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Abstract. In recent literature, there has been a particular interest in
studying nonce based AE schemes in the light of fault based attacks as
they seem to present an automatic protection against Differential Fault
Attacks (DFA). In this work, we present the first DFA on nonce based
CAESAR scheme NORX. We demonstrate a scenario when faults in-
troduced in NORX in parallel mode can be used to collide the internal
state to produce an all-zero state. We later show how this can be used to
replay NORX despite being instantiated by different nonces, messages.
Once replayed, we show how the key of NORX can be recovered using
secondary faults and using the faulty tags. We use different fault models
to showcase the versatility of the attack strategy. A detailed theoretical
analysis of the expected number of faults required under various models
is also furnished. Under the random bit flip model, around 1384 faults
are to be induced to reduce the key space from 2128 to 232 while the
random byte flip model requires 136 faults to uniquely identify the key.
To the best of our knowledge, this is the first fault attack that uses both
internal and classical differentials to mount a DFA on a nonce based
authenticated cipher which is otherwise believed to be immune to DFA.

1 Introduction

Fault analysis has always been one of the most popular physical attacks which is
primarily attributed to the ease with which such attacks are mounted in practice
and secondarily due to the difficulty in inhibiting them. The initiation of CAE-
SAR competition [1] on authenticated encryption (AE) schemes, generated a lot
of interest in the crypto community to analyze these ciphers which try to com-
bine the goals of authenticity and confidentiality under a single unified primitive.
Researchers also tried to look at authenticated ciphers from the fault analysis
perspective. Authenticated ciphers submitted to CAESAR presented many in-
teresting problems due to their diverse design strategies and paradigms as well
as an array of useful features like Nonce-Misuse Resistance (NMR), Online Au-
thenticated Encryption (OAE), Inverse Free, Release of Unverified Plaintexts
(RUP), Parallelizable Encryption/Decryption and others (A good account of
these is available in [2]). Eventually, it was found that some of these desirable
features lead to previously nonexistent vulnerabilities with regards to fault at-
tacks [22,23,25]. One of many ways that AE schemes can be classified in based on
the use of nonces giving us two types of authenticated ciphers: one that prohibits
reusing the nonce while the other that provides some security under nonce-reuse.



In CHES 2016 [23] and later in JCEN’17 [24] Saha and Roy Chowdhury using
a demonstration on nonce-based authenticated cipher PAEQ, highlighted the
importance of the nonce-barrier in the context of automatic prevention of Dif-
ferential Fault Attacks (DFA) which is the most popular and well studied type
of fault attack. The basic problem seems to be the fact that nonce based schemes
inhibit replaying of the algorithm which is a premise to DFA thereby implicitly
thwarting them. The authors show how parallelism in PAEQ could be exploited
to mount a DFA by completely avoiding the nonce constraint. They also gen-
eralized the attack showcasing the threat it poses to parallelizable ciphers that
employ the counter-mode.

In this work, we target another nonce-respecting CAESAR submission called
NORX which survived up till the third round. NORX [5, 7, 8] is the family of
sponge based authenticated encryption with associated data (AEAD) algorithms
designed by Aumasson, Jovanovic and Neves. The original submission proposes
versions of NORX with 32 and 64−bit words called NORX32 and NORX64 respec-
tively. Subsequently two more versions were proposed with 8 and 16−bit words
called respectively NORX8 and NORX16 in [6]. Our interest in NORX stems from
the fact that it has a unique parallel architecture based on the MonkeyDuplex
construction [11] and supports an arbitrary parallelism degree, based on LRX
primitives. An intriguing feature of NORX is the way it instantiates parallelism
due to the MonkeyDuplex mode. This deviates from the classical parallelizable
ciphers as stated in [23], but NORX still uses a variant of the counter-mode to
separate the branches. This is the reason that the ideas proposed in CHES‘16
cannot be directly extended to get an attack on NORX.

Our Contribution. Our first contribution, comes in form of generating fault-
based internal state collisions on NORX with level of parallelism = 2 leading to
an all-zero state at the end of message processing. Once the collision is generated
in any3 NORX instantiation, if the trailing data is identical, then all such NORX
instances will produce the same (faulty) tag. In other words, the tags would also
collide which can be interpreted as a faulty forgery. This mimics the replay of the
NORX which makes threat of classical DFA pertinent and devising the attack
constitutes our second contribution. We find that if we are able to inject faults
in the internal state of permutation in the last iteration of the round function,
then based on the fault model adopted, one or multiple bits of internal state is
revealed by the XOR of the tags. We perform extensive theoretical analysis using
the well-known “Coupon Collector Problem” [21] to establish bounds on the
expected number of faults required using four different fault models to reduce
the key-space to practically acceptable limits. The summary of these results are
furnished in Table 1.

Previous Cryptanalysis of NORX. In [4], Aumasson et al. thoroughly analyzed
the differential and the rotational properties of the core permutation of NORX.

3 We stress that this is true for any nonce and messages with consecutive identical
blocks



Fault Model
Expected

# Faults

Reduced

Key-Space
Reference

Random Bit Flip
1384 232

Section 4.1
1544 216

Random Byte Flip 136 1 Section 4.2

Random Byte with

Known Fault

332 232

Section 4.3
372 216

Random Consecutive

Bit Flip

136 232

Section 4.4
152 212

Table 1: Summary of the attacks on NORX reported in this work

They gave upper bounds on the differential probability for the reduced per-
mutation. More precisely, if an attacker can only modify the nonce during ini-
tialization, then any single round differential characteristic has probabilities of
less than 2−60 (for NORX32) and 2−53 (for NORX64). Furthermore, they have
found the best characteristics for four rounds with probabilities of 2−584 and
2−836 for NORX32 and NORX64, respectively. In [15], Das et al. describe statis-
tical variants of zero-sum distinguishers that allow to distinguish the full-round
permutation of NORX-64 and 3.5 rounds of the permutation of NORX-32 from
random permutations. These results cover more rounds compared to the first or-
der differential analysis provided in [4]. The used approach is similar to zero-sum
distinguishers [9], but it is probabilistic rather than deterministic. Later in [10],
Bagheri et al. showed a state/key recovery attack for both variants for a re-
duced versions of NORX v2.0 where the underlying permutation applies half the
rounds (2 out of 4). After that, in [18] Dwivedi et al. analyzed the state-recovery
resistance of several submitted CAESAR candidates, including NORX, using a
SAT solver. They have also analyzed modified versions of these algorithms, in-
cluding round-reduced variants. Later in [14], using non-random properties of
the underlying permutation, they showed a ciphertext-only forgery with time
and data complexity 2−66 (resp. 2−130 ) for the variant of NORX v2.0 of 128-bit
(resp. 256-bit) keys and broke the designer’s claim of a 128-bit (resp. 256-bit)
security. Furthermore, they showed that this forgery attack can be extended
to a key-recovery attack on the full NORX v2.0 with the same time and data
complexities. Also for NORX v3.0, the resulting attack enables an adversary to
generate forgeries with data complexities 22w, w = 32, 64 for 128, 256-bit keys
respectively. It is interesting to see that despite a lot of cryptanalytic results re-
ported in literature, there is no side-channel attack or physical attack developed
on NORX. This forms one of the initial motivations of this work.

