table 6. Attacks are
performed at a relatively high level of leakage noise (standard deviation σ = 8)
to make the results more obvious. Similar to Section 3 and Section 5, we es-
timated the minimum number of traces N required to achieve an 80% attack
success rate. Results are reported in Fig. 9.

Table 6. βmin and βmax values of 7 S-boxes

S-box βmin βmax

G0 1 2
G1 0 1
G2 4 1
G3 0 5
G4 7 1
G5 3 6
G6 0 3
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Fig. 9. Multi-bit DPA attacks on simulated traces for 7 S-boxes.

Practical experiments. In practical experiments, all experimental settings
are the same as in Section 5. And we also set the register initial state β equals
to βmin and βmax, respectively. The results are shown in Fig. 10(a). We also
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launch DPA attacks on the traces with added Gaussian noise (σ = 2) for a more
intuitive observation. The results are shown in Fig. 10(b).
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Fig. 10. Multi-bit DPA attacks on practical traces for 7 S-boxes.

Simulated and practical results. The results of simulated and practical
experiments are consistent in most cases, and small differences might be caused
by the noise in practical experiments not fully satisfying the Gaussian noise.
It can be observed that when the initial state β is set to βmin, the number of
traces required for a successful attack is generally higher than that needed when
β equals to βmax. Moreover, in both simulated and practical attacks, for the S-
box G0, the number of needed traces when β = βmin gets approximately 2 times
that of β = βmax. Therefore, the register state β does affect the DPA resistance
of S-boxes. However, one may also notice that for some S-boxes such as G4,
there is no obvious difference in the number of traces required for a successful
attack when β is equal to βmin and βmax, respectively. Even in extreme cases,
the number of needed traces when β = βmin gets lower than that of β = βmax.
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We argue that the reason for this mismatch is the same as that analyzed in
Section 5. To sum up, for platforms with reset state, designers should set the
value of β carefully to minimize RTO(F, β), thereby effectively improving the
DPA resistance of S-box implementations.

6.3 Recommendations on selecting optimal 4 × 4 S-boxes

Based on previous analysis, we will give some recommended guidelines on how
to select optimal S-boxes from the perspective of RTO. In this subsection, we
mainly discuss the following three situations:

(1) For platforms with pre-charged logic, where β is a constant and can be set
by the designer, the S-boxes with the minimal RTOmin value should be selected
among the S-boxes that fulfill the cryptographic algorithm criteria. And the value
of β should be set carefully to reach RTOmin. Taking the PRINCE algorithm as
an example, it requires S-boxes to have high algebraic degree. Hence, designers
should select the S-boxes with an RTOmin value of 1.867 in the classes of S0 to
S7 in Table 2.

(2) For cryptographic implementations with Hamming weight leakage model
(i.e., the register state β is 0 before the substitution operation), the S-boxes with
the minimum RTOmin value and the corresponding βmin value of 0 should be
selected. For PRINCE algorithm, designers should select the S-boxes with initial
state βmin = 0 in those S-boxes with an RTOmin value of 1.867.

(3) When the designer cannot reset the register state β of the cryptographic
implementations and considers the DPA resistance of S-boxes in the worst case,
the S-boxes with the minimum RTO value should be selected. For PRINCE
algorithm, designers should select the S-boxes with an RTO value of 2.933 in the
S0 to S7 classes.

We emphasize that the recommendations for selecting optimal S-boxes are
only from the perspective of RTO. When selecting S-boxes which are used in
cryptographic implementations, it is not enough to consider RTO alone, and
other metrics such as success rate and guess entropy need to be considered
comprehensively. In addition, for S-boxes with other sizes such as 8× 8 S-boxes,
there is no such classification based on affine equivalence. Therefore, how to
select optimal S-boxes with other sizes is not discussed in this work. Like Picek
et al. did in [32], some heuristic methods could be used to search for optimal
S-boxes.

7 Conclusions and future work

In this paper, we revisit the notions of TO and MTO, and spot a definitional flaw
in TO, which was not pointed out in MTO but seriously affected the soundness
of TO. The work of MTO did not discover this flaw virtually but accidentally
bypassed it by applying a less powerful DPA attack. We argue that MTO over-
estimates the resistance of S-boxes against DPA attacks because the variant
multi-bit DPA attack considered in MTO is not that powerful as one may think.
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Then, we fix these flaws and propose the notion RTO. The soundness of RTO
is demonstrated through simulated and practical experiments. The results also
confirm that RTO is a valuable criterion to evaluate DPA resistance of S-boxes.
Furthermore, the distribution of RTO values in sixteen optimal affine equiva-
lence classes of 4 × 4 S-boxes is explored. Finally, some recommendations on
how to select optimal 4 × 4 S-boxes in practical implementations are proposed
from the perspective of RTO. However, we must emphasize that RTO is one of
the critical metric for S-box selection since it can only provide a perspective to
measure the DPA resistance, so it is not enough to consider RTO along when
designing a cryptographic algorithm.

