
A Secure Publish/Subscribe Protocol for
Internet of Things

Lukas Malina1∗, Gautam Srivastava2, Petr Dzurenda1, Jan Hajny1 and
Radek Fujdiak1

1 Brno University of Technology, Brno, Czech Republic malina@feec.vutbr.cz,
dzurenda@feec.vutbr.cz, hajny@feec.vutbr.cz, fujdiak@feec.vutbr.cz

2 Brandon University, Brandon, Canada srivastavag@brandonu.ca

Abstract. The basic concept behind the emergence of Internet of Things (IoT) is to
connect as many objects to the Internet as possible in an attempt to make our lives
better in some way. However, connecting everyday objects like your car or house to
the Internet can open up major security concerns. In this paper, we present a novel
security framework for the Message Queue Transport Telemetry (MQTT) protocol
based on publish/subscribe messages in order to enhance secure and privacy-friendly
Internet of Things services. MQTT has burst onto the IoT scene in recent years due to
its lightweight design and ease of use implementation necessary for IoT. Our proposed
solution provides 3 security levels. The first security level suits for lightweight data
exchanges of non-tampered messages. The second security level enhances the privacy
protection of data sources and data receivers. The third security level offers robust
long-term security with mutual authentication for all parties. The security framework
is based on light cryptographic schemes in order to be suitable for constrained and
small devices that are widely used in various IoT use cases. Moreover, our solution is
tailored to MQTT without using additional security overhead.
Keywords: MQTT, Security, Cryptography, IoT, Digital Signature, Privacy

1 Introduction
In today’s digital world, the growing need to address our security concerns for personal
data grows. It does not seem to matter what type of transaction is occurring or what
type of technology is being used, security is always involved. A recent push of Internet
of Things (IoT) has changed the landscape of data sharing. One very well known IoT
protocol is Message Queue Transport Telemetry (MQTT). MQTT came into the limelight
for its use with Facebook Messenger and its direct links to IoT [4]. What makes MQTT
popular is its light footprint on both energy and computation [3]. Where it lacks however
is in robust security. Although there is some level of security available for MQTT, it does
not meet the high threshold needed for the future of IoT. Moreover, the security available
does not have the efficiency in both energy and computation that is required.

There is no reason to even debate the need of security for transport protocols. However,
using well known security protocols in an IoT setting has new challenges and hurdles.
Often in IoT, security is seen as a trade-off with quality of service (QoS) pending on
the level of service an implementation wishes to maintain. Many secure cryptographic
algorithms require much more demanding resource-use than standalone IoT devices can
provide Therefore, security of these devices is often at a compromised level. Another major

∗The final publication appears in proceedings of ARES 2019. DOI:10.1145/3339252.3340503 c©2019
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

mailto:malina@feec.vutbr.cz
mailto:dzurenda@feec.vutbr.cz
mailto:hajny@feec.vutbr.cz
mailto:fujdiak@feec.vutbr.cz
mailto:srivastavag@brandonu.ca

2 A Secure Publish/Subscribe Protocol for Internet of Things

challenge is the ability to update IoT devices in the field. Critical security based issues
that would need to be applied simultaneously to all devices on the network can be hindered
by unreliable networks which many IoT devices run on. In this paper, we present a secure
version of MQTT that maintains its low energy and computational footprint while also
providing robust security at a level suitable for the IoT age. Although we do not discuss
the MQTT protocol in depth in this work, we recommend interested readers to the MQTT
documentation in [25, 24] and to a survey work like [23].

The rest of the paper is organized as follows. We introduce some background and
motivation for studying MQTT in 2 and finish the section off with a discussion in the
available security in current releases of MQTT. Next, 3 tackles all the related work on
the subjects touched on in this paper. We start our main results in 4 with an in depth
description of our enhanced version of MQTT. We then give a thorough performance
evaluation in 5 and then end with concluding remarks in 6.

2 Background and Motivation
Created in 1999, MQTT was invented as a joint collaboration between IBM and Arcom
(now Cirrus Link). Initial design parameters included minimal battery loss and minimal
bandwidth use to connect oil pipelines over satellite connections [26]. In [26], the following
characteristics were specified:

• Simple to implement

• Provide Quality of Service Data Delivery

• Lightweight and Bandwidth Efficient

• Data Agnostic

• Continuous Session Awareness

MQTT uses a client-broker publish/subscribe implementation. A main hub is used to
control the messages known as the message broker between publishers and subscribers as
shown in Figure 1.

Figure 1: MQTT Schematic

We have also seen many current and important use cases where robust security of the
MQTT protocol would be paramount.

Lukas Malina, Gautam Srivastava, Petr Dzurenda, Jan Hajny and Radek Fujdiak 3

• Facebook Messenger: With over one billion users worldwide, the security impli-
cations of MQTT are critical.

• Conoco Phillips Pipeline: 30, 000 devices on 17, 000 km of pipeline monitored
and controlled via MQTT on satellite links.

• St. Jude Medical: There are over 100, 000 pacemakers monitored via MQTT
creating the best use case of this section dealing with a true IoT situation.

• Toshiba Consert: another pure IoT use case, running a smart energy grid solution
built on the backbone of MQTT

• Sprint Velocity: Connected Car and Telematics provider.

2.1 Approaches to MQTT Security
When looking at available MQTT security, we can divide the resources into multiple layers.
Each layer can be used to prevent different types of attacks. The main goal of MQTT is
to be lightweight and easy to use for those trying to implement an IoT communication
network. The built-in security in MQTT is just in essence a collection of security standards
on different layers like SSL/TLS for transport security. Security is challenging so it is
no surprise MQTT just used some generally acceptable standards for its release. Those
standards however lack the lightweight characteristic that would be essential for an IoT
MQTT implementation.

Next we will give a brief overview of the different types of security currently available
in MQTT and will also look at some shortcomings we wish to provide solutions to in 4
and 5.

2.1.1 Authentication

MQTT provides the ability to provide a username/password field in the CONNECT packet
for authentication. This is an optional feature. The username is an UTF-8 encoded string
whereas the password can be of maximum length 65535 bytes. There are no requirements
on the password in the latest release of MQTT, however you are unable to send a password
alone without a username.

