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Breaking the Lightweight Secure PUF:
Understanding the Relation of Input

Transformations and Machine Learning Resistance
Nils Wisiol, Georg T. Becker, Marian Margraf, Tudor A. A. Soroceanu, Johannes Tobisch and Benjamin Zengin

Abstract—Physical Unclonable Functions (PUFs) and, in par-
ticular, XOR Arbiter PUFs have gained much research interest
as an authentication mechanism for embedded systems. One of
the biggest problems of (strong) PUFs is their vulnerability to so
called machine learning attacks. In this paper we take a closer
look at one aspect of machine learning attacks that has not yet
gained the needed attention: the generation of the sub-challenges
in XOR Arbiter PUFs fed to the individual Arbiter PUFs.
Specifically, we look at one of the most popular ways to generate
sub-challenges based on a combination of permutations and
XORs as it has been described for the “Lightweight Secure PUF”.
Previous research suggested that using such a sub-challenge
generation increases the machine learning resistance significantly.

Our contribution in the field of sub-challenge generation
is three-fold: First, drastically improving attack results by
Rührmair et al., we describe a novel attack that can break
the Lightweight Secure PUF in time roughly equivalent to an
XOR Arbiter PUF without transformation of the challenge input.
Second, we give a mathematical model that gives insight into
the weakness of the Lightweight Secure PUF and provides a
way to study generation of sub-challenges in general. Third,
we propose a new, efficient, and cost-effective way for sub-
challenge generation that mitigates the attack strategy we used
and outperforms the Lightweight Secure PUF in both machine
learning resistance and resource overhead.

I. INTRODUCTION

Physical Unclonable Functions (PUFs), have gained much
research attention since their invention in 2002. The main idea
of PUFs is to use the intrinsic process variations of each
chip to build an unclonable function that is device specific.
PUFs with an exponential challenge space, often denoted
as Strong PUFs, are particularly well suited for lightweight
authentication scenarios. The by far most prominent PUF with
an exponential challenge space is the Arbiter PUF [1] and its
variant the XOR Arbiter PUF [2]. PUFs can also be used
for generation or storage of cryptographic keys, even if their
challenge space is of limited size, such as in the case of SRAM
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PUFs [3], [4]. While PUF-based key storage has matured and
is used in commercial products, using PUFs in a challenge-
and-response protocol remains challenging due to so-called
machine learning attacks [5]. In these attacks, challenge-and-
response pairs are collected and machine learning algorithms
are used to approximate the PUF using a software model.
While these attacks are very efficient for single Arbiter PUFs
and small XOR Arbiter PUFs, the machine learning complex-
ity increases exponentially with the number of XORs [5], [6],
[7]. However, Becker [8] showed how reliability information
can be used for a powerful machine learning attack with only
a linear increase in machine learning complexity.

Despite these setbacks, research in PUF based authentica-
tion continues and Arbiter PUFs are still one of the most used
building blocks. Many of these PUF protocols make use of
the fact that Arbiter PUFs can be modeled using machine
learning. During initialization, the challenges and responses
are directly exposed so that an exact software model of the
PUF can be build that is stored at the server. Afterward
the direct access to the challenges and responses is disabled
and responses are never directly exposed anymore. A good
example of a PUF protocol that can withstand traditional
machine learning attacks and attacks based on reliability is the
lockdown protocol by Yu et al.[9]. A random nonce ensures
that an attacker cannot collect the response for the same
challenge twice. Additionally, the number of authentication
requests and hence the number of exposed challenges and
responses is limited so that traditional machine learning attacks
are not feasible.

However, to determine the number of allowed authentica-
tions, it is crucial to fully understand the machine learning
resistance of the underlying PUF construction. In this paper,
we will take a closer look at an aspect that has not yet gained
the required attention: the input transformation generating the
sub-challenges. Rührmair et al.[5] have shown that attacking
an XOR Arbiter PUF in which each arbiter chain has the
same challenge is easier than attacking one in which each
arbiter chain gets different challenges. This was later verified
by other researchers (see e.g. [6], [9]). The results of [5] are
based on the input transformation by Majzoobi et al. [10] for
their Lightweight PUF of 2008, which has also been used in
the Slender protocol [11] and, with some variations, in [12].
One design goal of the input transformation was to achieve
the avalanche criterion. The impact of the input transformation
has recently been investigated in respect to chosen challenge
attacks [13]. Yet, in how far such transformations are actually



optimal to counter current state-of-the-art machine learning
attacks has not been studied.