Since RTO is expected to be a practical evaluation tool for evaluating the
DPA resistance of S-boxes, it is significant to explore the fast computation of
RTO in the future. In [14], Fan et al. presented a fast implementation method for
TO. However, this method is not feasible for RTO at present, and is also not fea-
sible for MTO, neither. Furthermore, with the development of the cryptanalysis
techniques, there appears a trend of using larger size S-boxes in emerging block
ciphers. Therefore, the limitation of computational complexity may restrict the
practicability of RTO, and how to calculate RTO in a short time may become
an important issue. In addition, we believe that it would be important to figure
out how to extend RTO to more attacks (e.g. template attacks and regression
attacks) under variant leakage models (e.g. Hamming distance model and linear
leakage model), which is far apart from the DPA under HW model since the
practical attacks and leakage models get more advanced. And the construction
of optimal S-boxes of different sizes with small RTO is also an open problem.
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A List of representatives for 16 optimal classes up to
affine equivalence

In [21], Leander et al. classified all optimal 4×4 S-boxes into 16 classes up to affine
equivalence with respect to linear and differential cryptanalyses. Representatives
for all 16 optimal classes proposed in [21] are listed in Table 7. Note that we
reorder the rank of these S-boxes according to the algebraic degree of them,
where each of the 15 non-zero component functions of S0 to S7 has algebraic
degree 3, while S8 to S15 do not fulfill this criteria.

B List of the 4 × 4 S-boxes used in Section 6.2

The seven S-boxes used in Section 6.2 are listed in Table 8. These S-boxes are
selected from S0 to S7 classes in Table 7, which have high algebraic degree. Since
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Table 7. Representatives for all 16 classes of optimal 4× 4 S-boxes

S0 0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 5, 3, 10, 14, 11, 9

S1 0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 9, 11, 10, 14, 5, 3

S2 0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 11, 9, 10, 14, 3, 5

S3 0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 11, 9, 10, 14, 5, 3

S4 0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 14, 11, 10, 9, 3, 5

S5 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 11, 10, 5, 9, 12, 3

S6 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 11, 10, 9, 3, 12, 5

S7 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 12, 9, 5, 11, 10, 3

S8 0, 1, 2, 13, 4, 7, 15, 6, 8, 11, 12, 9, 3, 14, 10, 5

S9 0, 1, 2, 13, 4, 7, 15, 6, 8, 11, 14, 3, 5, 9, 10, 12

S10 0, 1, 2, 13, 4, 7, 15, 6, 8, 11, 14, 3, 10, 12, 5, 9

S11 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 9, 5, 10, 11, 3, 12

S12 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 11, 3, 5, 9, 10, 12

S13 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 11, 5, 10, 9, 3, 12

S14 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 12, 11, 3, 9, 5, 10

S15 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 12, 11, 9, 3, 10, 5

there are 7 different RTOmin values for optimal S-boxes belonging to class S0 to
S7, the S-boxes are divided into 7 groups in terms of their RTOmin values. Then
an S-boxes is randomly selected as a representative from each group.

Table 8. 4× 4 S-boxes used in Section 6.2

G0 0, 2, 1, 13, 7, 4, 12, 6, 8, 14, 15, 10, 5, 11, 9, 3

G1 0, 12, 14, 9, 8, 10, 7, 6, 13, 11, 5, 1, 4, 15, 3, 2

G2 0, 9, 2, 10, 15, 4, 8, 13, 12, 1, 3, 5, 6, 7, 14, 11

G3 0, 7, 6, 12, 9, 8, 10, 15, 2, 13, 11, 5, 14, 3, 4, 1

G4 0, 10, 11, 14, 9, 8, 5, 2, 13, 15, 4, 7, 3, 12, 6, 1

G5 0, 3, 9, 8, 6, 12, 1, 15, 13, 2, 11, 14, 5, 7, 4, 10

G6 0, 1, 7, 12, 4, 2, 11, 3, 9, 10, 13, 8, 5, 15, 14, 6

C TO and MTO values of 4× 4 S-boxes in optimal classes

The TO values for all 16 optimal classes’ lower and upper bounds are given in
Table 9, and the frequency distribution of all TO values for all 16 optimal classes
is shown in Fig. 11. The corresponding results for the MTO are shown in Table
10 and Fig. 12, respectively.

