Cryptanalysis of Round-Reduced KECCAK
using Non-Linear Structures

Mahesh Sreekumar Rajasree

Center for Cybersecurity, Indian Institute of Technology Kanpur, India
mahesr@iitk.ac.in

Abstract. In this paper, we present new preimage attacks on KECCAK-
384 and KECCAK-512 for 2, 3 and 4 rounds. The attacks are based on
non-linear structures (structures that contain quadratic terms). These
structures were studied by Guo et al. [I] and Li et al. [2] [3] to give
preimage attacks on round reduced KECCAK. We carefully construct
non-linear structures such that the quadratic terms are not spread across
the whole state. This allows us to create more linear equations between
the variables and hash values, leading to better preimage attacks. As
a result, we present the best theoretical preimage attack on KECCAK-
384 and KECCAK-512 for 2 and 3-rounds and also KECCAK-384 for
4-rounds.

Keywords: KECCAK, SHA-3, hash function, cryptanalysis, preimage
attack

1 Introduction

Cryptographic hash functions are widely used in modern cryptography such as in
digital signatures, message integrity and authentication. The U.S. National Insti-
tute of Standards and Technology (NIST) announced the “NIST hash function
competition” for the Secure Hash Algorithm-3 (SHA-3) in 2006. They received
64 proposals from around the world. Among these, KECCAK designed by Guido
Bertoni, Joan Daemen, Michaél Peeters, and Gilles Van Assche [4] became one
of the candidates for SHA-3. It won the competition in October 2012 and was
standardized as a “Secure Hash Algorithm 3” [5].

The KECCAK hash family is based on the sponge construction [6]. Its design
was made public in 2008 and since then, it has received intense security analysis
[[8] [9] [10] [11] [12] [I3] [14] [15] [16]. In 2016, Guo et al. [I] formalised the idea
of linear structures and gave practical preimage attacks for 2 rounds KECCAK-
224/256. They also gave better preimage attacks for KECCAK-384/512, all vari-
ants of 3-rounds KECCAK as well as preimage attacks for 4-rounds KECCAK-
224/256. Li et al. [2] improved the complexity of preimage attack for 3-rounds
KECCAK-256 by using a new type of structure called cross-linear structure.
The best-known attacks for 3 and 4 rounds KECCAK-224/256 is given by Li et
al. [3] using a new technique called allocating approach, which consists of two
phases - Precomputation phase and Online phase. They gave the first practical

2 M. S. Rajasree

preimage attack for 3-rounds KECCAK-224. Apart from the attacks mentioned
above, there are several other attacks against KECCAK.

Rounds|Instances|Complexity| References

224
256

1 Constant [15]
384
512
224 Constant

9 256 Constant 1
384 2129 -
512 2384

Time 259
2 384 [16]
Space 257

9 384 2113 Subsection [3.2
512 2321 Subsection (3.1
224 238

3 13]
256 281
384 2322

3 [
512 2182

3 384 2321 Subsection [3.4]
512 2475 Subsection [3.5
224 9207

4 13]
256 2239
384 2378

4 12l
512 2506

4 384 2371 Subsection [3.6

Table 1. Summary of preimage attacks

Our contributions: In this paper, we give the best theoretical preimage
attacks for KECCAK-384 for 2,3,4 rounds and KECCAK-512 for 2,3 rounds.
This is achieved by carefully constructing non-linear structures such that the
quadratic terms are not spread throughout the whole state and the number of

Cryptanalysis of Round-Reduced KECCAK using Non-Linear Structures 3

variables in the system of equations is more. Table [I| summaries the best the-
oretical preimage attacks up to four rounds and our contributions. The space
complexity is most of the attacks is constant unless it is explicitly mentioned.

Organization: The rest of the paper contains the following sections. In Sec-
tion 2, we will give a brief description about KECCAK, some preliminaries and
notations that are used throughout the paper and useful observations about
KECCAK. Section 3 contains detailed description of all our preimage attacks.

