
TICK: Tiny Client for Blockchains
Wei Zhang∗, Jiangshan Yu†, Qingqiang He∗, Nan Zhang∗ and Nan Guan∗

∗Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China
†Department of Software Systems & Cybersecurity, Monash University, Australia

Abstract—In Bitcoin-like systems, when a payee chooses to
accept zero-confirmation transactions, it needs to verify the
validity of the transaction. In particular, one of the steps is
to verify that each referred output of the transaction is not
previously spent. The conventional lightweight client design can
only support such operation in the complexity of O(NT ), where
NT is the total number of transactions in the system. This is
impractical for lightweight clients.

The latest proposals suggest to summarize all the unspent
outputs in an ordered Merkle tree. Therefore, a light client can
request proof of presence and/or absence of an element in it to
prove whether a referred output is previously spent or not, in
the complexity of O(log(NU )), where NU is the total number of
unspent output in the system. However, updating such ordered
Merkle tree is slow, thus making the system impractical — by
our evaluation, when a new block is generated in Bitcoin, it takes
more than one minute to update the ordered Merkle tree.

We propose a practical client, TICK, to solve this problem.
TICK uses the AVL hash tree to store all the unspent outputs.
The AVL hash tree can be update in the time of O(M*log(NU )),
where M is the number of elements that need to be inserted
or removed from the AVL hash tree. By evaluation, when a new
block is generated, the AVL hash tree can be updated within
1 second. Similarly, the proof can also be generated in the
time of O(log(NU )). Therefore, TICK brings negligible run-time
overhead, and thus it is practical. Benefited by the AVL hash tree,
a storage-limited device can efficiently and cryptographically
verify transactions. In addition, rather than requiring new miners
to download the entire blockchain before mining, TICK allows
new miners to download only a small portion of data to start
mining.

We implement TICK for Bitcoin and provide an experimental
evaluation on its performance by using the current Bitcoin
blockchain data. Our result shows that the proof for verifying
whether an output of a transaction is spent or not is only several
KB. The verification is very fast – generating a proof generally
takes less than 1 millisecond, and verifying a proof even takes
much less time. In addition, to start mining, new miners only
need to download several GB data, rather than downloading
over 230 GB data.

Index Terms—Block chain, Light client, Transaction verifica-
tion.

I. INTRODUCTION

Since the introduction of Bitcoin [1], blockchain has
emerged as a very attractive technology and promises the
tremendous potential for creating new applications and busi-
ness models. One of the most exciting aspects of blockchain
technology is that it is entirely distributed, rather than con-
trolled by one central point [2]. The lack of a single authority
makes the system fairer and considerably securer. To this
end, all the nodes in the system must maintain the whole

transaction history locally and agree on a unique order in
these transactions, therefore imposing a huge requirement on
the storage capacity. For instance, currently, the sizes of the
transaction history of Bitcoin and Ethereum are more than 230
GB [3] and 3 TB [4], respectively, which are too large to be
implemented on storage-limited devices (e.g., mobile devices).

To lift the restriction caused by the heavy storage require-
ment, instead of downloading the whole transaction history,
most blockchains support the lightweight client, also known
as the light client, which only needs to download the block
headers and use the simplified payment verification (SPV)
to verify transactions. The light client, to some degree, is
more applicable to storage-limited mobile devices, but still
has several limitations in practice. First, its data size is linearly
increased as the number of block headers is ever-growing. As
storage limited devices generally have a constant and small
storage capacity, the size of the light client had better be
constant and small. Second, it is nearly impossible to verify
transactions. Bitcoin uses the output to denote the asset.
During a transaction, a payer refers to its outputs to denote
the asset paied by the payer, and a new output belonged to
the payee is generated to denote the asset received by the
payee. Therefore, in a transaction, the referred output can not
be referred to previously. However, using the SPV protocol,
a light client can not verify whether an output is referred by
other transactions unless querying all its following transactions
which is far from practical.

Generally, a transaction is valid if it is permanently recorded
on the blockchain (for example, bitcoin recommends to have
6 confirmations, i.e., the block containing the transaction is
followed by at least 5 blocks in the chain). However, in
many cases, a payee cannot wait for an hour to confirm a
transaction, and therefore the zero-confirmation transaction [5]
is proposed and considered by many Bitcoin merchants. That
is, merchants may consider accepting micro-transactions with
no confirmation in the blockchain, as this provides a faster way
to manage small-value transactions. However, since no miner
has verified this transaction yet, it is vital for the merchants
to at least verify the validity of the transaction. Unfortunately,
a light client is hard to perform such fast payment as it can
not validate newly issued transactions.

Miners play an important role in the proof-of-work (POW)
based blockchains, they compete for the right to generate the
new block and then get a reward. During the competition,
miners validate transactions and audit the whole blockchain,
thus guaranteeing the system’s security. In principle, if an
attacker controls more than 51% computing power, it can



control the system and perform the 51% attack [6]. However,
in existing blockchains, becoming a miner is time-consuming
and storage-consuming as a new miner has to download the
whole transaction history before mining. Consequently, the
system may lose some potential miners, which is a big loss
for the development of the system.

To solve the aforementioned problems, some proposals [7],
[8] store all the unspent outputs, also called as UTXO,
in an ordered Merkle tree. Hashes of all the UTXOs are
lexicographically stored in the leaves of the Merkle tree, and
the root hash of the Merkle tree is stored in the block header.
The ordered Merkle tree is maintained by the full nodes.
Therefore, a light client can verify whether the output is a
UTXO by the following steps.

1) The light client sends the objective output to a full node.
2) The full node generates the proof of presence if the

output is in the ordered Merkle tree, otherwise generating
the proof of absence.

3) The light client computes the root hash according to the
received proof. If the computed root hash equals the root
hash stored in the block header, the received proof is
valid, otherwise, the received proof is invalid.

Since UTXOs are lexicographically stored, the objective
output can be efficiently located and the proof can be ef-
ficiently generated. However, users that maintain the tree is
responsible to update the tree when a new block is generated.
In the worst case, when inserting/deleting an element to/from
an ordered Merkle tree, the hash of all the elements need to
be re-computed, leading a long delay and making the system
impractical. The time complexity of proof generation and self-
update of the ordered Merkle tree are shown in Table I.