Outline. The rest of the paper is organized as follows: We begin by briefly
outlining the description of NORX v3.0 in Section 2. We describe, how to create
an internal collision on NORX with parallelism degree p = 2 using counter fault



in Section 3.1 and then give the attack scenario for the DFA on NORX (p = 2)
in Section 3.2. A detailed theoretical analysis along with the expected number
of faults required under various fault models is given in Section 4. A discussion
is furnished in Section 5 while the concluding remarks are given in Section 6.

2 Specifications of NORX

In this section we will give a description of the NORX family of Authenticated
Encryption with Associated Data (in short “AEAD”) algorithms, mainly the
description of NORX v3.0.

S =


s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15


(a) State representation

Sinit =


n0 n1 u2 u3

K(1) K(2) K(3) K(4)

u8 u9 u10 u11

u12 u13 u14 u15


(b) State initialization

Fig. 1: Matrix form of the state

A NORX instance is denoted by (w, l, p, t), where w ∈ {32, 64} is the word
size, l(1 ≤ l ≤ 63) is the round number, p(0 ≤ p ≤ 255) is a parallelism degree
and t(≤ 4w) is the tag size. The state S is viewed as concatenation of 16 words,
i.e., S = s0||s1||....||s15, where s0, ..., s11 are called the rate words (where data
blocks are injected) and s12, ..., s15 are called the capacity words (which remain
untouched). The state S can be viewed as a 4× 4 matrix, is given in Figure 1a.
More information on the constants can be found in [5]. The encryption algorithm
takes as inputs a key K of k-bits, a nonce N of n-bits, a plaintext M and a as-
sociated data formed by a header A and a trailer Z. The header, plaintext and
trailer are three optional strings. The encryption algorithm computes an authen-
tication tag T of t-bits, and a ciphertext C of same bit-length as the plaintext
M . Similarly, the decryption algorithm takes as inputs (K,N,A,C, Z, T ) and
returns either ⊥ or M depending on the tag verification succeeds or not. Both
encryption and decryption algorithms begin by an initialization phase that sets
the internal state to Sinit, consists of 4w-bit key K = K(1)||K(2)||K(3)||K(4), the
2w-bit nonce N = n0||n1 and some initialization constants (ui) in the internal
state, is given in Figure 1b.

The basic building block of NORX is a permutation F , also called a round,
and F l is an l consecutive applications of F . The permutation F over the state
S transform its columns with

G(s0, s4, s8, s12) G(s1, s5, s9, s13) G(s2, s6, s10, s14) G(s3, s7, s11, s15)



and then transform its diagonals with

G(s0, s5, s10, s15) G(s1, s6, s11, s12) G(s2, s7, s8, s13) G(s3, s4, s9, s14).

Those two operations are denoted by col(S) and diag(S) respectively. The com-
plete pseudo-code for the NORX core permutation F l is given in Fig. 2. The G
function uses cyclic rotations ≫ and a non-linear operation H interchangeably
to update its four input words a, b, c, d. The rotation offsets r0, r1, r2, and r3
for the cyclic rotations of 32- and 64-bit NORX are specified in Table 2. The
designers proposed certain configurations of the mode to process the payload
in parallel. The parallel mode is controlled by the parameter 0 ≤ p ≤ 255. For
p = 1, the design of NORX corresponds to the sequential duplex construction, is
shown in Fig. 3. For p > 1, e.g., for p = 2, the design of NORX with parallelism
degree 2 is shown in Fig. 4. The parameter combinations of the NORX variants
are given in [13, Table 1].

w r0 r1 r2 r3
32 8 11 16 31

64 8 19 40 61

Table 2: Rotation offsets for NORX32 and NORX64

Algorithm 1: col(S)

c1. (s0, s4, s8, s12)← G(s0, s4, s8, s12);
c2. (s1, s5, s9, s13)← G(s1, s5, s9, s13);
c3. (s2, s6, s10, s14)← G(s2, s6, s10, s14);
c4. (s3, s7, s11, s15)← G(s3, s7, s11, s15);
c5. return S;

Algorithm 2: diag(S)

d1. (s0, s5, s10, s15)← G(s0, s5, s10, s15);
d2. (s1, s6, s11, s12)← G(s1, s6, s11, s12);
d3. (s2, s7, s8, s13)← G(s2, s7, s8, s13);
d4. (s3, s4, s9, s14)← G(s3, s4, s9, s14);
d5. return S;

Algorithm 3: H(x, y)

H1. return (x⊕ y)⊕ ((x ∧ y)� 1);

Algorithm 4: F l(S)

F1. for i = 0 to l− 1 do
S ← diag(col(S));

F2. return S;

Algorithm 5:G(a, b, c, d)

G1. a← H(a, b);
G2. d← (a⊕ d) ≫ r0;
G3. c← H(c, d);
G4. b← (b⊕ c) ≫ r1;
G5. a← H(a, b);
G6. d← (a⊕ d) ≫ r2;
G7. c← H(c, d);
G8. b← (b⊕ c) ≫ r3;
G9. return a, b, c, d;

Fig. 2: The NORX permutation F l
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Fig. 3: Layout of standard NORX (p = 1)
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Fig. 4: Layout of NORX with parallel encryption (p = 2)

3 Attack Scenario

In this section, we illustrate the fault injections required to first create a replay
in the nonce respecting scenario, i.e., create same states by a counter fault to
get the all-zero state after merging, and then we will perform DFA. To perform
differential analysis on NORX with parallelism degree p = 2 , for each message
query, the attacker will inject two faults where the first fault is a counter fault
to create a replay and the second fault will be at the capacity words inside the
last diag(S) call (i.e., just before the tag T is obtained). Thus it shows that the
attacker moves from a single fault model to a double fault one. However, in this
particular context, it is clear that performing the double fault is not too difficult
compared to simple one as

1. the attacker can send a long enough message so that the second fault occurs
far enough from the first one and

2. thus, we are able to observe the success of the first fault so that the attacker
can tune the two faults settings independently.

3.1 Creating a Replay on NORX with Parallel Encryption (p = 2)

An important requirement of DFA is the ability to replay the execution of this ci-
pher in order to exploit the difference between faulty and non-fault outputs. The



DFA in a cryptosystem, requires an attacker to be able to inject faults by replay-
ing a previous fault-free run of the algorithm, which is known as the Replaying
criterion of DFA. The definite structure of nonce-based encryption proposed by
Rogaway in [20] expects the uniqueness of the nonce in every instantiation of
the cipher and the security claims rely on this premise. Thus the use of a unique
nonce contradicts the ability to replay a cipher and thereby resulting in an auto-
matic protection from DFA. So it is quite clear that the DFA is not applicable for
the standard NORX with p = 1. But for NORX with parallelism degree p = 2,
we can make an exception by inducing counter fault and processing the mes-
sages in a specific way for each query. For each message query, we can produce
a replay i.e., creating a fixed state S0 = 0 after the merging phase (i.e., before
processing the trailing data) by injecting a fault on the counter id1 such that
id1 = id0 = 0 and processing the message M = M0||M1|| · · · ||Mm−2||Mm−1 such
that Mi = Mi+1, i = 0, 2, · · · ,m − 2. This description is outlined in Figure 5.
In the rest of the paper, we will use this replay criterion to analyze the DFA on
NORX (p = 2), which we will be denoting by NORXp=2.
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Fig. 5: Counter fault on NORX with parallel encryption (p = 2)

Feasibility of the Counter Fault. According to the branch algorithm in [8], for
p = 2, the branching is done by XORing the variable i(= 1) at 12 different
positions in the state. To produce a replay, an attacker can inject a fault at the
counter i in two different ways. The first one is by injecting a precise bit fault
at the lsb of the variable i so that the state remain same after XORing with 12
different positions of the state and immediate after, induce a random single bit
fault on i. Another one is by injecting a random bit fault at the variable i except



the lsb so that it will skip the for loop to produce branching and leaves both
the states same after the branching phase.

