
New Circuit Minimization Techniques for
Smaller and Faster AES SBoxes

Alexander Maximov and Patrik Ekdahl

Ericsson Research, Lund, Sweden
{alexander.maximov,patrik.ekdahl}@ericsson.com

Abstract. In this paper we consider various methods and techniques to find the
smallest circuit realizing a given linear transformation on n input signals and m output
signals, with a constraint of a maximum depth, maxD, of the circuit. Additional
requirements may include that input signals can arrive to the circuit with different
delays, and output signals may be requested to be ready at a different depth. We
apply these methods and also improve previous results in order to find hardware
circuits for forward, inverse, and combined AES SBoxes, and for each of them we
provide the fastest and smallest combinatorial circuits. Additionally, we propose a
novel technique with “floating multiplexers” to minimize the circuit for the combined
SBox, where we have two different linear matrices (forward and inverse) combined
with multiplexers. The resulting AES SBox solutions are the fastest and smallest to
our knowledge.
Keywords: AES SBox · circuit area · circuit depth · multiplexers · linear matrices

1 Introduction
Efficient hardware design of AES SBoxes is a well-known subject. If you want the absolute
maximum clocking speed of the hardware, you’d probably use a straightforward table-
lookup implementation, which naturally leads to a large area. In many practical situations
the area of the cryptographic subsystem is limited, and the designer cannot afford to
implement table-lookup for the 16 SBoxes involved in an AES round. For these situations,
we need to study how to implement an AES SBox with logical gates only, focusing on
both area and maximum clocking speed. The maximum clocking speed of a circuit is
determined by the critical path or depth of the circuit; the worst case time it takes to get
stable output signals from a change in input signals.

Another aspect when implementing AES is, in particular, the need for the inverse
cipher. Many modes of operation for a block cipher only use the encryption functionality
and hence there is no need for the inverse cipher. In case you need both the forward and
inverse SBox, it is often beneficial to combine the two circuits. This is because the main
operation of the AES SBox is taking the inverse of a field element, which naturally is its
own inverse, and we expect that many gates of the two circuits can be shared.

From a mathematical perspective, the forward AES SBox is defined as the composition
of a non-linear function I(g) and an affine function A(g), such that SBox(g) = A(I(g)).
The non-linear function I(g) = g−1 is the multiplicative inverse of an element g in the
finite field GF (28) defined by the irreducible polynomial x8 + x4 + x3 + x+ 1. We will
assume that the reader is familiar with the AES SBox, and refer to [oST01] for a more
comprehensive description.

The first step towards a small area implementation was described by Rijmen [Rij00],
where results from [IT88] was used. The idea is that the inverse calculation in GF (28)

mailto:{alexander.maximov, patrik.ekdahl}@ericsson.com

2 New Circuit Minimization Techniques for Smaller and Faster AES SBoxes

can be reduced to a much simpler inverse calculation in the subfield GF (24) by doing
a base change to GF ((24)2). In 2001, Satoh et al [SMTM01] took this idea further and
reduced the inverse calculation to the subfield GF (22). In 2005, Canright [Can05] built
on the work of Satoh et al and investigated the importance of the representation of the
subfield, testing many different isomorphisms that led to the smallest area design. This
construction is perhaps the most cited and used implementation of an area-constrained
combined AES SBox.

In a series of papers, Boyar, Peralta et al presented some very interesting ideas for both
the subfield inverter as well as new heuristics for minimizing the area of logical circuits
[BP10a, BP10b, BP12, BFP18]. They derived an inverter over GF (24) with depth 4 and
a gate count of only 17. The construction in [BP12] is the starting point for this paper.

After Boyar, several other papers followed focusing on low depth implementations
[JKL10, NNT+10, UHS+15]. In 2018 two papers by Reyhani et al [RMTA18a, RMTA18b]
presented the best known implementation (up until now) of both the forward SBox as
well as the combined SBox. In [LSL+19] the authors present a very nice way to include
the depth into Boyar’s SLP problem [BMP13]. But the algorithm does not work with
multiplexers, and hence cannot be applied to the combined SBox.

As pointed out in [RMTA18a], there are misalignments between researchers in how to
present and compare implementations of combinatorial circuits. One way is to simply count
the total number of standard gates in the design and find the path through the circuit that
contains the critical path to determine and compare the speed. In practice it is much more
complicated than that. For this paper, we present both the simple measure using only the
number of gates, as well as giving a Gate Equivalent (GE) number based on the typical
area required for the gate compared to the NAND gate. So for example the 2-input NAND
gate will have GE=1, while the XOR gate will have a GE=2.33. The relative numbers for
the GE are dependent on the specific ASIC process technology used, as well as the drive
strength needed from the gate. We have used the GE values obtained from the Samsung’s
STD90/MDL90 0.35µm 3.3V CMOS technology [Sam00]. A comprehensive discussion on
our choices for circuits comparison can be found in Appendix A. Additionally, we propose
to count technological depth of a circuit normalized in terms of the delays of a XOR gate,
which makes it possible to compare depths and the speed of various academic results.

The rest of the paper is organized as follows. In Section 2 we introduce the standard
hardware architecture for the AES SBox. In Section 3 we describe the fundamental
problem we are addressing, together with improvements to previously known techniques for
solving it. The new idea of considering “floating multiplexers” is introduced in Section 4,
followed by architectural improvements to the AES SBox in Section 5. The results, both
theoretical and practical synthesis results, are given in Section 6. The paper ends with
some conclusions and acknowledgements in Sections 7 and 8.

2 Preliminaries
We will follow the notation used in both [Can05] and [BP12] when we now construct our
tower field representation. The irreducible polynomials, roots, and normal basis can be
found in Table 1.

Table 1: Definition of the subfields used to construct GF (28).
Target Field Irreducible Poly. Root Coefficients in Field Normal Base
GF (22) x2 + x+ 1 W GF (2) [W,W 2]
GF (24) x2 + x+W 2 Z GF (22) [Z2, Z8]
GF (28) x2 + x+WZ Y GF (24) [Y, Y 16]

Alexander Maximov and Patrik Ekdahl 3

Following [Can05] and [BP12], we can now derive the expression for inverting a general
element A = a0Y + a1Y

16 in GF (28) as

A−1 = (AA16)−1A16

= ((a0Y + a1Y
16)(a1Y + a0Y

16))−1(a1Y + a0Y
16)

= ((a2
0 + a2

1)Y 17 + a0a1(Y 2 + Y 32))−1(a1Y + a0Y
16)

= ((a0 + a1)2Y 17 + a0a1(Y + Y 16)2)−1(a1Y + a0Y
16)

= ((a0 + a1)2WZ + a0a1)−1(a1Y + a0Y
16).

The element inversion in GF (28) can be done over GF (24) according to

T1 = (a0 + a1) T2 = (WZ)T 2
1 T3 = a0a1 T4 = T2 + T3

T5 = T−1
4 T6 = T5a1 T7 = T5a0

(1)

where the result is obtained as A−1 = T6Y + T7Y
16. In these equations we utilize several

operations (addition, multiplication, scalar, and squaring) but only two of them are non-
linear over GF (2); multiplication and inversion. Furthermore, the standard multiplication
operation also contains some linear operations. If we separate all the linear operations
from the non-linear and combine the former with the linear equations needed to do the
base change for the AES SBox input, which is represented in polynomial base using the
AES SBox irreducible polynomial x8 +x4 +x3 +x+ 1, we will end up with an architecture
of the SBox according to Figure 1, where we also indicate were the different parts of
equations 1 are calculated.

To
p

lin
ea

r

Bo
tto

m

lin
ea

r

Mul-
Sum

Inverse
GF(24)

2xMul
8-bit output R 8-bit Input U 4-bit X 4-bit Y 18-bit N22-bit Q

Base conversion and
generation of the linear
parts of the inversion. T3 and T4 T5 T6 and T7

Base back-conversion and
the affine transformation of
the AES SBox.

Figure 1: Architecture of the forward SBox according to [Can05] and [BP12].

In case we are dealing with the inverse SBox, we naturally need to apply the inverse
affine transform to the top linear matrix instead of the bottom.

This architecture will be our starting point, and we will now provide a set of new or
enhanced algorithms for minimizing both the area and the depth of the two linear top and
bottom matrices.

3 Circuits for binary linear system of equations
In this section, we will recapitulate the known techniques for linear circuit minimization
and propose a few improvements. We start by stating the objectives.

3.1 Basic problem statement
Given a binary matrix Mm×n and the maximum allowed depth maxD, find the circuit of
depth D ≤ maxD with the minimum number of 2-input XOR gates such that it computes
Y = M ·X. In other words, given n bits of input X = (x0 . . . xn−1), the circuit should

4 New Circuit Minimization Techniques for Smaller and Faster AES SBoxes

compute m linear combinations Y = (y0 . . . ym−1). Any circuit realization that implements
a given system of linear expressions is called a solution.

The above problem is NP-hard [BMP08], and we have seen various heuristic approaches
that help finding a sub-optimal solution in the literature. In all previous work we have
studied, the assumption is that all input signals arrive in the same time, and all output
signals are “ready” with delays at most maxD. In this paper we extend the original
problem with AIR and AOR defined as follows.

Additional Input Requirement (AIR). The problem may be extended with an
additional requirement on input signals X, such that each input bit xi arrives with its own
delay di, in terms of XOR-gates delays. The resulting depth D ≤ maxD then includes
input delays. For example, if some input xi has the delay di > maxD then no solution
exists. The AIR is useful while deriving the bottom matrix as described in Section 2, since
after the non-linear part, the signals entering the bottom matrix will have different delays.

Additional Output Requirement (AOR). The problem may be extended by an
additional requirement on the output signals. Each output signal yi may be required to be
“ready” at depth at most ei ≤ maxD. This is useful when some output signals continue
to propagate in the critical path and other signals may be computed with larger delays,
but still at most maxD. The AOR is used while deriving the top matrix as described in
Section 2, since when we introduce multiplexers for the combined SBox, the output signals
of the top matrix will be required to have different delays.

3.2 Cancellation-free heuristics
Cancellation-free heuristics are algorithms that produce linear expressions z = a⊕ b, where
both a and b are Boolean linear expressions in the input variables, and a and b share no
common terms. In other words, as we add a and b we will not cancel out any term.

Paar [Paa97] suggested a greedy approach to solving the Basic Problem in 3.1. That
solution starts with the matrix M and considers all pairs of columns (i, j) in M . Then a
metric is defined (on the pairs of columns) as the number of rows where Mr,i = Mr,j = 1,
i.e. where the input variables xi and xj both occur. For the column pair with the highest
metric, we form a new variable xn = xi ⊕ xj and add that to the matrix (which now is of
size m× (n+ 1)), and set positions Mr,i = Mr,j = 0, and Mr,n+1 = 1.

Canright [Can05] also used this technique but instead of using the metric function, he
performed an exhaustive search over all possible column pairs. This was possible due to
the fact that the target matrix in his case was the base conversion matrix only of size 8× 8.
As we saw in Section 2, our bottom matrix will be considerably larger, and hence we need
to take another approach. We also need to consider the AIR and the AOR.

Satisfying the AIR. When performing the above algorithm we should keep track of
the depth of the newly added XOR gates. This is done by having a vector D = (d0 . . . dn−1)
with the current depth of all inputs and newly added signals xi. When the new signal
xn = xi ⊕ xj is added, the delay of xn is trivially dn = max(di, dj) + 1. We then also
restrict the algorithm such that if dn > maxD then we are not allowed to add xn as a new
input signal. The AIR is hereby satisfied automatically.

Satisfying the AOR. Similarly, when adding a new input variable xn, we need to
check if a solution is theoretically possible. An elegant solution to this is presented in
Theorem 2 in [LSL+19] where they calculate the shortest circuit given additional delay
constraints.

Probabilistic heuristic approach. Since we cannot perform a full exhaustive search
on the bottom matrix due to its size, we need to confine the number of pairs to keep and
further evaluate. We have found that keeping the K best candidates (based on the original
metric by Paar) and then randomly selecting which one to pick for the next XOR gate is a
good strategy. In our simulations, this probabilistic approach gave us much smaller circuits
than only considering the best metric candidates. Naturally, the execution time will be too

Alexander Maximov and Patrik Ekdahl 5

long if we pick a too large K, and conversely picking a too small K decreases the chances
of deriving a good circuit. In practice we found that K = 2, . . . , 6 is a reasonable number
of candidates to keep and try.

3.3 Cancellation-allowed heuristic
The cancellation-free approaches give sub-optimal results, as it was shown by Boyar and
Peralta in [BP10a], where they also introduced a new algorithm that allows cancellations.
This was later improved by Reyhani et al in [RMTA18a]. Next, we briefly describe the
basic idea of that heuristic.

3.3.1 Basic cancellation-allowed algorithm [BP10a]

Every row of M is an n-bit binary vector. That vector can be seen as an n-bit integer
value. We define that integer value as a target point. Thus, the matrix M can be seen
as the column vector of m target points. The input signals {x0, . . . , xn−1} can also be
represented as integer values xi = 2i, for i = 0, . . . , n− 1.

Let the base set S = {s0, . . . , sn−1} = {1, 2, 4, . . . , 2n} initially represent the input
signals. The key function of the algorithm is the distance function δi(S, yi) that returns
the smallest number of XOR gates needed to compute a target point yi from the set of
known points S. The algorithm keeps a vector ∆ = [δ0, δ1, . . . , δn−1] which is initially set
to the Hamming weight minus one of the rows of M , which would be the number of XOR
gates needed without any sharing of intermediate gates.

The algorithm then proceeds by combining two base points si and sj in the base set S,
and xor them together producing a candidate point c = si ⊕ sj . The selection of si and sj
is performed by an exhaustive search over all distinct pairs, and then for each candidate
point, the sum of the distance vector

∑
δi, for i ∈ [0, n− 1], is calculated. Note that the

distance functions δi now is computed over the set S ∪ {c}. The pair which gives the
smallest distance sum is picked and S is updated S = S ∪ {c}. In case there is a tie, the
algorithm picks the pair that maximizes the Euclidean norm

√∑
δ2
i , for i ∈ [0, n− 1]. If

there is a tie after this step too, the authors in [BP10a] investigated different strategies
and concluded that all strategies tested performed similarly, and hence a simple random
selection can be used. The algorithm then repeats the step of picking two new base points
and calculating the distance vector sum, until the distance vector is all-zeros and the
targets are all found. In the original description, there is also a notion of “preemptive”
choices. A preemptive choice is a candidate point c such that it directly fulfils a target row
in the matrix M . If such a candidate is found, it is immediately used as the new point
and added to S.

Reyhani et al [RMTA18a] improved the original algorithm from [BP10a] by directly
searching for preemptive candidates in each round and add them all to the set S before
the “real” candidate is added and the distance vector recalculated. They also improved
the tie resolution strategy and kept all the candidates that were equally good under the
Euclidean norm and recursively tried them all, keeping the one that was best in the next
round.