In a more advanced setting, every MQTT client has a unique client identifier. We
can use this client ID with maximum size of 65535 characters (each character 1 byte) in
conjunction with a username and password to authenticate the client. We can also use a
X.509 client certificate for authentication which will be discussed in 2.1.4.

2.1.2 Authorization

To restrict a client from publishing and/or subscribing to authorized topics, authorization
is controlled on the broker side. MQTT currently has the ability to have the following
permissions controlled by the broker

• Allowed Topic (specific topic, all topics)

• Allowed Operation (publish, subscribe, both)

• Allowed QoS (0,1,2,all)

By prefixing information to the client ID, the topics can be controlled easily (clientID/weather
or clientID/#). Furthermore, since in most cases the Broker is not considered to be either
energy or computationally challenged, authorization can easily be implemented to the
needs of the specific use cases.

4 A Secure Publish/Subscribe Protocol for Internet of Things

2.1.3 TLS/SSL

By default, MQTT relies on the TCP transport protocol which does not use encrypted
communication. To allow any encryption many brokers in use today will use TLS in place
of plain TCP. We find the use of TLS not feasible for constrained devices as is seen in
most IoT scenarios [9]. TLS both is very computationally heavy and can require high
memory usage as well.

2.1.4 X.509 Client Certificate Authentication

For added security in MQTT, X.509 client certificates are recommended to be used. Only
valid clients are allowed to set up secured connections. However, there is an added cost
with this. The added layer of security would require a MQTT client provisioning for this
and the ability for client certificate revocation mechanisms. Moreover, in the few publisher
to many client scenario, the ability to monitor the life-cycle of client certificates has added
challenges for constrained IoT subscriber devices.

2.1.5 OAuth 2.0

OAuth is an open protocol to allow secure authorizations and is usable from mobile, desktop,
and web based applications. The OAuth 2.0 authorization framework enables a third-party
application to obtain limited access to an HTTP service [8]. OAuth was clearly designed
for HTTP. This fact automatically leaves MQTT out of scope for it. Constrained to IoT
frameworks where known issues with OAuth often require human intervention, OAuth and
IoT just do not make sense in the same sentence.

2.1.6 Payload Encryption

With payload encryption, in MQTT there is the option to encrypt the payload as part of
PUBLISH packets. The payload would always be encrypted on the Publisher side, whereas
the decryption process may occur in the subscriber in End-to-End encryption but also
can be accomplished at the Broker. In either setup, Asymmetric or Symmetric encryption
schemes could potentially be established. Moreover, just the payload data would be
encrypted in either scenario and all other data (client info, certificates, topic info) would
remain un-encrypted. Pending on which encryption/decryption scheme is used, the scheme
itself can be very resource intensive causing issues for constrained devices again. Also
there would need to be secure provisioning of the keys to all of the MQTT clients. Finally,
these solutions do not prevent man-in-the-middle or replay attacks.

2.1.7 Message Data Integrity

Message data integrity can be added to the payload of PUBLISH packets using any of digital
signatures/MAC/checksum type solutions. Alongside a strong encryption framework, data
integrity solutions do not add too much extra additional security. However, data integrity
checks are a good addition to message encryption. Even if the attacker can decrypt the
message (and re-encrypt it), the integrity check would still fail if the message was altered.

3 Related Work
Nowadays, many comprehensive studies dealing with security in IoT have been pub-
lished [17, 21, 12]. Further, surveys such as [14] and [15] provide overviews of privacy
issues and challenges related to IoT technologies. Recently, Malik et al. [13] analyze key
bootstrapping protocols based on public key cryptography in IoT. This survey discusses

Lukas Malina, Gautam Srivastava, Petr Dzurenda, Jan Hajny and Radek Fujdiak 5

several authenticated key delivery approaches such as raw public key, certificated based,
identity based, certificate-less and so on.

In general, there are several papers that study security in IoT using the MQTT protocol.
Ramos et al. [10] propose a security tests based on modern fuzzing in the MQTT based
solutions. This work focuses on testing and does not propose security features such as
data confidentiality, authenticity and user authentication. Amaran et al. [2] study various
lightweight ciphers employed in MQTT. The work focuses on AES, LBLOCK, PRESENT
and KLEIN ciphers. Their benchmarks show that LBLOCK is an efficient alternative to
AES. The paper does not consider security aspects of chosen ciphers and their modes.
In [11], the authors study various encryption settings in MQTT. Their tests cover data
encryption in three cipher modes (ECB, CBC and OCB) and Link Layer security (LLsec)
that is using AES-CCM. They also discuss the suitability of different security options for
MQTT-enabled use cases, namely, wind turbine sensors and data networks. Both works
do not focus on key bootstrapping. Esfahani et al. [6] deal with lightweight authentication
mechanisms based on hash and XOR operations that are suitable for M2M communications
in the Industrial IoT environment. Their solution does not use expensive operations and
is based on preshared keys between sensors and servers (routers) that employ TPM for
storing secret keys. Singh et al. [22] propose a secure version of MQTT and MQTT-
SN (for sensor networks). They use Key/Ciphertext Policy-Attribute Based Encryption
(KP/CP-ABE) based on Elliptic Curve Cryptography. CP/KP-ABE schemes are based
on bilinear pairing operations. These operations are usually computationally expensive
and those pairing-based schemes are not suitable in IoT networks employing constrained
devices.

Furthermore, there are few papers that focus solely on key establishment and authen-
tication between entities in IoT using MQTT. Shin et al. [19] propose a simple security
framework for MQTT that avoids using certificates. Their proposed solution incorporates
the augmented Password-based Key Exchange (AugPAKE) protocol. The AugPAKE
protocol is based on the modification of the Diffie Helman key exchange protocol. In this
protocol, the client uses his/her password in order to authenticate to the server (a verifier)
and the verifier does not need to store client passwords but only a public verifier created
from the passwords. After successful authentication and key agreement between the client
and the server, the secure session is established. During the key establishment process in
the Shin proposal [19], the client has to compute 2 exponentiation (or point multiplication),
one modular division, one modular multiplication, one addition and 4 hash functions. The
server computes 3 exponentiation (or point multiplication), one modular multiplication,
and 4 hash functions. The AugPAKE protocol exchanges 4 messages.