2 Structure of KECCAK

KECCAK hash function is based on sponge construction[6] which uses a padding
function pad, a bitrate parameter r and a permutation function f as shown in

Figure

1

A
¢

zZ
A

) M M M ' e
/ Y A y
r{0
f f f f f I
c||0 - > - >~ - » —

absorbing : squeezing

Dt
Dt
Dl

sponge

Fig. 1. Sponge function [0]

2.1 Sponge Construction

As shown in Figure[I] the sponge construction consists of two phases - absorbing
and squeezing. It first applies the padding function pad on the input string M
which produces M’ whose length is a multiple of r. In the absorbing phase, M’
is split into blocks of r bits namely mq, ma, ...my. The initial state (IV) is a b bit
string containing all 0. Here b = r + ¢ where c is called the capacity. The first r
bits of IV is XORed with first block m; and is given as input to f. The output
is XO Red with the next message block ms and then is given as input to f again.
This process is continued till all the message blocks have been absorbed.

The squeezing phase extracts the required output, which can be of any length.
Let [be the required output length. If [< r, then the first [bits of the output

4 M. S. Rajasree

of absorbing phase is the output of the sponge construction. Whereas, if [> r,
then more blocks of r bits are extracted by repeatedly applying f on the output
of the absorbing phase. This process is repeated enough number of times until
we have extracted at least [bits. The final output of the sponge construction is
the first [bits that have been extracted.

In the KECCAK hash family, the permutation function f is a KECCAK-f[b]
permutation, and the pad function appends 10*1 to input M. KECCAK-f is a
specialization of KECCAK-p permutation.

KECCAK-f[b] = KECCAK-p[b, 12 + 2]

where v = log2(b/25).

The official version of KECCAK have r = 1600 — ¢ and ¢ = 2] where | €
{224,256,384,512} called KECCAK-224, KECCAK-256, KECCAK-384 and
KECCAK-512.

2.2 KECCAK-p permutation

KECCAK-p permutation is denoted by KECCAK-p[b, n..], where b € {25, 50, 100,
200, 400, 800, 1600} is the length of the input string and n, is the number of
rounds of the internal transformation. The parameter b is also called the width
of the permutation. The b bit input string can be represented as a 5 X 5 X w
3-dimensional array known as state as shown in Figure 2| A lane in a state S
is denoted by S[z,y] which is the substring S[z,y,0]|S[x,y,1]|...|S[z,y, w — 1]
where w is equal to b/25 and “|” is the concatenation function.

Y z
4 Pl state
>

T

Fig. 2. KECCAK state [17]

In each round, the state S goes through 5 step mappings 6,p,7,x and ¢,
i.e. Round(S,i,) = t(x(w(p(0(S)))),4r) where i, is the round index. Except for
X, rest of the step mappings are linear. In the following, S’ is the state after
applying the corresponding step mapping to .S, “®” denotes bitwise XOR and
“” denotes bitwise AN D.

Cryptanalysis of Round-Reduced KECCAK using Non-Linear Structures 5

1. 0: The 0 step XOR’s S|x,y, z] with parities of its neighbouring columns in
the following manner.

S'z,y, 2] = S[x,y,2] ® P[(x + 1) mod 5][(z — 1) mod 64]
@ Pl(x — 1) mod 5][2]

where P[z][z] is the parity of a column, i.e,

2. p: The p step simply rotates each lane by a predefined value given in the
table below, i.e
S'[z,y] = Slz,y] << rlz][y]

where << means bitwise rotation towards MSB of the 64-bit word.

4 18 2 61 56 14
3 41 45 15 21 8
2 3 10 43 25 39
1 36 44 6 55 20
0 0 1 62 28 27
y\z 0 1 2 3 4

3. m: The 7 step interchanges the lanes of the state S.
S'ly, 22 + 3y] = Sz, y]

4. x: The x step is the only non-linear operation among the 5 step mappings
due to the quadratic term.

S'lz,y,2] = Slw,y, 2] & ((S[(x + 1) mod 5,y, 2] & 1)-
Sl(x + 2) mod 5,y,2])

5. ¢: The ¢ step is the only step that depends on the round number.
S’10,0] = S[0,0] ® RC;

where RC; is a constant which depends on ¢ where i is the round number.