When the maximum depthmaxD is a required constraint, the newly proposed algorithm
in [LSL+19] can be used. However, in our simulations for bottom matrices, it didn’t produce
better results than the cancellation-free algorithm with randomization factor.

3.4 Exhaustive search methods
In this section we present an algorithm for an efficient exhaustive search of the minimal
circuit. The overall complexity is exponential in the number of input signals, and linear in

6 New Circuit Minimization Techniques for Smaller and Faster AES SBoxes

the number of output signals. From our experiments we can conclude that this exhaustive
search algorithm can be readily applied to circuits of up to approximately 10 input bits.

3.4.1 Notations and data representation

Using the same integer representation of the rows of M , and the input signals xi as in
Section 3.3.1, we can re-phrase the basic problem statement: given the set of input points
xi we want to find the sequence of XORs on those points such that we get all the m wanted
target points yi, the rows of the matrix M , with the maximum delay maxD. Input and
output points may have different delays di and ei, respectively.

For data structures, we can store a set of 2n points as either a normal set, and/or
as a bit-vector. The set makes it possible to loop through the points while the bit-mask
representation is efficient to test set membership.

3.4.2 Basic idea

The proposed exhaustive search algorithm is a recursive algorithm, iterating over the
depths, starting at depth 1 and ending at maxD. At each depth D, we try to construct
new points from the previous depths, thereby constructing circuits that are of exactly
depth D. When all target points are found, we check the number of required XOR gates,
keeping track of the smallest solution. We will need the following sets of points:
known[maxD+1] – the set of known points at certain depth D.
ignored[maxD+1] – the set of points that will be ignored at depth D.
targets – the set of target points.
candidates – the set of candidate points that can be added to the set known at the current
recursion step.

The initial set of known points is xi, for i = 0 . . . n− 1, and the set of target points is
yi, for i = 0 . . .m− 1. AIR is met by initially placing the input point xi to the known set
at depth di. AOR is satisfied by setting the point yi with output delay ei to the ignore list
on all depth levels that are larger than ei.

We will now explain the steps executed at each depth of the recursion, assuming that
we currently are at depth D.

Step 1 – Preemptive points. Check the known[D] set to see if any pair can be combined
(XOR:ed) to give a target point not yet found. If all targets are found, or if we have
reached maxD, we return from this level of the recursion.

Step 2 – Collect candidates. Form all possible pairs of points from the known[0..D− 1]
sets, where at least one of the points is from known[D − 1], and XOR the pair to derive a
new point. If the derived point is in the set ignored[D] then we skip it, otherwise we add
it to the candidate set.

Step 3 – In this step we try to add points from the candidate set to the known list,
and call the algorithm recursively again. We start by trying to add 1 point and do the
recursive call. If that’s not solving the target points, we’ll try to add 2 points, and so
on until all combinations (or a maximum number of combinations) of the points in the
candidate set have been tried.

3.4.3 Ignored points and other optimizations

In step 2, we check the candidate set against the ignored[D] set, the set of ignored
points at depth D. The ignored set is constructed from a set of rules; Intersection:
A candidate point p should be ignored if for all target points wi we get (wi&p) 6= p.
This means that the point p covers too many of the input variables, and is not covered
by any of the points in the targets set; Forward Propagation: We can calculate all
possible points on each level starting from the top level D = 0 with n known points and

Alexander Maximov and Patrik Ekdahl 7

going down to D = maxD. Those points that can never appear at some level d are then
included into the ignored[d] set. If some target point w has another desired maximum
delay ei < maxD, then that point on the following depths should be ignored, i.e., we add
w to ignored[ei + 1..maxD]; Sum of Direct Inputs: If any of the input signals xi, xj
give the point p = xi ⊕ xj on level d, then all consecutive levels > d must have the point p
in the ignored list; Backward Propagation: As a last check, we can go backwards level
by level, starting from d = maxD and ending at level d = 1, and for each allowed (not
ignored) point on the level d we check whether there is still a not-ignored pair a, b at the
previous levels (one of a or b must be on the level d− 1) such that it gives p = a⊕ b. If not,
then the point p should be added to the ignore[d] set; Ignore Candidates: dynamically
add a point w to the ignore[d] set if w has been one of the candidates at previous levels
< d.

3.5 Remarks
Simulations show that regarding searching for the minimum solution the top matrix
(with only 8 inputs) can be solved with the exhaustive cancellation-allowed search as in
Section 3.4. The bottom matrix (with 18 inputs) is too large for a direct exhaustive search,
and we should start with a probabilistic cancellation-free heuristic from Section 3.2, and
then use a full exhaustive search for the ending part, when the Hamming weights of the
remaining rows become small enough to perform the exhaustive search. This approach
gave us the best result.

4 System of linear circuits with multiplexers
Assume we want to find a solution for the combined AES SBox, where the top and the
bottom linear matrices need to be multiplexed based on the SBox direction. This means
that the circuit for the combined linear expressions is basically doubled in size, plus the
set of multiplexers. In this section we will show how to deal with multiplexed systems of
linear expressions. We will show that the MUX and XOR gates can be considered in a
combined way in order to achieve a very compact circuit.

4.1 Floating multiplexers
Consider that for some signal Y we have to compute two linear expressions Y F and Y I
for the forward and the inverse SBoxes respectively. Then we apply a multiplexer so that
only one of the signals continues as Y . Assume further that the signals Y F and Y I share
some part of the expression. Then it may be better to push that shared part after the
multiplexer, and the resulting solution can be simplified.

For example, let Y F = X0 ⊕X1 and Y I = X0 ⊕X2, then normally we should spend 2
XOR gates and 1 multiplexer, so that we get Y = MUX(select, X0 ⊕X1, X0 ⊕X2) with
3 gates. However, we can push the common part X0 after the multiplexer as follows:

Y = MUX(select, X1, X2)⊕X0,

then we get a circuit with only 2 gates. In general, one can pick any linear combination ∆
on input signals and make a substitution:

Y = MUX(select, Y F , Y I)→MUX(select, Y F ⊕∆, Y I ⊕∆)⊕∆,
where ∆ is then added to the linear matrix as an additional target signal to compute. If
that substitution leads to a shorter circuit then we keep it. We should also choose such ∆
that the overall depth is not increased. Thus, various multiplexers will be “floating” over
the depth of the circuit. Signals with ∆ 6= 0 should have their maximum depth decreased
by 1.

8 New Circuit Minimization Techniques for Smaller and Faster AES SBoxes

4.1.1 Metrics and linear expressions to solve

We have n input signals X1 . . . Xn and m output signals Y1, . . . , Ym, where each Yi is
represented in its most general form as a triple (Ai, Bi, Ci) such that

Yi = Ai ⊕MUX(select, Bi, Ci),

where Ai, Bi, and Ci are linear expressions on the input signals. We are allowed to modify
the above expression as (Ai ⊕∆i, Bi ⊕∆i, Ci ⊕∆i) for any ∆i, since the Boolean function
of Yi will not change.

Let ABC represents the linear matrix that describes all the rows Ai, Bi, and Ci, for
i = 0, . . . ,m, such that

ABC ×X
gives the wanted linear system to realize using minimal number of gates and a given maxD.
By choosing favorable values of ∆i, one can shrink the number of total gates, since some of
the target points of ABC may become equal to each other, and hence ABC can be reduced
by at least one row. Also, some of the targets may become 0 or having only one bit - i.e.,
they are equal to corresponding input signals. These targets are also removed from the
linear system as they are trivial and cost zero gates. After the above reductions we get a
system of linear expressions where all rows are distinct and have Hamming weight at least
2. As before, we interpret the rows of ABC as integers, and adding (XORing) a ∆i to the
three rows Ai, Bi, and Ci will change those three target points, but not the resulting Yi.

Metric. The search for a good combination of ∆s requires a lot of computations and it
rapidly becomes infeasible to compute a minimal solution for each selection. Thus, we need
to decide on a good metric that allows us to truncate the search space down to promising
sets of ∆s. We propose to adopt a metric that is based on the lower bound of the number
of gates of a fixed system (when ∆ values are selected), and define the metric to be the
number of rows of the reduced ABC matrix, plus the minimum number of extra gates
needed to complete the circuit, such as multiplexers.

In the following we present several heuristic approaches to finding a good set of ∆s
while minimizing the metric.

4.1.2 Iterative algorithms to find ∆s: metric→minimize

The below techniques only work for small n, but in our case they are readily applicable to
the 8-input top matrix of the AES SBox.

Algorithm-A(k) – Select k triplets (Ai, Bi, Ci) and try to find k matching ∆is that
minimize the metric. If some choice results in a smaller metric, we keep that choice and
continue searching with the updated ABC matrix. The algorithm runs in a loop until the
metric is not decreasing any more. Algorithm-A(1) is quite fast, and Algorithm-A(2) also
has acceptable speed. For larger ks it becomes infeasible. Algorithm-A(k) works fine for a
very quick/brief analysis of the given system but the result is quite unstable since for a
random set of initial values of ∆is the resulting metric fluctuates heavily.

Algorithm-B – unlike Algorithm-A this algorithm is trying to construct a linear
system of expressions, starting from an empty set of knowns S and then trying to add
new points to S one by one, until all targets of ABC become included in the set S. While
testing whether a new candidate c should be added to S we loop through all (Ai, Bi, Ci)
and for each one try to find a ∆i that minimizes the overall metric. This heuristic algorithm
is a lot more stable and gives quite good results.

However, the smallest possible metric does not guarantee that the final solution will
have the smallest number of gates, and the number of non-target intermediates needed is
unclear. Thus, it would be a good idea to collect a number of promising systems whose
metric is the smallest possible, then try to find the smallest solution amongst them. We
will investigate this in the next section.

Alexander Maximov and Patrik Ekdahl 9

4.2 New generic heuristic technique for linear systems with floating
multiplexers

If we generalize the idea of floating multiplexers and let them float even higher up in the
circuit, and also sharing them wider, we could achieve better results. In this section we
propose a generic heuristic algorithm that finds good circuits for such systems.

4.2.1 Problem statement

We are given n-bit input signal Xn, binary matrices MF
m×n and M I

m×n, binary vectors
AFn , AIn, BFm, BIm, and vectors of delays DX

n and DY
m. We want to find a smallest and

shortest solution that computes the m-bit output signal Y :

Y F = MF · (X ⊕AF),
Y I = M I · (X ⊕AI),
Y = MUX(ZF, Y F ⊕BF , Y I ⊕BI),

where each input signal Xi has an input arrival delay DX
i and each output signal Yj must

have the total delay at most DY
j . A∗ and B∗ are constant masking vectors for the input

and output signals respectively (NOT-gates). ZF is the mux selector, when ZF = 1 we
pick the first (Y F = “forward”) output otherwise the second (Y I = “inverse”) output. We
also assume there is a complement signal ZI = ZF ⊕ 1 that is also available as an input
control signal.

4.2.2 Preliminaries

Similar to our previous notation, we define a “point” to be tuple of a point value (.p) and
a delay (.d):

point:={.p=[f(1 bit)|F(n bits)|i(1 bit)|I(n bits)], .d=Delay},

which is then translated into a 1-bit signal circuit

signal:=MUX(ZF,F ·X ⊕ f, I ·X ⊕ i),

with a total output delay point.d. I.e., F and I are linear combinations of the n-bit input
X, and f and i are negate bits applied to the result in case the selector ZF is “forward”
or “inverse”, respectively. The n input points are then represented as:

input point Xk := {.p=[AFk |2k|AIk|2k], .d=DX
k }, for k = 0, . . . , n− 1,

and the target m points are:

target point Yk := {.p=[BFk |YF
k |BIk |YI

k], .d= ≤ DY
k }, for k = 0, . . . ,m− 1.

We should also include the following 4 trivial points to the set of inputs:

signal ZF := {.p=[1|0|0|0], .d=0}, signal 0 := {.p=[0|0|0|0], .d=0},
signal ZI := {.p=[0|0|1|0], .d=0}, signal 1 := {.p=[1|0|1|0], .d=0}.

10 New Circuit Minimization Techniques for Smaller and Faster AES SBoxes

Given any two (ordered) points v and w there are at most 6 possible new points that can
be generated based on the following gates:

MUX(v, w) := {.p=[v.f |v.F|w.i|w.I], .d=Dnew},
NMUX(v, w) := {.p=[v.f ⊕ 1|v.F|w.i⊕ 1|w.I], .d=Dnew},
MUX(w, v) := {.p=[w.f |w.F|v.i|v.I], .d=Dnew},

NMUX(w, v) := {.p=[w.f ⊕ 1|w.F|v.i⊕ 1|v.I], .d=Dnew},
XOR(v, w) := {.p=[w.f ⊕ v.f |w.F⊕ v.F|w.i⊕ v.i|w.I⊕ v.I], .d=Dnew},

NXOR(v, w) := {.p=[w.f ⊕ v.f ⊕ 1|w.F⊕ v.F|w.i⊕ v.i⊕ 1|w.I⊕ v.I], .d=Dnew},

where Dnew = max{v.d, w.d}+1. Note that the inclusion of the 4 trivial points is important,
since then we can limit the number of gate types to be considered. For example, a NOT-
gate is then implemented as XOR(v, 1), AND gate with ZF can be implemented as MUX(v, 0),
OR gate with ZI is MUX(v, 1), etc.

4.2.3 The floating multiplexers algorithm

We start with the set S of input points (of size n + 4), and place all target points into
the set T . At each step, we compute the set of candidate points C that is generated
by applying the above 6 gates to any two points from the set S. Naturally, C should
only contain unique points and exclude those already in S. We try to add one candidate
point from C to S and compute the distances from S to each of the target points in T .
Thereafter we compare metrics to decide which candidate point will be included into S at
this step, and start over by calculating the possible candidates. The algorithm stops when
the overall distance δ-metric is 0.

The metric consists of several values. The distance δ(S, ti) is the minimum number
of basic gates (the above 6) required to get the target point ti from the points in S, such
that the delay is at most DY

i . Subsection 4.2.5 discusses how to compute δ(S, ti). The
applied metrics and their order of importance are then as follows:

γ = (|S| − n− 4) +
m−1∑
i=0

δ(S, ti)→ min,

δ =
m−1∑
i=0

(δ(S, ti)− (δ(S, ti) == 1))→ max,

τ = delay of the recent candidate point from C added to S → min,

ν2 =
m−1∑
i=0

(δ(S, ti)− (δ(S, ti) == 1))2 → max.

The metric γ is the projected number of gates in case there will be no more shared
gates; that metric we should definitely minimize. In case there are several candidates that
give the same value, then we look into the second metric δ.