In this paper, we propose TICK, a Tiny Client for
blockchains. In TICK, all the UTXOs, are stored in an AVL
hash tree [11], [12] which combines the hash tree with the AVL
tree. Since the hash of each element is stored in its parent node,
the AVL hash tree supports efficient verifiable cryptographic
proofs on the presence and/or absence of data in it, in the size
of O(log NU ). Therefore, a light client can verify transactions
through requesting cryptographically verifiable proofs from
a full node, rather than having to blindly trust it. More
importantly, since it keeps the self-balancing nature of the AVL
tree, the tree can be updated in the time of O(M(log NU )) when
a block is generated, which is significantly less than that of the
ordered Merkle tree O(NU ), where M denotes the total number
of inputs and outputs in a block. Therefore, it introduces a
negligible run-time overhead, making the system practical.
We have evaluated the performance of the AVL hash tree
and the ordered Merkle tree. On the same computer, using
the actual Bitcoin data, updating the AVL hash tree and the
ordered Merkle tree cost 0.3s and 80s respectively. Since
the average block time of Bitcoin is around 10 minutes,
using the ordered Merkle tree significantly delays the mining
process, thus making the system impractical. In contrast, tick
is practical. We store the root hash of the AVL hash tree in the
coinbase of the corresponding coinbase transaction which is

the first transaction in a block and provides up to 100 bytes for
arbitrary data. Therefore, implementing TICK does not need
to change the current Bitcoin structure.

Benefited by the UTXO tree, a light client can cryptograph-
ically verify transactions by only downloading the latest block
header, therefore the size of the light client is small and con-
stant. Similarly, a miner can start to mine by downloading the
finalized UTXO tree and the latest block rather than the whole
transaction historys. Our contribution can be summarized as
follows:

• We propose TICK, the first piratical blockchain client that
is able to efficiently verify a transaction without having
to download all the blockchain data or trusting a full
node. Moreover, TICK does not require the change of
the current blockchain structure.

• In TICK, the size of the light client is small and constant
and therefore is more applicable to storage-limited de-
vices. In conventional blockchains, a light client should
download all the block headers, which data size is large
and ever-growing. But in TICK, a light client can only
download a preferred constant small number of block
headers.

• TICK reduces the data size that miners need to download
before mining. In conventional blockchains, a newly joint
miner needs to download the whole transaction history
which may take several days and consume hundreds of
GB memory; whereas in TICK, to start mining such miner
only needs to download several GB of data.

Our work is applicable to other UTXO-based blockchains.
However, for simplicity, we demonstrate how it works by using
Bitcoin as an example. We collect the Bitcoin data from the
genesis block to the 611707-th block1. Experimental results
show that in TICK a light client only needs to download 80
bytes data (a block header) which is much smaller than 43
MB the size of the conventional light client, and the data
size is constant over time rather than that of Bitcoin which
is linearly increased. Moreover, the light client in TICK can
verify transactions through requesting proof from an untrusted
full node. Both the proof of presence and the proof of absence
are less than 4 KB and therefore the communication latency
is generally slight. In TICK, a miner can start to mine while
only downloads around 5.9 GB data, which is much less than
230 GB data of Bitcoin. Hence, a large amount of time and
storage space are saved, and furthermore becoming a miner is
easier.

II. RELATED WORK

To reduce the storage requirement, block summarization is
proposed in several works [13], [14]. The main idea behind the
block summary is that instead of storing all the blocks nodes
can store the change in a sequence of blocks(called block
summary). This summary can store all the input resources
for the given blocks and the total change that was introduced
by these blocks. But the compression ratio of the block

1This block is generated at 2020.01.07



Client Data structure Time complexity of proof generation Time complexity of update Transaction verification
Proposals [7], [8] Ordered Merkle Tree O(log NU ) O(NU ) Yes

Flyclient[9] Merkle Mountain Rnage O(log NT ) O(log NT ) No
UTREEXO[10] Forest of Merkle Tree O(NU ) O(log NU ) No

TICK AVL Hash Tree O(log NU ) O(M *log NU )) Yes

TABLE I: A comparison among related work and TICK, where NU denotes the number of UTXO, M denotes the sum of
the count of outputs and the count of inputs in a block, NT denotes the number of transactions. TICK is the only one that
supports transaction verification, efficient data items update, and efficient proof generation.

summarization method is not high enough for mobile devices.
For example, in Bitcoin, they achieve a compression ratio of
0.54, as a result, a node still needs to download more than
100 GB data.

Flyclient [9] is a concurrent work proposing a light client
for blockchain. It uses a Merkle Mountain Range (MMR) to
store the hash of all the previous block headers. The MMR is
maintained by a full node and the root hash of the MMR is
stored in the block header. Therefore, a light client can verify
all the previous block headers through requesting proofs from
a full node, if it only stores the latest block header. Once a
block header is verified, a light client can use the SPV protocol
to verify whether a transaction is in the block. However,
similar to the conventional light client, it still can not verify
whether an output is previously spent unless requesting all its
following transactions which is too complex to be practical.

Instead of summarizing all the block headers, Utreexo [10]
introduces a hash based accumulator, a forest of perfect Merkle
trees, to store all the UTXOs. The accumulator can provide
cryptographically verifiable proofs of presence of a UTXO.
If an output is in the forest, it is a UTXO. Therefore, a
light client can verify whether an output is not preciously
spent or not through requesting proofs of presence. However,
since the accumulator is an unordered data structure, locating
the objective output is inefficient which needs to search all
the items in the worst case. Therefore, the proof generation is
slow, and thus the system has low scalability. Moreover, it can
not provide the cryptographically verifiable proofs of absence.
If the output spent by the newly issued transaction is not in
the accumulator (it may be spent before or is not exist), it can
not provide a cryptographical proof to prove the invalidity of
the transaction, unless providing the proof of presence of all
the items in the accumulator which is impractical.

As discussed in section I, some works [7], [8] on the
forum proposed to use the ordered Merkle Tree storing all the
UTXOs. But they are impractical as the ordered Merkle tree is
slow to update. We have evaluated that, when a new block is
generated, more than 1 minute is costed to updated the ordered
Merkle tree. Therefore the mining process is significantly
delayed.