A. Main Contribution

In this paper we close this gap and perform a thorough
analysis of the impact of input transformations on state-of-
the-art machine learning attacks. Our analysis shows that one
has to carefully chose the input transformation to achieve
the desired machine learning resistance. In particular, on
first sight the often cited Lightweight input transformation
from Majzoobi et al.[10] seems to be close to the case of
random sub-challenges. (In Section III-A we argue random
sub-challenges are hardest to learn.) However, we show that
by using this input transformation the logistic regression (LR)
learner has a significant probability to converge to a local
minimum, providing only a partially accurate model of the
XOR Arbiter PUF. We show in a novel attack how these local
minima can be exploited to efficiently model PUFs based on
the Lightweight input transformation. We furthermore discuss
the reasons for these local minima and subsequently present
an easy-to-implement input transformation that achieves a
modeling resistance comparable to the optimal solution based
on random sub-challenges.

II. BACKGROUND

A. Machine learning attacks on PUFs

It was already shown in 2004 by Lim [14] that Arbiter
PUFs can be modeled using Support Vector Machine (SVM)
learning techniques and a linear delay model. They proposed
the XOR Arbiter PUF and the feed-forward Arbiter PUF to
increase the machine learning resistance by increasing the
non-linearity of the PUF model. In 2010, Rührmair et al. [5]
provided an extensive study of the machine learning resistance
of the XOR Arbiter PUF and the feed-forward Arbiter PUF.
On the one hand, their result showed that these constructions
can be modeled quite efficiently for reasonably sized PUFs.
On the other hand, they showed that the modeling complexity
grows exponentially with the number of XORs. Based on
these results it would be theoretically possible to build secure
XOR Arbiter PUFs, but also come with quite large area and
power requirements. While their initial study was conducted
on simulated PUFs, they later confirmed these findings us-
ing real silicon data [7]. Other researchers have since then
confirmed these results [6], [9]. While Rührmair et al. used
logistic regression for their attack on XOR Arbiter PUFs, other
machine learning techniques such as SVM, evolution strate-
gies, artificial neural networks have been used as well. While
there are performance differences between these techniques,
no technique fundamentally changed the exponential grow in
required number of responses and challenges.

There have been proposals of new Strong PUFs that exhibit
inherently more resistance against machine learning attacks
due to a non-linear response behavior. An early example is
the Bistable Ring PUF [15] which can be implemented on
FPGAs but can still be modeled using a linear model [16].
Another research direction looks into using non-linear voltage
transfer characteristics to build strong PUFs [17]. However,

no breakthrough has been achieved that can prevent mod-
eling attacks on these primitives so that they cannot be
used securely on their own [18], [19]. Researchers have also
investigated to what extent side-channel information can be
used to model Arbiter PUFs, such as power consumption [20],
[21], reliability [22], and even optical emissions [23]. While
power and optical side-channels require additional measure-
ment capabilities from the attacker and hence increase the
attack costs, reliability based machine learning attacks are
different in that regard. All they require is the ability to query
the PUF via the standard PUF interface multiple times for
the same challenge. Hence, they can be performed without
any additional measurement requirements and can also be
carried out remotely. Such reliability based attacks can be
augmented using active fault attacks by operating the PUF
device outside of normal conditions [24], [21]. However, due
to the unreliability of Arbiter PUFs in practice such active
attacks are only necessary if error-correction is used.

The real power of the reliability based machine learning
attacks were shown in 2015 by using the reliability information
to model XOR Arbiter PUFs with linear complexity [8]. To
counter reliability-based machine learning attacks, protocols
can be used in which part of the challenge is generated by the
PUF device so that the attacker cannot collect responses for
the same challenge multiple times to determine the reliability.
To be able to do this, a software model is learned during a set-
up step by the verifier which can later be used to authenticate
the PUF device. A prime example for such an approach is
the lockdown technique by Yu et al. [9] that was designed
to withstand all state-of-the-art machine learning attacks by
additionally limiting the number of allowed authentication
requests and hence the number of challenges and responses
an attacker can collect. Among other PUF protocols that make
use of a software model of an Arbiter PUF are [11], [12], [25],
[26], [27], [28]. However, it is also noteworthy that many of the
proposals do not achieve the claimed security [29]. It should
also be noted that Arbiter PUFs or variants thereof have been
proposed as primitives for secure key generation [30], [31].
The underlying assumption is that the exposed helper data does
not expose enough information that the PUF can be modeled
using machine learning. However, this helper data can leak
more information than one might assume [32] and hence it is
important to fully understand the machine learning resistance
of the underlying PUF primitive.