2.3 Preliminaries and Notations

In this paper, we will be using the following observation made by Guo et al. [I].
The x step mapping is a row dependent operation. Let ag, a1, a2, as, ay be the 5
input bits to the x operation and bg, b1, b2, b3, by be the 5 output bits.

6 M. S. Rajasree

Observation 1 Let dy,dy,ds,ds, dy be the elements of a column. Then, the par-
ity of column can be fized to a constant ¢ by choosing for any i € {0,1,2,3,4}

j=4
di =C EB @ di+j
j=1

Observation 2 If the output of x for an entire row is known, i.e x([ag, a1, az, as,
[bo, b1, ba, b3, by], then we have

a; = b ® (biy1 ® 1) (biyo ® (big3 ® 1) - biya)

In the rest of the paper, all the message variables and hash values are rep-
resented in the form of lanes (array) of length 64, and we will use + symbol in
place of @. For a state A, A[x,y] denotes a lane where 0 < z,y < 4. In all the
equations, the value inside the brackets ‘()’ indicates the offset by which the lane
is shifted. For example, A[z,y](k) denotes lane A[z,y] rotated by an offset of k.
Every operation between two lanes is bitwise.

3 Our preimage attacks

In this section, we present the preimage attacks for round reduced KECCAK. In
[1], the authors try to set up linear equations between message bits (variables)
and hash bits by controlling the diffusion due to 8 and x from producing any non-
linear terms. Observation [I] is used to manage the diffusion due to 6. Lanes are
fixed to constant to prevent x from creating any non-linear terms. Furthermore,
for KECCAK-384/512, the first row of the hash digest can be inverted due to
Observation 21

In most cases, the number of linear equations between the variables and hash
values is strictly less than the hash length. Therefore, they repeat the whole
procedure enough number of times by appropriately changing the constants in
the system of linear equations. This gives a successful preimage attack. In [2] [3],
similar techniques are used to restrict y from producing many non-linear terms.
Here, we allow x to produce non-linear terms, but at the same time, we control
the number of non-linear terms in the state.

3.1 Preimage attack on 2 rounds KECCAK-512

In this subsection, we describe our preimage attack for 2-rounds KECCAK-512.
The best-known attack for this variant of KECCAK is by Guo et al.[I] with
a complexity of 2384, Their preimage attack is based on a linear structure by
keeping four lanes as variables. We give two preimage attacks using six lanes
as variables. In the first preimage attack, we keep the lanes in column 1, 3, 4
as variables and get an attack of complexity 2337. However, the second preim-
age attack chooses a different set of lanes as variables and has complexity of 2321,

as))

Cryptanalysis of Round-Reduced KECCAK using Non-Linear Structures 7

Preimage attack with complexity 2337: In figure [3| we set the lanes in col-
umn 1, 3 and 4 as variables, and the rest of the lanes are set to some constant.
Therefore, we have 6 x 64 = 384 variables.

i} Top
(1) (2) 3)
l LOX
Top (i
(6) (5) (4)
Il
— = 0
— = 1
—101 1
V. 1 = constant
. = linear
0 = quadratic

(7) (®)

Fig. 3. Preimage attack on 2-round KECCAK-512

To avoid the propagation by 6 in the first round, we use Observation [1} i.e.,
@?:()A[i, jl = «;,Vi € [0,2,3] where «a; is some constant and hence include
3 x 64 = 192 linear constraints to the system. Also, since the hash length is 512,
we can invert the first row of the hash value due to Observation

Observe that after the application of the x operation in the first round, state
(4) contains a lane with quadratic terms. Due to the 6 of the second round, these

8 M. S. Rajasree

will get propagated only to the neighbouring columns. Hence, majority of the
lanes in the state (5) contains only linear terms. But, while equating state (6)
and state (7), we are only able to obtain 2 x 64 = 128 linear equations between
the hash values and the variables. Observe that we have set up only 320 linear
equations but have 384 variables.