Calabretta et al. [5] propose a security solution for MQTT based on AugPAKE protocol
that is similar to a framework in [19]. Their solution adds an authentication token and an
authorization token that are used to check the message authenticity at the broker side.
Authorization tokens are communicated via a secondary secure channel, e.g. visual texts on
displays. Haase and Labrique [7] propose another security solution based on the asymmetric
(augmented) PAKE protocol. Their solution uses a verifier-based password-authenticated
key-exchange protocol that is tailored for Industrial IoT (IIoT). The paper reviews state
of the art PAKE protocols and provides an appropriate solution for authenticated key
establishment in IIoT with constrained devices. Their proposed AuCPace protocol performs
8 messages (4 each direction). The client needs 3 exponentiation (or point multiplication),
one PBKDF function and 6 hash functions. The server takes 4 exponentiation (or point
multiplication) and 6 hash functions. These solutions usually do not support group
encryption.

In our paper, we propose a novel security framework which supports 3 security levels
for MQTT services. The protocol is based on secure and efficient cryptographic schemes
that ensure authenticated key establishment and short digital signatures and is novel in

6 A Secure Publish/Subscribe Protocol for Internet of Things

Subscriber area
- 3 security levels (SL1, SL2, SL3)
- All levels: checking the data integrity and authenticity, non-repudation (only
publisher can create a valid signature on data) by EC-based Schnorr signature
scheme
- SL2 and SL3: adds data confidentiality
- SL2: one-time encryption between B and S by Rabin and AES encryption schemes,
with privacy protection of subscribers and publishers
- SL3: mutual authentication, signatures and long-time encryption between B and S
by ECIES scheme + AES scheme

Subscriber 1

Subscriber 2

Subscriber N

Publisher 2
Broker (GW)

Subscribe (SL2_1, Rabin_enc(PKBroker ; T, SKBS_2))
Publish (SL2_2, Rabin_enc(PKBroker; T,ID2,M,t,sig2))

Publish (SL1_2, T, ID1, M
, t, sig1)

Revocation Authority

Publisher i

Database
1. topic - T {ID1, ..., IDi}
n. topic - T {ID1, ..., IDi}

TLS

Publish (SL3_2, ECIES(R i), AES_enc(SKP_iB
; T, ID i, M1, t,

sig i_1))

Publisher area
- 3 security levels (SL1, SL2, SL3)
- All levels: checking the data integrity and authenticity, non-repudation
(only publisher can create a valid signature on data) by EC-based Schnorr
signature scheme
- SL2 and SL3: adds data confidentiality
- SL2: signature + one-time encryption between P and B by Rabin
encryption scheme
- SL3: mutual authentication, signatures and long-time encryption between
P and B by ECIES scheme + AES scheme

Subscribe (SL1_1, T)

Publish (SL2_3, AES_enc(SKBS_2 ; T, M, t, sig2))
Subscribe (SL3_1, ECIES (Rj), AES_enc(SKBS_j; T, t, IDj, sigj))

Publish (SL3_4, AES_enc(SKBS_j; T, IDi, M1, t, sigi_1))

Publisher 1

Publish (SL1_2, T, ID1 , M, t, sig1)

Publish (SL3_3, AES_enc(SKP_iB
; T, ID i, M2, t,

sig i_2))

Publish (SL3_4, AES_enc(SKBS_j; T, IDj, Mx, tx, sigi_x))
Publish (SL3_3, AES_enc(SKP_iB

; T, ID i, Mx, t,
sig i_x))

Figure 2: Basic principle of novel security framework for MQTT.

both approach and results.

4 Secure Pub/Sub Protocol
In this section, we propose a novel security framework for MQTT services. The following
subsections presents notation and cryptography used, high level description and concrete
proposal’s phases.

4.1 Notation and Cryptography Used
The solution is based on secure cryptographic schemes and primitives such as Elliptic
Curve Integrated Encryption Scheme (ECIES) [1, 20], a modified elliptic curve variant of
the Schnorr digital signature scheme [18], the Rabin encryption cryptosystem [16] and
Advanced Encryption Scheme (AES) in an authenticated mode (e.g. GCM). These schemes
are chosen based on their efficiency and security. Used notation in our proposal is defined
in Table 1.

4.2 High-level Overview
The basic principle of our framework is shown in Figure 2. The communication model
consists of four parties: Publisher (P), Broker (B), Subscriber (S) and Revocation
Authority (RA) as the third trusted party. Publishers are usually constrained devices that
sense data and produce messages that are sorted by topics in the system. These messages
are sent to brokers who forward them to end users (subscribers). B is represented by
a central gateway which controls and routes messages by their topics in the system. S
represents an end user who processes and uses messages from P . We divide the topology
into 2 areas: a publisher area and a subscriber area. The proposed protocol provides
3 Security Levels (SL1, SL2, SL3) in both areas. All security levels ensure the data

Lukas Malina, Gautam Srivastava, Petr Dzurenda, Jan Hajny and Radek Fujdiak 7

Table 1: Used notation.
Notation Definition
a private key for the Schnorr signature

scheme
AES_enc(SK;
plaintext)

AES encryption in GCM mode

AES_dec(SK;
ciphertext)

AES decryption in GCM mode

B Broker
c ciphertext for the Rabin decryption (<n)
ciphertext general ciphertext for decryption
d random number
E(Fq) elliptic curve over finite field Fq

ECIES(Ri) authenticated key establishment ECIES
scheme

G point generator of elliptic curve
H() hash function, e.g. SHA3-256
ID ID of entity (a Schnorr public key)
k private key for the ECIES scheme
K public key for the ECIES scheme
KDF() Key Derivation Function
plaintext plaintext for encryption
M concrete message in string
n modulus for the Rabin encryption scheme
P Publisher
P K public key (n) for the Rabin encryption

scheme
Q EC point
q modulus for the Schnorr signature scheme
r, s prime numbers for the Rabin encryption

scheme that satisfying s ≡ 3 (mod 4)
Rabin_enc(P K;
plaintext)

