Breaking the Bluetooth Pairing —
The Fixed Coordinate Invalid Curve Attack*

Eli Biham and Lior Neumann

Department of Computer Science
Technion — Israel Institute of Technology

Abstract. Bluetooth is a widely deployed standard for wireless commu-
nications between mobile devices. It uses authenticated Elliptic Curve
Diffie-Hellman for its key exchange. In this paper we show that the au-
thentication provided by the Bluetooth pairing protocols is insufficient
and does not provide the promised MitM protection. We present a new
attack that modifies the y-coordinates of the public keys (while preserv-
ing the x-coordinates). The attack compromises the encryption keys of all
of the current Bluetooth authenticated pairing protocols, provided both
paired devices are vulnerable. Specifically, it successfully compromises
the encryption keys of 50% of the Bluetooth pairing attempts, while in
the other 50% the pairing of the victims is terminated. The affected ven-
dors have been informed and patched their products accordingly, and
the Bluetooth specification had been modified to address the new attack.
We named our new attack the “Fixed Coordinate Invalid Curve Attack”.
Unlike the well known “Invalid Curve Attack” of Biehl et. al. [2] which
recovers the private key by sending multiple specially crafted points to
the victim, our attack is a MitM attack which modifies the public keys in
a way that lets the attacker deduce the shared secret.

1 Introduction

Bluetooth is a wireless communication standard for exchanging data over short
distances. The protocol provides confidentiality and access authentication at
the link layer. Thanks to its embedded security and flexibility Bluetooth has
become one of the most popular communication protocols for mobile devices.

This paper presents a new cryptographic attack on the ECDH protocol and
its application to all of the current Bluetooth versions. Our attack provides a
new tool for attacking protocols with insufficient MitM authentication as we
illustrate on Bluetooth.

As a result of our disclosure CVE-2018-5383 was assigned for this vulnera-
bility in the Bluetooth protocol. All of the major Bluetooth vendors including
Qualcomm, Broadcom, Intel, Google and Apple have addressed the issue and
released an update for their products either directly or through partner com-
panies. Moreover, the Bluetooth Special Interest Group issued a mandatory

* This research was partially supported by the Technion Hiroshi Fujiwara cyber secu-
rity research center and the Israel national cyber directorate.



requirement to the Bluetooth Core Specification in order to mitigate this vul-
nerability.

1.1 Bluetooth Versions

Bluetooth is a set of protocols evolved during many years of development. The
two main Bluetooth protocols are Bluetooth BR/EDR, commonly used by audio
peripheral and old Bluetooth equipment, and Bluetooth Low Energy, mainly
used by IoT and smart devices.

In this paper we concentrate on the two associated pairing protocols, the
Secure Simple Pairing (SSP) and the LE Secure Connections (LE SC). The SSP
protocol is used as part of the original Bluetooth BR/EDR protocol, while the
recent LE SC protocol is used by the newer Bluetooth Low Energy protocol.
The full list of Bluetooth protocols and sub-protocols is summarized in Ap-

pendix

1.2 The Elliptic Curve Diffie-Hellman Protocol

The Elliptic Curve Diffie-Hellman (ECDH) protocol, introduced in the 1980s by
Miller [20] and Koblitz [13], is a variant of the Diffie-Hellman key exchange
protocol [3]. It utilizes the algebraic structure of elliptic curves over finite fields
in order to exchange cryptographic symmetric keys over a public compro-
mised channel.

The domain parameters of ECDH consist of the order g of the underlying
finite field IF,, the equation of the elliptic curve y> = x> + ax + b and a base
point P with a prime order n. Examples of such parameters are the NIST
domain parameters specified in the FIPS 186-2 standard [14], which are used
by the Bluetooth pairing protocol.

Both parties should agree on the domain parameters D = {gq,4,b,P,n} in
advance. For any integer x, denote [x]P to be the repeated addition of point P
to itself x times. The first step of the protocol is key-pair generation, in which
each party generates an ECDH key-pair. A key-pair consists of a private scalar
SK and a public point PK, such that PK = [SK]P. Both parties then send their
public point to their correspondent. Finally both parties compute the shared-
point by multiplying their private scalar by their correspondent’s public point.
A diagram of the protocol is outlined in Figure

Note that a scalar multiplication over elliptic curves is commutative. This
fact ensures that both parties compute the same shared key

[SKa]PKb = [SKa] ([SKb]P) = [SKb]([SKa]P) = [SKb]PKa.