3.2 Injecting Fault at the Last diag(S) Call

In NORX, an authentication tag T is generated by first injecting the domain
separation constant 08, then transforming the state S twice with the permuta-
tion F l interleaved by two key additions to the capacity, and finally extracting
the t(≤ 4w) rightmost capacity bits from S, i.e., T = F l(F l(S ⊕ 08)⊕K)⊕K.
Thus we can think of the tag T as the XORing of the outputs of the last diag(S)
operation with the master key K. We denote the last diag(S) operation to gen-
erate the tag T as ldiag(S) and follow this notation in the rest of the paper. The
tag T can be viewed as T1||T2||T3||T4 and the key K as K(1)||K(2)||K(3)||K(4)

respectively, where |K(i)| = |Ti| = w, i = 1, 2, 3, 4. The core permutation F of
NORX has a natural parallelism of 4 independent G applications. The four di-
agonal words (s0, s5, s10, s15), (s1, s6, s11, s12), (s2, s7, s8, s13) and (s3, s4, s9, s14)
are fed into the G-function independently inside the diag(S) call. So after the
ldiag(S) operation, the tag T = T1||T2||T3||T4 can be viewed as independent
XORing of the outputs of 4 parallel executions of the G function with the keys
K(1),K(2),K(3),K(4), depicted in Figure 6.
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d
K(1)

T1
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d
K(3)

T3

(s3, s4, s9, s14)

G(a, b, c, d)

d
K(4)

T4

Fig. 6: Parallel execution of G-functions inside the last diag(S) call to generate
the tag T

If we take a look at the input (a, b, c, d) to the G application, it is clear that
the word d is nothing but a word that belongs to the capacity part of the state.
Inside one of the four independent G applications during ldiag(S) operation, at
step (G6) in Algorithm 5, the updated word d will produce the corresponding
tag word Ti, i = 1, 2, 3, 4 by XOR-ing with the corresponding word of the key
K. Let ∆W denotes the faulty word due to faults injected on W at the time of
execution among any steps from (G1) to (G5) inside one of the four independent
G applications of the ldiag(S) operation. In the rest of the paper, ∆b means
the faults are induced at step (G5), whereas ∆c means at step (G3). Also let

T be the fresh tag and T∆
W

denotes the faulty tag due to ∆W . Inside the G
application, H is the only non-linear operation that helps to increase the degree
of a boolean function. Our aim is to recover the bits of d by inducing faults



on a word and observe the XORed relation of the faulty and non-faulty tags4.
Following are the steps to recover the bits of the word d that we also outlined
in Figure 7. The overall fault induction process using primary (counter) faults
and secondary (ldiag(S)) faults is furnished in Figure 8.
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Fig. 7: Fault inducing steps to recover the capacity d of the state S inside the
G-function

1. Recover the corresponding bits of a by injecting a fault ∆b and repeat this
step until we recover all the bits of a.

2. Based on the recovered bits of a, we can recover the bits of d by injecting a
fault ∆c and repeat this step until we recover all the bits of d.

4 DFA on NORX with Different Fault Models

Before going to discuss several fault models, we need to build the bit relations
of the words a, b, c, d from step (G5)-(G6) and step (G3)-(G6) inside the G
application respectively.
Bit relations of step (G5)-(G6): Assuming the words a, b, c, d are unknown
upto step (G4) inside the G application. Then the update of the words a, b, c, d
from step (G5) to step (G6) inside the G application (more details are given in
Appendix A.1), the capacity word d after step (G6) can be written in bit level
relations as,

di =

{
di+16 ⊕ ai+16 ⊕ bi+16 ⊕ (ai+17 ∧ bi+17), if i ∈ {1, 2, · · · , 32} \ {15};
d31 ⊕ a31 ⊕ b31, if i = 15.

(1)

Bit relations of step (G3)-(G6): Assuming the words a, b, c, d are unknown
upto step (G2) inside the G application. Update of the words a, b, c, d from

4 Here non-faulty tag means, the tag where we don’t induce any fault at the last
diag(S) call, after the internal collision in the state by giving a counter fault. But
physically, all tags are faulty due to the prerequisite of fault based internal state
collision.
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step (G3) to step (G6) inside the G application (more details are given in Ap-
pendix A.2), the capacity word d can be written as,

di =

{
di+16 ⊕ ai+16 ⊕ b

′
i+16 ⊕ (ai+17 ∧ b

′
i+17), if i ∈ {1, 2, · · · , 32} \ {15};

d31 ⊕ a31 ⊕ b
′
31, if i = 15.

(2)

where

b
′
i =

{
bi+21 ⊕ ci+21 ⊕ di+21 ⊕ (ci+22 ∧ di+22), if i ∈ {1, 2, · · · , 32} \ {10};
b31 ⊕ c31 ⊕ d31, if i = 10.

(3)

For the DFA on NORX with p = 2, two faults are injected for each encryption
queries. One corresponds to create internal state collision (replay) and another
one corresponds to induce faults at the last ldiag(S) operation. So for the DFA,
analyzing the relation among the faulty and non-faulty tags by injecting faults
on a word inside the G(s0, s5, s10, s15) will be sufficient to count the total num-
ber of faults required to recover the full key K, where (s0, s5, s10, s15) is the first
diagonal input of the ldiag(S) operation. Since at the ldiag(S) operation, four
capacity words are the inputs (correspond to four diagonal inputs) to the four
independent G applications. Let n be the number of faults (except the counter
faults) required, by analyzing the relation among the faulty and non-faulty tags
of G(s0, s5, s10, s15). Thus, the total number of faults (except the counter faults)
will be 4n. In the rest of the paper that follows, any fault ∆b/∆c means that the
fault induced on the word b/c at step (G5)/(G3) inside the G(a, b, c, d) applica-
tion with respect to first diagonal input and the corresponding faulty tag will be

T∆
b

1 /T∆
c

1 .

4.1 Random Bit-flip Fault Model

Here we will show some interesting relations among the words a, b, c, d by induc-
ing a single bit random fault either on the word b or on c, by formalizing their
respective XORed relations of the fresh tag and the faulty tag. We categorize this
fault model into two cases depending on a fault is injected either in the word b
or in c.

Case 1. Let ∆bi , 0 ≤ i ≤ 31, denote a bit flip at the i-th position in the word b

and T∆
bi

1 = d∆
bi ⊕K(1) be the faulty tag corresponds to ∆bi . Due to ∆bi , i 6= 0,

bi will be present at two consecutive positions in d as i+ 15 and i+ 16 according
to the Equation (1). But for ∆b0 , the bit b0 will be present at one position in d
as 16. Figure 9a illustrates the location of the bit fault injection to retrieve the
corresponding bit of the word a. Thus for any ∆bi , the generalized form of the
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Fig. 9: A bit flip scenarios in the G circuit. Here ∆ai represents the value of the
difference of the word a and the faulty word a due to bit flip in a word, at the
i-th position. Similarly, ∆bi, ∆ci, ∆di carry the same meaning.