To sum up, to reduce the data size for transaction verifica-
tion, the data for transaction verification can be summarized
in a cryptographic data structure. Then, a node can verify
transactions remotely while it only holds the digest of the data
structure. However, to be practical and scalable, there are two
challenges.

• C1-Efficient in Proof Generation. The proof to prove

that whether an output is a UTXO should be efficiently
produced. Otherwise, it can not handle a large number of
proof requests, and thus has low scalability.

• C2-Efficient in Self-update. Updating the data items
should be efficient. Otherwise, it delays the mining pro-
cess, making the system impractical.

All the aforementioned works are summarized in Table I.
Compared with all the related works, our work, TICK, is the
only one that overcomes all these two challenges.

Besides, there are some works that protect the privacy of
the light client which are orthogonal to our method. In order
to verify transactions, a light client needs to request data from
a full node through a peer to peer network. However, such a
payment verification may leak considerable information about
the clients, thus defeating user privacy that is considered one
of the main goals of decentralized cryptocurrencies. In [15],
[16], they use available trusted execution capabilities, SGX
enclaves to protect the user privacy.

III. PRELIMINARIES

Using Bitcoin as an example, we briefly introduce the
UTXO-based blockchains in Section III-A. Then we show its
limitations in Section III-B and discuss the causes of these
limitations in Section III-C.

A. Bitcoin

Bitcoin [1] is the first and still the most popular cryp-
tocurrency blockchain system. Using Bitcoin, users can issue
transactions to transfer BTC, a token, with each other. Bitcoin
includes two types of transactions: the coinbase transaction
and the standard transaction. Coinbase transactions, the first
transaction of each block, create new BTC from nothing
by the miner. It records the block rewards and contains the
coinbase which provides 100 bytes for arbitrary data. Standard
transactions, the more common one, record the BTC transfer
between the payer and the payee. A standard transaction
contains a Txid, at least one input, and at least one output.
During a transaction, a payee may receive some BTC, which
is denoted by the output. Also, a payer may spend some
BTC, which is denoted by the input. Therefore, the spent
BTC should be owned by the payer and not be previously
spent. To this end, the input should refer to an output owned
by the payer, and the referred output can not be referred by
other input. For example, if an input, (Tx20, 3, signature), is
recorded on the blockchain, the BTC received in output3 of
Tx20 is spent, and it can not be spent again. Specifically, an
input denotes the spent BTC in this transaction, and it must



refer to an output that is not spent yet to indicate the capital
source. Once an output is referred (i.e. it is consumed), it can
not be referred by others again.

Transactions are included in blocks by miners and then
hashed as parts of a Merkle Tree. Before grouping transactions
into a block, transactions should be verified by miners to
be valid. This process is also known as the famous mining
process. In Bitcoin, the transaction verification is generally
divided into the following four steps.

1) The transaction is issued by the payer.
2) In each transaction, the sum of the value of all the outputs

is no larger than the sum of the value of all the referred
outputs.

3) The referred output is existing.
4) The referred output has not been referred by any other

inputs.

Among these four steps, the first one can be easily performed
by checking the signature of each input. The combination
of the 3rd step and the 4th step is to make sure the referred
output is not previously referred. The 2nd step needs to get
the value of all the referred outputs. The output that not
referred by any other input is also called Unspent Transaction
Output (UTXO). Therefore, when a new transaction is issued,
the major job of transaction verification is to make sure the
referred outputs are UTXO. In Bitcoin, a full node stores the
whole transaction history, and it therefore can easily verify a
newly issued transaction locally.

The mining process is not coordinated by any central party,
different miners may generate different blocks at the same
time, and therefore the blockchain may fork into multiple
chains. To agree on the same chain consistently with other
nodes, each node downloads all blocks in every chain and
picks the one with the highest total difficulty to follow. Using
this strategy, it is shown that, in the long run, the network will
agree on a single chain [17], [18], [19], known as the main
(valid) chain. Therefore, a transaction is not guaranteed on the
blockchian if there are not enough blocks behind it. In Bitcoin,
generally, a block is considered on the chain permanently if
there are 5 blocks behind it. In other words, when issuing a
transaction, if a user can not verify its validity, he needs to
wait at least 6-confirmations (i.e., around 60 minutes) to make
sure the transaction is recorded on the main chain.

In a block, transactions are stored in a Merkle tree. We
show an example of a Merkle tree in Figure 1. In order to
differ from another Merkle tree defined in the following, we
call the Merkle tree that stores transactions as a transaction
tree. In the transaction tree, the leaf nodes are transactions
and the non-leaf nodes are the hash of its children nodes. The
hash of the tree, root hash, is stored in the block header. Then
the block header is hashed as Prev Hash, which is stored
in the next block header. Therefore, any modifications to the
transaction history will lead to a different root hash value and
different Prev Hash in the next block, and it can be detected
by comparing the computed root hash with the root hash stored
in the block header.

Fig. 1: A Merkel tree

In Bitcoin, a full node stores all the blocks and thus it
can easily verify transactions. However, storing all the blocks
needs a huge storage space which is impossible for storage-
limited devices. In order to reduce the storage requirement,
Bitcoin also supports the light client which only stores the
headers of each block. However, the light client can not verify
transactions, while it can only use the Simplified Payment
Verification (SPV) protocol to perform the first 3 steps of
transaction verifications. For the example shown in Fig. 1,
if a light client wants to know whether Tx0 is in the block,
it requests a proof from a full node. The full node, in turn,
replies hash values of H1 and H23. These returned hash
values, called critical hashes of Tx0, are sufficient for the
light client to reconstruct the root hash of the Merkel tree.
If the computed root hash equals the root hash stored in the
block header, the light client is convinced that Tx0 is in the
block. Therefore, it can verify whether an output is in Tx0
(step 3) and get the value of it (step 2). However, it can
not verify whether the output is referred by other inputs of
following transactions or not (step 4) unless requesting proofs
of all the following transactions which is too cumbersome to
be feasible. Therefore, a light client can not verify a newly
issued transaction, and thus has to wait for 6-confirmations.