B. Notation

Throughout this paper, we will use natural numbers n, k.
Unless specified otherwise, lowercase Latin variables represent
vectors, with their elements referenced by a subscript index;
lowercase Greek letters and f will represent functions. Note
that we also use subscript indices to refer to elements of
vectors that are function values, e.g. σ(c)i for the i-th entry
of σ(c) ∈ Vn for a function σ and vector space Vn. For two
vectors v,w ∈ Vn, we define 〈v,w〉 =

∑n
i=1 viwi to be the

inner product of v and w. Lists of vectors v(i) will often be
denoted as (v(1), ..., v(k)), i.e., vectors of that list are referred
to by the superscript index. We denote bits as −1,1 rather

2



than 0,1, where −1 is TRUE. Note that the XOR operation is
hence represented by the product of two bits. We define sgn x
to be the sign of any real number x, and define sgn(0) = 1
arbitrarily. Unless otherwise specified, probabilities are taken
uniformly random for independent bits.

C. Modeling XOR Arbiter PUFs

Figure 1 depicts a 2-XOR Arbiter PUF that consists of
two individual Arbiter PUFs with their response XORed. Each
Arbiter PUF consists of n delay stages consisting of 2-input
multiplexers through which two signals are propagated. The
multiplexers interchange the two signals depending on the
applied challenge and an arbiter at the end measured if a signal
arrives first at the top or bottom line to determine the response
bit. The delays of the individual Arbiter PUFs are additive, i.e.,
the final delay difference between the two signals is the sum
of the delay difference of the individual stages. A challenge
bit ci = −1 swaps the two signals and can be modeled by
multiplying the delay difference δ(i) at stage i with minus one.
This way a recursive formula can be constructed to model the
delay difference δ(i) at stage i

δ(i) = δ(i − 1, c) · ci + si(ci) (1)

where si(ci) is the delay difference introduced at stage i for
challenge ci . The sign of the final delay difference δ(n) at stage
n then defines the response bit. The above recursive formula
can be simplified into a linear threshold function [14]. We
follow the same approach as other researchers (e.g., [5]) and
model an n-bit k-XOR Arbiter PUFs based on a product of
linear threshold functions (LTF) given by

f (c) =
k∏
l=1

sgn
〈
w(l), x(l)

〉
= sgn

k∏
l=1

〈
w(l), x(l)

〉
, (2)

where the weight vectors w(1), ...,w(k) ∈ Rn+1 model the
physical properties of the k arbiter chains (derived from s), and
x(1), ..., x(k) ∈ {−1,1}n+1 are the feature vectors for the given
master-challenge c ∈ {−1,1}n. The feature vectors x(l) can be
computed from the k sub-challenges c(l) given to the individual
arbiter chains using the function ATT : {−1,1}n → {−1,1}n+1,

x(l) = ATT(c(l)) with

x(l)i =
n∏
j=i

c(l)j for 1 ≤ i ≤ n

x(l)
n+1 = 1

(3)

In analogy to LTF, we call ATT the arbiter threshold trans-
form.

III. INPUT TRANSFORMATIONS: CLASSIC VS. RANDOM

When XOR Arbiter PUFs were proposed by Suh and
Devadas [2], the first step was to provide all arbiter chains with
the same challenge (here called classic design). Subsequently,
Majzoobi et al. [10] proposed to modify the challenge before
feeding it into the individual arbiter chains, to let the PUF
fulfill the strict avalanche criterion. Although initially designed
to harden XOR Arbiter PUFs against chosen-challenge attacks,

⊕c(1)1 = +1

c(1)2 = −1

c(1)
n−1 c(1)n

c(k)1 = +1

c(k)2 = +1

c(k)
n−1 c(k)n

f (c)

Fig. 1. Schematic representation of an XOR Arbiter PUF. (The case k = 2
is shown, but the scheme can easily be extended.) After the challenge is set
up, a rising edge is input on the left-hand side, with the arbiters at the end of
each chain (gray rectangles) measuring if the top line or bottom line shows
the signal first. Duing this process, the n · k challenge bits c(l) ∈ {−1, 1}n ,
1 ≤ l ≤ k decide at each stage (white rectangles), if the signal paths are
crossed or not. The arbiter result bits of each line are then xored and output
as f (c) on the right-hand side.

it became clear that the design twist also has an impact on the
passive (that is, non-adaptive) regression attack introduced by
Sölter [33] and Rührmair et al. [5]. In this work, we generalize
the idea of transforming challenges for each arbiter chain
and call it input transformation. To shed some light on how
machine learning hardness can be increased using an input
transformation, we studied the impact of input transformations
on the success rate of logistic regression attacks.1

We use the linear model introduced in the background
section for modeling the XOR Arbiter PUFs and assume that
the sub-challenges c(l) can be computed from a single master-
challenge c ∈ {−1,1}n. We call a list of functions (τ(1), ..., τ(k))
with τ(l) : {−1,1}n → {−1,1}n that transform the master-
challenge c into sub-challenges τ(l)(c) = c(l) the sub-challenge
generators.