δ is the sum of distances excluding distances where only 1 gate is needed. Given the
smallest γ, we must maximize δ. The larger δ the more opportunities to shrink γ. We
exclude distances 1 because of the inclusion of the preemptive step that we will describe
below. When we accept candidates to S one by one as described above, the metrics δ and
γ are similar, but will become distinct when we, in the next subsection, introduce a search
tree where the size of |S| may differ.

τ selects the candidate having the minimum depth in case the above two metrics showed
the same values for two candidates. In case there are no maximum depth constraints for
target points then this metric is not needed.

Alexander Maximov and Patrik Ekdahl 11

ν is the Euclidean norm excluding the preemptive points (similar to δ). This is the
last decision metric since it is not a very good predictor, a worse value may give a better
result and vice versa. However, if there are two candidates with equal metrics δ, γ, and τ ,
then ordering of the two candidates may be done based on ν. An alternative approach in
case of tie-candidates is to choose one of them randomly.

Preemptive points. If some distance δ(S, ti) = 1 then we accept the point ti into S
immediately without the search through the candidates C. The inclusion of this step in
the algorithm forces us to exclude such points from the metrics δ and ν.

In [RMTA18a] preemptive points were included into the metric, but we believe it was
not fully correct. E.g., when two distance vectors {1, 2, . . .} and {0, 2, . . .} have the same
projected gates, then they fall into a totally equal situation in terms of possible shared
gates, thus they should result in the same δ. The point with the distance 1 in the above
vector will be included into the circuit immediately (preemptive point), and it does not
give any advantage over the second choice where we have a point with the distance 0.
Therefore, distances with the value 1 should be ignored in δ and µ, but they should be
accounted in the projected gates γ, instead.

4.2.4 Search tree

Additionally to the above algorithm, we propose to have a search tree where each node
is a set S with metrics. Children of such a node are also nodes where S′ is derived from
S by adding one of the candidate point S ← C. Thus, every path from the root node to
a leaf represents a sequence of accepted candidate points to the root set S. If, at some
point, a leaf has metric δ = 0 then that leaf represents a possible solution path.

We keep a number of children nodes (in our experiments we kept at least 20-50 best
children) whose metrics are the best (they may even have different projected gates γ).
We also define the maximum depth TD of the search tree (in our experiments we tried
TD = 1, . . . , 20). When the tree at depth TD is constructed, we then examine the leaves
and see where we get the best metric over all leaves at all different branches. Tracking
back to the root, we then choose to keep the top branch that leads to the best leaf(s).
Other top branches from the root are removed. We then advance the root node to the first
child of the selected branch and try to extend the tree’s depth again from the remaining
leaves, thus, keeping the search tree at a constant depth TD.

If, at every depth of the tree, each leaf is extended with additional 20-50 sub-branches,
then the number of leaves will increase exponentially. However, we can apply a truncation
algorithm to the leaves before extending the tree to the next depth. We simply keep no
more than a certain number of promising leaves that will be expanded to the next depth,
and other, less promising leaves we just remove from the tree (in our experiments the
truncation level was up to 400 leaves overall for the whole tree). This type of truncation
makes it possible to select the best top branch of the root node by “looking further”
basically at any depth TD. Notably, the complexity does not depend on the depth TD,
but it depends on the truncation level.

Truncation strategy. In brief, we keep those leaves with the best metrics, but try to
distribute nearly equal leaves among different branches, so that we keep as many diverted
solution paths as possible.

4.2.5 Computation of δ(S, ti)

The “heart” and the critical part of the algorithm is the subalgorithm to compute the
distances δ(S, ti), given a fresh S. There are many candidates to test at each step, and
there are many branches to track, so we need to make this core algorithm as fast as
possible.

12 New Circuit Minimization Techniques for Smaller and Faster AES SBoxes

Note that the length of a point (.p is an integer) is 2n+ 2 bits, plus the delay value.
We will ignore the delay (.d) value when doing Boolean operations over two points. Let
us assign the number of possible points as:

N = 22n+2.

Let Vk[] be a vector of length N cells, each cell Vk[p] corresponds to a (2n+ 2)-bit point p
represented as an integer index, and the value stored in the cell will be the minimum delay
p.d of that point such that it can be derived from S with exactly k gates.

Set the initial vector V0 as ∀p → V0[p] = p.d, if p ∈ S, and V0[p] = ∞, otherwise.
Thereafter, the vector Vk+1 can be derived from the previously derived vectors V0 . . . Vk by
applying the allowed 6 gates to points from some level 0 ≤ l < k (Vl) and the level k − l
(Vk−l), thus resulting in total l + (k − l) + 1 = k + 1 gates. After a new Vk+1 is derived,
we simply check if it contains new distance values for the targets from T , and we repeat
the procedure until all distances δ(S, ti) for all ti in T are found. A high-level description
of the algorithm is given in Algorithm 1, and in Appendix B.1 we provide a more detailed
description alongside multiple computational tricks that can be made.

Algorithm 1 Algorithm for computing δ(S, ti)
1: function Distances(S, T , maxδ) → ∆ = {δi}, i = 0, . . . ,m− 1
2: Init δi =∞ for i = 0, . . . ,m− 1
3: Init ∀p : V0[p] = p.d if p ∈ S, otherwise ∞
4: Init k = 0
5: while true do
6: while ∃i : δi =∞ and Vk[ti] ≤ ti.d do
7: δi = k

8: if ∀i : δi <∞ then return OK
9: if k ≥ maxδ then return FAIL
10: k ← k + 1
11: Init ∀p : Vk[p] =∞
12: for all a, b : do
13: for p in {MUX(a, b), NMUX(a, b), MUX(b, a), NMUX(b, a), XOR(a, b), NXOR(a, b)} do
14: for l← bk/2c to k − 1 do
15: d← max(Vk−l−1[a], Vl[b]) + 1
16: Vk[p]← min(Vk[p], d)

4.2.6 Double and Useless points

“Double” points. When, at some step of the algorithm, we find a candidate point c that
is already in S but now having a smaller depth, then the point c is kept in C and tested
along with other candidates. If it turns that adding c to S gives the best metric, we add it
to S. An alternative strategy would be to update the point c.p in S with the lower depth
c.d and recalculate depths of dependent points. However, it is not clear what to do with
the parent points that were used to generate that previous c.p in S. We leave this as an
open question for further research.

“Useless” points. At the end of the algorithm (when δ = 0), it could happen that S
contains points that can be safely excluded while a solution can still be derived. As a final
step, we try to remove points from S one by one and test if every target is reachable from
the remaining S under the given depth constraints. In our experience this situation is rare,
but it helped to remove 1-2 gates, mainly caused by “double” points.

Alexander Maximov and Patrik Ekdahl 13

The above problems with “double” and “useless” points are generic for such class of
algorithms where certain depth constraints should be met, and Algorithm 1 in [LSL+19]
also falls under this category.

5 Architectural improvements
Most known AES SBox architectures look quite similar, consisting of the Top and Bottom
linear parts, and the middle non-linear part, as previously described in Section 2. In this
section, we take that classic design and propose a number of improvements, along with a
completely new architecture that focuses on low depth solutions.

To
p

lin
ea

r
Bottom

linear Mul-

Sum
Inverse
GF(24)

2xMul

32nand2
+8xor4

4-bit Y

32-bit L

Architecture D

8-bit output R

Architecture A
8-bit output R

8-

bi
t I

np
ut

 U

4-
bi

t X

4-
bi

t Y

18-bit N
18

-b
it
Q

18-bit Q

Figure 2: Difference between the architectures A and D.

5.1 Two SBox architectures – Area and Depth
Referring to Figure 2, the architecture A (Area) is the classical one that implements
designs based on tower and composite fields. It starts with the 8-bit input signal U to the
Top linear matrix, which produces a 22-bit signal Q (as in [BP12]). We managed to
reduce the number of needed Q-signals to 18, and refactored the multiplication and linear
summation block Mul-Sum to 24 gates and depth 3. (See Appendix D.2 for equations). The
output from the Mul-Sum block is the 4-bit signal X which is the input to the inversion
over GF(24). The output from the inversion, Y, is non-linearly mixed with the Q signals,
derived in the top matrix, and produces 18-bit signal N. The final step is the Bottom
linear matrix that takes 18-bit N and linearly derives the output 8-bit signal R. The
top and bottom matrices incorporate the SBox’s affine transformation that depends on
the direction.

In the new architecture D (Depth) we tried to remove the “irregular” bottom matrix
and as a result shrinking the depth of the circuit as much as possible. The idea behind is
that the bottom matrix only depends on the set of multiplications of the 4-bit signal Y
and some linear combinations of the 8-bit input U. Thus, the result R can be achieved as
follows:

R = Y0 ·M0 ·U⊕ . . .⊕ Y3 ·M3 ·U,

where each Mi is a 8 × 8 matrix representing 8 linear equations on the 8-bit input U,
to be scalar multiplied by the Yi-bit. Those 4x8 linear circuits can be computed as a
32-bits signal L in parallel with the circuit for the 4-bits of Y. The result R is achieved
by summing up four 8-bit sub-results. Therefore, in the architecture D we get the depth

14 New Circuit Minimization Techniques for Smaller and Faster AES SBoxes

3 after the inversion step (critical path: MULL and 8XOR4 blocks), instead of the depth
5-6 in the architecture A. That new architecture D requires a bit more gates, since the
assembling bottom circuit needs 56 gates: 32NAND2+8XOR4. The reward is the lower depth.

A more detailed sketch of the two architectures is given in Figure 3, that includes the
components of the designs, delays and the number of gates.

FTopA
[22G, 3D]

ITopA
[23G, 3D]

CTopA
[41G, 4D]

X0..X3<=MULX(Q0..Q17) [24G, 3D]

Y0..Y3<=INV(X0..X3) [9G, 3D]

S0 [+5G, +2D]

Y0..Y3, Y01, Y23, Y02, Y13, Yall
S1 [+7G, +1D]

FBotA
[31G, +3D]

IBotA
[29G, +3D]

CBotA
[46G, +4D]

N0..N17<=MULN(Y*, Q0..Q17)
[18G, 1D] N with diff.delays due to Ys

K0..31 <= MULL(Y0..3, L0..31)
[32G, 1D]

FTopD
[41G, 3D]

ITopD
[41G, 3D]

R0..7 <= 8XOR4(K0..31) [24G, 2D]

Architecture A (Area) Architecture D (Depth)

CTopD
[83G, 4-10D]

^ZF:[+4G,+1D]

Result R0..R7

Result R0..R7

Input U0..U7 Input U0..U7

Figure 3: More details on the architectures A and D.

5.2 Six different scenarios of MULN

In the MULN block, where the 18-bit N-signals are computed, we need as input the 18-bit
Q-signals and the inversion result Y. But we also need the following additional linear
combinations of Y: Y02 = Y0 ⊕ Y2, Y13 = Y1 ⊕ Y3, Y23 = Y2 ⊕ Y3, Y01 = Y0 ⊕ Y1, Y00 =
Y01 ⊕ Y23 – these correspond to the signals M41-M45 in [BP12]. Thus, the Y vector is
actually extended to 9 bits, and the delays of N bits become different, depending on which
of the Yi is used in the multiplication. For example, in the worst case, the delay of Y00 is
+2 compared to the delay of Y1. Thus, the resulting signals N will have different output
delays. However, it is possible to compute these 5 additional Ys in parallel with the base
signals Y0, . . . , Y3. This will cost some extra gates, but then the +2 delay can either shrink
down to +1 or +0. In general one can consider the following 6 scenarios:

• S0. We compute only the base signals Y0, . . . , Y3, and the remaining {Y01, Y23, Y02, Y13,
Y00} we compute with XORs as above. The delay is +2 but it has the smallest
number of gates;

• S1. Compute {Y01, Y23} in parallel, the delay is +1;
• S2. Compute {Y02, Y13} in parallel, the delay is +1;
• S3. Compute {Y00} in parallel, the delay is +1;
• S4. Compute {Y01, Y23, Y02, Y13} in parallel, the delay is +1;
• S5. Compute {Y01, Y23, Y02, Y13, Y00} in parallel, the delay is +0 as there is no signal

left to compute afterwards.

In the next subsection we show how to find Boolean expressions for the above scenarios.

Alexander Maximov and Patrik Ekdahl 15

5.3 INV. Inversion over GF(24)
The inversion formulae are as follows:

Y0 = X1X2X3 ⊕X0X2 ⊕X1X2 ⊕X2 ⊕X3,

Y1 = X0X2X3 ⊕X0X2 ⊕X1X2 ⊕X1X3 ⊕X3,

Y2 = X0X1X3 ⊕X0X2 ⊕X0X3 ⊕X0 ⊕X1,

Y3 = X0X1X2 ⊕X0X2 ⊕X0X3 ⊕X1X3 ⊕X1.

In [BP12] they found a circuit of depth 4 and 17 XORs, but we would like to shrink the
depth even further by utilizing a wider range of standard gates.

We have adapted the algorithm from Section 4.2 to also find a small solution for the
INV block. The idea is simple; each Yi is a truth table of length 16 bits, based on a 4-bit
input X0, . . . , X3. We define our “point” to be a 16-bit value. All standard gates, AND,
OR, XOR, MUX, NOT, including their negate versions, can be applied to any combination of
“known” points (S), and distances to target points T can be computed in a similar manner
as before. Using this slightly modified algorithm for floating multiplexers, we found a
solution with only 9 gates and depth 3. The results are shown in Equation 2 and Table 2.
The full listing of the formulae for scenarios S0-S5 can be found in D.2.

T0 = NAND(X0, X2) T3 = MUX(X1, X2, 1) Y 1 = MUX(T2, X3, T3)
T1 = NOR(X1, X3) T4 = MUX(X3, X0, 1) Y 2 = MUX(X0, T2, X1)
T2 = XNOR(T0, T1) Y 0 = MUX(X2, T2, X3) Y 3 = MUX(T2, X1, T4)

(2)

Table 2: Refactored INV block and scenarios S0-S5 .
INV S0 S1 S2 S3 S4 S5

Std. area (gates) 9 14 16 17 16 19 19
Std. depth (gates) 3 5 4 4 4 4 3
Tech. area (GE) 18.31 29.96 35.30 39.63 36.62 42.29 44.63
Tech. depth(XORs) 2.31 4.31 3.31 3.77 3.76 3.59 3.11

In our tradeoff circuits we have used scenario S1, as it showed best results with respect to
the area and depth. For the bonus circuits, we used S0 as it has the smallest area. For the
fast circuit, only the INV formulae are needed. We also derived an alternative circuit for
the inversion block without multiplexers, the results and formulae are given in B.2.

5.4 Additional Transformation Matrices (ATM)
We are solving the top matrices through exhaustive search and the bottom matrices with
various heuristic techniques. The way those matrices look, naturally influence the final
number of gates in the solution. Here we present a simple method to try different top and
bottom matrices for the best solution.