B. Limitations

As discussed above, the light client which only stores the
block headers can significantly reduce the storage requirement,
but it can not verify transactions. Therefore, when issuing a
transaction, in order to make sure it is valid, a light client
needs to wait about one hour (the block is recorded on the
chain and five blocks behind it) to validate the correctness
of the transaction. But for many cases, waiting for such
a long time is infeasible. Now many merchants (such as
Bitcoin ATMs) consider accepting micro-transactions with no
confirmation in the blockchain, as this provides a faster way
to manage small-value transactions. However, since no miner
has verified this transaction yet, it is vital for the merchants to
at least verify the validity of the transaction. But unfortunately
in existing blockchains, the light client can not verify transac-
tions. Therefore, to perform the fast payment, the light client
has to either blindly accept an unconfirmed transaction or
blindly trust a full node, which are both insecure.

On the other hand, although the light client needs less
storage space compared with the full node, its storage space
requirement still increases linearly over time. For example, the



Ethereum blockchain has more than 7.4 million blocks [4] and
each block header is 528 bytes. Consequently, a light client
in Ethereum should store more than 4.2 GB of data and the
size increases 528 bytes every 13 seconds. Therefore, with
the growth of the block height, storage space, the limited
resources of mobile devices, will be consumed continuously
and unlimitedly. In summary, when applying the light client
on mobile devices, it causes the following limitation.

Limitation 1: The light client can not validate newly is-
sued transactions, so that light client has to perform fast
micropayment with higher risk when accepting 0-confirmation
transactions. In addition, its data size increases linearly and
unlimitedly with the number of blocks, which is infeasible for
the storage-limited devices.

Another limitation of the blockchain system is that par-
ticipating in the mining process is hard. It only allows the
full node to participate in the mining process. In other words,
before mining, a node needs to download the full transaction
history, consuming a large amount of storage space and time.
For example, the miner in Bitcoin and Ethereum should have
at least 230 GB [3] and 3 TB [4] storage space respectively.
Even a user with enough storage capacity also needs several
days to synchronize its local blockchain, causing a long delay.
Note that, mining is an important part of the blockchain system
which ensures fairness and keeps the blockchain network sta-
ble and secure. More miners in the blockchain system, securer,
fairer and more stable the system will be. However, such a long
delay and a high storage requirement are very unfriendly to
users, thus may causing the loss of some potential miners and
the emergence of the authority node. Therefore, the system’s
fairness, stability, and security are harmed. To summarize, such
a huge amount of data that a miner needs to store may bring
the following limitation.

Limitation 2: A miner must download the whole transaction
history before it can start mining, which is time-consuming
and expensive in storage. Therefore, for a new joint member,
becoming a miner is extremely unfriendly, thus bringing a
negative impact on the stability and security of the blockchain
system.

C. Discussion

The root cause of Limitation 1 and Limitation 2 is that
the size of the cryptographic data (the full transaction history
in Bitcoin) for the transaction verification is too large. A user
can verify transactions if he only holds the UTXO set, but
it is vulnerable as the validity of the UTXO set can not be
verified without the whole transaction history. The miner needs
to verify transactions so that it must store all the transaction
history. The light client needs to check whether a transaction is
in the block or not so that it must store all the block header, and
even so it still can not validate transactions. Therefore, how to
reduce the cryptographic data size for transaction verification
is crucial.

IV. METHODOLOGY

This section details the proposed method, TICK. TICK
adopts an efficient data structure, AVL hash tree, to store
all the UTXOs. As a result, the storage requirement of the
light client and the miner are significantly reduced. Mean-
while, it introduces the negligible overhead, thus making the
proposed system practical and scalable. Section IV-A details
the AVL hash tree. The structure of the full node, miner and
light client are presented in section IV-B. Then, the transaction
verification of light client is detailed in section IV-C.

A. AVL hash tree

The major job of transaction verification is to make sure
that all the referred outputs of the transaction are UTXO.
Currently, in Bitcoin, all the UTXOs are already extracted
and stored in a UTXO set. Since a full node stores the whole
transaction history, it can audit the UTXO set and therefore can
use the UTXO set to verify transactions. However, the UTXO
set can not provide cryptographic proofs to prove the inclusion
or exclusion of an element in it. Therefore, a full node can
not help a light client to verify newly issued transactions
by providing the proofs of absence and/or presence of a
UTXO. In conventional blockchain system, only a node that
stores the whole transaction history can verify transactions. To
assign the ability of transaction verification to light clients, we
use a cryptographic data structure to store all the UTXOs.
Once a user holds the digest of the data structure, it can
cryptographically verify a UTXO through requesting proofs of
absence and/or presence of an element in the data structure,
and then verify transactions.

In the past, lots of cryptographical data structures have been
proposed (i.e. Merkle tree [7], [8], Merkle tree forest[10]), but
they are either impractical or not scalable. To be practical and
scalable, the adopted data structure should have the following
two properties:

1) Inserting/deleting items into/from it should be efficient.
The node that maintains the data structure is responsible
to update it when a new block is generated. Therefore,
updating the data items of the data structure must be in a
negligible time. Otherwise, the mining process is delayed,
and the system is impractical.

2) The proof of absence and presence should be quickly
produced. Otherwise, it can not simultaneously handle a
large number of requests from different light clients, and
thus has low scalability.

However, sometimes, these two properties are contradictory.
That is, an ordered data structure can generate proofs quickly
but slow to update, as the updated structure should keep the
order relation among elements in it. Simply appending or
removing a node from the data structure may be quick to
update, but it is slow or even hard to generate proofs of absence
and/or presence as it is not an ordered data structure.

In TICK, we adopt the AVL hash tree which is an ordered
data structure and quick to update. The data structure of an
element in the AVL hash tree is defined as follows:



Definition 1 (Element of AVL hash tree): For a UTXO in
an AVL hash tree, ui, the label of ui is defined as a tuple
containing two elements, one is the hash of itself Hash(ui),
and the other one is the hash of the combination of the
following elements:

• Hash(ui): the hash of the UTXO.
• Height(ui): the height of the subtree rooted by ui.
• DiffH : the height of the left subtree of ui minus the height

of the right subtree of ui.
• hl: the hash of the label of the left subtree of ui (null if

it is not exist).
• hr: the hash of the label of the right subtree of ui (null

if it is not exist).
For a set of UTXOs, building an AVL hash tree includes

the following two steps:
1) According to the hash value of each UTXO, building a

classic AVL tree. In this stage, the label of each element
is its hash value.