We take the classic design as an example for our notation.
As all arbiter chains are fed the master-challenge, we have
τ(1) = · · · = τ(k) = id. Hence, we can compute any feature
vectors x(l) directly from the master-challenge given,

x(l) = ATT(τ(l)(c)) = ATT(c) = (c1c2 · · · cn, c2 · · · cn, ..., cn,1).

It is crucial to distinguish sub-challenges c(i) from feature vec-
tors x(i). Sub-challenges represent the bits that are physically
fed into the arbiter chains, whereas features vectors are used to
enable a modeling of arbiter chains as linear threshold function
(LTF) as given in (2).

For our analysis, the feature vector structure for a given
input transformation is crucial. We hence abbreviate the value
ATT(τ(l)(c)) to σ(l)(c) and formally define input transforma-
tion to be the list of functions (σ(1), ...,σ(k)) that transforms the
master-challenge into the feature vectors. Figure 2 summarizes
our notation.

Applying our notation to the model given in (2), the
model for an XOR Arbiter PUF with input transformation

1Attack and analysis implementation can be found at https://github.com/
nils-wisiol/pypuf/.
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Fig. 2. Generation of sub-challenges c(l) ∈ {−1, 1}n and feature-vectors
x(l) ∈ {−1, 1}n+1 from the master-challenge c ∈ {−1, 1}n using functions
τ(l) : {−1, 1}n → {−1, 1}n and ATT : {−1, 1}n → {−1, 1}n+1. Note
that we abbreviate ATT(τ(l)(c)) = σ(l)(c) for all master-challenges c, where
σ : {−1, 1}n → {−1, 1}n+1.
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Fig. 3. Success rate of logistic regression attacks on simulated XOR Arbiter
PUFs with 64-bit arbiter chains and four arbiter chains each, based on at least
250 samples per data point shown. Accuracies better than 70% are considered
success (but cf. Figure 4). Four different designs are shown: of the four arbiter
chains in each instance, an input transform is used that transforms zero, one,
two, and three challenges pseudorandomly, keeping the remaining challenges
unmodified. The success rate decreases when the number of arbiter chains with
pseudorandom challenges is increased. The case with 4 pseudorandom sub-
challenges is not shown as it coincides with the results for 3 pseudorandom
challenges. Note the log-scale on the x-axis.

(σ(1), ...,σ(k)) is given by

f (c) = sgn
k∏
l=1

〈
w(l), σ(l)(c)

〉
(4)

where σ(1) = · · · = σ(k). We have for all master-challenges c
that ATT(τ(i)(c)) = x(i) = σ(i)(c).

A. Pseudorandom Input Transformation

We demonstrate the influence of input transformations on
the learning hardness of logistic regression attacks in Figure 3.
To contrast the classic design, where all arbiter chains receive
the same challenge, we implemented a simulation of XOR
Arbiter PUFs with cryptographically secure pseudorandom
sub-challenge generators, where all arbiter chains receive an
individual pseudorandom challenge. Assuming security of the
pseudorandom generator, we can guarantee statistical inde-
pendence of the sub-challenges and feature vectors (for all
polynomially time-bounded observers).

By the absence of any correlation, the pseudorandom in-
put transformation is, while not being a reasonable real-
world design choice, an extremal example among all input
transformations. As elaborated in Section IV, the absence of
correlation results in a decrease of the number of minima in
the logistic regression attack.

The empirical results match this rationale: Figure 3 shows
that, compared to the classic design, the required size of
the training set to achieve a high success rate increases
substantially. Figure 3 also shows designs in which only a
subset of arbiter chains receive pseudorandom challenges,
whereas the others receive the same unmodified challenge.
For those designs, the required size of the training set is, as
could be expected, in between the pure classic and the pure
pseudorandom case.

B. Local Minima

Logistic regression uses gradient descent over a function f
defined by the provided training set to conduct the modeling
attack. The algorithm’s ability to find a “good” minimum
depends, among other parameters, on the algorithm’s random
initialization. Empirical results obtained by repeatedly attack-
ing the same XOR Arbiter PUF show that the probability to
guess successful initializations significantly changes with the
input transformation in use (Figure 6).

Whenever an input transformation of an XOR Arbiter PUF
sends the same challenge to several arbiter chains, this will
be reflected in function f as symmetry. Using the classic
input transformation, the attacker has at least k! equally
good minima2 to choose from. This idea of f ’s symmetry
can be generalized to the case where properties of the input
transformation allow permutations of the original weights to
approximate the XOR Arbiter PUF with mediocre accuracy,
as we will show in Section IV-B. The approximating permuta-
tions can be observed as local minima in the logistic regression
attack. On the contrary, using pseudorandom transformations,
we can reduce the symmetries of f down to the minimum,
hence increasing machine learning hardness and avoiding any
intermediate solutions. This is confirmed by empirical results
shown in Figure 4.