Applying the techniques used in [1I], we can linearize the quadratic term and
use them to create more linear equations between hash value and the variables.
Notice that in state (5), there is atmost one quadratic term in each polynomial.
This is because the state before the application of # in the second round has only
one lane containing polynomials with only one quadratic term. More precisely,
A4, 4] of state (4) contains a polynomial of the form p; + p3.ps where p;’s are
linear polynomials. This non-linear polynomial can be linearlized by adding one
more linear equation to the system, say ps = 8 where (3 is a constant. Therefore,
if we linearize one quadratic term in state (4), we will be able to linearize 11
quadratic terms in state (5). But, only 3 out of the 11 linearized terms can
be equated to the values in state (7). Therefore, we can set up an additional
64 linear equations of which 3|64/4| = 48 equations are between message bits
and hash values. But, we need to include one more linear equation for the last
message bit to be 1 to satisfy the padding condition of KECCAK. Therefore, we
have a system of linear equation in 384 variables and 384 equations. Since, we
have 128 + 48 — 1 = 175 linear equations between hash values and variables, we
get a valid preimage with probability 1/2337.

To get a successful preimage attack, we must repeat the above procedure for
at least 2337 times where the system of linear equations are different each time.
Observe that there is enough degrees of freedom to perform this, i.e. 192 bits
from A[1,0], A[1,1] and A[4,0] and 192 bits from «; for i € [0, 2, 3] which sums
up to 384 bits. Therefore, we have a preimage attack for 2-rounds KECCAK-512
with complexity of 2337,

Preimage attack with complexity 232': By choosing a different set of lanes
as variables, we achieve a better preimage attack. In figure [4] columns 1,2 and 4
are set as variables and the rest are set to constant. We also set @?:0 Ali,j) =
a;, Vi € [0,1,3] where «; is some constant, thus adding 192 linear equations to
the system. Observe that in this case, we can set up 3 x 64 — 1 linear equations
between the hash values and the variables. We must also include one more linear
constraint for the last bit of message to be 1 to satisfy the padding condition for
KECCAK. Therefore, we have a system of linear equation in 384 variables and

384 equations.

Since we are able to set up only 191 linear equations between the hash values
and the variables, we get a valid preimage with probability 1/232!. Observe that
there is enough degrees of freedom to repeat this procedure for 232! due 192 bits
from A[2,0], A[2,1] and A[4,0] and 192 bits from «; for i € [0, 1, 3] which sums
up to 384 bits. Therefore, we have a preimage attack for 2-rounds KECCAK-512
with complexity of 2321,

Cryptanalysis of Round-Reduced KECCAK using Non-Linear Structures 9

i} Top
(1) (2) 3)
Top (ﬁ
(6) (5) (4)
Il
— = 0
— 1
-1 oL 1
P 1 = constant
0 = linear
0 = quadratic

(7) (®)

Fig. 4. Better preimage attack on 2-round KECCAK-512

3.2 Preimage attack on 2 rounds KECCAK-384

The preimage attack given by Guo. et al [I] for 2 rounds KECCAK-384 has
a complexity of 2!2? by constructing a linear structure with 6 x 64 variables.
In our attack, we use 8 x 64 variables as shown in Figure [5] In-order to avoid
propagation by 6 in first round, we add the following 3 x 64 linear constrains
into the system, @;Lo Ali, j] = «;, Vi € [0, 2, 3] where «; is some constant.

By equating state (5) and state (6), we get 2 x 64 = 128 linear equations
between variables and hash values. Observe that we have only set up 320 lin-
ear equations but have 8 x 64 = 512 variables. Applying the techniques used
in subsection we can set up an additional 3 x 64 linear equations of which

10 M. S. Rajasree

3[(3 x 64)/4)] = 144 equations are between message bits and hash values. Af-
ter satisfying the padding rule, we have a complexity gain over brute force of
2128+144=1 _ 9171 and hence a preimage attack of complexity 2384171 = 2113,
Note that this result cannot be compared with the preimage attack given by
Kumar et al. [I6] because their attack has a space complexity of 257.

i} Top
(1) (2) (3)
l Lox
)
= —
(6) (5) (4)
1\ pfl on—1
[0
— 1
x~los—1
L] = constant
[linear
O = quadratic

(7) (8)

Fig. 5. Preimage attack on 2-round KECCAK-384

3.3 Preimage attack for higher rounds

In the previous subsections, we were able to get better preimage attack due to
the fact the states are not filled with quadratic terms. If we were to find a similar
attack for 3-rounds, we need to keep the following guidelines in mind.