2) From the last level to the first level (i.e. the root node),
according to Definition 1, computing Height, DiffH , hl
and hr of each element, and modifying its label accord-
ingly.

For example, we have 7 UTXOs, u1, u2, ..., u7. Among them,
Hash(ui) < Hash(ui+1). Then, we follow the aforementioned
instructions to build an AVL hash tree. First, we build a classic
AVL tree as follows:

Fig. 2: A classic AVL tree

Then we compute the Height, DiffH , hl and hr for each
element, and change its label accordingly. For simplicity, we
define:

Hui
= Hash(Hash(ui), 0, 0, null, null)

Therefore, the label of u1, u3, u5, u7 can be denoted
by (Hash(u1), Hu1

), (Hash(u3), Hu3
), (Hash(u5), Hu5

),
(Hash(u7), Hu7

) respectively, and finally the AVL hash tree
can be obtained as follows:

Fig. 3: An AVL hash tree

In order to differ with the transaction tree, the
AVL hash tree that stores all the UTXOs is denoted as UTXO

tree in the following. The AVL hash tree combines the hash
tree with the AVL tree. On one hand, it keeps the nice
natures of a self-balancing binary search tree by ordering all
the elements. Therefore, it is efficient when an element is
inserted or deleted. Specifically, the computational complexity
of inserting/removing an element is O(log NU ). Moreover, as
it is an ordered data structure, users can efficiently locate an
element in it and generate the proof. On the other hand, the
AVL hash tree keeps the idea of a hash tree by storing the hash
of the labels of a node in its parent node. Therefore, it can
provide the cryptographic proofs of presence and absence of an
element in it. Therefore, users who maintain the UTXO tree
can efficiently provide proofs to prove the presence/absence
of elements. The method of how to generate the proof of
presence/absence is detailed in section IV-C.

Note, all the UTXOs can be straightforwardly obtained
by traversing the transaction history. Furthermore, in some
existing blockchain clients (e.g. Bitcoin client), UTXOs are
already extracted. Once the UTXO tree is built, users only
need to update it by inserting/deleting elements into/from it.

B. Node structure

In this section, we present the structure of the full node,
miner and light client in TICK.

Full node. In TICK we introduce a new cryptographic data
structure, UTXO tree, to store all the UTXOs. The UTXO
tree is maintained by the full node locally. The root hash of
the UTXO tree is stored in the coinbase. Note, coinbase has
up to 100 bytes for arbitrary data to store. Therefore, TICK
can be adapted without changes to the blockchain itself, and
adopting TICK in Bitcoin does not lead to a hard fork. But
the client implementation needs to be modified to support the
proof generation and the light client transaction verification
which are detailed in section IV-C. In addition, any malicious
modifications to the UTXO tree will lead to a different root
hash of the UTXO tree and a different root hash of the
transaction tree, and therefore it will be detected as it will
lead to a different Prev Hash in the next block.

Fig. 4: Structure of full node

The structure of a full node is shown in Figure 4. We do
not maintain the UTXO tree for each block, on the contrary, at
a point, there is only one UTXO tree stored in the full node.
The UTXO tree records all the UTXOs when the latest block
is generated. When a new block is generated, the UTXO tree
can be updated through function Update. Anyone maintaining
the UTXO tree is responsible for calculating the UTXO tree



for the newly generated block. Since the latest block may not
be on the main chain in the future, in order to track the main
chain, we also provide the function Rollback to get the UTXO
tree of past blocks. As the UTXO tree is a self-balancing
tree and the computational complexity of inserting/removing
an element into/from it is O(log N), Update operation and
Rollback both introduce a negligible runtime overhead.

To update the utxo tree when a new block is generated,
we define the function of Update as follows. Update is
performed with each transaction Tx in the new block. For each
Tx, Update function first deletes all the outputs referred by
it from the UTXO tree, and then adds all the new introduced
outputs to the UTXO tree.

ALGORITHM 1: Update(block)
1: for every Tx in block do
2: for every input in Tx do
3: delete the UTXO referred by the input
4: end for
5: for every output in Tx do
6: insert the output
7: end for
8: end for

Since there may be some splits in the chain and a new
block may be not on the main chain eventually, in order to
track the main chain and get the UTXO tree on other splits,
we define the function of Rollback in the follows to get the
UTXO tree of previous blocks. Similar to Update function,
Rollback function just does the opposite.

ALGORITHM 2: Rollback(block)
1: for every Tx in the block do
2: for every output in Tx do
3: delete the UTXO
4: end for
5: for every input in the Tx do
6: insert the output referred by the input
7: end for
8: end for

Update and Rollback both need to delete and insert ele-
ments from the UTXO tree (i.e. line 3 and line 6 of Update
and Rollback). The insertion and deletion operation are similar
to the insertion and deletion operation of the AVL tree. The
only additional operation is changing the label of elements
when the label of its child node is changed. For simplicity,
we do not detail them again in this paper. Similar to the AVL
tree, the time complexity of the AVL hash tree insertion and
deletion are both O(log NU ). Assuming that the total number
of outputs and inputs of a block is M, the time complexity
of updating a tree is O(M *log NU ).

Compared with the conventional blockchain system, the
storage overhead is only the one hash value (i.e., the root hash
of the UTXO tree) which is 32bytes for each block and the

UTXO tree. For instance, the size of the UTXO tree in Bitcoin
is around 5.9 GB2 which is significantly less than 230 GB,
the size of the whole transaction history [3]. Besides, the total
size of all the root hashes of past UTXO trees are 611707 ∗
32bytes (e.g. 18 MB). Therefore, in TICK a full node needs to
additionally download around 5.9 GB data. Note, a full node
needs to store more than 230 GB transaction history originally,
and therefore the introduced storage overhead is relatively
slight.

Miner. In Bitcoin, a node can start to mine only if it owns
the whole transaction history, However, downloading such a
huge size of data (i.e. more than 200 GB) is time consuming
and storage-space consuming. In TICK, as all the UTXOs are
cryptographically stored in the UTXO tree, users can verify
whether an output is a UTXO or not while only downloading
the UTXO tree and the latest block header. This is because,
users can verify the UTXO tree by comparing the root hash
of the UTXO tree with the root hash stored in the coinbase.
Therefore, a user can verify newly issued transactions locally
by only downloading the latest block header and the UTXO
tree. By now, the data size that a miner needs to download
is around 5.9 GB which is significantly less than the whole
transaction history. Furthermore, this gap increases over time.