A major advantage of DH based on elliptic curves over DH based on mul-
tiplicative modulus groups is the much lower communication complexity for a
given security property. The best known attacks against the elliptic curve dis-
crete logarithm problem for a general curve requires O(y/n) group operations



Fig. 1. Elliptic Curve Diffie-Hellman Protocol Diagram

Alice

Bob

Select a random private
key SKa € [2,n — 2]

Select a random private
key SKb € [2,n — 2]

Compute the ap-
propriate public
key PKa = [SKa]P

Compute the ap-
propriate public
key PKb = [SKb]P

PKa = (PKax, PKay)

PKb = (PKbx, PKby)

<

Compute the
shared secret
DHkey = [SKa]PKb

Compute the
shared secret
DHkey = [SKb]PKa

1 2
compared to sub-exponential complexity O (ec(k’g”)3 (1°g1°g”>3) in the modu-
lar case. As a result the same security properties of multiplicative modulus
groups can be achieved with much smaller group sizes, which makes ECDH
far more space efficient than the original DH protocol. This property is making
ECDH better suited for low-bandwidth radio based communication between

embedded devices.

1.3 Previous Work

The first version of Bluetooth BR/EDR was not intended to be secure against
MitM attacks. It used a short PIN code as its primary cryptographic secret.
Bluetooth BR/EDR version 2.1 introduced SSP which added authenticated
ECDH to achieve eavesdropping and MitM protection. A patent assigned by
Peter Landrock and Jan Ulrik Kjaersgaard [12] in 2008 describes how the In-
valid Curve Attack could break SSP in cases where appropriate public key val-
idation is not performed. It explains how a malicious attacker can extract the
private ECDH key from a poorly implemented platform. The patent proposed
multiple mitigations against the attack, which was adopted by the Bluetooth
SIG. The protocol designers suggest three optional methods in order to “pre-
vent an attacker from retrieving useful information about the device’s private



key using invalid public keys”, as described in [7, Part H, Section 5.1]. The
proposed methods are:

— “Change its private key after three failed attempts from any BD_ADDR and
after 10 successful pairings from any BD_ADDR; or after a combination of
these such that 3 successful pairings count as one failed pairing”.

— “Verify that the received public keys from any BD_ADDR are on the correct
curve”.

- “Implement elliptic curve point addition and doubling using formulas that
are valid only on the correct curve”.

Most implementors chose the first mitigation.

The first version of the Bluetooth Low Energy pairing scheme also did not
protect against MitM attacks. In an article called “With Low Energy Comes
Low Security” [17] by Mike Ryan, the author pointed out that BTLE “Legacy
Pairing” is vulnerable to an eavesdropping attack. His article describes how an
attacker with low resources can easily sniff BTLE traffic and decrypt it with-
out any interaction with the victim. His attack relies on the same weakness
that was found in the original Bluetooth pairing. Prior to the authentication
phase a 6-digit decimal PIN is generated and displayed by the slave. The user
then enters this PIN to the master device. The session key is exchanged en-
crypted using the PIN as a mutual temporary key. Mike Ryan also provided an
open-source software [16] that recovers the session key from captured Legacy
Pairing traffic within a fraction of a second.

Bluetooth version 4.2 addressed the weaknesses found in the Legacy Pair-
ing protocol by introducing LE Secure Connections, a new pairing protocol
based on ECDH. Since the release of Core Specification 4.2 [7] no new secu-
rity related issues regarding the pairing of Bluetooth Low Energy have been
published.

Small-subgroups based attacks were described several times throughout
history. In 2015, Tibor Jager, Jorg Schwenk and Juraj Somorovsky [11] pre-
sented practical Invalid Curve Attack on specific implementations of TLS which
indicated that these attacks are still widely effective on modern software.

1.4 Our Results

In the Bluetooth core specification [7, Part A, Section 5.2.3], the protocol de-
signers state that “Secure Simple Pairing protects the user from MitM attacks
with a goal of offering a 1 in 1,000,000 chance that a MitM could mount a suc-
cessful attack”. Since LE SC is almost identical to SSP, it is safe to assume that
the same goal was intended for it as well. We present a new MitM attack on
both SSP and LE SC showing that this goal is not accomplished.