Rabin encryption

Rabin_dec(privkey;
ciphertext)

Rabin encryption

RA Revocation Authority
S Subscriber
sig EC-based Schnorr signature (z, e)
SL1 denotation for the 1. security level
SL2 denotation for the 2. security level
SL3 denotation for the 3. security level
SK secret key for symmetric encryption
T topic in string
t timestamp
w encoded plaintext into an integer (<n)
Z ring of integers
× elliptic curve scalar (point) multiplication
∈R randomly chosen in ... (e.g., in finite field)
· field multiplication

8 A Secure Publish/Subscribe Protocol for Internet of Things

integrity, data authenticity, and non-repudiation (only the publisher can create signature
and original data) by employing the signature scheme, namely, the elliptic curve based
Schnorr scheme. In the publisher area, SL2 and SL3 add data confidentiality. Only B is
able to decrypt the data from publishers. SL2 provides one-time encryption between P
and B by the asymmetric Rabin encryption scheme. SL3 provides long-time encryption
between P and B by the authenticated key establishment ECIES scheme, and standard
symmetric cipher (AES) with the secure authenticated cipher mode, e.g., AES-GCM.

In the subscriber area, security levels (SL1, SL3) check the data integrity and authen-
ticity, and non-repudiation by using the EC-based Schnorr scheme. In SL1, S verifies the
signature on data that could be created only by P who knows a private key. SL2 and SL3
provides data confidentiality in both directions by data encryption. SL2 uses one-time
encryption between B and S by the Rabin and AES encryption schemes and provides
privacy protection. In SL2, S can be anonymous (e.g. by onion routing) because B does
not check his/her identification. Because of publishers’ public keys (IDs) are removed by
the broker, subscribers are not able to decipher who creates published messages. Only
B and RA, who have access to database with topics and publisher public keys, are able
to link publisher’s identity with the signature on data. Hence, it is assumed that B is a
semi-honest party which follows the protocol. SL3 provides a long-time security session
between B and S by ECIES and AES schemes (AES-GCM). Nevertheless, only B learns
what subscribers receive. This level supports access control and mutual authentication. B
checks the subscribers’ identity by Schnorr signatures.

The proposed solution contains these phases: Setup Phase, Join Phase, Communication
Phase - Security Level 1, Communication Phase - Security Level 2, Communication Phase
- Security Level 3, and Revocation Phase.

4.3 Setup Phase
In this phase, cryptographic parameters are set. The length of parameters should be in
line with keylength recommendations defined by NIST, ANSSI, BSI, and others, i.e., prime
lengths 2048 b, modulus lengths 4096 b, ECC size 256 b, symmetric encryption key sizes
128 b. Firstly, the broker (B) generates Rabin cryptosystem parameters. B randomly
generates primes r, s and stores these values as his/her private key (privkeyBroker), and
then, B computes his/her public key (PKBroker) where

PKBroker = n = r · s. (1)

Furthermore, B sets the elliptic curve domain parameters (e.g. E(Fq), q, G, ...) for the
ECIES and the Schnorr scheme. B generates randomly his/her private ECIES key where
kBroker ∈R Zq and computes his/her private ECIES key where

KBroker = kBroker ×G. (2)

It is assumed that the public keys of the broker PKBroker, KBroker is published in
the system. All publishers and subscribers securely load and store these keys and the
prescription for cryptographic schemes (lengths, the type of curves) and other shared
parameters (e.g. q).

4.4 Join Phase
Publishers (P) who join into the system must generate Schnorr signature parameters and
upload their identities securely to B. The identity ID of the i-th publisher is computed as
follows:

IDi = ai ×G, (3)

Lukas Malina, Gautam Srivastava, Petr Dzurenda, Jan Hajny and Radek Fujdiak 9

where ai ∈R Zq is publisher’s private key for the Schnorr digital signature scheme, G
is a point generator of the chosen elliptic curve. The private key ai is securely stored in
the publisher’s device (e.g. in Secure Access Module - SAM). Every P can be added into
the system by securely uploading his/her identity ID and his/her topic(s). Only RA and
B can use the database server which stores publishers’ ID and topics. This database also
serves as the whitelist for B during the communication phase. It is assumed that S joins
into the communication system dynamically. The levels SL1 and SL2 are designed for
anonymous S who is not authenticated by B. S only downloads shared public keys and
parameters from B.

In SL3, S joins to the system by uploading his/her identity to B. ID of the j-th
subscriber is computed as follows:

IDj = aj ×G, (4)
where aj ∈R Zq is the subscriber’s private key for the Schnorr digital signature scheme.

B stores all valid subscribers IDs for the next communication phases.

4.5 Communication Phase - Security Level 1
During the communication phase with Security Level 1 (SL1), publish messages are pro-
tected against tampering and modification. SL1 does not provide message confidentiality,
hence, we assume only transmitting non-vital and non-personal messages which can be
public, e.g. weather measurements, air quality, vehicle density, etc. Nevertheless, the
sources of these messages (publishers) are authenticated by employing Schnorr digital
signatures.

The communication flow is described in the following steps:

1. All subscribers, who want to subscribe to messages related to a chosen topic T , send
the broker (B) the subscribe request that contains the name of the security level
(SL1_1) and the name of the topic (T). B collects all messages from publishers then
forwards these messages (related to topics) to interested subscribers.

2. The i-th publisher (Pi) senses data and creates messages called publish messages.
The publish message is sent to B. The message contains these parts: SL1_2, T , IDi,
M , t, sig where T defines the topic in a readable string, IDi is the identity serving
as a public key of Pi (i.e., a value in Zq), M represents concrete sensed data, t is an
actual timestamp (e.g., 8 bytes date and time) that prevents replay attacks, and sig
is the Schnorr digital signature scheme. The signature sig = z, e is computed by Pi

with his/her private key ai as follows:

R = d×G, (5)

where d ∈R Zq, e = H (SL1_2, T , IDi, M , t, R, G),

z = d− e · ai. (6)

The signature sig = z, e ensures the authentication and non-repudiation of the
publish message from Pi.