Cryptanalysis of Round-Reduced KECCAK using Non-Linear Structures 11

1. The state after the application of second must be sparse of lanes with linear
terms and comprised mostly of lanes with constant terms. This is because it
would lead to a state with lesser quadratic terms after the application of x
of the second round.

2. Even if the propagation due to the € in the third round cannot be restricted,
the state before the application of the third # must contain all its quadratic
terms either in a single column or in two columns adjacent to each other.
This would lead to a state with at least one column containing linear terms
only after the application of 6.

3.4 Preimage attack on 3 rounds KECCAK-384

The following is our attack on KECCAK-384 for 3-rounds which uses two mes-
sage blocks as shown in Figure [6] The first message block is chosen in such a
way that after the application of 3 round KECCAK on this block, we get state
such that A[1,3] = A[3,3] = 0 and A[1,4] = A[4,4] = 1 where A is state (2)
as shown in the figure given above. The first message block can be found by
randomly choosing 24*%* message block and expecting one of them to give the
required output. This works because the output of a hash function is random
and therefore the complexity for brute force preimage attack is 1/2! where [is
the number of bits in the hash digest. The same technique has been used in [3]
subsection 4.3.

The second message block contains 6 x 64 = 384 variables. We want to keep
the columns 2, 4 and 5 unchanged after the application of first 8. For this, we
first set @?:0 Ali, j] = ay, for i € [0,2] and then set up equation between column
1 and column 3 so that column 2 does not get affected after the application of
first 6. This means that the a;’s are dependent. Similarly, co and c3 can be set
according to «;’s such that column 4 and 5 do not get affected after the first
0. Therefore, we have 2 x 64 linear equations in our system. ¢; can be fixed to
some randomly chosen value.

To avoid propagation after second 6, we set up 3 x 64 linear equations to make
the column parties equal to some constant §;. Observe that after the application
of the second Yy, there are two lanes with quadratic terms in state (8). But after
the application of the third #, the fourth column will contain only linear terms.
By equating state (9) and state (10), we can set up 63 linear equations between
message bits and hash values. Also, we have one more equation to keep the
last message bit equal to 1. Therefore, we have a preimage attack with a time
of complexity 2384763 = 2321 hecause computing the first message block has a
complexity of 22°6,

Note that there are enough degrees of freedom due to the 256 bits from «;’s
and the 3;’s, 64 bits from ¢; and enough bits from the first message block.

12 M. S. Rajasree

0 0
1 1
(2)
lXOR 27?4 mes-
sage block
1 ex | 1
0 0 | cs3
c1
0 0
1 1
3)
(8)

mTopol

Lox
%

(1)
0
1
1 c1
0
(4)
(7
(10)

J{x

TOop

Fig. 6. Preimage attack on 3-round KECCAK-384

000000

= 0

= 1

= constant
= linear

= quadratic

(11)

Cryptanalysis of Round-Reduced KECCAK using Non-Linear Structures 13

3.5 Preimage attack on 3 rounds KEECAK-512

We use two message block and 4 x 64 = 256 variables for this attack as shown
in Figure [7] The first message block is used so that we get enough degree of
freedom to launch a preimage attack. Observe that after the application of 8 in
first round, we require certain lane to be 1/0 in state (4). To achieve this, we first
set A[1,0] & A[1,1] = oy where a7 is some constant. Then, we set up 64 linear
equations of the form @?:0 (A[1,4] ® A[3,4](1) = e2 + 1). Observe that due to
this constrain, after the application of first 6, we will get A[2,0] = A[2,4] =1
and A[2,1] = 0 where A is state (4). Similarly, by fixing x¢ and x5 appropriately,
we can get the required state (4).

To avoid propagation due to the € in second round, we add only 64 linear
equations to the system to make the parity of the first columns in state (6) as a
constant. Observe that after the application of 6 of the third round, the lanes in
the first two columns will contain only one quadratic term. So, if we linearize one
quadratic term in A[2,4] of state (9), then we have linearized five polynomials
in column 2 of state (10). Similarly, if we linearize one quadratic term in A[4, 2]
of state (9), then we have linearized five polynomial in column 1 of state (10).