Assume that the SBox is a black box and, when excluding the final addition of the
constant, it performs the function:

SBox(x) = x−1 ·A8×8,

where x−1 is the inverse element in the Rijndael field GF (28), and the matrix A8×8 is
the affine transformation. In any field of characteristic 2: squaring, square root, and

16 New Circuit Minimization Techniques for Smaller and Faster AES SBoxes

multiplication by a constant – are linear functions, thus for a non-trivial choice (α, β) we
have:

Z(x) =
(
α · x2β

)−1
,

SBox(x) = 2β
√
α · Z(x) ·A8×8.

If the initial Top and Bottom matrices for the forward and inverse SBoxes were
TF , BF , TI , FI , respectively, then one can choose any α = 1, . . . , 255 and β = 0, . . . , 7, and
change the matrices as follows:

T ′F = TF · E · Cα · Pβ · E,
B′F = E ·A · P−1

β · Cα ·A−1 · E ·BF ,
T ′I = TI · E ·A · Cα · Pβ ·A−1 · E,
B′I = E · P−1

β · Cα · E ·BI ,

where:
E – is the 8x8 matrix that switches bits endianness (in our circuits input and output bits
are in Big Endian)
A – is the 8x8 matrix that performs the SBox’s affine transformation
Cα – is the 8x8 matrix that multiplies a field element by the selected constant α
Pβ – is the 8x8 matrix that raises an element of the Rijndael field to the power of 2β
TF /TI – are the original (without modifications) 18x8 matrixes for the top linear transfor-
mation of the Forward/Inverse SBoxes, resp.
BF /BI – are the original (without modifications) 8x18 matrixes for the bottom linear
transformation of the Forward/Inverse SBoxes, resp.

There are 2040 choices for (α, β) pair and each choice gives new linear matrices. It
is easy to test all of them and find the best combination that gives the smallest SBox
circuit. We have applied this idea to both the forward as well as the inverse SBox, for
both architectures A and D. Note that a similar approach was recently and independently
considered in [UHNA19] but in that work they only considered multiplication with a
constant, and not squaring.

5.4.1 ATM approach for the combined SBox

For the combined SBoxes we can apply the ATM approach to the forward and the inverse
parts independently. This means that we have 20402 = 4, 161, 600 variants of linear
matrices to test. We have focused on the architecture D, since there is no bottom matrix
and thus we can do a more extensive search. We searched through all those 4 million
variants and applied the heuristic algorithm from the Section 4.1 as a quick analysis method
to select a set of around 4000 promising cases. We then applied the algorithm given in
Section 4.2 to find a solution with floating multiplexers. In our case we have n = 8 input
bits and thus each point is encoded with 18 bits, and the complexity of calculating the
distance δ(S, ti) is quadratic over N = 218 points. In the search we used the search tree
with the maximum depth TD ≤ 20 and the truncation level of 400 leaves.

6 Results and comparisons
In this section we present our best solutions for the AES SBox, both forward and combined.
The stand-alone inverse SBox is perhaps not as widely used, and those results can be
found in Appendix C. We compare our area and depth using the techniques described

Alexander Maximov and Patrik Ekdahl 17

Table 3: Summary of which algorithms were used to derive the new SBoxes. BM is Bottom
Matrix, and TM is Top Matrix.

Bonus and Tradoff (Arch. A) Fast (Arch. D, no BM)
Section Our contribution Fwd/Inv Combined Fwd/Inv Combined

3.2
Cancellation-free
heuristic

Probabilistic approach with
final exhaustive search.

BM BM + optimization of
MUXes by hand

3.3
Boyar’s basic
algorithm and
[LSL+19]

Not used since probabilistic heuristic with final exhaustive search gave better results.

3.4
Exhaustive
search

New contribution TM TM

4.1
Floating multi-
plexers (approxi-
mative solution)

New contribution In combination with
ATM to select

preliminary set from
≈4M choices.

4.2
Generic floating
multiplexers

New contribution TM but applied after a
first selection using ATM

approach.

TM but applied after a
first selection using

4.1+ATM.
5.2 and 5.3
MULN Scenario
used

New contribution S0(Bonus),
S1(Tradeoff)

S0(Bonus), S1(Tradeoff) INV INV

5.4
Additional
Transformation
Matrixes

New contribution. A
similar approach was
independently derived
in [UHNA19], but only
constant multiplication was
considered.

Used Used Used Used

in Appendix A and where possible, we have recalculated the corresponding GE for other
academic results for easier comparison. We present three different solutions for each SBox
(forward, inverse, and combined): “fast”, “tradeoff”, and “bonus”. The fast one is the
solution with the lowest critical path, the tradeoff solution is a well-balanced trade-off
between area and speed, and the bonus solution is given to establish a new record in terms
of the smallest number of gates. Exact circuit expressions for all the derived solutions can
be found in Appendix D, where we also indicate which algorithm was used in deriving the
solution.

6.1 Synthesis results
We have performed a synthesis of the results and compared with other recent academic work.
The technology process is GlobalFoundries 22nm CSC20L [Glo19], and we have synthesized
using Design Compiler 2017 from Synospys in topological mode with the compile_ultra
command. We also turned on the flag compile_timing_high_effort to force the compiler
to make as fast circuits as possible. In those graphs, the X axis is the clock period (in ps)
and the Y axis is the resulting topology estimated area (in µm2). We have not restricted
the available gates in any way, so the compiler was free to use non-standard gates e.g., a 3
input AND-OR gate. To get the graphs in the following subsections, we have started at a
1200 ps clock period (∼833 MHz) and reduced the clock period by 20 ps until the timing
constraints could not be met. We note that the area estimates by the compiler fluctuate
heavily, and we believe that this is a result of the many different strategies the compiler
has to minimize the depth. One strategy might be successful for say a 700 ps clock period,
but a different strategy (which results in a significantly larger area) could be successful for
720 ps. There is also an element of randomness involved in the strategies for the compiler.

6.2 Forward SBoxes
We have included a number of interesting previous results for comparison in Table 4. The
most famous design by Canright is widely used and cited. Our tradeoff SBox is both

18 New Circuit Minimization Techniques for Smaller and Faster AES SBoxes

Table 4: Forward SBox: Comparison of the results.
Forward SBox Area Size/Gates Critical Path/Depth

Std. gates Tech. GE Std. gates Tech. XORs
Previous Results
Canright [Can05] 80XO+34ND+6NR 19XO+3ND+1NR
most famous design 120 226.40 23 20.796
Boyar et al [BP12] 94XO+34AD 13XO+3AD
our starting point 128 264.24 16 14.932
Boyar et al [Boy] 81XO+32ND 21XO+6ND
record smallest 113 220.73 27 23.508
Ueno et al [UHS+15] 91XO+48ND+13NR (+4IV) 10XO+5ND (+1IV)
record fastest, formulas from [RMTA18a] 151(+4) 270.71 15(+1) 12.449
Reyhani-Light [RMTA18a] 69XO+43ND+7NR (+4IV) 16XO+4ND (+1IV)
at CHES 2018 119(+4) 213.45 20(+1) 18.031
Reyhani-Fast [RMTA18a] 79XO+43ND+7NR (+4IV) 11XO+5ND (+1IV)
at CHES 2018 129(+4) 236.75 16(+1) 13.449
Ueno et al [UHNA19] 90XO+4XN+10OR+45AD (+10IV) 11XO+1OR+3AD (+1IV)
recent result 149(+10) 298.87 15(+1) 14.131

Our Results
Forward (fast) 77XO+1XN+4AD+37ND+5NR+6MX 7XO+1XN+1AD+2NR+1MX
fast with depth 12 130 243.04 12 10.496
Forward (tradeoff) 61XO+8XN+27ND+5NR+8MX+2MI 8XO+2ND+1ND+2NR+1MX
area/speed tradeoff 111 216.75 14 12.263
Forward (bonus) 58XO+6XN+27ND+5NR+6MX 18XO+2XN+1ND+2NR+1MX
new record smallest 102 195.10 24 22.263

 50

 100

 150

 200

 250

 300

 600 700 800 900 1000 1100 1200

A
re
a

 (
u
m
2
)

Clock period (ps)

Our - fast
Our - tradeoff
Our - bonus

Reyhani - fast
Reyhani - light

Ueno'15
Ueno'19

Boyar - small

Figure 4: Forward SBox: Synthesis results (the closer the curve is to the axes the better
the result in terms of the area/speed trade-off).

Alexander Maximov and Patrik Ekdahl 19

Table 5: Combined SBox: Comparison of the results.
Combined SBox Area Size/Gates Critical Path/Depth

Std. gates Tech. GE Std. gates Tech. XORs
Previous Results
Canright [Can05] 94XO+34ND+6NR+16MX (+2IV) 20XO+3ND+2OR+5NR
most famous design 150(+2) 297.64 30 25.644
Reyhani et al [RMTA18b] 81XO+32ND+4OR+16NR+16MI (+8IV) 17XO+2ND+3OR+6NR

149(+8) 290.13 28 23.608
Ueno et al [UHNA19] 112XO+7XN+10OR+45AN+16MX (+10IV) 11XO+3AN+1OR+2MX (+1IV)
recent result 190 (+10) 393.40 17(+1) 15.681

Our Results
Combined (fast) 77XO+27XN+41ND+6NR+13MX+12MI 6XO+3XN+1ND+2NR+1MX+1MI
fast with depth 14 176 351.65 14 12.312
Combined (tradeoff) 70XO+21XN+27ND+5NR+17MX+5MI 7XO+4XN+1ND+2NR+1MX+1MI
area/speed tradeoff 145 296.99 16 14.305
Combined (bonus) 70XO+9XN+27ND+5NR+16MX 15XO+4XN+2ND+1NR+3MX
new record smallest 127 253.35 25 22.675

 100

 150

 200

 250

 300

 350

 400

 450

 700 800 900 1000 1100 1200

A
re
a

 (
u
m
2
)

Clock period (ps)

Our - fast
Our - tradeoff
Our - bonus

Reyhani
Ueno'19
Canright

Figure 5: Combined SBox: Synthesis results (the closer the curve is to the axes the better
the result in terms of the area/speed trade-off).

20 New Circuit Minimization Techniques for Smaller and Faster AES SBoxes

faster and smaller. We also included the work done by Boyar et al as their design was the
starting point for our research.

The two results from CHES’18 by Reyhani et al are the most recent, and our tradeoff
SBox has a similar area as their “lightweight” version in terms of GE, but around 30%
faster. The tradeoff SBox is both smaller and faster than their “fast” circuit. Also, our
“fast” version is faster by 25% than their “fast” version, while maintaining a decent area
increase. The currently fastest SBox done by Ueno has 270.71GE and 12.449XORs depth,
while our fast version is only 243GE with depth 10.496XORs, outperforming the known
fastest circuit by around 23%.

We also included the current known smallest circuit (in terms of standard gates) done
by Boyar in 2016, which has 113 gates (220.73GE) and depth 27 gates. Our “bonus” circuit
is even smaller with only 102 gates and depth 24, reaching as low as 195.10GE. Synthesis
results are shown in Figure 4.

6.3 Combined SBoxes
Table 5 shows our results compared to the three previously known best results. Our
tradeoff combined SBox has a similar size to that of [Can05] and [RMTA18b], but its speed
is a lot faster due to a much lower depth of the circuit. The tradeoff circuit has depth
16 (in reality only 14.305XORs) and 145 gates (297GE), while Canright’s combined SBox
is of size 150(+2) gates (298GE) and the depth 30 (25.644XORs). The bonus solution
in this paper has slightly smaller depth than the most recent result [RMTA18b] but is
significantly smaller in size (127 vs 149(+8) standard gates). Finally, the proposed “fast”
design using Architecture D has the best currently known depth. Our synthesis results are
shown in the comparison Figure 5.

7 Conclusions
In this paper we have introduced a number of heuristic and exhaustive search methods for
minimizing the circuit realization of the AES SBox. We have proposed a novel idea on
how to include the multiplexers of the combined SBox in the minimization algorithms, and
derived smaller and faster circuit realizations for the forward, inverse, and combined AES
SBox. We also introduced a new architecture where we remove the “irregular” bottom
linear matrix, in order to derive a faster solution than previously known.

8 Acknowledgements
We would like to thank the Ericsson Research Data Center team for their patience and
help with the compute resources that made this work possible, and our colleague Ben
Smeets and all reviewers for providing valuable comments to the manuscript.

References
[Art01] Artisan Components, Inc. TSMC 0.18µm Process 1.8-Volt SAGE-XTM Stan-

dard Cell Library Databook, 2001. http://www.utdallas.edu/~mxl095420/
EE6306/Final%20project/tsmc18_component.pdf.

[BFP18] Joan Boyar, Magnus Find, and René Peralta. Small low-depth circuits for
cryptographic applications. Cryptography and Communications, 11, 03 2018.

[BHWZ94] Michael Bussieck, Hannes Hassler, Gerhard J. Woeginger, and Uwe T. Zim-
mermann. Fast algorithms for the maximum convolution problem. Oper.

http://www.utdallas.edu/~mxl095420/EE6306/Final%20project/tsmc18_component.pdf
http://www.utdallas.edu/~mxl095420/EE6306/Final%20project/tsmc18_component.pdf

Alexander Maximov and Patrik Ekdahl 21

Res. Lett., 15(3):133–141, April 1994. http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.3.5023&rep=rep1&type=pdf.

[BMP08] Joan Boyar, Philip Matthews, and René Peralta. On the shortest linear
straight-line program for computing linear forms. In Edward Ochmański and
Jerzy Tyszkiewicz, editors, Mathematical Foundations of Computer Science
2008, pages 168–179, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[BMP13] Joan Boyar, Philip Matthews, and René Peralta. Logic minimization tech-
niques with applications to cryptology. J. Cryptol., 26(2):280–312, April
2013.

[Boy] Joan Boyar. Circuit minimization work. http://www.cs.yale.edu/homes/
peralta/CircuitStuff/CMT.html.

[BP10a] Joan Boyar and René Peralta. A new combinational logic minimization
technique with applications to cryptology. In Paola Festa, editor, Experi-
mental Algorithms, pages 178–189, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

[BP10b] Joan Boyar and René Peralta. A new combinational logic minimization
technique with applications to cryptology. In of Lecture Notes in Computer
Science, pages 178–189. Springer, 2010.

[BP12] Joan Boyar and René Peralta. A small depth-16 circuit for the AES S-Box. In
Dimitris Gritzalis, Steven Furnell, and Marianthi Theoharidou, editors, SEC,
volume 376 of IFIP Advances in Information and Communication Technology,
pages 287–298. Springer, 2012. https://link.springer.com/chapter/10.
1007/978-3-642-30436-1_24.

[Can05] D. Canright. A very compact S-Box for AES. In Josyula R. Rao and Berk
Sunar, editors, Cryptographic Hardware and Embedded Systems – CHES
2005, pages 441–455, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.
https://www.iacr.org/archive/ches2005/032.pdf.