IV. INPUT TRANSFORMATIONS: LIGHTWEIGHT SECURE

The Lightweight Secure PUF design was introduced by
Majzoobi et al. [10] in 2008 before Rührmair et al. [5]
published their machine-learning attacks. The design proposes
an input transformation presented in two steps.

First, for the generation of the l-th sub-challenge, the
master-challenge is rotated by l bits, here denoted by d(l).
Second, the sub-challenge c(l) will mostly be computed by
xoring bits pairwise, such that it consists of three parts with

2Strictly speaking, all models will have an infinite amount of local minima,
as all weights in the model can be modified by a small value or scaled by a
positive scalar without affecting the model’s behavior. To fix above argument
we can argue that additional symmetry causes the gradient descent to remain
at a local minima with higher probability.
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Fig. 4. Accuracy distribution for learning attempts on randomly chosen
simulated XOR Arbiter PUF instances with different input transformations.
All experiments were run on 64-bit, 4-XOR Arbiter PUFs. When using the
Lightweight Secure input transformation, some learning attempts end with an
intermediate result, while both classic XOR Arbiter PUF and pseudorandom
sub-challenges do not show intermediate solutions. It can be seen that
using our new correlation attack, the resulting model accuracy is increased
significantly over the plain LR attack.

length n/2, 1, and n/2 − 1, respectively. More specifically, we
have(

c(l)1 , ..., c
(l)

n/2

)
=

(
d(l)1 d(l)2 , d(l)3 d(l)4 , ... , d(l)

n−1d(l)n
)
,(

c(l)
n/2+1

)
=

(
d(l)1

)
,(

c(l)
n/2+2, ..., c

(l)
n

)
=

(
d(l)2 d(l)3 , d(l)4 d(l)5 , ... , d(l)

n−2d(l)
n−1

)
.

(5)

In this section, we will refer to the sub-challenges as defined
in (5) with τ(1)(c), ..., τ(k)(c) and to the feature vectors they
induce with σ(1)(c), ...,σ(k)(c).

The transformation is chosen such that the Strict Avalanche
Criterion is (almost) satisfied [10], i.e., a single bit flip in the
master challenge will result in bit flips in about 50% of the
elements of each feature vector for each arbiter chain. If 50%
of the feature vector bits flip, then the PUF output also flips
with probability 50%.

In this work, we will not consider weaker versions of the
Lightweight Secure PUF with multiple output bits.

A. Feature Vector Correlation

In a typical machine learning attack on an XOR Arbiter
PUF, we expect that a call of the LR algorithm either yields
a near optimal model that has a predictive accuracy of around
99% or yields a model that performs poorly in prediction,
barely exceeding an accuracy of 50%, i.e., random guessing.
This can be observed in Figure 4, which shows a histogram of
achieved model accuracies for individual calls of the machine
learning algorithm for the XOR Arbiter PUF with random
inputs. Two cases can be seen, one centered around 98% and
one around 51% with no run resulting in a machine learning
accuracy between 55%-95%. Interestingly, this is not the case
for the Lightweight PUF. We found that the machine learning
algorithm yielded models that performed clearly better than
random guessing but did not achieve the desired accuracy of
around 99% as can be seen in Figure 4.

In empirical results, we found that weight vectors of the
intermediate solutions consisted mostly of a permutation of the
weight values of the original PUF model. In fact, by permuting
the individual weight vectors of the arbiter chains and rotating
them for certain but distinct amounts, a close approximation of
the original weight vectors could be constructed. Furthermore,
we learned, that if weight vector w(a) was at position b it was
rotated by π, then if w(b) was at position a it was rotated by
π−1.

To give a theoretical basis to our attack, we formalize
this observation by examining the impact of swapping and
rotating two different weight vectors. Let w(1), ...,w(k) be the
weight vectors of a Lightweight Secure XOR Arbiter PUF. Our
observations suggest that this PUF can be approximated when
weight vectors are swapped and shifted in a characteristic way.
We call the weight vectors to be swapped w and v and the
corresponding input transformation functions λ and µ. Note
that this argument uses feature vectors, not sub-challenges.
Consider the relevant part of the product in the XOR Arbiter
PUF model (cf. (4) and (5)):

〈w, λ(c)〉 · 〈v, µ(c)〉 =
∑
i, j

wi · vj · λ(c)i · µ(c)j

In the following, we compare this to the model where the
weight vectors v and w are swapped and rotated by π and
π−1, respectively. That is, we replace w by π−1(v) and replace
v by π(w):〈

π−1(v), λ(c)
〉
· 〈π(w), µ(c)〉

=
∑
i, j

π(w)i · π
−1(v)j · µ(c)i · λ(c)j

=
∑
i, j

wi · vj · π
−1(µ(c))i · π(λ(c))j (re-numbering i,j)