3. B receives the publish message and checks the content. Firstly, B checks if IDi is
presented in the whitelist via a query to the database server and checks if the topic is
correct. Then, B verifies the signature sig = z, e by restoring values R′, e′ as follows:

R′ = z ×G + e× IDi, (7)

e′ = H (SL1_2, T , IDi, M , t, R′, G), if e = e′ then the signature is valid, otherwise,
the signature is not valid and the message is dropped by B.

10 A Secure Publish/Subscribe Protocol for Internet of Things

4. All validly signed messages are resent to subscribers based on required topics. It is
assumed that the subscriber devices are typically smart devices that can also check
the Schnorr signature by using Eq. 7, restoring e′ and checking that e = e′.

4.6 Communication Phase - Security Level 2
During the communication phase with Security Level 2 (SL2), publish messages are
protected against tampering, modification and eavesdropping. SL2 provides message
confidentiality and partial anonymity, hence, it is appropriate for transmitting vital and
personal messages, e.g., user location, etc. The sources of these messages (publishers) are
authenticated by using the Schnorr digital signatures. Moreover, transmitted data are
one-time encrypted by an asymmetric cipher, i.e., the Rabin cryptosystem.

The communication flow is defined in these steps:

1. Each subscriber (S) who wants to subscribe to messages related to a chosen topic T
sends to B the subscribe request that contains the name of the security level (SL2_1)
and ciphertext, which is computed by the Rabin encryption by using the broker’s
public key. The plaintext w = T ||SKBS_j is created from the name of the topic (T)
and j-th subscriber’s (Sj) one time secret key (SKBS_j) which is a secret key for
symmetric encryption generated by a key derivation function. The condition that w
< n must hold where w is an encoded integer from T ||SKBS_j . The ciphertext (c)
is computed by the Rabin encryption,

c = w2 mod PKbroker. (8)

Sj stores the one time secret key (SKBS_j) for a decryption operation of the publish
message received from B.

2. Only B with his/her valid private key privkeyBroker (r, s) is able to decrypt the
ciphertext (c) that was encrypted by his/her public key PKBroker. The plaintext w
is restored by using the Chinese remainder theorem as follows:

mr = c
r+1

4 mod r,

ms = c
s+1

4 mod s,

then we compute two integers k, l such that k · r + l · s = 1,

w1 = k · r ·ms + l · s ·mr mod PKBroker,

w2 = k · r ·ms − l · s ·mr mod PKBroker,

w3 = −w2 mod PKBroker,

w4 = −w1 mod PKBroker.

Due to using the readable string of T (topic), B is able to pick the correct plaintext
from 4 possible candidates w1, w2, w3, w4. Then, B creates a short term list of
interested subscribers. This list contains the topics and their secret keys that have
been restored from the ciphertext. To be noted here is that an observer cannot
distinguish which topics are subscribed to by subscribers. Furthermore, if subscribers
employ mixnets and/or onion routing techniques then B also does not know which
concrete users will receive publish messages. This feature increases the privacy level
of subscribers in the system.

Lukas Malina, Gautam Srivastava, Petr Dzurenda, Jan Hajny and Radek Fujdiak 11

3. The i-th publisher (Pi) produces publish messages containing sensed data. The
publish message, which is sent to B, contains two parts: SL2_2 and ciphertext that
is computed by the Rabin encryption. The ciphertext is computed by using the
broker’s public key. Input plaintext (<n) conducts the name of the topic (T), IDi,
M , t, and sig. The sig is computed by the EC-based Schnorr signature scheme. If
w < n with |n| = 4096 b and if |sig| = 512 b, |t| = 64 b, |T | = 128 b, and |IDi|
= 256 b then the length of one message M could be up to 3136 bits. The digital
signature sig = z, e is computed by Pi with his/her private key ai as follows: R is
computed where

R = d×G, (9)

where d ∈R Zq, e = H (SL2_2, T , IDi, M , t, R, G), and z is computed where

z = d− e · ai. (10)

The signature sig = z, e ensures the authentication and non-repudiation of data
values in the publish message.

4. B receives the publish message, reads that the security level is SL2 and decrypts the
Rabin ciphertext by privkeyBroker such as in Eq. 9 and 9. The correct plaintext is
chosen from 4 candidates by helping the readable string of T . Then, B checks the
content of the publish message and checks if IDi is presented in the whitelist via a
query to the database server. Finally, B verifies the signature sig = z, e by restoring
values R′, e′ as follows:

R′ = z ×G + e× IDi, (11)

e′ = H (SL2_2, T , IDi, M , t, R′, G), if e = e′ then the signature is valid, otherwise,
the signature is not valid and the message is dropped by broker B.

5. All correct messages (T , M , t, sig) are then encrypted by the subscribers’ one time
secret keys (e.g. SKBS_j) by the AES-GCM encryption and are sent as SL2_3 and
ciphertext to the subscribers. Subscribers decrypt the messages using the AES-GCM
decryption. In this phase, S does not check the Schnorr signatures. The concrete ID
for signature sig is stripped by B in order to increase the privacy of P . In case of an
incident (e.g. bogus message, fake data), S forwards this message with the signature
to the Revocation Authority RA which can detect the identity of the receiver by
the trying all IDs registered for the topic in the verification process using Eq. 7,
restoring e′ and checking that e = e′.

4.7 Communication Phase - Security Level 3
During the communication phase with Security Level 3 (SL3), publish messages are
protected against tampering, modification and eavesdropping. In SL3, P and B and S
establish long-term secure session channels in order to provide message confidentiality
that is suitable for frequently transmitting vital and personal data (e.g. personal power
consumption, e-healthcare data) from publishers to authenticated subscribers. All messages
are authenticated by the verification of the Schnorr digital signatures. Contents are
encrypted by a symmetric cipher operating in authenticated mode, i.e., AES-GCM. SL3 also
offers secure multicast. The communication flow is described in these steps:

1. The subscriber (Sj), who wants to subscribe to messages related to a chosen topic
T , sends B the subscribe request which contains the message denotation (SL3_1),
ECIES public value (Rj), ciphertext, and sigj . The ciphertext is computed from
the plaintext (T , t, IDj) by the AES encryption with using the secret key. The AES
key is established by ECIES on the Sj side as follows: Sj knows the broker’s public

12 A Secure Publish/Subscribe Protocol for Internet of Things

key KBroker established during the Setup phase. Sj generates a random number d
∈R Zq and computes

Rj = d×G. (12)

Then, Sj derives shared secret S(= Qx) as:

Q = (Qx, Qy) = d×KBroker. (13)

The secret key is derived by using a key derivation function as SKBS_j =KDF(S).