But, out of these 6 linearized polynomials, only one can be used to create a
linear equation between message bits and hash value by equating state (10) and
state (11). Therefore, we have |64/2| = 32 linear equations between message bits
and hash value and hence obtained a preimage of complexity 2°12732+1 — 2481
Due to the first message block, we have enough degree of freedom.

Improved analysis Observe that if we carefully linearize one quadratic term
from A[2,4] and one from A[4, 2] of state (9), we also linearize one more polyno-
mial in column 4 of state (10), i.e. we have also linearized a polynomial in the

4
lane A[3, 3]. Therefore, now we have 3[%] +2 =3 x 12+ 2 = 38. Therefore, we

have an improved preimage attack of complexity 2°12738+1 = 2475,

3.6 Preimage attack on 4 rounds KECCAK-384

This attack requires two message blocks and 6 x 64 = 384 variables as shown in
Figure [B] As done in subsection [3.4] the first message block is found by trying
randomly many message blocks so that after the application of 4-rounds and
X ORing the second message block, we get state (2). Observe that in state (2),
there are two lanes with entries ¢ and ¢. We also require state (2) to satisfy one
more equation.

d(=1)+b(-2)+ (g(-1)+ T+ a+b)(-2))(-2)+ (a+b)(1) =k (1)

Therefore, we would require a complexity of 2128 to find the appropriate first
message block. We will use the following strategy to obtain state (3). We include
A[0,0] = A[0,2] to the system of linear equations, fix ;1 = 0 and randomly
assign value to x7 whereas we fix o = ¢,x3 = d, x5 = g. Since we require state
(3) after the application of 6, we have the following equations.

14 M. S. Rajasree

el €2 ZTe
To ex +1 es
XOR with
(_
2nd block
€1 €2
(3)
l :
1 1
0 0
TOop
1 1
(4)
Lox
)

(10)

Fig. 7. Preimage attack on 3-round KECCAK-512

(2)
1
1
1
1
(5)
(8)
(11)

ix

(12)

Cryptanalysis of Round-Reduced KECCAK using Non-Linear Structures 15

(a4 D)+ (A[2,0] + A[2,2] + ¢)(1) = ¢ (2)
(A[2,0] + A[2,2] +e) + (w6 + 27 +i+j+k)(1) =g (3)
(26 + 27 +i+j + k) + (A[1,0] + A[L, 2] + ¢)(1) = b (4)
(A[LO]+A[1,2] +¢) + (za+ f+h)(1) =d (5)
(xa+f+h)+(a+b)(1)=k (6)

Therefore, we add equation (7) and (9) to the system of equations and fix
x¢ and x4 according to equation (8) and (10). Observe that due to the following
equations, all equations from (2)-(6) are satisfied, particularly, equation (6) is
satisfied due to equation (1).

Al2,0] + A[2,2) = €+ a+b)(-1) (7)
zs=g(-1)+@C+a+b)(-2)+ar+i+j+k (8)
A[1,0]+ A[1,2] =b(—1) + (g(-1) + (c+ a+b)(-2))(—-1) + ¢ (9)

zy=d(~1)+ f+h+(b+zs+a7+i+7+k)(-2)

=d(-1)+f+h+b(-2)+(g(-1)+ (c+a+b)(—-2)(-2) (10)

Also, we include 2 x 64 linear equations for restricting the propagation due to
6 in the second round. Observe that each polynomial in the state (9) has 11
quadratic terms. In [I] subsection 6.3, Guo et al. gave a technique that carefully
linearizes the quadratic terms such that if the number of free variables is ¢, we
can construct 2| (t—>5)/8] linear equations between hash values and the variables.
For more details, refer [I]. In our case, we have t = 64 and therefore, we have
14 linear equations between hash value. Observe that we have enough degree of
freedom due to x7, the parity of the two columns of the second 6 and and rest
from the first message block. Therefore, the complexity of our attack is 2571,

4 Conclusion

In this paper, we give the best theoretical preimage attacks on 2,3 rounds
KECCAK-512 and 2,3,4 rounds KECCAK 384 by studying non-linear structures
carefully. It would be interesting to see whether non-linear structures along with
other techniques can be used to find better preimage attacks for higher rounds.