To prove that the latter is an approximation of the original
model, we studied the relationship of π−1(µ(c))i · π(λ(c))j
and λ(c)i · µ(c)j and found that for most pairs i, j, we have
equality with significant probability for a uniformly random
master-challenge c. The higher this probability, the better is
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TABLE I
OVERVIEW OF CORRELATIONS FOR A 64-BIT 6-XOR LIGHTWEIGHT

SECURE ARBITER PUF. AS AN EXAMPLE, THE FEATURE VECTORS OF THE
FIRST AND SECOND ARBITER CHAIN SHOW A CORRELATION OF 0.98 AS

DEFINED IN (6) WITH A ROTATION BY 32 AND 33 POSITIONS,
RESPECTIVELY. HENCE, THE CORRESPONDING WEIGHT VECTORS CAN BE
SWAPPED IF THEY ARE ROTATED ACCORDINGLY WITHOUT SIGNIFICANT

CHANGE IN THE MODEL ACCURACY.

1 2 3 4 5 6

1 -/- 32/0.98 64/0.97 31/0.95 63/0.94 30/0.92
2 33/0.98 -/- 32/0.98 64/0.97 31/0.95 63/0.94
3 1/0.97 33/0.98 -/- 32/0.99 64/0.97 31/0.95
4 34/0.95 1/0.97 33/0.99 -/- 32/0.98 64/0.97
5 2/0.94 34/0.95 1/0.97 33/0.98 -/- 32/0.98
6 35/0.92 2/0.94 34/0.95 1/0.97 33/0.98 -/-

the approximation of the original model by the swapped and
rotated version.

In Table I, we display this correlation of any pair λ, µ of
the Lightweight Secure input transformation σ(1), ...,σ(6) as
measured by

1
(n + 1)2

n+1∑
i=1

n+1∑
j=1

Pr
c

[
λ(c)i · µ(c)j = π−1(µ(c))i · π(λ(c))j

]
,

(6)
where c is chosen uniformly at random. For each pair, there is
exactly one rotation π which produces a significant correlation.
The rotation values for π and the resulting correlations are
stated in Table I.

For example, consider the 64-bit 4-XOR Lightweight Se-
cure PUF, where we write (σ(1), σ(2), σ(3), σ(4)) for the input
transformation and denote σ(1) as λ and σ(2) as µ. If we rotate
the first feature vector λ(c) by 32, say π(λ(c)), and the second
feature vector µ(c) by the inverse of 33 positions to the right,
say π−1(µ(c)), then we have high correlation as defined by (6).

As we can see, the correlation of the feature vectors leads
to the fact that an approximation of the original model can be
constructed by swapping two weight vectors and rotating them
accordingly. Using this concept iteratively, any permutation of
the weight vectors can be achieved.

Our empirical results in Figure 4 suggest that those partial
solutions also generate local minima to which the regression
algorithm converges. The combination of the information on
the local minimum along with the correlation as outlined above
can be used to stage an attack on the input transformation by
Majzoobi et al. This must be considered a key weakness of
the Lightweight Secure transformation, as our empirical attack
results show.

The cause for this symmetry lies in the definition of the
input transformation and in the fact that results are xored. In
Table I, the length of rotations and the correlation is given for
64-Stage PUFs for up to 6 stages. There is a clear pattern and
essentially every pair of PUFs can be exchanged by a rotated
version, although the correlation decreases the further the PUF
positions are apart from each other.

B. Improved Attack

As seen in the previous section, the LR machine learning
attack on the Lightweight Secure PUF often leads to local

minima that model the PUF behavior only with a limited
accuracy. In some cases, a higher accuracy may be needed
to impersonate a PUF device. In this section, we show how a
local minimum can be used to find a high-accuracy model.

If the logistic regression attack has found a model with an
intermediate accuracy in the range of 65%-98%, we assume
that the initialization values for the attack lead to a swapped
and rotated version of the high-accuracy version of the
weights. Instead of restarting the machine learning algorithm
with new initializations until we find a high-accuracy solution
and hence the correct ordering, the correlation attack tries to
generate the correct ordering of the weights. To that end, we
first generate the rotated weights for each possible permutation
of the weight vectors in a brute-force manner and check
their accuracy on a validation set. As a second step, the 2k
most accurate rotated weights are used to restart the logistic
regression attack and refine the weights.

Although the first step has run time O(k! · nk · V) with
validation set size V , this procedure can outperform the simple
restarting of the LR attack (Table II) for practical values of
k, as 10! = 3 628 800. Furthermore, the restarted logistic
regression algorithm can use a much lower bound on the max-
imum number of iterations, discarding low-accuracy solutions
rapidly. To achieve fast run times, we used a small validation
set for the k! accuracy computations. We empirically found
that rotations with high initial accuracy have a higher chance
to yield a high-accuracy solution, hence the ordering by initial
accuracy helps speed up the attack.