Further, the Schnorr signature sigj = z, e is computed by Sj with his/her private
key aj as follows: R is computed as

R = d×G, (14)

where d ∈R Zq, e = H (SL3_1, ciphertext, R, G), and z is computed such as

z = d− e · aj . (15)

.

Sj stores the established secret key SKBS_j for the next decryption operations of
the publish messages from B.

2. B receives the subscribe message. B recognizes the message by SL3_1 and establishes
the secret key by using ECIES as follows:

Q = (Qx, Qy) = Rj × kBroker. (16)

B derives shared secret S(= Qx) and restores the secret key as SKBS_j =KDF(S).
Furthermore, B decrypts the ciphertext encrypted by AES-GCM by using the key
SKBS_j . The restored plaintext contains T , the actual timestamp t for checking
the newness, and the subscriber’s IDj for checking if the subscriber has access
to this topic. B verifies the Schnorr signature sigj by using Eq. 7 for restoring
R′, recomputing e′ = H (SL3_1, ciphertext, R, G) and checking that if e = e′,
otherwise, the subscriber’s request is rejected. B adds SKBS_j into the long term
list of interested subscribers for concrete topics.

3. The i-th publisher (Pi) senses data and creates messages called publish messages.
The publish message is sent to B. The message contains three parts: SL3_2, ECIES
(Ri) and symmetric ciphertext. Pi knows the broker’s public key KBroker established
during the Setup phase. Pi generates a random number d ∈R Zq and computes

Ri = d×G. (17)

Then, Pi derives shared secret S = Qx as:

Q = (Qx, Qy) = d×KBroker. (18)

The secret session key is derived by using a key derivation function where SKP _iB =
KDF(S). The secret key SKP _iB is used by AES-GCM to encrypt the topic (T), IDi,
M , t, and sigi that is computed by the EC-based Schnorr signature scheme by the
same procedure described in the SL1 and SL2 with the exception of adding SL3_2
into the hash function. Pi stores the established secret key SKP _iB for the next
encryption operations of the publish messages that are sent to B.

Lukas Malina, Gautam Srivastava, Petr Dzurenda, Jan Hajny and Radek Fujdiak 13

4. B receives the publish message, reads that the security message is SL3_2, and starts
to establish the secret key by ECIES as follows:

Q = (Qx, Qy) = Ri × kBroker. (19)

B derives shared secret S = Qx and restores the same secret session key by
SKP _iB =KDF(S). Further, B decrypts the ciphertext encrypted byAES-GCM by
the established secret key SKP _iB. The restored plaintext contains the readable
string of T (topic), IDi, M , t, and sigi. B checks the content of the publish message.
Furthermore, B checks if IDi is presented in the whitelist via a query to the database
server and checks if the topic is correct.

5. All publish messages SL3_4 are encrypted by subscribers’ secret keys (e.g. SKBS_j)
and are sent to the subscribers. Each S decrypts the message by using AES and
checks the Schnorr signatures by using Eq. 7 for restoring R′, recomputing e′ and
checking that if e = e′, otherwise, the message is rejected.

4.7.1 Secure Multicast Mode

The broker B can decrease the number of encryption operations by using the secure
multicast mode. The basic principle is depicted in Fig. 3. First, B sends all subscribers in
the G-group the group secret key (SKgroup_G) by message SL3_5. Then, B encrypts only
once the next x message (T , Mx, tx, sig1_x) by SKgroup_G and broadcasts this ciphertext
with denotation SL3_6 to all members in the group.

Subscriber 1

Subscriber 2

Subscriber j

Broker (GW)

Subscribe (SL3_1, ECIES(R2), AES_enc(SKBS_2; T,t, ID2),sig2)Publish
messages

Publish (SL3_5, AES_enc(SKBS_1
; SKgroup

_1,t
))

Subscribe (SL3_1, ECIES(Rj), AES_enc(SKBS_j; T, t, IDj), sigj)

Publish (SL3_5, AES_enc(SKBS_j; SKgroup_1, t))

Publish (SL3_6, AES_enc(SKgroup_1; T, Mx, tx, sigx))

Subscribe (SL3_1, ECIES(R1), A
ES_enc(SKBS_1

; T, t, ID1), s
ig1)

Publish (SL3_5, AES_enc(SKBS_2; SKgroup_1, t))

Publish (SL3_6, AES_enc(SKgroup_1; T, Mx, tx, sigx))

Publish (SL3_6, AES_enc(SKgroup
_1;

T,Mx,tx,
 sigx))

Group 1

Figure 3: Secure Multicast Mode in Communication Phase - Security Level 3.

4.8 Revocation Phase
The revocation authority RA works as the third trusted party who can decide about
publisher revocation. In case that a publisher produces false or malicious data, then, the

14 A Secure Publish/Subscribe Protocol for Internet of Things

Table 2: Performance Comparison of Our Solution and Related Works

Solution Publisher (# operations,
messages)

Broker (# operations) Subscriber (# opera-
tions, messages)

AugPAKE protocol by
Shin et al. [19]

2SM+2M+1A+4H+1AES
(4+N messages)

3SM+1M+4H+2AES
3SM+1M+4H+2AES

2SM+2M+1A+4H+1AES
(4+N messages)

AugPAKE protocol by
Calabretta et al. [5]

2SM+2M+1A+4H+
1MAC+1AES (5+N
messages)

3SM+1M+4H+2MAC+2AES
3SM+1M+4H+2MAC+2AES

2SM+2M+1A+4H
+1MAC+1AES (5+N
messages)

AuCPACE protocol by
Haase and Labrique [7]

3SM+1KDF+6H+1AES
(8+N messages)