Due to the introduction of UTXO tree, the mining process
is slightly changed. In TICK, the mining process is:

a) solve a puzzle;
b) generate the hash value of the previous block header;
c) verify all the transactions that they want to group in the

new block;
d) build the UTXO tree for the new block.

When a miner wants to group a set of Txs into a block, it
uses Update to get the new UTXO tree, fill the root hash of
the UTXO tree into the Tx tree, and then get the root hash of
the Tx tree. Compared with the conventional blockchains, the
only additional operation is d), building the UTXO tree for the
new block according to the aforementioned Update function.
According to our evaluation, step d) generally consumes less
than 1 second, which is significantly less than the average
block time of Bitcoin (i.e. 10 minutes). Therefore, the mining
process is not delayed. Consequently, in TICK, a miner can
only download the UTXO tree and the latest block rather
than the whole transaction history. Hence, becoming a miner
consumes less storage space and less time.

Light Client. In TICK, instead of downloading all the block
headers, similar to the proposed miner, the light client can also
only download a preferred small number of block headers.
Since a light client does not need to track the main chain, in
principle, a light client can always download the latest block
header from the main chain. Therefore, compared with the
conventional light client, it downloads fewer and constant data.
As a result, no more storage spaces will be consumed with the
growth of the block height.

Since all the UTXOs are stored in the UTXO tree, a full
node can provide the proof to verify whether a UTXO is

2We collect the data of Bitcoin from the 1st block to the 611707 block.



in it or not. Therefore, a light client can verify whether an
output is a UTXO or not, through requesting proofs from a
full node. With the received proofs, the light client can re-
construct the root hash of the UTXO tree. If the computed
root hash equals the root hash stored in the coinbase, the
proof is valid. Note, the coinbase is in the transaction tree and
a light client can verify it by the SPV proctcol. Therefore, a
light client can cryptographically verify the validity of a newly
issued transaction. The light client transaction verification is
detailed in section IV-C.

In contrast with the conventional light client which data size
linearly increases over time, the data size of a light client
in TICK is significantly small and constant, which is more
applicable to storage-limited mobile devices. Moreover, the
proposed light client can verify transactions through request-
ing proofs from an untrusted full node, and thus the light client
is given the ability to perform the fast payment.

C. Light client transaction verification

In conventional blockchains, the light client can not verify
newly issued transactions, as it can not verify whether an
output is a UTXO or not. In TICK, all the UTXOs are stored
in the UTXO tree, and its digest is stored in the transaction
tree. Therefore, users can verify transactions, if they know
the root hash of the transaction tree (which is stored in the
block header). Therefore, in TICK, even though a light client
may only store the latest block header, it can cryptographically
verify newly issued transactions. To prove an output is a
UTXO, a light client needs to send the output to a full node
which maintains the UTXO tree to get the proof of presence
or absence.

Proof of presence. Since the UTXO tree is a hash tree,
where each node’s label is hashed and stored as a part of
the label of its parent node, it can provide the cryptographic
proof to prove a node is in the tree. Similar to the SPV proof
discussed in section III-A, in the AVL hash tree, the proof
of the presence of an element also includes its critical hash
values. We denote the critical hash value of a UTXO, ui, as
CriHash(ui). For the example in figure 3, the critical hashes
of u3 are:

(Hu1
,Hash(Hash(u6), 1, 0, Hu5

, Hu7
))

Except for these critical hashes, the proof of presence also
includes Hash(u), Height(u), DiffH of all the elements that
on the path from the root (i.e. u4) to u3 and hl, hr of u3
(itself). With these data, users can re-construct the root hash
of the UTXO tree. The Proof of Presence can be defined as
follows.

Definition 2 (Proof of Presence): For a UTXO, ui, its proof
of presence, denoted by PoP(ui), is the combination of the
following data:

• CriHash(ui)
• Hash(u), Height(u), DiffH of all the elements that on the

path from the root to ui (including the root, excluding ui).
• Height(u), DiffH , hl and hr of ui.

With this proof, the light client can re-construct the roof hash
of the AVL hash tree, if it only holds ui. For the example in
figure 3, as represented figure 5, proof of presence of u3 is:

PoP(u3) = (Hu1 ,Hash(Hash(u6), 1, 0, Hu5 , Hu7),

Hash(u4), 2, 0,Hash(u2), 1, 0,

0, 0, null, null)

In figure 5, we expand Hu3 and use the shadow boxes to
represent the data of PoP(u3). Among the data covered by
these shadow boxes: the data surrounded by the solid lines
are critical hashes of u3; the data surrounded by the dotted
lines are the required data of the elements on the path from
the root (u4) to u3; the rest are the required data of u3.

Fig. 5: proof of presence of u3 in figure 3

Proof of absence. To prove that a particular output is not a
UTXO, the full node needs to prove that the output is absent
from the UTXO tree by performing the following steps:

• Locate node ui such that its hash value is lexicographi-
cally the largest one smaller than the output.

• Locate node uj such that its hash value is lexicographi-
cally the smallest one greater than the output.

• Prove that ui and uj are present in the AVL hash tree,
and no elements in the AVL hash tree has the hash value
that is larger than Hash(ui) and smaller than Hash(uj).
The former is proved by using the proof of presence of ui
and uj , and the latter one can be verified by checking the
path between ui and uj which is denoted as Path(ui, uj).
Specifically, if Height(ui) > Height(uj), uj must in the
right subtree of ui as uj > ui. Then we can provide the
path from the root of the right subtree of ui to uj to prove
uj is the largest one in the right subtree of ui. If from the
root of the right subtree of ui to uj , the path only goes to
the right child and uj has no right child, uj is the largest
one in the right subtree of ui. Therefore, no elements
in the AVL hash tree has the hash value that is larger
than Hash(ui) and smaller than Hash(uj). Similarly, if
Height(ui) < Height(uj), we can find a path from the
root of the left subtree of uj to ui to prove the absence.
Therefore:

PoA(u) =
(PoP(ui),PoP(uj),Path(ui, uj))

In the following, we detail how the light client in TICK
verify whether an output is a UTXO. Firstly, the light client
sends each referred output of a newly issued transaction to a
full node individually and then gets the proof of PoP or PoA.