More specifically, we examined the ranking of the permu-
tation that resulted in the highest accuracy solution for 1000
instances of 64-bit 6 XOR Lightweight Secure PUFs. In most
cases, the best permutation was within the first 10 candidates
(Figure 5).

Three improvements to this strategy are available. First,
it is possible to use a greedy algorithm that chooses the
permutation by iteratively evaluating swaps of a previously
selected permutations, starting with the identity permutation.
Although the greedy approach is not guaranteed to work, this
still yields usable results while removing the O(k!) runtime
and should be considered for very large k. Second, in Table I
it can be seen that the approximation accuracy decreases as
the “distance” of the swapped arbiter chain increases. Based
on the swap accuracy, it is possible to pre-compute a list of
interesting permutations in order to skip permutations that are
not promising. Third, the attack can be conducted iteratively.
We observed attacks that, while improving the initial accuracy
significantly, did not reach the 98% success threshold. In those
cases, it is possible to restart the search for an apt permutation.

In Table II we have compared the expected time until first
result with accuracy better than 98%, computed as the quotient
of mean attack time and success probability, for attacking
the classic XOR Arbiter PUF and the classic and improved
attack on the Lightweight Secure Arbiter PUF. It can be seen
that the Lightweight Secure PUF can be learned with much
higher accuracy in less time than previously believed, with
the security in some instances reduced to what the classic
XOR Arbiter PUF provides. In contrast, the XOR Arbiter PUF
with the permutation-based input transformation defined in
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TABLE II
EXPECTED TIME UNTIL THE FIRST SUCCESS FOR LR AND CORRELATION ATTACKS ON CLASSIC XOR ARBITER PUF, LIGHTWEIGHT SECURE XOR

ARBITER PUF, AND PERMUTATION-BASED XOR ARBITER PUF. A PREDICTION ACCURACY OF AT LEAST 98% IS CONSIDERED SUCCESS. RUN TIMES
REFER TO SINGLE-THREADED RUNS ON INTEL R© XEON R© GOLD 6130 CPUS. ALL ENTRIES ARE BASED ON AT LEAST 1000 AND 600 SAMPLES, FOR

n = 64 AND n = 128, RESPECTIVELY. SOURCE CODE AVAILABLE AT HTTPS://GITHUB.COM/NILS- WISIOL/PYPUF.

LR on LR on Correlation Attack on LR on
n k # CRPs Classic Lightweight Secure Lightweight Secure Permutation-Based

64 4 12,000 0m 33s 10m 11s 0m 58s 24m 50s
64 4 30,000 0m 31s 3m 57s 0m 44s 4m 45s
64 5 300,000 7m 03s 3h 03m 11m 07s 13h 59m
64 6 1,000,000 42m 30s 8 days 1h 42m longer than 96h 00m
64 7 2,000,000 75h 07m longer than 20 days 8 days longer than 16 days

128 4 1,000,000 20m 31s 2h 53m 51m 23s 58m 38s
128 5 2,000,000 1h 35m 35h 20m 3h 17m longer than 16 days
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Fig. 5. When ordering possible permutations for the correlation attack by
validation set accuracy, the target permutation often appears within the first
few permutations. To obtain 80% probability of finding the permutation among
the first tested, we chose to check the first four permutations for k = 4, the
first ten permutations for k = 5 and the first 18 permutations for k = 6. This
justifies restarting the logistic regression learner for only a couple possible
permutations instead of all k! many.

Section V is considerably harder to attack and does not posses
the attack surface we used in the correlation-based attack (cf.
Figure 4).

V. SOLUTION

The previous sections show that input transformations have
impact on the machine learning resistance. When using the
same challenges for all arbiter chains as done in the classic
XOR Arbiter PUF, there are multiple equivalent solutions as
the order of the weight vectors (w(1), ...,w(k)) does not matter.
Using pseudorandom sub-challenges ensures that only one

103 104 105 106

number of examples in the training set

0.0

0.2

0.4

0.6

0.8

1.0

Success Rate on 64-bit, 4-XOR Arbiter PUF
Classic
Permutation-Based
Lightweight Secure
Pseudorandom

Fig. 6. Success rate of logistic regression attacks on simulated XOR
Arbiter PUFs with 64-bit arbiter chains and four arbiter chains each. Four
different input transformations are shown: classic, Lightweight Secure by
Majzoobi et al. [10], the permutation-based input transformation proposed
in this work, and a pseudorandom input transformation used as comparison.
All data points are based off at least 80 samples. For a success threshold
of 70%, Lightweight Secure and classic are equally hard to attack, whereas
permutation-based and pseudorandom require significantly more CRPs.