[FAR06] FARADAY Technology Co. FSD0A_A 90 nm Logic SP-RVT (Low-K)
Process , 2006. https://www.cl.cam.ac.uk/research/srg/han/ACS-P35/
documents/90nm-cell.pdf.

[Glo19] GlobalFoundries. 22nm FDX process, 2019. https://www.globalfoundries.
com/technology-solutions/cmos/fdx/22fdx.

[Int01] International Business Machines Corporation. ASIC SA-27E Databook, Part
I Base Library and I/Os. Data Book, 2001. http://people.csail.mit.edu/
jasonm/nigel/base_06-01.pdf.

[IT88] Toshiya Itoh and Shigeo Tsujii. A fast algorithm for computing multiplica-
tive inverses in GF(2M) using normal bases. Inf. Comput., 78(3):171–177,
September 1988. http://dx.doi.org/10.1016/0890-5401(88)90024-7.

[JKL10] Yong-Sung Jeon, Young-Jin Kim, and Dong-Ho Lee. A compact memory-free
architecture for the AES algorithm using resource sharing methods. Journal
of Circuits, Systems, and Computers, 19:1109–1130, 2010.

[LSL+19] Shun Li, Siwei Sun, Chaoyun Li, Zihao Wei, and Lei Hu. Constructing low-
latency involutory MDS matrices with lightweight circuits. IACR Transactions
on Symmetric Cryptology, 2019(1):84–117, Mar. 2019.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.3.5023&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.3.5023&rep=rep1&type=pdf
http://www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html
http://www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html
https://link.springer.com/chapter/10.1007/978-3-642-30436-1_24
https://link.springer.com/chapter/10.1007/978-3-642-30436-1_24
https://www.iacr.org/archive/ches2005/032.pdf
https://www.cl.cam.ac.uk/research/srg/han/ACS-P35/documents/90nm-cell.pdf
https://www.cl.cam.ac.uk/research/srg/han/ACS-P35/documents/90nm-cell.pdf
https://www.globalfoundries.com/technology-solutions/cmos/fdx/22fdx
https://www.globalfoundries.com/technology-solutions/cmos/fdx/22fdx
http://people.csail.mit.edu/jasonm/nigel/base_06-01.pdf
http://people.csail.mit.edu/jasonm/nigel/base_06-01.pdf
http://dx.doi.org/10.1016/0890-5401(88)90024-7

22 New Circuit Minimization Techniques for Smaller and Faster AES SBoxes

[MNG00] Microelectronics Group, Carl F. Nielsen, and Samuel R. Gir-
gis. WPI 0.5 mm CMOS Standard Cell Library Databook , 2000.
https://lsm.epfl.ch/files/content/sites/lsm/files/shared/
Resources%20documents/data_book.pdf.

[NNT+10] Yasuyuki Nogami, Kenta Nekado, Tetsumi Toyota, Naoto Hongo, and Yoshi-
taka Morikawa. Mixed bases for efficient inversion in F((22)2)2 and conversion
matrices of SubBytes of AES. pages 234–247, 08 2010.

[oST01] National Institute of Standards and Technology. Advanced encryption stan-
dard. NIST FIPS PUB 197, 2001.

[Paa97] Christof Paar. Optimized arithmetic for Reed-Solomon encoders. 04 1997.

[Pet] Graham Petley. Internet resource: VLSI and ASIC Technology Standard Cell
Library Design. http://www.vlsitechnology.org/index.html.

[Rij00] Vincent Rijmen. Efficient implementation of the Rijndael S-
Box. 2000. https://www.researchgate.net/publication/2621085_
Efficient_Implementation_of_the_Rijndael_S-box.

[RMTA18a] Arash Reyhani-Masoleh, Mostafa Taha, and Doaa Ashmawy. Smashing the
implementation records of AES S-Box. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2018(2):298–336, May 2018.

[RMTA18b] Arash Reyhani-Masoleh, Mostafa M. I. Taha, and Doaa Ashmawy. New
area record for the AES combined S-Box/inverse S-Box. 2018 IEEE 25th
Symposium on Computer Arithmetic (ARITH), pages 145–152, 2018.

[Sam00] Samsung Electronics Co., Ltd. STD90/MDL90 0.35µm 3.3V CMOS
Standard Cell Library for Pure Logic/MDL Products Databook,
2000. https://www.digchip.com/datasheets/download_datasheet.php?
id=935791&part-number=STD90.

[SMTM01] Akashi Satoh, Sumio Morioka, Kohji Takano, and Seiji Munetoh. A compact
Rijndael hardware architecture with S-Box optimization. In Colin Boyd,
editor, ASIACRYPT, volume 2248 of Lecture Notes in Computer Science,
pages 239–254. Springer, 2001.

[UHNA19] Rei Ueno, Naofumi Homma, Yasuyuki Nogami, and Takafumi Aoki. Highly
efficient GF(28) inversion circuit based on hybrid GF representations. Journal
of Cryptographic Engineering, 9(2):101–113, Jun 2019.

[UHS+15] Rei Ueno, Naofumi Homma, Yukihiro Sugawara, Yasuyuki Nogami, and
Takafumi Aoki. Highly efficient GF(28) inversion circuit based on redundant
GF arithmetic and its application to AES design. In Tim Güneysu and Helena
Handschuh, editors, Cryptographic Hardware and Embedded Systems - CHES
2015 - 17th International Workshop, Saint-Malo, France, September 13-16,
2015, Proceedings, volume 9293 of Lecture Notes in Computer Science, pages
63–80. Springer, 2015.

https://lsm.epfl.ch/files/content/sites/lsm/files/shared/Resources%20documents/data_book.pdf
https://lsm.epfl.ch/files/content/sites/lsm/files/shared/Resources%20documents/data_book.pdf
http://www.vlsitechnology.org/index.html
https://www.researchgate.net/publication/2621085_Efficient_Implementation_of_the_Rijndael_S-box
https://www.researchgate.net/publication/2621085_Efficient_Implementation_of_the_Rijndael_S-box
https://www.digchip.com/datasheets/download_datasheet.php?id=935791&part-number=STD90
https://www.digchip.com/datasheets/download_datasheet.php?id=935791&part-number=STD90

Alexander Maximov and Patrik Ekdahl 23

A Area and speed measurement methods
Firstly, we introduce some notations. Gate names are written in capital letters GATE
(examples: AND, OR). The notation mGATEn means m gates of type GATE, each of
which has n inputs (example: XOR4, 8XOR4, NAND3, 2AND2). When the number of
inputs n is missing then the assumption is that the gate has minimum inputs, usually only
2 (3 for MUX).

Cells that are constructed as gates combinations can be described as GATES1-GATE2,
meaning that we first perform one or more gates on the first level GATES1, then the result
goes to the gate on the second level 2. Example: NAND2-NOR2, means that the cell has
3 inputs (a, b, c) and the corresponding Boolean function is NOR2(a, NAND2(b, c)).

We present two different methods of comparing circuits; the standard method and the
technology method.

A.1 Standard method
Cells. The basic elements that are considered in the standard method are:

{XOR, XNOR, AND, NAND, OR, NOR, MUX, NMUX, NOT}.
Negotiation of NOT gates. In some places of the circuit there can be a need to use

the inverted version of a signal. This can be done in several ways, without the explicit use
of a NOT gate. Here we list a few of them.

Method 1. One way to implement a NOT gate is to change the previous gate that
generates that signal to instead produce an inverted signal. For example, switch XOR into
XNOR, AND into NAND, etc.

Method 2. In several technologies some gates can produce both the straight signal and
the inverted version. For example, XOR gates in many implementations produce both
signals simultaneously, and thus the inverted value is readily available.

Method 3. We can change the gates following the inverted signal such that the resulting
scheme would produce the correct result given the inverted input, using e.g. De Morgan’s
laws.

Summarizing the above, we believe that NOT gates may be ignored while evaluating a
circuit with the standard method, since it can hardly be counted as a full gate. However,
for completeness, we will print out the number of NOT gates in the resulting tables.

Area. For area comparisons the number of basic elements is counted without any size
distinction between them. The NOT-gates are ignored.

Depth. The depth is counted in terms of the number of basic elements on the circuit
path. The overall depth of a circuit is therefore the delay of the critical path. The
NOT-gates are ignored.

A.2 Technology method
Cells. Some papers complement the standard cells with a few extra combinatorial cells,
often available in various technologies. For example, the gates NAND2-NAND2, NOR2-NOR2,
2AND2-NOR2, XOR4 could be highly useful to improve and speed up our SBox circuits in
this paper. However, for comparison purposes with previous academic results, we will stay
with the set of standard cells in order to make a more fair comparison. In this method we
do count NOT gates in both the delay and the area.

Area. There exist many ASIC technologies (90nm, 45nm, 14nm, etc) from different
vendors (Intel, Samsung, GlobalFoundries, etc), with different specifics. In order to develop
an ASIC one needs to get a “standard cells library” of a certain technology, and that
library usually includes much more versatile cells than the basic elements listed above, so
that the designer has a wider choice of building blocks.

24 New Circuit Minimization Techniques for Smaller and Faster AES SBoxes

However, even if we take a standard cell, for example XOR, then for different technologies
that cell has different areas and delays. This makes it harder to compare two circuits
of the same logic developed by two academic groups, when they chose to apply different
technologies.

For a fair comparison of circuit area of various solutions in academia we usually utilize
the term of gates equivalence (GE), where 1GE is the size of the smallest NAND gate.
The size of a circuit in GE terms is then computed as Area(Circuit)/Area(NAND)→ t GE.
Knowing the estimated GE values for each standard or technology cell makes it possible to
compute an estimated area size of a circuit in terms of GE. Although various technologies
have slightly different GEs for standard cells, those GE numbers are still pretty close to
each other.

We have studied several technologies, where data books are available, and came to the
decision to utilize GE values given in the data book by the Samsung’s STD90/MDL90
0.35µm 3.3V CMOS technology [Sam00]. The cells to be used are without the speed
x-factor.

Other data books that we checked include IBM’s 0.18µm [Int01], WPI 0.5mm [MNG00],
FARADAY’s 90µm [FAR06], TSMC 0.18µm [Art01], Web resource [Pet], etc.; we verified
that GE numbers given in [Sam00] are quite fair and close to the reality. This makes it
possible to have an approximated comparison of the effectiveness of different circuits, even
though they may be developed for different technologies.

Depth. Different cells, like XOR and NAND, not only differ in terms of GEs but also
differ in terms of the maximum delay of the gates.

Normally data books include the delays (e.g., in ns.) for each gate, and for all input-
output combinations.

We propose to normalize the delays of all used gates by the delay of the XOR gate.
I.e., we adopt the worst-case delay of the XOR gate as 1 unit in our measurements of the
critical path. Then we look at each standard cell and pick the maximum of the switching
characteristics for all in-out paths of the cell and divide it by the maximum delay of the
XOR gate, so that we get the normalized delay-units for each of the gates utilized.

For multiplexers (MUX and NMUX), we ignore propagation delays for the select bit
since in most cases, the select bit is the input to the circuit. For example, in the combined
SBox the select bit says if we compute the forward or the inverse SBox, and that selection
is ready as an input signal and not switching over the circuit signals propagation, so it can
be regarded as a stable signal.

The proposed above method is similar to the idea of GEs, but is adopted for computing
the depth of a circuit, normalized in XOR delays. The reason to choose XOR as the base
element for delay counting is that circuits often have a lot of XOR gates, and thus, it
now becomes possible to compare the depths between the standard and the technology
methods as well. For example, in our SBox the critical path contains 14 gates, most of
which are XORs, but in reality the depth would be equivalent to only 12.26 XOR-delays,
due to the critical path contains also faster gates.

The area and delays for the Samsung’s STD90/MDL90 0.35µm gates are summarized
in Table 6.

Table 6: Technology gates’ area and delays based on [Sam00].
Std. cell XOR XNOR AND NAND OR NOR MUX NMUX NOT D-Flop/Q
Ref. in [Sam00] [XO2] [XN2] [AD2] [ND2] [OR2] [NR2] [MX2] [MX2I] [IV] [FD1Q]
Our short ref. XO XN AD ND OR NR MX MI IV FD

Area (GE) 2.33 2.33 1.33 1.00 1.33 1.00 2.33 2.67 0.67 4.33
Delay (XORs) 1.000 0.993 0.644 0.418 0.840 0.542 0.775 1.056 0.359 1.242

Alexander Maximov and Patrik Ekdahl 25

B Algorithmic details and improvements
In this section we present some more details to various algorithms previously described in
the paper.

B.1 On the computation of δ(S, ti) in Section 4.2.5
In this section we give a more detailed presentation on how the computation of δ(S, ti)
can be done. A slightly re-organized set of algorithms for computing δ(S, ti) is given by
Algorithms 2, 3, and 4.

Algorithm 2 Computation of all distances
1: function Distances2(S, T , maxδ) → ∆ = {δi}, i = 0, . . . ,m− 1
2: Init δi =∞ for i = 0, . . . ,m− 1
3: Init ∀p : V0[p] = p.d if p ∈ S, otherwise ∞
4: Init k = 0
5: while true do
6: while ∃i : δi =∞ and Vk[ti] ≤ ti.d do δi = k

7: if ∀i : δi <∞ then return OK
8: if k ≥ maxδ then return FAIL
9: k ← k + 1
10: Init ∀p : Vk[p] =∞
11: for l← bk/2c to k − 1 do
12: ConvolutionXOR(Vk, Vk−l−1, Vl)
13: ConvolutionMUX(Vk, Vk−l−1, Vl)
14: ConvolutionMUX(Vk, Vl, Vk−l−1)

Algorithm 3 Convolution of XOR gates
1: function ConvolutionXOR(V,A,B)
2: for a = 0 . . . 22n+2 − 1 do
3: for b = 0 . . . 22n+2 − 1 do
4: d = max{A[a], B[b]}+ 1
5: p = a⊕ b . XOR(a, b) gate
6: if V [p] > d then V [p] = d

7: p = a⊕ b⊕ (1; 0 . . . 0; 1; 0 . . . 0) . NXOR(a, b) gate
8: if V [p] > d then V [p] = d

There are two convolution algorithms, for XOR gates and for MUX gates, and they
can be performed independently. The MUX-convolution can be done in linear time O(N).
We first collect the smallest distances for all possible F -values and I-values independently
(each of which has

√
N possible indexes), then the gate MUX can be applied to any of the

combinations, so the convolution is O(
√
N

2 = N). The XOR-convolution is a bit more
complicated and it has quadratic complexity O(N2) in general case.