After receiving the proof, the light client re-construct the root
hash of the UTXO tree, and use the SPV protocol to verify
whether the computed root hash equals the data stored in the
coinbase. If the computed root hash equals the root hash stored
in the coinbase, the computed root hash of the AVL hash tree
tree is valid and the proof is valid. In more detail, as presented
in Figure 6:

Fig. 6: light client transaction verification

• The light client gets the hash value β of the latest block
header, and groups it with the referred output o as a
message m. Then the light client sends m to a full node.

• When the full node receiving the message, it first locates
the objective block according to the received β, and
constructs the UTXO tree TUTXO of the block. Since the
UTXO tree is an ordered data structure, the full node
can efficiently find whether the output is in the UTXO
tree. If the output is in the UTXO tree, the full node
generates the proof of presence PoP(output) and replies
the proof to the light client. If not, the full node generates
the proof of absence PoA(output) and replies the proof to
the light client. In addition, the full node also replies the
SPV proof of the coinbase transaction, which is denoted
as SPVcoinbase.

• When the light client receiving the proof, it first computes
the root hash of the UTXO tree. Then, with the computed
root hash of the UTXO tree and the received SPVcoinbase,
the light client computes the root hash of the transaction
tree. If the computed root hash of the transaction tree
equals the root hash stored in the block header, the
received proof is considered as valid. Otherwise, the re-
ceived proof is considered as invalid. In case the received
proof is valid, the output is a UTXO if the received proof
is PoP, otherwise, it is not a UTXO.

If all the outputs of a transaction are UTXO, the light client
then computes the sum of the value of all the referred outputs.
If it is no less than the sum of the value of all the outputs,
the transaction is valid, otherwise, it is invalid.

During the transaction verification, the light client needs to
communicate with the full node to request proofs, causing
network latency. When the light client sending a message
to the full node, the consumed bandwidth is the size of m
which is 2 ∗ 32 bytes, i.e., the size of two hash values. When
the light client receiving messages from the light client, the
consumed bandwidth is the size of the PoA or PoP and the
size of SPV(coinbase). Assuming the number of UTXOs in the
UTXO tree is NU , PoP is in the size of O(log(NU )), and the
size of PoA is approximately twice of PoP. By our evaluation,
the size of PoP is less than 2 kB and the size of PoA is less
than 4 kB, which are both small. Therefore, transmitting PoP
and PoA also consumes less bandwidth, causing negligible
latency. Moreover, the size of PoA and PoP increases slowly
with time. Specifically, the size of PoP increases 32+34 bytes
when the number of UTXOs doubled. That is because, when
the number of UTXOs doubled the height of the UTXO tree
increases 1. Therefore PoP may include one more critical hash
value (32 byte) and there is one more node (the sum of size
of Hash(u), Height(u) and DiffH is 34) on the path from the
root to the leave.

V. EVALUATION

This section evaluates the performance of TICK in two
aspects. On one hand, we analyze the data size of the full node,
miners and light client in TICK, and compare them with the
conventional Bitcoin to demonstrate that:

• the light client in TICK is more applicable to storage-
limited devices;

• becoming a miner is easier;
• the introduced storage overhead to the full node is slight.

On the other hand, we also analyze the introduced runtime
overhead and compared it with related works [7], [8] to
demonstrate the scalability and the practicality. The evaluation
is based on the data of the actual Bitcoin blockchain collected
from the genesis block to the 611707-th block3. All the
experiments are performed on a PC equipped with an Intel
i9 processor and 64 Gb RAM.

Among all the collected blocks, there are 99431704 UTXOs.
Therefore, the UTXO tree size is 5.9 Gb(99431704 * 32 *2
bytes). In TICK, although a full node needs to additionally
store the UTXO tree, the size of the UTXO tree is two orders
of magnitude smaller than its original size (the size of the
whole transaction history). Moreover, a full node generally has
a high storage capacity. Therefore, the introduced storage
overhead to the full node is slight. We also present the
dynamic change of the UTXO size with the growth of the
blockheight in Fig. 7(a). According to the changing trend, the
UTXO size grows slower than the data size of a full node
in Bitcoin. Specifically, in the past year, the size of UTXOs
only increases by 5% which is significantly less than the 29%
increase of the data size of a full node in Bitcoin. Therefore,
in the near future, the introduced storage overhead is relatively
slight.

3This block is generated at 2020.01.07



(a) Size of the UTXO tree (b) Minimum size of required data by miner (c) Size of PoP

Fig. 7: Performance evaluation of TICK

In TICK, miners also need to store the UTXO tree, con-
suming storage space. However, users can start to mine while
only download the latest block and the UTXO tree rather than
the whole transaction history. Therefore, in TICK, users can
start to mine if he only downloads around 5.9 GB data rather
than more than 230Gb data. Compared with the conventional
Bitcoin, the size of data that a miner needs to download is
shown in Fig. 7(b). According to the changing trend, the
expected gap between these two data sizes will increase over
time. Therefore, becoming a miner is easier which is good
for the development of the blockchain. Similar to the miner,
a light client in TICK can only download the latest block
header rather than all the block headers. Since the comparison
between the data size of the light client in TICK and Bitcoin is
straightforward (1 block header against 611707 block headers),
we do not show it. Moreover, in contrast with the light client
in Bitcoin which data size increases linearly, the data size of
the light client in TICK is constant. Therefore, it is more
applicable to storage-limited devices.

Benefited by the UTXO tree, in TICK, a light client can
verify transactions through requesting proofs from a full node.
Meanwhile, the runtime overhead is introduced. During the
mining process, the miner and the full node need to update the
UTXO tree. Therefore, the UTXO tree must be updated in a
negligible time, otherwise, it may delay the mining process and
thus making the client impractical. Other similar works[7], [8]
propose to use the ordered Merkle tree to store all the UTXOs
and generate proofs for the light client transaction verification.
However, the ordered Merkle tree is slow to update. Compared
with the ordered Merkle tree, we update the latest 100 blocks
and get the average update time of the AVL hash tree and
the ordered Merkle tree separately. Experimental results show
that, the average update time of the AVL hash tree is around
0.3s, while the average update time of the ordered Merkle
tree is around 84s. Therefore, the system that adopts the
ordered Merkle tree delays the mining process and therefore
is impractical. In contrast, when a new block is generated,
updating an AVL hash tree only costs less than 1 second,
bringing a negligible negative effect.