order is valid and hence reduces the number of global minima
in the gradient descent of the LR attack. Hence, from a security
perspective using pseudorandom sub-challenges is a good
approach. However, it should be noted that this comes with
quite some overhead in terms of area as well as power/energy
since at least k · n registers are needed to store the pseudo
random bits together with some logic to generate them. For
example, Yu et al. [9] use a 256 bit LFSR to feed the four
arbiter chains in the used 64-Stages 4-XOR Arbiter PUF.
The area overhead of their 4-XOR Arbiter PUF is given by
Yu et al. as 1024 Gate Equivalents (GE). The size of the
LFSR is not provided in [9], but assuming 4.5 GE for a flip-
flop, the size of a 256 stage LFSR is comparable to that of
the PUF circuitry3. Implementing a cryptographically secure
pseudorandom generator will consume even more resources.

In the Lockdown Protocol [9] the LSFR is an essential
part of the authentication protocol and hence needed anyways.
But for other designs, especially if larger PUF instances are
used with 128 stages, a more efficient input transformation

3Although the Gate Equivalents for a PUF circuit can be a bit misleading as
PUFs need special isolated routing compared to conventional digital circuits
such as LFSRs.
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is advised as the overhead is not negligible. However, our
analysis of the Lightweight Secure PUF shows that this input
transformation suffers a significant weakness and must be
considered insecure. The fact that feature vectors correlate in a
certain way simplifies the machine learning attack to the point
where no relevant advantage over the classic XOR Arbiter PUF
is achieved.

A. Permutation-Based Input Transformations

We propose an input transformation that is actually even
more lightweight than the Lightweight Secure PUF solution
but does not show any indication of local minima. The idea is
to use k different, fix-point-free permutations as sub-challenge
generators4. As this input transformation can be implemented
in wiring, no additional gate is used in the PUF design. A
permutation of the challenges does not result in a permutation
of the feature vectors due to the nature of the ATT. To be more
precise, the multiplications in (3) ensure that if the challenge
vectors are permuted, different bits are being multiplied.
Therefore pairs of feature vectors do not show significant
correlation according to (6) even if they are permuted. We
call this family of input transformations the permutation-based
input transformations.

We empirically confirmed that this approach does not show
any of the local minima we observed for the Lightweight
Secure PUF, as can be see in Figure 4. The machine learning
resistance was instead comparable to the results of pseudoran-
dom inputs (Figure 6), which represent and upper bound on
input transformation quality as argued in Section III. Without
observing local minima or correlations, the attack described
in Section IV-B cannot be applied.

Additionally, this input transformation comes at nearly zero
resource overhead. Compared to using a pseudorandom input
transformation, the permutation-based transformation is more
efficient in terms of area and power and is also more efficient
than the input transformation proposed for the Lightweight
Secure PUF.

VI. CONCLUSION

In this paper we revisited the topic of input transformations
for Arbiter PUFs, which were introduced to make XOR Arbiter
PUFs more resilient against machine learning attacks. We
showed that the Lightweight Secure PUF, which was believed
to be hard to attack, can in fact be learned with much higher
success rate than previously believed. With the same training
set size, we were able to achieve attack results comparable
to attacking the classic XOR Arbiter PUF. This refutes the
assumption that the Lightweight Secure PUF provides signif-
icantly better security than the classic XOR Arbiter PUF.

The main reason for this is that the input transformation
of the Lightweight Secure PUF produces local minima which
can be learned via machine learning algorithms. Our research
shows that the input transformation can play an important role
when determining the machine learning resistance of a PUF

4Additionally, we chose the permutations such that no pair always shows
the same value on the same output coordinate.

construct. In particular, one needs to ensure that the input
transformation does not result in local minima that can be
exploited using our two-stage machine learning attack. We
therefore advice researchers to carefully look at the distribu-
tion of achieved model accuracies as we have done in Figure 4
and not only measure the percentage of “successful” modeling
runs. Based on these findings we presented an alternative
input transformation using fix-point-free permutations. Our
results show that PUFs using this input transformation are
nearly as hard to learn as pseudorandom inputs, which we
argue is the most resilient input transformation in regards to
machine learning attacks. The proposed design has a very low
hardware-overhead as it simply consists of a fixed routing of
challenge bits to the individual arbiter chains and does not
feature any obvious feature vector correlations that could be
used to launch an improved attack.

Finally, it should be noted that while our results focus on
XOR Arbiter PUF, the results can be generalized to other
constructs such as the multiplexer PUF [34] or PUF constructs
not based on Arbiter PUFs such as an XOR Bistable Ring
PUF [35] or XOR Voltage PUFs [18].
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