Algorithmic improvements. Assume for some S we have already computed all
distances δi = δ(S, ti). For each candidate c from C, we add it to S so that S′ = S ∪ c,
then we need to compute all distances δ′i = δ(S′, ti) in order to compute the metrics and
decide on which c is good. Note that adding a single candidate c implies δ′i ≤ δi for every
target ti. Therefore, we should modify the algorithm Distances(S’, T, maxδ) such that
we set maxδ = max{δi} − 1, and check in the end that if δ′i ==∞ then δ′i = maxδ. This

26 New Circuit Minimization Techniques for Smaller and Faster AES SBoxes

Algorithm 4 Convolution of MUX gates
1: function ConvolutionMUX(V,A,B)
2: Set ∀i = 0, . . . , 2n+1 − 1 : F [i] = I[i] =∞
3: for a = 0 . . . 22n+2 − 1 do
4: Set f = a÷ 2n+1 . high half of a related to F part
5: Set i = a mod 2n+1 . low half of a related to I part
6: if F [f] > A[a] then thenF [f] = A[a]
7: if I[i] > B[a] then thenI[i] = B[a]
8: for f = 0 . . . 2n+1 − 1 do
9: for i = 0 . . . 2n+1 − 1 do
10: d = max{F [f], I[i]}+ 1
11: p = (f · 2n+1 + i) . MUX(ZF; f; i) gate
12: if V [p] > d then thenV [p] = d

13: p = p⊕ (1; 0 . . . 0; 1; 0 . . . 0) . NMUX(ZF; f; i) gate
14: if V [p] > d then thenV [p] = d

simple trick helps to avoid the computation of the last vector Vk and effectively speed up
the computations by up to x20 times.

Generation of the candidates C involves testing if a candidate is already in C or in S
(with the same delay) – those needs to be ignored. To speed up this part we can use a
temporary vector Z[N] of length N , where all cells are initialized to ∞, and then for each
point s from S we set Z[s.p] = s.d. Then, when a new candidate c is generated we simply
update the table Z[c.p] = min{c.d, Z[c.p]}. In the end we remove S points from Z, and
generate C from Z as follow: for all i = 0, . . . , N − 1, if Z[i] <∞ then add a candidate
c = {.p = i, .d = Z[i]} to C. This way we construct C with unique candidates and also
having the smallest depths.

Architectural improvements. MUX(a, b) and MUX(b, a) can be combined in a
single MUX-convolution function. In max{d1, d2}+ 1, move the +1 operation outside the
convolution functions, and do it after the convolutions, instead. p⊕ {.p=[1|0|1|0], .d=0}
is done in order to include gates with negated output; those can be moved outside the
convolution functions as well and be performed in the main function Distances() in
linear time. This helps to reduce the number of operations in the critical loop of the
function ConvolutionXOR(), basically this doubles the speed. When A = B, then in
ConvolutionXOR() we only need to run b starting from a. When B is not equal to
V0, then ConvolutionXOR() can be done only on the half values of b, since we know
that all vectors Vk for k > 0 are symmetric in regards to NOT-gates. When A[a] =∞ in
ConvolutionXOR() then we do not need to enter the inner loop for b. The same check
for B[b] 6=∞ is not justified since it adds an unnecessary branching in the critical loop.

Leveraging SIMD (SSSE3). It is quite clear that ConvolutionMUX() can be
easily refactored to utilize SIMD vectorized instructions and, for example, 128-bit registers
(SSE). However, it is a bit tricky to find a way how to use SIMD instructions for the
function ConvolutionXOR(). First of all, assume each cell A[a], B[b] are all of char
type (byte), then we must start b aligned to 16 bytes, since our registers are 128-bit long.
Secondly, the result of p = a ⊕ b for a = 0, . . . , 15 mod 16 will end up in a permuted
location p, but that permutation would only happen in the low 4 bits. With the help of
_mm_shuffle_epi8() we can make a permutation of the destination 16-byte block, where
the permutation vector only depends on the value of a mod 16 (recall that b = 0 mod 16).
Those permutation vectors can be hard coded in a constant table. Other operations within
that ConvolutionXOR() are trivial to implement. One could also try to utilize 256-bit
long registers, thus speeding up the algorithms even more.

Alexander Maximov and Patrik Ekdahl 27

B.1.1 More on ConvolutionXOR()

One can notice that ConvolutionXOR() may be done with the help of the following
convolution:

V [p] =
N∑
a=0

A[a] ·B[p⊕ a],

where the operation x ·y 7→ max{a, b}, and x+y 7→ min{a, b}. Thus, we have a convolution
to be done in the (min, max)-algebra. One could think of applying Fast Walsh-Hadamard
Transform (FWHT) in O(N logN) but the problem is that that algebra does not have an
inverse element.

In [BHWZ94] there is an algorithm “MinConv” that can be converted into our convo-
lution problem, and it is claimed to work “around and in average” O(N logN) time. The
idea behind MinConv is to sort A and B vectors, then we get the smallest delays in the
beginning of the vectors A and B. Thus, we can enumerate the max{A[a], B[b]} delays
starting from the smallest. Also, we should take care of the indexes while sorting A and B,
so that we can find the destination point p = a⊕ b. Every point p hit the first time will
receive the smallest possible delay, and thus can be skipped later on. The idea is that the
predicted number of hits to cover all N points of the result should be around N logN .

We have programmed that but it did not demonstrate a speed up on our input size
(n=8, N=218) and actually performed slower than our SIMD-improved quadratic algorithm,
at least on our input size. Also, the above algorithm cannot be parallelized.

B.1.2 ConvolutionXOR() in O(maxDelay2 ·N logN) time

Usually the delay values stored in V vectors are small. We can rely on that fact in order
to develop an algorithm that may be faster than O(N2).

The idea is simple. Construct two vectors Ax[] and By[] such that Ax[p] = 1 if A[p] = x,
otherwise Ax[p] = 0, do the same for By[]. Then compute the convolution of two Boolean
vectors Ax and By through the classical FWHT transform in O(N logN). Let Cd[] be the
result of that convolution with d = max{x, y}+ 1. Then we know that if Cd[p] 6= 0 then
the point p may have the depth d. So we just make a linear loop over Cd[p] and check if
Cd[p] 6= 0 and V [p] > d then V [p] = d. We should repeat the above for all combinations
of x, y = 0, . . . ,maxD, each step of which has the complexity O(N logN). The value of
maxDelay can also be determined in the beginning of the algorithm linearly. Also note
that maxDelay may be different for A and B, so that x and y may have different ranges.

B.1.3 ConvolutionXOR() in O(|S|2) time

When constructing the vector V1 from the initial V0 is it worth to do the classical way and
run through pairs of points of S, instead of doing the full scale convolution over N points.
However, the number of newly generated points grows very rapidly and this method can
only be applied to the very first V s (in our experiments we have seen some “win” only in
V1, then for further Vk, k > 1 we have used our SIMD optimized convolution algorithms).

B.2 Alternative equations for INV block
In case we want to avoid multiplexers in the INV block then there is an alternative set
of equations that we also present in this section. We have considered each expression
independently, using a general depth 3 expression:

Yi = ((Xa op1 Xb) op5 (Xc op2 Xd)) op7 ((Xe op3 Xf) op6 (Xg op4 Xh)),

28 New Circuit Minimization Techniques for Smaller and Faster AES SBoxes

where Xa−h are terms from {0, 1, X0, X1, X2, X3} and op1−7 are operators from the
set of standard gates {AND, OR, XOR, NAND, NOR, XNOR}. Note that the above does not
need to have all terms, for example, the expression AND(x, x) is simply x.

The exhaustive search can be organized as follows. Let us have an object Term which
consists of a truth table TT of length 16 bits, based on the 4 bits X0, . . . , X3, and a Boolean
function that is associated with the term. We start with the initial set of available terms
T (0) = {0, 1, X0, . . . , X3}, and then construct an expression for a chosen Yi iteratively.
Assume at some step k we have the set of available terms T (k), then the next set of terms
and associated expressions can be obtained as:

T (k+1) = {T (k), T (k) operator T (k)},

taking care of unique terms. At some step k we will get one or more term(s) whose TTs
are equal to target TTs (Yis).

Since we could actually get multiple Boolean functions for each Yi, we should select
only the “best” functions following the criteria: there are no NOT gates (due to better
sharing capabilities), there is a maximum number of gates that can be shared between the
4 expressions for Y0, . . . , Y3, and the area/depth in terms of GE is small.

Using this technique, we have found a depth 3, 15 gates solution for the inversion. The
equations are given below, where we also provide depth 3 solutions for the additional 5
signals {Y01, Y23, Y02, Y13, Y00} such that they can share a lot of gates in the mentioned
scenarios S0-S5.

Y0 = xnor(and(X0, X2) , nand(nand(X1, X2), xor(X2, X3)))
Y1 = xor(nand(xor(X2, X3), X1) , nor(and(X0, X2), X3))
Y2 = xnor(and(X0, X2) , nand(xor(X0, X1), nand(X0, X3)))
Y3 = xor(nand(xor(X0, X1), X3) , nor(and(X0, X2), X1))
Y01 = nand(nand(xor(X2, X3), X1) , nand(nand(X0, X3), X2))
Y23 = nand(nand(xor(X0, X1), X3) , nand(nand(X1, X2), X0))
Y13 = xor(nor(and(X0, X2), xnor(X1, X3)), xor(nand(X0, X3), nand(X1, X2)))
Y02 = xor(nand(xor(X2, X3), nand(X1, X2)), nand(xor(X0, X1), nand(X0, X3)))
Y00 = and(nand(and(X0, X2), xnor(X1, X3)), nor(nor(X0, X2), and(X1, X3)))

Listing 1: INV refactored, without multiplexers.

When implementing the above circuits for the scenarios S0-S5, and sharing the gates
in a best possible way, we then got the results shown in Table 7.

Table 7: Alternative INV block and scenarios S0-S5.
INV S0 S1 S2 S3 S4 S5

Std. area (gates) 15 20 22 23 25 25 29
Std. depth (gates) 3 5 4 4 4 4 3
Tech. area (GE) 23.31 34.96 34.30 40.62 40.62 39.96 43.29
Tech. depth(XORs) 2.42 4.42 3.42 3.54 3.42 2.84 2.54

C Inverse SBoxes
The stand-alone inverse SBox is as far as we know, not used very much. But we provide
the comparison with previously known solutions in Table 8.

Alexander Maximov and Patrik Ekdahl 29

Table 8: Inverse SBox: Comparison of the results.
Inverse SBox Area Size/Gates Critical Path/Depth

Std. gates Tech. GE Std. gates Tech. XORs
Previous Results
Canright [Can05]’05 81XO+34ND+6NR –-
most famous design 121 228.73 25? ?
Boyar et al. [BP12]’12 93XO+34AD 13XO+3AD
our starting point 127 261.91 16 14.932

Our Results
Inverse (fast) 68XO+10XN+41ND+5NR+6MX 7XO+1XN+1ND+2NR+1MX
fast with depth 12 130 241.72 12 10.270
Inverse (tradeoff) 64XO+4XN+27ND+5NR+8MX+2MI (+1IV) 9XO+1XN+1ND+2NR+1MX
area/speed tradeoff 110(+1) 215.09 14 12.270
Inverse (bonus) 56XO+7XN+27ND+5NR+6MX (+1IV) 19XO+2XN+1ND+2NR+1MX
new record smallest 101(+1) 193.44 25 23.263

D Circuits
D.1 Preliminaries
In the below listings we present 9 circuits for the forward, inverse, and combined SBoxes
that utilize two architectures A(small) and D(fast).

The used symbols are:

• ##comment – a comment line

• @filename – means that we should include the code from another file `filename',
the listing of which is then given in this section as well.

• a ^ b – is the usual XOR gate, other gates are explicitly denoted and taken from the
set of {XNOR, AND, NAND, OR, NOR, MUX, NMUX, NOT}

• (a op b) – where the order of execution (the order of gate connections) is important
we specify it by brackets.

The input to all SBoxes are the 8 signals {U0..U7} and the output are the 8 signals
{R0..R7}. The input and output bits are represented in Big Endian bit order. For
combined SBoxes the input has additional signals ZF and ZI where ZF=1 if we perform the
forward SBox and ZF=0 if inverse, otherwise; the signal ZI is the complement of ZF. We
have tested all the proposed circuits and verified their correctness.

The circuits are divided into sub-programs, according to Figure 3. In Section D.2 we
describe the common shared components, and then for each solution we give components
(common or specific) for the circuits.

D.2 Shared components

File: mulx.a
T20 = NAND(Q6, Q12)
T21 = NAND(Q3, Q14)
T22 = NAND(Q1, Q16)

T10 = (NOR(Q3, Q14) ^ NAND(Q0, Q7))
T11 = (NOR(Q4, Q13) ^ NAND(Q10, Q11))
T12 = (NOR(Q2, Q17) ^ NAND(Q5, Q9))

T13 = (NOR(Q8, Q15) ^ NAND(Q2, Q17))

X0 = T10 ^ (T20 ^ T22)
X1 = T11 ^ (T21 ^ T20)
X2 = T12 ^ (T21 ^ T22)
X3 = T13 ^ (T21 ^ NAND(Q4, Q13))

File: 8xor4.d

30 New Circuit Minimization Techniques for Smaller and Faster AES SBoxes

R0 = (K0 ^ K1) ^ (K2 ^ K3)
R1 = (K4 ^ K5) ^ (K6 ^ K7)
R2 = (K8 ^ K9) ^ (K10 ^ K11)
R3 = (K12 ^ K13) ^ (K14 ^ K15)

R4 = (K16 ^ K17) ^ (K18 ^ K19)
R5 = (K20 ^ K21) ^ (K22 ^ K23)
R6 = (K24 ^ K25) ^ (K26 ^ K27)
R7 = (K28 ^ K29) ^ (K30 ^ K31)

Listing 2: MULX/8XOR4: Shared components.