XORed tag will look like as5

(T1 ⊕ T∆
bi

1 )[j] =



ai, if j = i+ 15
1, if j = i+ 16
0, otherwise

, if i ∈ {0, · · · , 31} \ {0};

{
1, if j = 16
0, otherwise

, if i = 0.

(4)

Rigorous analysis of the above relations are given in Appendix B.1. Therefore it
is clear from Equation (4) that, for any ∆bi , we can find the corresponding faulty
bit position in the word b by observing the non zero value 1 from the relation

T1 ⊕ T∆
bi

1 . So using this relation, we will retrieve all the bit values of the word
a except a0 by injecting random bit faults in the word b.

Case 2. Similarly, ∆ci , 0 ≤ i ≤ 31, denote a bit flip at the i-th position in the
word c. Let T∆

ci

1 = d∆
ci ⊕K be the faulty tag corresponding to ∆ci . According

to the Equation 2, the bit ci will be present at three consecutive positions in d
as i+ 25, i+ 26, i+ 27 respectively due to ∆ci , i 6= 0, 22. But for ∆ci , i = 0, 22,
the bit ci will be present at two consecutive positions in d as i + 26, i + 27
respectively. Figure 9b illustrates the location of the bit fault injection to retrieve
the corresponding bit of the word d. Thus for any ∆ci , the generalized form of
the XORed tag will be,

(T1 ⊕ T∆
ci

1 )[j] =




ai+10 ∧ di, if j = i+ 25
ai+11 ⊕ di, if j = i+ 26
1, if j = i+ 27
0, otherwise

, if i ∈ {0, · · · , 31} \ {0, 21, 22};


a31 ∧ d21, if j = 14
d21, if j = 15
1, if j = 16
0, otherwise

, if i = 21;

a1 ⊕ d22, if j = 16
1, if j = 17
0, otherwise

, if i = 22;

a11, if j = 26
1, if j = 27
0, otherwise

, if i = 0.

(5)
Rigorous analysis of the above relations are given in Appendix B.2. Based on
the retrieved bits in the word a, we can recover all the bits in the word d, except

5 In this paper, for any word W , both of the notations Wi,W [i] carry the same mean-
ing, i.e., both represent the i-th position of the word W .



d0 from the Equation (5), by injecting random bit faults in c such that all bit
positions covered at least once. If we can recover d (except d0), then the secret

key K(1) (except K
(1)
0 ) will be recovered by XORing the respective word d and

the non-faulty tag. For the unknown key bit K
(1)
0 , we will guess that bit and

check the corresponding tag for a given query.

Before estimating the number of independent parallel faults, we will first estimate
the number of single bit faults on a word such that each bit of that word will be
flipped at least once. Now this problem is equivalent to the well known problem,
called “Coupon Collector Problem [21]”. The estimation of the number of bit
flips is given by the following result.

Theorem 1. For any word W of length w, let X be a discrete random variable
that represents the number of random bit flips on W such that each bit position
will be flipped at least once. Then the expected number of random bit flips required
in order to hit each of the bit position of the word W will be w ·Hw, i.e., E[X] =

w ·Hw, where Hw =
w∑
i=1

1
i is the wth harmonic number.

Corollary 1. For any word W of length w, let X be a discrete random variable
that represents the number of random bit flips on W such that l different bit
positions will be flipped at least once. Then the expected number of random bit
flips required in order to hit at least l different bit positions of the word W will

be w · (Hw −Hw−l), i.e., E[X] = w · (Hw −Hw−l), where Hw =
w∑
i=1

1
i is the wth

harmonic number.

Number of Reco- Expected Number Expected Number Total Number of Brute-force

vered bits (r) of ∆bi (z1) of ∆bi (z2) faults (= 2 · (z1 + z2)) complexity

16 520 88 1206 264

20 520 124 1288 248

24 520 172 1384 232

28 520 252 1544 216

30 520 328 1696 28

31 520 392 1824 24

32 520 520 2080 20

Table 3: Expected number of single bit random faults to recover the key K

4.2 Random Byte Flip Fault Model

Any word W of size w ∈ {32, 64} can be viewed as four sequential bytes
W 0,W 1,W 2,W 3 respectively, where W j = (W8j ,W8j+1,W8j+2,W8j+3,W8j+4,



W8j+5,W8j+6,W8j+7), j = 0, 1, 2, 3. In this model, we will flip a byte randomly
out of four bytes of the word and collect the corresponding faulty tag. So to
recover K(1) such that T1 = d⊕K(1), we will first recover the word a using byte
flips on the word b and based on the retrieved word a we can recover the word
d by inducing byte flips on the word c.

Case 1. Byte Flipping on the word b: Let ∆bi , i = 0, 1, 2, 3 represents that
a byte bi is flipped out of the word b. According to the Equation 1, the XORed

relation of the two tags T1 ⊕ T∆
bi

1 , i = 0, 1, 2, 3 is given in Figure 10, where

T1, T
∆b

i

1 represents the non-faulty and the faulty tag due to ∆bi respectively.

16 17 18 19 20 21 22 23

ā1 ā2 ā3 ā4 ā5 ā6 ā7 1

T ⊕ T∆
b0

[16, · · · , 23] due to byte flip b0 on b

23 24 25 26 27 28 29 30 31

a8 ā9 ā10 ā11 ā12 ā13 ā14 ā15 1

T ⊕ T∆
b1

[23, · · · , 31] due to byte flip b1 on b

31 0 1 2 3 4 5 6 7

a16 ā17 ā18 ā19 ā20 ā21 ā22 ā23 1

T ⊕ T∆
b2

[31, · · · , 7] due to byte flip b2 on b

7 8 9 10 11 12 13 14 15

a24 ā25 ā26 ā27 ā28 ā29 ā30 ā31 1

T ⊕ T∆
b3

[7, · · · , 15] due to byte flip b3 on b

Fig. 10: Four different cases of byte flipping on the word b

Case 2. Byte Flipping on the word c: Similarly, ∆ci , i = 0, 1, 2, 3 represents
a byte ci is flipped out of the word c. According to the Equation [2,3], the xored

relation of the two tags T1 ⊕ T∆
ci

1 , i = 0, 1, 2, 3 is given in Figure 11, where

T1, T
∆c

i

1 represents the non-faulty and the faulty tag due to ∆ci respectively.
From case 1, it is clear that we can recover all bits of a except a0, by injecting
some random byte flips in the word b such that all the four bytes of b will be
flipped at least once. Similarly from case 2, we we can recover all the bits of d
except d0 by injecting some random byte flips on the word c. So we will recover

the key K(1) except K
(1)
0 due to the unrecoverable bit d0. To estimate the number

of byte flips in a word so that all the 4 bytes will be flipped at least once, we
will use Lemma 1. As the word contains four bytes, the expected number of byte
flips needed to cover all the four bytes will be 4 ·H4 = 8.3. Hence for both of the
cases, the expected number of byte flips will be 2 ·4 ·H4 ≈ 17. Since the capacity
of the state has four words, so the total number of byte faults at the ldiag(S)
operation will be 4 · 17 = 68. Therefore, the total number of faults (including
counter faults) will be 2 · 68 = 136.