It can be observed that there are 9 different TO values and 30 different MTO
values for all optimal S-boxes, respectively. The minimum and maximum values
of TO, MTO and RTO are different. For the property of TO , there are three
classes (i.e., S8, S9 and S11) that reach the minimal value of 3.2, while for MTO,
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Table 9. TO values of optimal S-boxes

S-box #deg(Sb)=3
TO value

S-box #deg(Sb)=3
TO value

Min Max Min Max

S0 15 3.467 3.733 S8 12 3.200 3.733
S1 15 3.400 3.733 S9 12 3.200 3.733
S2 15 3.400 3.733 S10 12 3.267 3.733
S3 15 3.333 3.733 S11 12 3.200 3.733
S4 15 3.400 3.733 S12 12 3.267 3.733
S5 15 3.333 3.733 S13 12 3.267 3.733
S6 15 3.400 3.667 S14 12 3.267 3.733
S7 15 3.333 3.733 S15 12 3.267 3.733
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Fig. 11. Frequency distribution of TO values of optimal S-boxes.

Table 10. MTO values of optimal S-boxes

S-box #deg(Sb)=3
MTO value

S-box #deg(Sb)=3
MTO value

Min Max Min Max

S0 15 2.400 2.800 S8 12 2.067 3.000
S1 15 2.300 2.833 S9 12 1.900 2.800
S2 15 2.333 2.933 S10 12 2.033 2.867
S3 15 2.233 2.733 S11 12 2.033 2.867
S4 15 2.267 2.700 S12 12 2.167 2.800
S5 15 2.233 2.667 S13 12 2.167 2.767
S6 15 2.333 2.833 S14 12 2.200 2.933
S7 15 2.267 2.900 S15 12 2.133 2.900

there is only one class (i.e., S9) that reaches the minimal value of 1.9. For TO,
except for class S6, the maximal value of all the remaining 15 classes is 3.733.
While for MTO, the maximal value of each class is different in most cases. In



28 Huizhong Li, Yongbin Zhou, Jingdian Ming, Guang Yang, Chengbin Jin

0
.0

3
%

0
.0

6
%

0
.1

5
%

0
.1

2
%

0
.2

5
%

0
.2

1
%

0
.6

5
%

0
.4

5
% 1

.2
1

% 1
.9

5
%

3
.3

3
%

4
.8

7
%

8
.2

3
%

9
.9

4
%

1
2

.6
9

%

1
3

.9
%

1
1

.7
3

%

9
.4

6
%

8
.5

9
%

4
.9

2
%

3
.0

1
%

2
.1

8
%

0
.7

1
%

0
.5

8
%

0
.5

1
%

0
.1

%

0
.0

9
%

0
.0

1
%

0
.0

3
%

0
.0

3
%

1.9 2.033 2.067 2.1 2.133 2.167 2.2 2.233 2.267 2.3 2.333 2.367 2.4 2.433 2.467 2.5 2.533 2.567 2.6 2.633 2.667 2.7 2.733 2.767 2.8 2.833 2.867 2.9 2.933 3

Values of MTO

0%

2%

4%

6%

8%

10%

12%

14%

16%

T
h
e
 p

ro
p
o
rt

io
n
 o

f 
n
u
m

b
e
r 

o
f 
S

-b
o
x
e
s

Fig. 12. Frequency distribution of MTO values of optimal S-boxes.

addition, the distributions of S-boxes with different TO, MTO and RTO values
are also quite different. Therefore, the optimal S-boxes selected according to TO,
MTO and RTO values should be quite different. Furthermore, it is noteworthy
that MTO values of the optimal S-boxes range from 1.9 to 3, which is smaller
than that of RTO (2.6 to 3.533). This also confirms that MTO underestimates
the risk of S-boxes being subjected to DPA attacks.

D MTOmin values in the optimal classes

The MTOmin values for all 16 optimal classes’ lower and upper bounds are
given in Table 11, and the frequency distribution of all MTOmin values for all
16 optimal classes is shown in Fig. 13.

Table 11. MTOmin values of optimal S-boxes

S-box #deg(Sb)=3
MTOmin value

S-box #deg(Sb)=3
MTOmin value

Min Max Min Max

S0 15 1.600 2.267 S8 12 1.333 2.533
S1 15 1.567 2.400 S9 12 1.333 2.533
S2 15 1.567 2.400 S10 12 1.333 2.533
S3 15 1.567 2.367 S11 12 1.333 2.533
S4 15 1.567 2.333 S12 12 1.333 2.367
S5 15 1.567 2.333 S13 12 1.333 2.367
S5 15 1.600 2.300 S13 12 1.333 2.333
S7 15 1.567 2.367 S15 12 1.333 2.400

It can be seen that there are 36 different MTOmin values for all optimal
S-boxes, which are quite different from the results of RTOmin. And the distribu-
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Fig. 13. Frequency distribution of MTOmin values of optimal S-boxes.

tions of S-boxes with different MTOmin and RTOmin values are also different.
Similarly, by comparing the range of values for MTOmin and RTOmin, we can
also draw the conclusion that MTO does underestimate the risk of S-boxes being
subjected to DPA attacks.