Except for the overhead caused by the UTXO tree mainte-

nance, the light client transaction verification also introduces
overhead. During the light client transaction verification, a
light client needs to send the hash of the output and the hash
of the latest block header to the full node. During this process,
the light client only needs to send two hash values, i.e., 64
bytes, thus causing slight network latency.

After receiving the message from a light client, the
full node should generate the proof accordingly. Since the
AVL hash tree is an ordered data structure, the objective
UTXO can be efficiently located. In the experiment, we
randomly select 1000 UTXOs from all the 99431704 UTXOs,
getting their proofs respectively and accounting the time
consumption individually. Experimental results show that more
than 99% of proofs can be generated within 1 millisecond,
which is negligible. When the proof is generated, the full node
should send the proof to the light client. With the growth of
the number of UTXOs, the maximum size of PoP is shown
in Fig. 7(c). Since the size of PoA is about twice the size
of PoP, we do not show it again. When the block height is
611707, the maximum size of PoP is around 1.6KB, and the
maximum size of PoA is around 3.2KB. Therefore, sending
both PoP and PoA both cause slight latency. Moreover, the
size of these proofs is logarithmic in the number of UTXOs, so
it only increases dozens of bytes when the number of UTXOs
is doubled. According to the changing trend of the UTXOs
shown in Fig. 7(a), the size of UTXOs only increases by 5%
in the past year. With this speed, the size of PoP and PoA are
both very small in a long period. Last, the light client should
compute the root hash of the UTXO tree to verify the proof.
This process only needs to compute dozens of hash values,
which can be completed in negligible time.

The runtime overhead brought by TICK can be summarized
as follow:

• The time used to update the UTXO tree is less than 1
second.

• The time used to generate the proof for light client trans-
action verification is generally less than 1 millisecond.

• The network latency caused by transmitting the data
(which size are both less than 10 KB) for light client
transaction verification is negligible.



Therefore, the introduced runtime overhead is negligible, and
thus TICK is practical and scalable.

VI. CONCLUSION

This paper proposes TICK, the first practical client that
allows the light client to verify transactions without modifying
the current blockchain structure. Therefore, the light client can
perform fast payment for small value transactions, increasing
the system’s throughput. Moreover, the size of the proposed
light client is smaller and constant, which is more applicable
to storage-limited devices. Similarly, in TICK, the miner can
download two orders of magnitude less data than the original,
lowering the barrier for new miners. Last, TICK is scalable,
as the run-time overhead caused by the light client transaction
verification is negligible.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[2] C. Natoli, J. Yu, V. Gramoli, and P. J. E. Verı́ssimo, “Deconstructing

blockchains: A comprehensive survey on consensus, membership and
structure,” CoRR, vol. abs/1908.08316, 2019.

[3] “Blockchain charts: Bitcoin’s blockchain size,” https://blockchain.info/
charts/blocks-size/, (Accessed on 09/19/2019).

[4] “Ethereum blocks.” https://etherscan.io/blocks/, (Accessed on
09/19/2019).

[5] C. Chen, “The mathematically secure way to accept zero confirmation
transactions,” Cryptocoin news, vol. 13, 2014.

[6] J. Bonneau, E. W. Felten, S. Goldfeder, J. A. Kroll, and A. Narayanan,
“Why buy when you can rent? bribery attacks on bitcoin consensus,”
2016.

[7] “Ultimate blockchain compression w/ trust-free lite nodes,”
https://bitcointalk.org/index.php?topic=88208.0.

[8] “Proposal: Merkle tree of unspent transactions (mtut),”
https://en.bitcoin.it/wiki/User:DiThi/MTUT.

[9] L. Luu, B. Buenz, and M. Zamani, “Flyclient super light
client for cryptocurrencies,” accessed 2018-04-17.[Online]. Available:
https://stanford2017 . . . , Tech. Rep.

[10] T. Dryja, “Utreexo: A dynamic hash-based accumulator optimized for
the bitcoin utxo set.”

[11] J. Yu, V. Cheval, and M. Ryan, “DTKI: A new formalized PKI with
verifiable trusted parties,” Comput. J., vol. 59, no. 11, pp. 1695–1713,
2016.

[12] J. Yu, M. Ryan, and C. Cremers, “DECIM: detecting endpoint compro-
mise in messaging,” IEEE Trans. Information Forensics and Security,
vol. 13, no. 1, pp. 106–118, 2018.

[13] A. Palai, M. Vora, and A. Shah, “Empowering light nodes in blockchains
with block summarization,” in 2018 9th IFIP International Conference
on New Technologies, Mobility and Security (NTMS). IEEE, 2018, pp.
1–5.

[14] U. Nadiya, K. Mutijarsa, and C. Y. Rizqi, “Block summarization and
compression in bitcoin blockchain,” in 2018 International Symposium
on Electronics and Smart Devices (ISESD). IEEE, 2018, pp. 1–4.

[15] S. Matetic, K. Wüst, M. Schneider, K. Kostiainen, G. Karame, and
S. Capkun, “Bite: Bitcoin lightweight client privacy using trusted
execution,” IACR Cryptology ePrint Archive 2018, XXXX, Tech. Rep.,
2018.

[16] K. Wüst, S. Matetic, M. Schneider, I. Miers, K. Kostiainen, and
S. Capkun, “Zlite: Lightweight clients for shielded zcash transactions
using trusted execution,” in International Conference on Financial
Cryptography and Data Security. Springer, 2019.

[17] J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone protocol:
Analysis and applications,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 2015,
pp. 281–310.

[18] L. Kiffer, R. Rajaraman et al., “A better method to analyze blockchain
consistency,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2018, pp. 729–744.

[19] R. Pass, L. Seeman, and A. Shelat, “Analysis of the blockchain protocol
in asynchronous networks,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 2017,
pp. 643–673.