4.3 Random Byte with Known Fault Model

In this Model, a random byte fault (∆) will be injected on a word with a known
fault value, i.e., ∆ is known. If T1, T

∆
1 represent the non-faulty and the faulty



26 27 28 29 30 31 0 1 2

a11∧d̄1 d̄1⊕(a12∧d̄2) d̄2⊕(a13∧d̄3) d̄3⊕(a14∧d̄4) d̄4⊕(a15∧d̄5) d̄5⊕(a16∧d̄6) d̄6⊕(a17∧d̄7) d̄7⊕a18 1

T1 ⊕ T∆
c0

1 [26, · · · , 2] due to byte flip c0 on c

1 2 3 4 5 6 7 8 9 10

a18∧d8 d8⊕(a19∧d̄9) d̄9⊕(a20∧d̄10) d̄10⊕(a21∧d̄11) d̄11⊕(a22∧d̄12) d̄12⊕(a23∧d̄13) d̄13⊕(a24∧d̄14) d̄14⊕(a25∧d̄15) d̄15⊕a26 1

T1 ⊕ T∆
c1

1 [1, · · · , 10] due to byte flip c1 on c

9 10 11 12 13 14 15 16 17 18

a26∧d16 d16⊕(a27∧d̄17) d̄17⊕(a28∧d̄18) d̄18⊕(a29∧̄d19) d̄19⊕(a30∧d̄20) d̄20⊕(a31∧d̄21) d̄21 d̄22⊕(a1∧d̄23) d̄23⊕a2 1

T ⊕ T∆
c2

[9, · · · , 18] due to byte flip c2 on c

17 18 19 20 21 22 23 24 25 26

a2∧d24 d24⊕(a3∧d̄25) d̄25⊕(a4∧d̄26) d̄26⊕(a5∧d̄27) d̄27⊕(a6∧d̄28) d̄28⊕(a7∧d̄29) d̄29⊕(a8∧d̄30) d̄30⊕(a9∧d̄31) d̄31⊕a10 1

T1 ⊕ T∆
c2

1 [17, · · · , 26] due to byte flip c2 on c

Fig. 11: Four different cases of byte flippings on the word c

tags due to a random byte with known fault ∆ in a word respectively, then
we can easily rectify the corresponding faulty byte of the word from the re-
lation T1 ⊕ T∆1 by observing 1 on the corresponding byte position. However
if we know ∆, then we can recover exactly wt(∆) number of bits from their
XORed tag relation, where wt(∆) represents the hamming weight of ∆. But for
first byte fault ∆ such that the 0-th bit is flipped, then we can recover ex-
actly wt(∆) − 1 number of bits from their XORed tag relation. This happens
because the bit information (x0 ∧ y0) will be lost due to one left shift inside the

H-function of NORX core permutation. Let ∆W i

, i = 0, 1, 2, 3 represents the
corresponding byte fault on the word W , where W = (W0, · · · ,W31) and W j =
(W8j ,W8j+1,W8j+2,W8j+3,W8j+4,W8j+5,W8j+6,W8j+7), j = 0, 1, 2, 3.

Thus for any ∆b(= ∆b0 ||∆b1 ||∆b2 ||∆b3), we will catch which ∆bi , i = 0, 1, 2, 3

happens because the relation T1 ⊕ T∆
bi

1 will contain a 1 corresponding to that
byte position and will be 0 for the remaining bytes. According to this model,
as we know the value of ∆bi , we will extract the bits information of ai corre-

sponding to the non-zero bits of ∆bi from their XORed tag T1 ⊕ T∆
bi

1 . Similarly

we will recover the word d by injecting ∆ci and extract the bits information of

di corresponding to the non-zero bits of ∆ci from T1 ⊕ T∆
ci

1 . For better under-
standing, we give an example of two random byte difference with known value
as ∆1 = 0x9B000000, ∆2 = 0x005C0000 (in hexadecimal notation) on both the
word b and c in Figure 12. So we have to estimate that how many random byte



16 17 18 19 20 21 22 23 24 15

1 0 a3 ā4 1 a6 ā7 1 0 · · · 0

T1 ⊕ T∆
b

1 [16, · · · , 15] due to ∆b = 0x9B000000

23 24 25 26 27 28 29 30 31 0 22

0 a9 1 a11 ā12 ā13 1 0 0 0 · · · 0

T1 ⊕ T∆
b

1 [23, · · · , 22] due to ∆b = 0x005C0000

26 27 28 29 30 31 0 1 2 3 25

a11 1 a13 ∧ d̄3 d3 ⊕ (a14 ∧ d̄4) d̄4 ⊕ a15 1 ⊕ (a16 ∧ d6) d6 ⊕ (a17 ∧ d̄7) d̄7 ⊕ a18 1 0 · · · 0

T1 ⊕ T∆
c

1 [26, · · · , 25] due to ∆c = 0x9B000000

1 2 3 4 5 6 7 8 9 0

0 d9 ∧ a19 d9 ⊕ a20 1 ⊕ (a21 ∧ d11) d11 ⊕ (a22 ∧ d̄12) d̄12 ⊕ (a23 ∧ d̄13) d̄13 ⊕ a24 1 0 · · · 0

T1 ⊕ T∆
c

1 [1, · · · , 0] due to ∆c = 0x005C0000

Fig. 12: Two different cases of byte flippings on the word b as well on c

faults are required such all the bits of the word will be flipped at least once.

By simulating the above problem for 105 times, the expected number of byte
faults to cover the whole bit positions of the word is 29. So to recover the word a
and then d, total number byte faults required will be approximately 2 · 29 = 58.
But instead of recovering all the bits of the word d, we can recover r (≥ 16)
number of bits of the secret key K(1) and the remaining bits will be recovered
by guessing them. Our simulation result is given in Table 4.

No. of Reco- Expected No. of Expected No. of Total No. of Brute-force

vered Bits (r) ∆b
i
(= Z1) ∆c

i
(= Z2) faults (= Z1 + Z2) complexity

16 126 20 292 264

20 126 32 316 248

24 126 40 332 232

28 126 60 372 216

30 126 76 404 28

31 126 92 436 24

32 126 126 504 20

Table 4: Expected number of random byte with known faults to recover the key
K



4.4 Consecutive Bit Flip Fault Model

Here, we will discus the generalization of the xored relation of the non-faulty and
the faulty tag, due to consecutive bit (l, 1 ≤ l ≤ 32) flip in a word. For l = 1, we
already discuss it in Section 4.1. In this model, there are two scenarios.

1. For each replay, the adversary can flip a random but a fixed number of
consecutive bits in a word, i.e., l is fixed for each replay, but the starting
position of the consecutive bit flip injected by the adversary is random.

2. Another scenario is that, where both are random, i.e., both of l and the
starting position of the consecutive bit flip are random.

Consecutive bits fault on b: Let ∆b[i,i+l−1] denotes any l consecutive bits flip

in the word b starting from the bit position i and T∆
b[i,i+l−1]

1 be the corresponding
faulty tag. According to the Equation (1), the bit b0 will appear in one position
in d as d16, where as the remaining bi’s, i 6= 0 will appear at two consecutive
positions in d as di+15, di+16 respectively. Thus for any l consecutive bits flip, if
0th bit of the word b is flipped, then there will be several cases to their XORed
tag relation, otherwise if 0 /∈ {i, · · · , i+ l−1}, then it will be quite easy to follow

the bit relation of T1 ⊕ T∆
b[i,i+l−1]

1 . Rigorous analysis of the XORed tag relation
for this case (i.e., 0 /∈ {i, · · · , i + l − 1}) as well as the other corner cases (i.e.,
when 0 ∈ {i, · · · , i+ l−1}) are given in Appendix C.1. So for any ∆b[i,i+l−1] such
that 0 /∈ {i, · · · , i+ l− 1}, the generalized XORed tag relation can be written as,

(T1 ⊕ T∆
b[i,i+l−1]

1 )[j] =


ai, if j = i+ 15;
āi+j , for j ∈ {i+ 16, · · · , i+ 14 + l};
1, if j = i+ 15 + l;
0, otherwise.