Acknowledgement: We would like to thank Rajendra Kumar for valuable
discussions.

16

M. S. Rajasree

T4 e
1 T2 z3 Ts5 7
f 7 4R
XOR
a < d g J
b c e h k
2)
l 9
0 0 0
mTopol
—_—
0 0 0
1 1 1
(3)
Topol
<—
(8)
k oLox
TOop

1 Borox
1
(4)
Lox
(7)
x~ Lot
<—
(10)

Fig. 8. Preimage attack on 4-round KECCAK-384

00000

= constant
linear

= quadratic

(11)

Cryptanalysis of Round-Reduced KECCAK using Non-Linear Structures 17

References

10.

11.

12.

13.

14.

15.

16.

17.

. Jian Guo, Meicheng Liu, and Ling Song. Linear structures: applications to crypt-

analysis of round-reduced keccak. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 249-274. Springer, 2016.
Ting Li, Yao Sun, Maodong Liao, and Dingkang Wang. Preimage attacks on the
round-reduced keccak with cross-linear structures. ITACR Transactions on Sym-
metric Cryptology, pages 39-57, 2017.

Ting Li and Yao Sun. Preimage attacks on round-reduced keccak-224/256 via
an allocating approach. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 556—-584. Springer, 2019.

Guido Bertoni, Joan Daemen, Michaél Peeters, and Gilles Van Assche. Keccak
specifications. Submission to nist (round 2), pages 320-337, 2009.

Morris J Dworkin. Sha-3 standard: Permutation-based hash and extendable-output
functions. Technical report, 2015.

Guido Bertoni, Joan Daemen, Michaél Peeters, and Gilles Van Assche. Crypto-
graphic sponges. online] http://sponge. noekeon. org, 2011.

Daniel J Bernstein. Second preimages for 6 (77(877)) rounds of keccak. NIST
mailing list, 2010.

Maria Naya-Plasencia, Andrea Rock, and Willi Meier. Practical analysis of
reduced-round keccak. In INDOCRYPT, volume 7107, pages 236—254. Springer,
2011.

Itai Dinur, Orr Dunkelman, and Adi Shamir. New attacks on keccak-224 and
keccak-256. In F'SE, volume 12, pages 442—461. Springer, 2012.

Itai Dinur, Orr Dunkelman, and Adi Shamir. Collision attacks on up to 5 rounds
of sha-3 using generalized internal differentials. In International Workshop on Fast
Software Encryption, pages 219-240. Springer, 2013.

Itai Dinur, Orr Dunkelman, and Adi Shamir. Improved practical attacks on round-
reduced keccak. Journal of cryptology, 27(2):183-209, 2014.

Pawel Morawiecki, Josef Pieprzyk, and Marian Srebrny. Rotational cryptanalysis
of round-reduced keccak. In International Workshop on Fast Software Encryption,
pages 241-262. Springer, 2013.

Pawel Morawiecki and Marian Srebrny. A sat-based preimage analysis of reduced
keccak hash functions. Information Processing Letters, 113(10-11):392-397, 2013.
Donghoon Chang, Arnab Kumar, Pawell Morawiecki, and Somitra Kumar Sanad-
hya. 1st and 2nd preimage attacks on 7, 8 and 9 rounds of keccak-224,256,384,512.
In SHA-8 workshop (August 2014), 2014.

Rajendra Kumar, Mahesh Sreekumar Rajasree, and Hoda AlKhzaimi. Cryptanal-
ysis of 1-round keccak. In International Conference on Cryptology in Africa, pages
124-137. Springer, 2018.

Rajendra Kumar, Nikhil Mittal, and Shashank Singh. Cryptanalysis of 2 round
keccak-384. In International Conference on Cryptology in India, pages 120—133.
Springer, 2018.

G Bertoni, J Daemen, M Peeters, and GV Assche. The keccak reference. online at
http://keccak. noekeon. org/keccak-reference-3.0. pdf, 2011.

	Cryptanalysis of Round-Reduced KECCAK using Non-Linear Structures