4SM+6H+1AES
4SM+6H+1AES

3SM+1KDF
+6H+1AES (8+N
messages)

Our solution - SL1 (sub-
scribe)

0 0 0 (1 message)

Our solution - SL1 (pub-
lish)

1SM+1M+1A+1H (1
message)

2SM+A1+1H 2SM+1A+1H (1 mes-
sage)

Our solution - SL2 (sub-
scribe)

0 1RAD 1M (1 message)

Our solution - SL2 (pub-
lish)

1SM+2M+1A+1H (1
message)

1RAD+2SM
+1A+1H+1AES

1AES (1 message)

Our solution - SL3 (sub-
scribe)

0 3SM+1A+1H+1AES 3SM+1M+1A
+1H+1AES (1 mes-
sage)

Our solution - SL3 (pub-
lish)

3SM+1M+1A+1H+1AES
(1+N message)

1SM+2AES 2SM+1A+1H+1AES
(1+N message)

broker or the subscriber can send a request to the RA in order to remove the publisher
from the system. The RA make a decision based on the severity of the case and eventually
revokes a malicious P from the system by removing his/her ID from the whitelist that
links IDs to topics.

5 Performance Evaluation and Security Discussion
This section presents the performance evaluation of the proposed solution and brief gives
an informal security analysis.

5.1 Performance Evaluation
Table 2 provides the comparison of performance costs that are measured by the number
of math operations and cryptographic primitives required by our proposed solution (for
all 3 security levels) and related works. We denote Rabin decryption operation as RAD
(≈ the time of modular exponentiation), scalar multiplication as SM , modular multipli-
cation/division as M , modular addition/subtraction as A, hash function as H, message
authentication code operation as MAC, and AES encryption/decryption as AES. The
relatively fast operations are omitted, e.g., random number generating, XOR.

The SL1 version provides only data non-repudiation, integrity and authenticity but is
very lightweight with several operations on each side. The SL2 version adds confidentiality
and enhances privacy protection of subscribers and publishers. For asymmetric encryption
and secure key transfer, we choose the Rabin cryptosystem that requires only one modular
multiplication at the subscriber and publisher sides respectively where less powerful devices
are expected.

The most robust security level SL3 of our solution must perform in total: 12 scalar
multiplication, 2 modular multiplication, 4 modular addition, 4 hash functions, and 6 AES
operations. The Shin et al.’s [19] and Calabretta et al.’s [5] solutions perform in total: 10
scalar multiplication, 6 modular multiplication, 2 modular addition, 16 hash functions
and 6 AES operations. The Calabretta et al.’s solution [5] needs 6 MAC operations in
addition. The solution of Haase and Labrique [7] needs 14 scalar multiplication, 24 hash
functions and 4 AES operations. The most expensive operations are scalar and modular
multiplications (14 operations in our SL3 compared to 16 operations in the Shinet al.

Lukas Malina, Gautam Srivastava, Petr Dzurenda, Jan Hajny and Radek Fujdiak 15

and Calabretta et al. schemes, and 14 operations in the Haase and Labrique scheme).
Therefore, the performance costs of our system and the related works are comparable.
Furthermore, the precise times of performance for operations depend on used devices on
the subscriber, broker and publisher sides. Nevertheless, our solution in SL3 needs fewer
messages for the authentication of entities and the establishment of the secure channel
than the AugPAKE-based protocols proposed by Shin et al. [19], Calabretta et al. and the
AuCPACE protocol proposed by Haase and Labrique [7], therefore, our solution is more
suitable for the publish/subscribe-based MQTT protocol overall.

5.2 Security Discussion
In this section, we discuss the security properties that are supported by our solution:

• Data non-repudiation, integrity and authenticity - all versions ensure this
property by the Schnorr signature scheme. Only publisher who holds the private key
is able to sign the message.

• Replay attack protection - all publish messages and subscribe messages in SL2
and SL3 contain the actual time stamp that prevents replaying these messages by
an attacker.

• MitM attack protection - the pre-distributed public keys of the broker for Rabin
and ECIES cryptosystems in SL2 and SL3 during the setup and join phases prevent
man in the middle attacks.

• Eavesdropping protection - SL2 and SL3 provide data confidentiality in order to
prevent data eavesdropping. We employ the secure cipher with secure authenticated
mode, i.e., AES-GCM.

• Privacy protection - SL2 enhances the privacy protection of publishers and
subscribers. ID (a public key) of the publisher is stripped by the broker B. Hence,
subscribers receiving data from B are not able to detect the source. Furthermore,
subscribers can use mixnet or onion routing techniques in order to subscribe data
anonymously. We assume that subscribers will have access to the database with
public keys and topics used in SL2.

• Publisher authentication - all versions SL1, SL2 and SL3 authenticate the
publisher by his/her signature on data.

• Publisher revocation - every publisher who sends malicious data can be revoked
in the system by withdrawing his/her public key (ID) from the whitelist. In the
privacy-friendly mode of SL2, the subscriber can send a malicious publish message to
the revocation authority RA in order to decide about the revocation of the publisher
from the system. The revocation authority has access to the database with public
keys and topics used in SL2.

• Subscriber authentication - in SL3, a subscriber is authenticated by using his/her
public key and the signature that is presented in the subscriber request message.
These subscribers’ public keys are registered by the broker during the join phase.

• Broker authentication - only the broker with his/her private key is able to decrypt
the publish and subscribe messages from publishers and subscribers who use public
broker keys (ECIES and Rabin).

16 A Secure Publish/Subscribe Protocol for Internet of Things

6 Conclusion
In this work, we analyze security and cryptographic solutions for IoT use cases based on
the MQTT protocol. The paper presents our novel security framework that is tailored
for MQTT. Our solution provides 3 different security levels for different use cases such as,
secure message publishing of non-sensitive but not-modified data, privacy-enhancing data
publishing and subscribing, and secure data publishing from authenticated publishers to
authenticated subscribers. Our protocol uses efficient public key cryptography schemes and
modifications in order to suit the MQTT communication model without adding additional
messages. When comparing to related work in the field, we show that the security message
overhead of our solution is minimal.