(6)

From the Equation 6 or from the relations build by the corner cases, we can
retrieve all the bits of a (except a0) by inducing some random ∆b[i,i+l−1] in the
word b so that all the bits in the word b will be flipped at least once.

Consecutive bits fault on c: Similarly, let ∆c[i,i+l−1] denotes any l consecutive

bits flip starting from the bit position i in the word c and T∆
[ci,i+l−1]

1 be the
corresponding faulty tag. According to the Equations (2) & (3), the c0 will appear
at two positions in d as d26, d27 respectively, c21 will appear at three consecutive
position in d as d14, d15, d16 respectively and c22 will appear at two consecutive
position in d as d16, d17 respectively. Whereas the remaining ci’s, i 6= 0, 21, 22 will
appear at three consecutive positions in d as di+25, di+26, di+27 respectively. The
generalized XORed tag relation for ∆c[i,i+l−1] such that 0, 21, 22 /∈ {i, · · · , i+l−1}
is given below. Whereas the rigorous analysis of all the XORed tag relations



including the above corner cases, are given in Appendix C.2.

(T1 ⊕ T∆
c[i,i+l−1]

1 )[j] =



ai+10 ∧ di, if j = i+ 25;
di ⊕ (d̄i+1 ∧ ai+11), if j = i+ 26;
d̄i+j−1 ⊕ (d̄i+j ∧ ai+12), for j ∈ {2 · · · , l − 1};
d̄i+l−1 ⊕ ai+10+l, if j = i+ 25 + l;
1, if j = i+ 26 + l;
0, otherwise.

(7)

Based on the retrieved bits of a that for any ∆ci+l−1
i , we can recover the all the

bits of d except d0 by following one of the above tag relations. Hence we can

recover K(1) (except K
(1)
0 ). This would be done by inducing some ∆ci+l−1

i in
the word c such that all the bits of c flip at least once. Instead of recovering all
the bits of K1, we can recover some of the bits of K(1) and use the brute-force
approach for the remaining key bits. Our simulation is given in the Table 5. In
the next section, we provide a discussion on the in-feasibility of Statistical Fault
Analysis (SFA) on NORX.

No. of conse- Recove- Expected No. of Expected No. of Total No. of Brute-force

cutive bits (l) red Bits (r) ∆
b[i,i+l−1] (z1) ∆

c[i,i+l−1] (z2) faults 2 · (z1 + z2) complexity

2

16 268 44 624 264

24 268 84 704 232

29 268 144 824 212

31 268 200 936 24

3

16 196 28 448 264

24 196 60 512 232

29 196 100 592 212

31 196 144 680 24

7

16 136 12 296 264

24 136 28 328 232

29 136 48 368 212

31 136 88 448 24

19

16 128 4 264 264

24 128 16 288 232

29 128 32 320 212

31 128 44 332 24

random

16 60 4 128 264

24 60 8 136 232

29 60 16 152 212

31 60 32 184 24

Table 5: Expected number of consecutive faults for different l and r



5 Discussion

In the literature of physical attacks on cryptographic protocols, most powerful
and effective fault analyses are DFA and SFA. In DFA [12], some input to be
encrypted twice with a fault being induced in the last rounds of the second run,
and then, the difference between the correct and faulty ciphertexts is used to
retrieve the master key. On the other hand, SFA [19] requires only a collection
of faulty ciphertexts to recover the correct key, but does not require correct and
faulty ciphertext pairs. However, two conditions must need to satisfy for SFA:
the inputs to the block cipher are different from each other, and the faulty ci-
phertexts are the direct outputs of the block cipher [16, 17]. More precisely, the
attacker will collect biased faulty ciphertexts (distributed non uniformly), then
compute backwards to the target byte corresponding to different key guesses and
try to discard wrong key guesses that would lead to closely uniform measured
distribution of the biased target byte. Thus, this type of attack will be very use-
full where key whitening mechanism is used in any kind of iterated ciphers or in
any kind of modes/AEAD schemes where underlying block cipher/permutation
uses key whitening mechanism. But in NORX design, the master key only used
in the initial phase and at the end of tag generation phase. Also the message is
XORed with the rate part of the state to output the ciphertext and then apply the
permutation on the state to process another message. So if we generate biased
fault on a specific word/byte of a state just before the message processing at the
last round of the permutaion F and collect the faulty ciphertexts by XORing the
message with the rate part of the state, then there will be no way to guess the key
such that after one round inverse we can check wheather that specific word/byte
values behaves non uniform or not. Similarly, at the last diagonal round of the
tag generation phase, collecting faulty tags by injecting biased faults on a spe-
cific byte/word inside the state does not help to apply SFA. Because, here we
only know the capacity of state (tag) and the whole rate part is unknown to
us. So by guessing the key byte/word corresponding to the faulty tag, we can
not lead to the target byte to check its non uniform behavior by inverting one
diagonal round. In our attack, we make use of Differential Fault Attacks (DFA)
on NORX with p = 2, by creating a replay in the nonce respecting scenario.
Also, we discuss several random fault models and recover the secret key bits by
building a mathematical relation between the faulty and non-faulty tags. More-
over, in the precise control fault model, it will be quite easy to recover the secret
key bits with a very few faults based on the mathematical relation between the
faulty and non-faulty tags.

6 Conclusion

We show the first fault attack that uses both internal and classical differentials
to mount a differential fault analysis on the nonce based authenticated cipher
NORX. We show that faults introduced in NORX in parallel mode can be used
to collide the internal state to produced an all-zero state and this can be used



to replay NORX despite being instantiated by different nonces and messages.
Once replayed, we show how the internal state of NORX can be recovered using
secondary faults. We use four different fault models. Under the random bit flip
model, around 1384 faults are to be induced to reduce the key space from 2128

to 232. Whereas for the reduced key space of size 32, under random byte with
known fault and random consecutive bit flip models, approximately 332 and 136
faults are to be induced respectively. Finally, for the random byte flip model,
our analysis shows that, by injecting approximately 136 faults, we can recover
the full key. Moreover, another drawback of this design is that with parallelism
degree p ≥ 2, we can always create a replay by inducing (p−1) number of counter
faults while having the same number of secondary faults. Hence our analysis can
be directly applied to estimate the expected number of faults.

References

1. CAESAR Competition. https://competitions.cr.yp.to/caesar.html.
2. Farzaneh Abed, Christian Forler, and Stefan Lucks. General classification of the

authenticated encryption schemes for the CAESAR competition. Computer Sci-
ence Review, 22:13–26, 2016.

3. Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky Mouha,
and Kan Yasuda. How to securely release unverified plaintext in authenticated
encryption. In Advances in Cryptology - ASIACRYPT 2014 - 20th International
Conference on the Theory and Application of Cryptology and Information Security,
Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I, pages 105–
125, 2014.

4. Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. Analysis of
NORX: investigating differential and rotational properties. In Progress in Cryp-
tology - LATINCRYPT 2014 - Third International Conference on Cryptology and
Information Security in Latin America, Florianópolis, Brazil, September 17-19,
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A Upadate of Words Inside the G Function

A.1 Bit relations of step (G5)-(G6)

Each update of the words a, b, c, d from step (G5) to step (G6) inside the G-
function can be written in bit vectors as,

G5. (
a
′
0, a

′
1, · · · , a

′
30, a

′
31

)
←
(

(a0 ⊕ b0, a1 ⊕ b1, · · · , a31 ⊕ b31)⊕ ((a0 ∧ b0, a1 ∧ b1, · · · , a31 ∧ b31)� 1)
)

=
(
a0 ⊕ b0 ⊕ (a1 ∧ b1), a1 ⊕ b1 ⊕ (a2 ∧ b2), · · · , a30 ⊕ b30 ⊕ (a31 ∧ b31), a31 ⊕ b31

)
.

G6. (
d0, · · · , d14, d15, d16, · · · , d30, d31

)
←
(

(d0 ⊕ a
′
0, · · · , d14 ⊕ a

′
14, d15 ⊕ a

′
15, d16 ⊕ a

′
16, · · · , d30 ⊕ a

′
30, d31 ⊕ a

′
31) ≫ 16

)
=
(

(d0 ⊕ a0 ⊕ b0 ⊕ (a1 ∧ b1), · · · , d14 ⊕ a14 ⊕ b14 ⊕ (a15 ∧ b15)), d15 ⊕ a15 ⊕ b15⊕
(a16 ∧ b16), d16 ⊕ a16 ⊕ b16 ⊕ (a17 ∧ b17), · · · , d30 ⊕ a30 ⊕ b30 ⊕ (a31 ∧ b31), d31

⊕ a31 ⊕ b31) ≫ 16
)

=
(
d16 ⊕ a16 ⊕ b16 ⊕ (a17 ∧ b17), · · · , d30 ⊕ a30 ⊕ b30 ⊕ (a31 ∧ b31), d31 ⊕ a31 ⊕ b31,

d0 ⊕ a0 ⊕ b0 ⊕ (a1 ∧ b1), · · · , d15 ⊕ a15 ⊕ b15 ⊕ (a16 ∧ b16)
)
.

A.2 Bit relations of step (G3)-(G6)

Each update of the words a, b, c, d from step (G3) to step (G6) inside the G-
function can be expressed in bit vectors as,

G3. (
c
′
0, c
′
1, · · · , c

′
30, c

′
31

)
←
(
c0 ⊕ d0, c1 ⊕ d1, · · · , c30 ⊕ d30, c31 ⊕ d31)⊕ ((c0 ∧ d0, c1 ∧ d1, · · · , c30 ∧ d30,

c31 ∧ d31)� 1
)

=
(
c0 ⊕ d0, c1 ⊕ d1, · · · , c30 ⊕ d30, c31 ⊕ d31)⊕ (c1 ∧ d1, c2 ∧ d2, · · · , c31 ∧ d31, 0

)
=
(
c0 ⊕ d0 ⊕ (c1 ∧ d1), c1 ⊕ d1 ⊕ (c2 ∧ d2), · · · , c30 ⊕ d30 ⊕ (c31 ∧ d31), c31 ⊕ d31

)
.



G4. (
b
′
0, · · · , b

′
9, b
′
10, b

′
11, · · · , b

′
31

)
←
(

(b0 ⊕ c
′
0, · · · , b9 ⊕ c

′
9, b10 ⊕ c

′
10, b11 ⊕ c

′
11, · · · , b31 ⊕ c

′
31) ≫ 11

)
=
(
b21 ⊕ c21 ⊕ d21 ⊕ (c22 ∧ d22), · · · , b30 ⊕ c30 ⊕ d30 ⊕ (c31 ∧ d31), b31 ⊕ c31 ⊕ d31,

b0 ⊕ c0 ⊕ d0 ⊕ (c1 ∧ d1), · · · , b20 ⊕ c20 ⊕ d20 ⊕ (c21 ∧ d21)
)
.

G5. (
a
′
0, · · · , a

′
9, a

′
10, a

′
11, · · · , a

′
30, a

′
31

)
←
(
a0 ⊕ b

′
0, · · · , a9 ⊕ b

′
9, a10 ⊕ b

′
10, a11 ⊕ b

′
11 · · · , a30 ⊕ b

′
30, a31 ⊕ b

′
31)⊕

(a0 ∧ b
′
0, · · · , a9 ∧ b

′
9, a10 ∧ b

′
10, a11 ∧ b

′
11, · · · , a30 ∧ b

′
30, a31 ∧ b

′
31)� 1

)
=
(
a0 ⊕ b

′
0 ⊕ (a1 ∧ b

′
1), · · · , a9 ⊕ b

′
9 ⊕ (a10 ∧ b

′
10), a10 ⊕ b

′
10 ⊕ (a11 ∧ b

′
11),

a11 ⊕ b
′
11 ⊕ (a12 ∧ b

′
12), · · · , a30 ⊕ b

′
30 ⊕ (a31 ∧ b

′
31), a31 ⊕ b

′
31

)
.

G6. (
d0, · · · , d14, d15, d16, · · · , d25, d26, d27, · · · , d31

)
←
(

(d0 ⊕ a
′
0, · · · , d14 ⊕ a

′
14, d15 ⊕ a

′
15, d16 ⊕ a

′
16, · · · , d25 ⊕ a

′
25, d26 ⊕ a

′
26,

d27 ⊕ a
′
27, · · · , d31 ⊕ a

′
31) ≫ 16

)
=
(
d16 ⊕ a

′
16, · · · , d30 ⊕ a

′
30, d31 ⊕ a

′
31, d0 ⊕ a

′
0, · · · , d9 ⊕ a

′
9, d10 ⊕ a

′
10,

d11 ⊕ a
′
11, · · · , d15 ⊕ a

′
15

)
=
(
d16 ⊕ a16 ⊕ b

′
16 ⊕ (a17 ∧ b

′
17), · · · , d30 ⊕ a30 ⊕ b

′
30 ⊕ (a31 ∧ b

′
31), d31 ⊕ a31

⊕ b′31, d0 ⊕ a0 ⊕ b
′
0 ⊕ (a1 ∧ b

′
1), · · · , d9 ⊕ a9 ⊕ b

′
9 ⊕ (a10 ∧ b

′
10), d10 ⊕ a10 ⊕ b

′
10

⊕ (a11 ∧ b
′
11), d11 ⊕ a11 ⊕ b

′
11 ⊕ (a12 ∧ b

′
12), · · · , d15 ⊕ a15 ⊕ b

′
15 ⊕ (a16 ∧ b

′
16)
)
.

B Random Bit Flip Fault Model

B.1 Bit Flip on Word b

Let d∆
bi
, 0 ≤ i ≤ 31, denote the faulty values of the word d, due to ∆bi . Using

Equation 1, the xor-ed relation of d, d∆
bi

, including the corner cases are given
as follows.



For any ∆bi , i 6= 0, we have,

(d⊕ d∆bi )[j] =

ai, if j = i+ 15;
1, if j = i+ 16;
0, otherwise.