E A lower bound of RTO(F ) using Walsh spectrum

We present a lower bound of RTO(F ) for a given n×m S-box F . The following
lemma will be used to derive the bound.

Lemma 1. Suppose e, f , g, h are Boolean functions of n-variables. Then∑
a∈Fn

2

Ce,f (a)Cg,h(a) =
1

2n

∑
a∈Fn

2

We(a)Wf (a)Wg(a)Wh(a) .

The proof of Lemma 1 can be found in reference [8].

Theorem 1. For F = (F1, · · · , Fm) : Fn2 → Fm2 , the value of RTO(F ) has the
following lower bound

m−
√

(2n − 1)m

22n − 2n

 m∑
j=1

 m∑
i=1

∑
a∈Fn∗

2

W 2
Fi

(a)W 2
Fj

(a)

+2
∑

16i<k6m

∑
a∈Fn∗

2

WFi
(a)W 2

Fj
(a)WFk

(a)

 1
2

.
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Proof. It is clear that RTO(F) > RTO(F, 0). So we calculate a lower bound of
RTO(F, 0). From Eq. (10) we get

RTO(F, 0) = m− 1

22n − 2n

∑
a∈Fn∗

2

∣∣∣∣∣∣
m∑
j=1

m∑
i=1

CFi,Fj
(a)

∣∣∣∣∣∣ .
Applying Cauchy-Schwarz inequality we get m∑

j=1

m∑
i=1

CFi,Fj (a)

2

6 m
m∑
j=1

(
m∑
i=1

CFiFj
(a)

)2

.

Applying Cauchy-Schwarz inequality again, we get

∑
a∈Fn∗

2

∣∣∣∣∣∣
m∑
j=1

m∑
i=1

CFi,Fj
(a)

∣∣∣∣∣∣ 6
(2n − 1)

∑
a∈Fn∗

2

m

m∑
j=1

(
m∑
i=1

CFi,Fj
(a)

)2
 1

2

6

(2n − 1)
∑
a∈Fn

2

m

m∑
j=1

(
m∑
i=1

CFi,Fj
(a)

)2
 1

2

=

(2n − 1)m

m∑
j=1

∑
a∈Fn

2

(
m∑
i=1

CFi,Fj (a)

)2
 1

2

.

(13)

Note that

∑
a∈Fn

2

(
m∑
i=1

CFi,Fj (a)

)2

=
∑
a∈Fn

2

m∑
i=1

C2Fi,Fj
(a)+2

∑
a∈Fn

2

∑
16i<k6m

CFi,Fj (a)CFk,Fj (a)

=

m∑
i=1

∑
a∈Fn

2

C2Fi,Fj
(a)+2

∑
16i<k6m

∑
a∈Fn

2

CFi,Fj
(a)CFk,Fj

(a) .

(14)
Then applying Lemma 1,

∑
a∈Fn

2

(
m∑
i=1

CFi,Fj
(a)

)2

=

m∑
i=1

∑
a∈Fn

2

W 2
Fi

(a)W 2
Fj

(a)

+ 2
∑

16i<k6m

∑
a∈Fn

2

WFi(a)W 2
Fj

(a)WFk
(a) .

Replacing this value of
∑
a∈Fn

2

(∑m
i=1 CFi,Fj (a)

)2
in Eq. (13), an upper bound

of
∑
a∈Fn∗

2
|
∑m
j=1

∑m
i=1 CFi,Fj (a)| is obtained. Then using this upper bound in

Eq. (14), we get a lower bound of RTO(F, 0) as follows
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m−
√

(2n − 1)m

22n − 2n

 m∑
j=1

 m∑
i=1

∑
a∈Fn

2

W 2
Fi

(a)W 2
Fj

(a)

+2
∑

16i<k6m

∑
a∈Fn

2

WFi(a)W 2
Fj

(a)WFk
(a)

 1
2

.

Note that RTO(F, β) assumes that all the coordinate functions are balanced,
therefore the above bound can be written as

m−
√

(2n − 1)m

22n − 2n

 m∑
j=1

 m∑
i=1

∑
a∈Fn∗

2

W 2
Fi

(a)W 2
Fj

(a)

+2
∑

16i<k6m

∑
a∈Fn∗

2
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(a)W 2
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(a)WFk

(a)

 1
2

.

This serves as a lower bound of RTO(F).
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