Acknowledgements
We would like to thank the anonymous reviewers for detailed comments. This paper
is part of a project that has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 830892, project SPARTA,
and the National Sustainability Program under Grant no. LO1401. For the research, the
infrastructure of the SIX Center was used.

References
[1] Abdalla, M., Bellare, M., Rogaway, P.: Dhaes: An encryption scheme based on the

diffie-hellman problem. IACR Cryptology ePrint Archive 1999, 7 (1999)

[2] Amaran, M., Rohmad, M., Adnan, L., Mohamed, N., Hashim, H.: Lightweight security
for mqtt-sn. International Journal of Engineering and Technology(UAE) 7(4), 223–226
(1 2018)

[3] Bryce, R., Shaw, T., Srivastava, G.: Mqtt-g: A publish/subscribe protocol with
geolocation. In: 2018 41st International Conference on Telecommunications and Signal
Processing (TSP). pp. 1–4. IEEE (2018)

[4] Bryce, R., Srivastava, G.: The addition of geolocation to sensor networks. In: ICSOFT.
pp. 796–802. SciTePress (2018)

[5] Calabretta, M., Pecori, R., Velti, L.: A token-based protocol for securing mqtt com-
munications. In: 2018 26th International Conference on Software, Telecommunications
and Computer Networks (SoftCOM). pp. 1–6. IEEE (2018)

[6] Esfahani, A., Mantas, G., Matischek, R., Saghezchi, F.B., Rodriguez, J., Bicaku, A.,
Maksuti, S., Tauber, M., Schmittner, C., Bastos, J.: A lightweight authentication
mechanism for m2m communications in industrial iot environment. IEEE Internet of
Things Journal (2017)

[7] Haase, B., Labrique, B.: Aucpace: Efficient verifier-based pake protocol tailored for
the iiot. IACR Transactions on Cryptographic Hardware and Embedded Systems pp.
1–48 (2019)

[8] Hardt, D.: The oauth 2.0 authorization framework. Tech. rep. (2012)

[9] Heer, T., Garcia-Morchon, O., Hummen, R., Keoh, S.L., Kumar, S.S., Wehrle, K.: Se-
curity challenges in the ip-based internet of things. Wireless Personal Communications
61(3), 527–542 (2011)

Lukas Malina, Gautam Srivastava, Petr Dzurenda, Jan Hajny and Radek Fujdiak 17

[10] Hernández Ramos, S., Villalba, M.T., Lacuesta, R.: Mqtt security: A novel fuzzing
approach. Wireless Communications and Mobile Computing 2018 (2018)

[11] Katsikeas, S., Fysarakis, K., Miaoudakis, A., Van Bemten, A., Askoxylakis, I., Pa-
paefstathiou, I., Plemenos, A.: Lightweight & secure industrial iot communications
via the mq telemetry transport protocol. In: 2017 IEEE Symposium on Computers
and Communications (ISCC). pp. 1193–1200. IEEE (2017)

[12] Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., Zhao, W.: A survey on internet of
things: Architecture, enabling technologies, security and privacy, and applications.
IEEE Internet of Things Journal 4(5), 1125–1142 (2017)

[13] Malik, M., Dutta, M., Granjal, J.: A survey of key bootstrapping protocols based on
public key cryptography in the internet of things. IEEE Access (2019)

[14] Malina, L., Hajny, J., Fujdiak, R., Hosek, J.: On perspective of security and privacy-
preserving solutions in the internet of things. Computer Networks 102, 83–95 (2016)

[15] Porambage, P., Ylianttila, M., Schmitt, C., Kumar, P., Gurtov, A., Vasilakos, A.V.:
The quest for privacy in the internet of things. IEEE Cloud Computing 3(2), 36–45
(2016)

[16] Rabin, M.O.: Digitalized signatures and public-key functions as intractable as factor-
ization. Tech. rep., Massachusetts Inst of Tech Cambridge Lab for Computer Science
(1979)

[17] Roman, R., Zhou, J., Lopez, J.: On the features and challenges of security and privacy
in distributed internet of things. Computer Networks 57(10), 2266–2279 (2013)

[18] Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Conference
on the Theory and Application of Cryptology. pp. 239–252. Springer (1989)

[19] Shin, S., Kobara, K., Chuang, C.C., Huang, W.: A security framework for mqtt. In:
2016 IEEE Conference on Communications and Network Security (CNS). pp. 432–436.
IEEE (2016)

[20] Shoup, V.: A proposal for an iso standard for public key encryption (version 2.1).
IACR e-Print Archive 112 (2001)

[21] Sicari, S., Rizzardi, A., Grieco, L.A., Coen-Porisini, A.: Security, privacy and trust in
internet of things: The road ahead. Computer networks 76, 146–164 (2015)

[22] Singh, M., Rajan, M., Shivraj, V., Balamuralidhar, P.: Secure mqtt for internet of
things (iot). In: 2015 Fifth International Conference on Communication Systems and
Network Technologies. pp. 746–751. IEEE (2015)

[23] Soni, D., Makwana, A.: A survey on mqtt: a protocol of internet of things (iot). In:
International Conference On Telecommunication, Power Analysis And Computing
Techniques (ICTPACT-2017) (2017)

[24] Source, O.: Mqtt documentation. http://http://mqtt.org/documentation, ac-
cessed: 2019-05-01

[25] Source, O.: Mqttnet. https://github.com/chkr1011/MQTTnet, accessed: 2018-10-
01

[26] Stanford-Clark, A., Hunkeler, U.: Mq telemetry transport (mqtt). Online].
http://mqtt. org. Accessed September 22, 2013 (1999)

http://http://mqtt.org/documentation
https://github.com/chkr1011/MQTTnet

	Introduction
	Background and Motivation
	Approaches to MQTT Security

	Related Work
	Secure Pub/Sub Protocol
	Notation and Cryptography Used
	High-level Overview
	Setup Phase
	Join Phase
	Communication Phase - Security Level 1
	Communication Phase - Security Level 2
	Communication Phase - Security Level 3
	Revocation Phase

	Performance Evaluation and Security Discussion
	Performance Evaluation
	Security Discussion

	Conclusion