File: inv.a
T0 = NAND(X0, X2)
T1 = NOR(X1, X3)
T2 = XNOR(T0, T1)
Y0 = MUX(X2, T2, X3)
Y2 = MUX(X0, T2, X1)
T3 = MUX(X1, X2, 1)
Y1 = MUX(T2, X3, T3)
T4 = MUX(X3, X0, 1)
Y3 = MUX(T2, X1, T4)

File: s0.a
@inv.a
Y02 = Y2 ^ Y0
Y13 = Y3 ^ Y1
Y23 = Y3 ^ Y2
Y01 = Y1 ^ Y0
Y00 = Y02 ^ Y13

File: s1.a
@inv.a
T5 = MUX(X0, T0, X3)
Y23 = MUX(X1, T5, X0)
T6 = NMUX(T3, X2, X3)
Y01 = NMUX(T0, T6, X3)
Y02 = Y2 ^ Y0
Y13 = Y3 ^ Y1
Y00 = Y01 ^ Y23

File: s2.a
T0 = XNOR(X1, X3)
T1 = OR(X1, X3)
T2 = XOR(X0, X2)
T3 = XOR(T1, T2)
Y0 = MUX(X2, T3, X3)
Y2 = MUX(X0, T3, X1)

T4 = MUX(T2, X3, T0)
Y3 = MUX(T4, X0, X1)
T5 = NMUX(X1, X0, X2)
Y02 = MUX(T0, T2, T5)
T6 = MUX(X0, T0, X1)
Y1 = MUX(T6, X2, X3)
T7 = NMUX(X2, X3, X1)
Y13 = NMUX(T2, T7, T0)
Y23 = Y3 ^ Y2
Y01 = Y1 ^ Y0
Y00 = Y02 ^ Y13

File: s3.a
T0 = XNOR(X1, X3)
T1 = OR(X1, X3)
T2 = XNOR(X0, X2)
T3 = XNOR(T1, T2)
Y0 = MUX(X2, T3, X3)
Y2 = MUX(X0, T3, X1)
T4 = MUX(T2, T0, X3)
Y3 = MUX(T4, X0, X1)
T5 = MUX(T2, X0, T1)
Y00 = NMUX(T5, T0, T2)
T6 = MUX(T2, T0, X1)
Y1 = MUX(T6, X2, X3)
Y02 = Y2 ^ Y0
Y13 = Y3 ^ Y1
Y23 = Y3 ^ Y2
Y01 = Y1 ^ Y0

File: s4.a
T0 = NAND(X0, X2)
T1 = NOR(X1, X3)
T2 = NMUX(X2, T1, X3)
Y0 = XOR(T0, T2)
T3 = MUX(X0, T1, X1)

Y2 = XNOR(T0, T3)
Y02 = XNOR(T2, T3)
T4 = MUX(X3, X0, T0)
T5 = MUX(X1, X2, T0)
Y13 = XOR(T4, T5)
T6 = XOR(X3, T0)
Y3 = MUX(T6, X1, X0)
T7 = MUX(X0, T0, X3)
Y23 = MUX(X1, T7, X0)
T8 = NMUX(T0, X1, T1)
Y1 = MUX(T8, X3, X2)
T9 = MUX(X2, T0, X1)
Y01 = MUX(X3, T9, X2)
Y00 = Y02 ^ Y13

File: s5.a
T0 = XOR(X0, X2)
T1 = XNOR(X1, X3)
T2 = OR(X1, X3)
T3 = XOR(T0, T2)
Y0 = MUX(X2, T3, X3)
Y2 = MUX(X0, T3, X1)
T4 = MUX(X2, T1, X3)
Y3 = MUX(T4, X0, X1)
T5 = MUX(T0, X1, T1)
Y1 = MUX(T5, X2, X3)
T6 = NMUX(T1, T0, X0)
Y00 = NMUX(T3, T6, T1)
T7 = MUX(X0, T0, T1)
Y23 = MUX(X1, T7, X0)
Y13 = NMUX(T5, T6, T7)
T8 = MUX(X1, X0, X2)
Y02 = NMUX(T1, T6, T8)
T9 = MUX(X2, T0, T1)
Y01 = MUX(X3, T9, X2)

Listing 3: INV/S0-S5: Shared components.

An alternative set of equations for the INV block is given in Appendix B.2.

File: muln.a
N0 = NAND(Y01, Q11)
N1 = NAND(Y0 , Q12)
N2 = NAND(Y1 , Q0)
N3 = NAND(Y23, Q17)
N4 = NAND(Y2 , Q5)
N5 = NAND(Y3 , Q15)
N6 = NAND(Y13, Q14)

N7 = NAND(Y00, Q16)
N8 = NAND(Y02, Q13)
N9 = NAND(Y01, Q7)
N10 = NAND(Y0 , Q10)
N11 = NAND(Y1 , Q6)
N12 = NAND(Y23, Q2)
N13 = NAND(Y2 , Q9)
N14 = NAND(Y3 , Q8)

N15 = NAND(Y13, Q3)
N16 = NAND(Y00, Q1)
N17 = NAND(Y02, Q4)

File: mull.d
K0 = NAND(Y0, L0)
K12 = NAND(Y0, L12)
K16 = NAND(Y0, L16)
K20 = NAND(Y0, L20)

Alexander Maximov and Patrik Ekdahl 31

K1 = NAND(Y1, L1)
K5 = NAND(Y1, L5)
K9 = NAND(Y1, L9)
K13 = NAND(Y1, L13)
K17 = NAND(Y1, L17)
K21 = NAND(Y1, L21)
K25 = NAND(Y1, L25)
K29 = NAND(Y1, L29)

K2 = NAND(Y2, L2)
K6 = NAND(Y2, L6)
K10 = NAND(Y2, L10)
K14 = NAND(Y2, L14)
K18 = NAND(Y2, L18)

K22 = NAND(Y2, L22)
K26 = NAND(Y2, L26)
K30 = NAND(Y2, L30)

K3 = NAND(Y3, L3)
K7 = NAND(Y3, L7)
K11 = NAND(Y3, L11)
K15 = NAND(Y3, L15)
K19 = NAND(Y3, L19)
K23 = NAND(Y3, L23)
K27 = NAND(Y3, L27)
K31 = NAND(Y3, L31)

File: mull.f
K4 = AND(Y0, L4)

K8 = AND(Y0, L8)
K24 = AND(Y0, L24)
K28 = AND(Y0, L28)

File: mull.i
K4 = NAND(Y0, L4)
K8 = NAND(Y0, L8)
K24 = NAND(Y0, L24)
K28 = NAND(Y0, L28)

File: mull.c
K4 = NAND(Y0, L4) ^ ZF
K8 = NAND(Y0, L8) ^ ZF
K24 = NAND(Y0, L24) ^ ZF
K28 = NAND(Y0, L28) ^ ZF

Listing 4: MULN/MULL: Shared components.

D.3 Forward SBox (fast)

Forward (fast)
@ftop.d
@mulx.a
@inv.a
@mull.f
@mull.d
@8xor4.d

File: ftop.d
Exhaustive

search↪→

Z18 = U1 ^ U4
L28 = Z18 ^ U6
Q0 = U2 ^ L28
Z96 = U5 ^ U6
Q1 = U0 ^ Z96
Z160= U5 ^ U7

Q2 = U6 ^ Z160
Q11 = U2 ^ U3
L6 = U4 ^ Z96
Q3 = Q11 ^ L6
Q16 = U0 ^ Q11
Q4 = Q16 ^ U4
Q5 = Z18 ^ Z160
Z10 = U1 ^ U3
Q6 = Z10 ^ Q2
Q7 = U0 ^ U7
Z36 = U2 ^ U5
Q8 = Z36 ^ Q5
L19 = U2 ^ Z96
Q9 = Z18 ^ L19
Q10 = Z10 ^ Q1
Q12 = U3 ^ L28
Q13 = U3 ^ Q2

L10 = Z36 ^ Q7
Q14 = U6 ^ L10
Q15 = U0 ^ Q5
L8 = U3 ^ Q5
L12 = Q16 ^ Q2
L16 = U2 ^ Q4
L15 = U1 ^ Z96
L31 = Q16 ^ L15
L5 = Q12 ^ L31
L13 = U3 ^ Q8
L17 = U4 ^ L10
L29 = Z96 ^ L10
L14 = Q11 ^ L10
L26 = Q11 ^ Q5
L30 = Q11 ^ U6
L7 = Q12 ^ Q1
L11 = Q12 ^ L15

L27 = L30 ^ L10
Q17 = U0
L0 = Q10
L4 = U6
L20 = Q0
L24 = Q16
L1 = Q6
L9 = U5
L21 = Q11
L25 = Q13
L2 = Q9
L18 = U1
L22 = Q15
L3 = Q8
L23 = U0

Listing 5: Forward SBox with the smallest delay (fast)

D.4 Forward SBox (tradeoff)

Forward
(tradeoff)↪→

@ftop.a
@mulx.a
@s1.a
@muln.a
@fbot.a

File: ftop.a
Exhaustive

search↪→

Z6 = U1 ^ U2
Q12 = Z6 ^ U3

Q11 = U4 ^ U5
Q0 = Q12 ^ Q11
Z9 = U0 ^ U3
Z80 = U4 ^ U6
Q1 = Z9 ^ Z80
Q7 = Z6 ^ U7
Q2 = Q1 ^ Q7
Q3 = Q1 ^ U7
Q13 = U5 ^ Z80
Q5 = Q12 ^ Q13
Z66 = U1 ^ U6
Z114= Q11 ^ Z66

Q6 = U7 ^ Z114
Q8 = Q1 ^ Z114
Q9 = Q7 ^ Z114
Q10 = U2 ^ Q13
Q16 = Z9 ^ Z66
Q14 = Q16 ^ Q13
Q15 = U0 ^ U2
Q17 = Z9 ^ Z114
Q4 = U7

File: fbot.a
Probabilistic

heuristic↪→

H0 = N3 ^ N8
H1 = N5 ^ N6
H2 = XNOR(H0, H1)
H3 = N1 ^ N4
H4 = N9 ^ N10
H5 = N13 ^ N14
H6 = N15 ^ H4
H7 = N0 ^ H3
H8 = N17 ^ H5
H9 = N3 ^ H7
H10 = N15 ^ N17
H11 = N9 ^ N11

32 New Circuit Minimization Techniques for Smaller and Faster AES SBoxes

H12 = N12 ^ N14
H13 = N1 ^ N2
H14 = N5 ^ N16
H15 = N7 ^ H11
H16 = H10 ^ H11
H17 = N16 ^ H8
H18 = H6 ^ H8

H19 = H10 ^ H12
H20 = N2 ^ H3
H21 = H6 ^ H14
H22 = N8 ^ H12
H23 = H13 ^ H15

R0 = XNOR(H16,
H2)↪→

R1 = H2
R2 = XNOR(H20,

H21)↪→

R3 = XNOR(H17,
H2)↪→

R4 = XNOR(H18,
H2)↪→

R5 = H22 ^ H23
R6 = XNOR(H19,

H9)↪→

R7 = XNOR(H9 ,
H18)↪→

Listing 6: Forward SBox circuit with area/depth trade-off (tradeoff)

D.5 Forward SBox (bonus)
We include these bonus circuits just to update the world record for the smallest SBox.
The new record is 102 gates with depth 24.

Forward (bonus)
@ftop.b
@mulx.a
@s0.a
@muln.a
@fbot.b

File: ftop.b
Z24 = U3 ^ U4
Q17 = U1 ^ U7
Q16 = U5 ^ Q17
Q0 = Z24 ^ Q16
Z66 = U1 ^ U6
Q7 = Z24 ^ Z66

Q2 = U2 ^ Q0
Q1 = Q7 ^ Q2
Q3 = U0 ^ Q7
Q4 = U0 ^ Q2
Q5 = U1 ^ Q4
Q6 = U2 ^ U3
Q10 = Q6 ^ Q7
Q8 = U0 ^ Q10
Q9 = Q8 ^ Q2
Q12 = Z24 ^ Q17
Q15 = U7 ^ Q4
Q13 = Z24 ^ Q15
Q14 = Q15 ^ Q0
Q11 = U5

File: fbot.b
H0 = N1 ^ N5
H1 = N4 ^ H0
R2 = XNOR(N2, H1)
H2 = N9 ^ N15
H3 = N11 ^ N17
R6 = XNOR(H2, H3)
H4 = N11 ^ N14
H5 = N9 ^ N12
R5 = H4 ^ H5
H6 = N16 ^ H2
H7 = R2 ^ R6
H8 = N10 ^ H7
R7 = XNOR(H6, H8)

H9 = N8 ^ H1
H10 = N13 ^ H8
R3 = H5 ^ H10
H11 = H9 ^ H10
H12 = N7 ^ H11
H13 = H4 ^ H12
R4 = N1 ^ H13
H14 = XNOR(N0, R7)
H15 = H9 ^ H14
H16 = H7 ^ H15
R1 = XNOR(N6, H16)
H17 = N4 ^ H14
H18 = N3 ^ H17
R0 = H13 ^ H18

Listing 7: Forward SBox circuit with the smallest number of gates (bonus)

D.6 Combined SBox (fast)

Combined (fast)
@ctop.d
@mulx.a
@inv.a
@mull.c
@mull.d
@8xor4.d

File: ctop.d
Floating multiplexers
A0 = XNOR(U2, U4)
A1 = XNOR(U1, A0)
A2 = XNOR(U5, U7)
A3 = U0 ^ U5
A4 = XNOR(U3, U6)
A5 = U2 ^ U6
A6 = NMUX(ZF, A4, U1)
Q11 = A5 ^ A6
Q16 = U0 ^ Q11
A7 = U3 ^ A1
L24 = MUX(ZF, Q16, A7)

A8 = NMUX(ZF, A3, U6)
L5 = A0 ^ A8
L11 = Q16 ^ L5
A9 = MUX(ZF, U2, U6)
A10 = XNOR(A2, A9)
Q5 = A1 ^ A10
Q15 = U0 ^ Q5
A11 = U2 ^ U3
A12 = NMUX(ZF, A2, A11)
Q13 = A6 ^ A12
Q12 = Q5 ^ Q13
A13 = A5 ^ A12
Q0 = Q5 ^ A13
Q14 = U0 ^ A13
A14 = XNOR(U3, A3)
A15 = NMUX(ZF, A0, U3)
A16 = XNOR(U5, A15)
Q3 = A4 ^ A16
L6 = Q11 ^ Q3
A17 = U2 ^ A10

Q7 = XNOR(A8, A17)
A18 = NMUX(ZF, A14, A2)
Q1 = XNOR(A4, A18)
Q4 = XNOR(A16, A18)
L7 = Q12 ^ Q1
L8 = Q7 ^ L7
A19 = NMUX(ZF, U1, A4)
A20 = XNOR(U6, A19)
Q9 = XNOR(A16, A20)
Q10 = A18 ^ A20
L9 = Q0 ^ Q9
A21 = U1 ^ A2
A22 = NMUX(ZF, A21, A5)
Q2 = A20 ^ A22
Q6 = XNOR(A4, A22)
Q8 = XNOR(A16, A22)
A23 = XNOR(Q5, Q9)
L10 = XNOR(Q1, A23)
L4 = Q14 ^ L10
A24 = NMUX(ZF, Q2, L4)

Alexander Maximov and Patrik Ekdahl 33

L12 = XNOR(Q16, A24)
L25 = XNOR(U3, A24)
A25 = MUX(ZF, L10, A3)
L17 = U4 ^ A25
A26 = MUX(ZF, A10, Q4)
L14 = L24 ^ A26
L23 = A25 ^ A26
A27 = MUX(ZF, A1, U5)
L30 = Q12 ^ A27
A28 = NMUX(ZF, L10, L5)
L21 = XNOR(L14, A28)
L27 = XNOR(L30, A28)
A29 = XNOR(U5, L4)