For ∆b0 , we have,

(d⊕ d∆b0 )[j] =

{
1, if j = 16;
0, otherwise.

B.2 Bit Flip on Word c

Let d∆
ci
, 0 ≤ i ≤ 31, denote the faulty value of the word c, due to ∆ci . Using

Equations 2 & 2, the xored relation of d, d∆
ci

, including the corner cases are
given as follows.

For ∆ci , i 6= 0, 21, 22, we have,

(d⊕ d∆ci )[j] =


ai+10 ∧ di, if j = i+ 25;
ai+11 ⊕ di, if j = i+ 26;
1, if j = i+ 27;
0, otherwise.

For ∆c21 , we have,

(d⊕ d∆c21
)[j] =


a31 ∧ d21, if j = 14;
d21, if j = 15;
1, if j = 16;
0, otherwise.

For ∆c22 , we have,

(d⊕ d∆c22
)[j] =

a1 ⊕ d22, if j = 16;
1, if j = 17;
0, otherwise.

For ∆c0 , we have,

(d⊕ T∆c01 )[j] =

a11, if j = 26
1, if j = 27
0, otherwise

C Consecutive Bit Flip Fault Model

Here we will discus the generalization of the xored tags for any consecutive
l, 1 < l ≥ 32 bits flip in a word.



C.1 Consecutive Bits Flip on b

Let ∆b[i,i+l−1] denotes any l consecutive bits flip in the word b starting from the

bit position i and T∆
b[i,i+l−1]

be the corresponding faulty tag. Also let d∆
b[i,i+l−1]

denotes the faulty value of the word d, due to ∆b[i,i+l−1] . Using Equation 1, the

xor-ed relation of d, d∆
b[i,i+l−1]

, including all the corner cases, are given as fol-
lows.

Case 1: For any ∆b[i,i+l−1] such that 0 /∈ {i, · · · , i+ l − 1}, we have,

d⊕ d∆b[i,i+l−1] [j] =


ai, if j = i+ 15;
āi+j , for j ∈ {i+ 16, · · · , i+ 14 + l};
1, if j = i+ 15 + l;
0, otherwise.

Case 2: ∆b[i,i+l−1] such that 0 ∈ {i, · · · , i+ l − 1}.

Sub-case 1: For ∆b[i,i+l−1] , i.e., for i = 0, we have,

d⊕ d∆
b[0,l−1]

[j] =

 āj , for j ∈ {16, · · · , 14 + l};
1, if j = 15 + l;
0, otherwise

Sub-case 2: For any ∆b[i,i+l−1] such that 0 ∈ {i+ 1, · · · , i+ l− 2}, we have,

d⊕ d∆
b[i,i+l−1]

[j] =


ai, if j = i+ 15;
āi+12, for j ∈ {i+ 16, · · · , i+ 14 + l}/{15};
1, if j = i+ 15 + p = 15, 1 ≤ p ≤ l − 1;
1, if j = i+ 15 + l;
0, otherwise.

C.2 Consecutive Bits Flip on c

Similarly, ∆c[i,i+l−1] denotes any l consecutive bits flip in the word c starting
from the bit position i and T∆

c[i,i+l−1]
be the corresponding faulty tag. Also let

d∆
c[i,i+l−1]

denotes the faulty value of the word d, due to ∆c[i,i+l−1] . Using Equa-
tions 2 & 3, the xored relation of d, d∆

c[i,i+l−1]
, including all the corner cases,

are given as follows.

Case 1. For any ∆c[i,i+l−1] such that 0, 21, 22 /∈ {i, · · · , i+ l − 1}, we have,

d⊕ d∆
c[i,i+l−1]

[j] =



ai+10 ∧ di, if j = i+ 25;
di ⊕ (d̄i+1 ∧ ai+11), if j = i+ 26;
d̄i+j−1 ⊕ (d̄i+j ∧ ai+12), for j ∈ {2 · · · , l − 1};
d̄i+l−1 ⊕ ai+10+l, if j = i+ 25 + l;
1, if j = i+ 26 + l;
0, otherwise.



Case 2. For any ∆c[i,i+l−1] such that 0 ∈ {i, · · · , i+ l − 1} and i = 0, we have,

d⊕ d∆
c[0,l−1]

[j] =


a11 ∧ d̄1, if j = 26;
d̄j ⊕ (a11+j ∧ d̄j+1), for j ∈ {26 + 1, · · · , 26 + l − 1};
d̄l ⊕ a11+l, if j = 26 + l;
1, if j = 27 + l;
0, otherwise.

Case 3. ∆c[i,i+l−1] such that 21, 22 ∈ {i, · · · , i+ l − 1}.

Sub-case 3.1. 21, 22 ∈ {i, · · · , i+ l − 1} such that i = 21, 22.

If i = 21, then we have,

d⊕ d∆
c[21,20+l]

[j] =



a31 ∧ d21, if j = 14;
d21, if j = 15;
d̄21+j−1 ⊕ (a31+j ∧ d21+j), for j ∈ {16, · · · , 13 + l};
d̄21+l−1 ⊕ a31+l, if j = 14 + l;
1, if j = 15 + l;
0, otherwise.

If i = 22, then we have,

d⊕ d∆
c[22,21+l]

[j] =


d22 ⊕ (a1 ∧ d23), if j = 16;
d̄22+j ⊕ (aj+1 ∧ d23+j , for j ∈ {17, · · · , 15 + l};
d̄22+l ⊕ al+1, if j = 16 + l;
1, if j = 17 + l;
0, otherwise.

Sub-case 3.2. For 21, 22 ∈ {i+ 1, · · · , i+ l − 2}, we have,

d⊕d∆
c[i,i+l−1]

[j] =



ai+10 ∧ di, if j = i+ 25;
di ⊕ (ai+11 ∧ d̄i+1), if j = i+ 26;
d̄i+j−1 ⊕ (ai+10+j ∧ d̄i+j), for j ∈ {i+ 27, · · · , i+ 24 + l};
d̄i+l−1 ⊕ ai+10+l, if j = i+ 25 + l;
d̄21, if ∃s ∈ {1, · · · , l} 3 j = i+ 25 + s = 15;
1, if j = i+ 26 + l;
0, otherwise.

Sub-case 3.3. 21, 22 ∈ {i, · · · , i+ l − 1} such that i+ l − 1 = 21, 22.

If i+ l − 1 = 21, then we have,

d⊕d∆
c[i,i+l−1]

[j] =



ai+10 ∧ di, if j = i+ 25;
di ⊕ (ai+11 ∧ d̄i+1), if j = i+ 26;
d̄i+j−1 ⊕ (ai+10+j ∧ d̄i+j), for j ∈ {i+ 27, · · · , i+ 24 + l};
di+l−1, if j = i+ 25 + l;
1, if j = i+ 26 + l;
0, otherwise.



If i+ l − 1 = 22, then we have,

d⊕d∆
c[i,i+l−1]

[j] =



ai+10 ∧ di, if j = i+ 25;
di ⊕ (ai+11 ∧ d̄i+1), if j = i+ 26;
d̄i+j−1 ⊕ (ai+10+j ∧ d̄i+j), for j ∈ {i+ 27, · · · , i+ 23 + l};
d̄i+l−2, if j = i+ 24 + l = 15;
d̄i+l−1 ⊕ ai+10+l, if j = i+ 25 + l;
1, if j = i+ 26 + l;
0, otherwise.