L29 = A28 ^ A29
L15 = A19 ^ A29
A30 = XNOR(A3, A10)
L18 = NMUX(ZF, A19, A30)
A31 = XNOR(A7, A21)
L16 = A25 ^ A31
L26 = L18 ^ A31
A32 = MUX(ZF, U7, A5)
L13 = A7 ^ A32
A33 = NMUX(ZF, A15, U0)
L19 = XNOR(L6, A33)
A34 = NOR(ZF, U6)
L20 = Q0 ^ A34

A35 = XNOR(A4, A8)
L28 = XNOR(L7, A35)
A36 = NMUX(ZF, Q6, L11)
L31 = A30 ^ A36
A37 = MUX(ZF, L26, A0)
L22 = Q16 ^ A37
Q17 = U0
L0 = Q10
L1 = Q6
L2 = Q9
L3 = Q8

Listing 8: Combined SBox circuit with the smallest delay

D.7 Combined SBox (tradeoff)

Combined (tradeoff)
@ctop.a
@mulx.a
@s1.a
@muln.a
@cbot.a

File: ctop.a
Floating multiplexers
A0 = XNOR(U0, U6)
Q1 = XNOR(U1, ZF)
A1 = U2 ^ U5
A2 = XNOR(U3, U4)
A3 = XNOR(U3, U7)
A4 = MUX(ZF, A2, U2)
A5 = A0 ^ A1
Q6 = A4 ^ A5
A6 = XNOR(Q1, A1)
A7 = NMUX(ZF, U0, A3)
Q4 = A5 ^ A7
Q3 = Q1 ^ Q4
A8 = NMUX(ZF, U6, A2)
A9 = Q1 ^ A3
Q9 = A8 ^ A9
Q10 = Q4 ^ Q9
A10 = XNOR(A4, A7)
Q7 = XNOR(Q9, A10)
Q8 = XNOR(Q1, A10)
A11 = XNOR(U0, U2)
Q0 = ZF ^ A11
A12 = U1 ^ U3
A13 = A1 ^ A12
A14 = MUX(ZF, A13, A11)
Q15 = U4 ^ A14
A15 = NMUX(ZF, U5, A0)

Q5 = XNOR(A14, A15)
Q17 = XNOR(U4, A15)
A16 = MUX(ZF, A5, A2)
Q16 = XNOR(A13, A16)
A17 = A3 ^ A8
Q2 = XNOR(A10, A17)
A18 = U4 ^ U6
A19 = U1 ^ U2
Q11 = Q6 ^ A19
A20 = MUX(ZF, A18, A19)
Q13 = U5 ^ A20
A21 = XNOR(U4, Q0)
Q14 = XNOR(A14, A21)
A22 = XNOR(A4, A6)
Q12 = XNOR(U6, A22)

File: cbot.a
Probabilistic heuristic
H1 = N1 ^ N3
H3 = N15 ^ N17
H4 = N12 ^ N13
H5 = N0 ^ H1
H6 = N7 ^ N8
H8 = N10 ^ N11
H9 = H4 ^ H8
S4 = H3 ^ H9
H10 = N12 ^ N14
H11 = N16 ^ H8
S14 = N17 ^ H11
H12 = N1 ^ N2
H13 = N3 ^ N5
H14 = N4 ^ N5
H15 = N9 ^ N11
H16 = N6 ^ H13
H17 = H6 ^ H14

H18 = N4 ^ H5
H30 = H18 ^ ZF
S1 = H17 ^ H30
H19 = H3 ^ H15
S6 = XNOR(H18, H19)
S11 = H17 ^ H19
H20 = H10 ^ H15
S0 = XNOR(S6, H20)
S5 = H17 ^ H20
H21 = N7 ^ H12
H22 = H16 ^ H21
S12 = H20 ^ H22
S13 = S4 ^ H22
H23 = N15 ^ N16
H24 = N9 ^ N10
H25 = N8 ^ H24
H26 = H12 ^ H14
S7 = XNOR(S4, H26)
H27 = H4 ^ H23
S2 = H30 ^ H27
H28 = N8 ^ H16
S3 = S14 ^ H28
H29 = H21 ^ H25
S15 = H23 ^ H29

R0 = S0
R1 = S1
R2 = S2
R3 = MUX(ZF, S3, S11)
R4 = MUX(ZF, S4, S12)
R5 = MUX(ZF, S5, S13)
R6 = MUX(ZF, S6, S14)
R7 = MUX(ZF, S7, S15)

Listing 9: Combined SBox circuit with a good area/depth trade-off (tradeoff)

34 New Circuit Minimization Techniques for Smaller and Faster AES SBoxes

D.8 Combined SBox (bonus)

Combined (bonus)
@ctop.b
@mulx.a
@s0.a
@muln.a
@cbot.b

File: ctop.b
Floating multiplexers
A0 = XNOR(U3, U6)
Q15 = XNOR(U1, ZF)
A1 = U5 ^ Q15
A2 = U2 ^ A0
A3 = U4 ^ A1
A4 = U4 ^ U6
A5 = MUX(ZF, A2, A4)
Q4 = XNOR(A3, A5)
Q0 = U0 ^ Q4
Q14 = Q15 ^ Q0
A6 = XNOR(U0, U2)
Q3 = ZF ^ A6
Q1 = Q4 ^ Q3
A7 = MUX(ZF, U1, Q0)
Q6 = XNOR(A5, A7)
Q8 = Q3 ^ Q6
A8 = MUX(ZF, Q1, A4)
Q9 = U6 ^ A8

Q2 = Q8 ^ Q9
Q10 = Q4 ^ Q9
Q7 = Q6 ^ Q10
A9 = MUX(ZF, A0, U4)
Q12 = XNOR(U7, A9)
Q11 = Q0 ^ Q12
A10 = MUX(ZF, A6, Q12)
A11 = A2 ^ A10
A12 = A4 ^ A11
Q5 = Q0 ^ A12
Q13 = Q11 ^ A12
Q17 = Q14 ^ A12
Q16 = Q14 ^ Q13

File: cbot.b
H0 = N9 ^ N10
H1 = N16 ^ H0
H2 = N4 ^ N5
S4 = N7 ^ (N8 ^ H2)
H4 = N0 ^ N2
H6 = N15 ^ H1
H7 = H4 ^ (N3 ^ N5)
H20= H6 ^ ZF
S2 = H20 ^ H7
S14 = S4 ^ H7
H8 = N13 ^ H0
H9 = N12 ^ H8

S1 = H20 ^ H9
H10 = N17 ^ H1
H12 = H2 ^ (N1 ^ N2)
S0 = H6 ^ H12
S5 = N6 ^ (H9 ^ (N8 ^

H4))↪→

S11 = H12 ^ S5
S6 = S1 ^ S11
H15 = N14 ^ H10
H16 = H8 ^ H15
S12 = S5 ^ H16
S7 = XNOR(S4, H10 ^ (N9 ^

N11))↪→

H19 = XNOR(H7, S7)
S3 = H16 ^ H19
S15 = S11 ^ H19
S13 = S4 ^ (N12 ^ H15)
R0 = S0
R1 = S1
R2 = S2
R3 = MUX(ZF, S3, S11)
R4 = MUX(ZF, S4, S12)
R5 = MUX(ZF, S5, S13)
R6 = MUX(ZF, S6, S14)
R7 = MUX(ZF, S7, S15)

Listing 10: Combined SBox circuit with the smallest number of gates (bonus)

D.9 Inverse SBox (fast)

Inverse (fast)
@itop.d
@mulx.a
@inv.a
@mull.i
@mull.d
@8xor4.d

File: itop.d
Exhaustive

search↪→

Q8 = XNOR(U1, U3)
Q0 = Q8 ^ U5
Q1 = U6 ^ U7
Q7 = U3 ^ U4
Q2 = Q7 ^ Q1

Q3 = U0 ^ U4
Q4 = Q3 ^ Q1
Q5 = XNOR(U1, Q3)
Q10 = XNOR(U0, U1)
Q6 = Q10 ^ Q7
Q9 = Q10 ^ Q4
L12 = U4 ^ U5
Z132= U2 ^ U7
Q11 = L12 ^ Z132
Q12 = Q0 ^ Q11
L27 = U3 ^ Z132
Q13 = U0 ^ L27
Q14 = XNOR(Q10,

U2)↪→

Q15 = Q14 ^ Q0
Q16 = XNOR(Q8, U7)

Q17 = Q16 ^ Q11
L23 = Q15 ^ Z132
L0 = U0 ^ L23
L3 = Q11 ^ Q2
L4 = Q6 ^ L3
L16 = Q3 ^ L27
L1 = XNOR(U2, U3)
L6 = L1 ^ Q0
L20 = L6 ^ Q2
L15 = XNOR(U2, Q6)
L24 = U0 ^ L15
L5 = L27 ^ Q2
L19 = Q14 ^ U5
L26 = Q3 ^ L3
L13 = L19 ^ L26
L17 = U0 ^ L12

L21 = XNOR(U1, Q1)
L25 = Q5 ^ L3
L14 = U3 ^ Q12
L18 = U0 ^ Q1
L22 = XNOR(Q5, U6)
L8 = Q11
L28 = Q7
L9 = Q12
L29 = Q10
L2 = U5
L10 = Q17
L30 = Q2
L7 = U4
L11 = Q5
L31 = Q9

Listing 11: Forward SBox with the smallest delay (fast)

Alexander Maximov and Patrik Ekdahl 35

D.10 Inverse SBox (tradeoff)

Inverse
(tradeoff)↪→

@itop.a
@mulx.a
@s1.a
@muln.a
@ibot.a

File: itop.a
Exhaustive

search↪→

Z20 = U2 ^ U4
Z129= U0 ^ U7
Q0 = Z20 ^ Z129
Q4 = U1 ^ Z20
Z66 = U1 ^ U6
Q3 = U3 ^ Z66
Q1 = Q4 ^ Q3

Q2 = U6 ^ Z129
Z40 = U3 ^ U5
Z132= U2 ^ U7
Q6 = Z40 ^ Z132
Q5 = U0 ^ Q6
Q7 = U3 ^ Q0
Q17 = Z66 ^ Z132
Q8 = U5 ^ Q17
Z33 = U0 ^ U5
Q10 = U4 ^ Z33
Q9 = Q4 ^ Q10
Q12 = XNOR(U4,

Z129)↪→

Q13 = XNOR(Z20,
Z40)↪→

Q16 = XNOR(Z66,
U7)↪→

Q14 = Q13 ^ Q16

Q15 = Z33 ^ Q3
Q11 = NOT(U2)

File: ibot.a
Probabilistic

heuristic↪→

H0 = N2 ^ N14
H1 = N1 ^ N5
H2 = N10 ^ N11
H3 = N13 ^ H0
H4 = N16 ^ N17
H5 = N1 ^ H2
H6 = N4 ^ H1
H7 = N0 ^ H4
H8 = N15 ^ N16
H9 = N9 ^ N10
H10 = N6 ^ N8
H11 = H3 ^ H6

H12 = N7 ^ N12
H13 = N8 ^ H0
H14 = N3 ^ N5
H15 = H5 ^ H8
H16 = N6 ^ N7
H17 = H12 ^ H13
H18 = H5 ^ H16
H19 = H3 ^ H10
H20 = H10 ^ H14

R0 = H7 ^ H18
R1 = H7 ^ H19
R2 = H2 ^ H11
R4 = H8 ^ H9
R3 = R4 ^ H20
R5 = N2 ^ H6
R6 = H15^ H17
R7 = H4 ^ H11

Listing 12: Inverse SBox circuit with good area/depth trade-off (tradeoff)

Note: the above ‘NOT(U2)’ in the file ‘itop.a’ is removable by setting Q11=U2 and
accurately negating some of the gates and variables downwards where Q11 is involved.
For example, the variable Y01 should be negated as well due to: N0 = NAND(Y01, Q11);
consequently, all gates involving Y01 should be negated, leading to negation of other Q
variables, and so on.

D.11 Inverse SBox (bonus)

Inverse (bonus)
@itop.b
@mulx.a
@s0.a
@muln.a
@ibot.b

File: itop.b
Z33 = U0 ^ U5
Z3 = U0 ^ U1
Q1 = XNOR(Z3, U3)
Q16 = XNOR(Z33,

U6)↪→

Q17 = XNOR(U1,
Q16)↪→

Q8 = U4 ^ Q17
Q3 = XNOR(U2, Z33)
Q4 = Q1 ^ Q3
Q15 = XNOR(U4, U7)
Q10 = U3 ^ Q15
Q9 = Q4 ^ Q10
Q2 = Q8 ^ Q9
Q7 = Q1 ^ Q2
Q0 = Z33 ^ Q7
Q5 = Q17 ^ Q15
Q6 = Q3 ^ Q8
Q12 = XNOR(U1, Q0)
Q14 = Q15 ^ Q0
Q13 = Q16 ^ Q14

Q11 = NOT(U1)

File: ibot.b
H0 = N4 ^ N5
H1 = N1 ^ N2
R6 = H0 ^ H1
H2 = N13 ^ N14
H3 = R6 ^ H2
H4 = N17 ^ H3
R0 = N16 ^ H4
H5 = N15 ^ H4
H6 = N10 ^ N11
R3 = H3 ^ H6
H7 = N9 ^ H5
R5 = N10 ^ H7

H8 = N8 ^ H0
H9 = N6 ^ H8
H10 = N7 ^ R3
H11 = N1 ^ R0
H12 = N0 ^ H11
R2 = H9 ^ H12
H13 = H8 ^ H10
R1 = R2 ^ H13
H14 = H5 ^ H13
H15 = N13 ^ H14
R7 = N12 ^ H15
H16 = N4 ^ H9
H17 = R5 ^ H16
R4 = N3 ^ H17

Listing 13: Inverse SBox circuit with the smallest number of gates (bonus)

	Introduction
	Preliminaries
	Circuits for binary linear system of equations
	Basic problem statement
	Cancellation-free heuristics
	Cancellation-allowed heuristic
	Exhaustive search methods
	Remarks

	System of linear circuits with multiplexers
	Floating multiplexers
	New generic heuristic technique for linear systems with floating multiplexers

	Architectural improvements
	Two SBox architectures – Area and Depth
	Six different scenarios of MULN
	INV. Inversion over GF(24)
	Additional Transformation Matrices (ATM)

	Results and comparisons
	Synthesis results
	Forward SBoxes
	Combined SBoxes

	Conclusions
	Acknowledgements
	Area and speed measurement methods
	Standard method
	Technology method

	Algorithmic details and improvements
	On the computation of (S,ti) in Section 4.2.5
	Alternative equations for INV block

	Inverse SBoxes
	Circuits
	Preliminaries
	Shared components
	Forward SBox (fast)
	Forward SBox (tradeoff)
	Forward SBox (bonus)
	Combined SBox (fast)
	Combined SBox (tradeoff)
	Combined SBox (bonus)
	Inverse SBox (fast)
	Inverse SBox (tradeoff)
	Inverse SBox (bonus)