Our attack exploits improper validation of ECDH public keys by introduc-
ing the Fixed Coordinate Invalid Curve Attack. It is a MitM attack that mod-
ifies the public keys in a way that lets the attacker deduce the shared secret.
Provided that both paired devices are vulnerable, our attack can compromise
50% of the Bluetooth pairing attempts, while in the rest the pairing fails.



In this paper we present two variations of our attack: semi-passive and
fully-active. In both cases, our attack recovers the session encryption key on
success, while on failure our attack causes a denial of service. The semi-passive
attack requires packet interception and transmission only twice during the
ECDH key exchange, and provides success probability of 25%. The fully-active
attack generalizes the semi-passive attack by requiring packet interception and
transmission throughout the entire connection. The fully-active attack provides
a better success rate of 50%.

Finally, combining our attack with the already known weaknesses of Blue-
tooth pairing (Bluetooth BR/EDR) and “Legacy Pairing” (Bluetooth LE) in-
security against MitM, we show that all of the currently available Bluetooth
pairing protocols (at the time of writing this paper) are insecure.

1.5 Structure of the Paper

This paper is organized as follows: in Section [2| we introduce the Bluetooth
pairing schemes. Section [3| summarizes the original version of the Invalid
Curve Attack. Section [ is the core of our paper, where we describe our new
attack. Section |5 describes the design flaws and suggests possible mitigations.
Section [f| presents the platforms that are vulnerable to our attack, and our
testing methods. Section [7] discusses the practicality of our attack. Finally, the
paper is summarized in Section[§] The appendix summarizes the various ver-
sions of Bluetooth.

2 Bluetooth Pairing

The Bluetooth pairing protocol is the part of the Bluetooth link layer protocol
that provides the encryption keys for the rest of the protocol. In this section we
review the Bluetooth pairing protocols and their authentication mechanisms.

SSP and LE SC are very similar. Therefore, throughout this paper SSP and
LE SC are interchangeable. We arbitrarily chose to elaborate LE SC, and then
discuss the differences from SSP.

2.1 LE Secure Connections

Bluetooth Low Energy has two pairing schemes, “Legacy Pairing” and “LE
Secure Connections”. Oddly, Legacy Pairing was not intended to be protected
against malicious eavesdroppers. The newer LE SC, introduced in Bluetooth
version 4.2, promised to solve this problem and provide MitM protection using
contemporary cryptographic primitives such as key exchange, commitments
and MACs (message authentication codes).

The LE SC pairing scheme has four association models: “Just Works”,
“Numeric Comparison”, “Passkey Entry” and “Out-Of-Band”. The association
model is chosen according to the IO capabilities of the participating devices.
We do not address the “Out-Of-Band” mode in this paper since it requires a



vendor specific protocol over a proprietary private channel, which is not fully-
defined by [7]. Also, the Just Works mode is equivalent to Numeric Compari-
son, but without the user interaction, and therefore provides no authentication.

In the next subsections, after some required notations and definitions, we

discuss the various phases of the Bluetooth LE SC pairing. The first phase of
the pairing is feature exchange. We skip discussing this phase as its details are
irrelevant in the context of this paper.

2.1.1 Notations and Definitions

Protocol variables:

A, B (6 Bytes) — The BD_ADDR of each party.

IOcapA, 10capB (1 Byte) — The advertised IO capabilities of each party
(exchanged during the first phase).

PKa, PKb (64 Bytes) — The public key of each party.

SKa, SKb (32 Bytes) — The private key of each party.

PKax, PKbx (32 Bytes) — The x-coordinate of each party’s public key.
DHKey (32 Bytes) — The shared Diffie-Hellman secret.

Na, Nb (16 Bytes) — Nonces used for Numeric Comparison association
model.

Nai, Nbi (16 Bytes) — Nonces used for Passkey Entry association model.
rai, rbi (1 Bytes) — Represents a single bit of the passkey.

Cryptographic functions (based on AES-CMAC [19]):

Function f4 — Commitment Value generation function, defined by:
f4(U,V,X,Y) = AES-CMACx(U || V || Y).

Function g2 — User Confirm Value generation function, defined by:
¢2(U,V,X,Y) = AES-CMACx (U || V || Y) (mod 232).

Function f5 — Key Derivation function, defined by:

f5(DHKey, N1,N2, A1, B2) =

AES—CMACT<O | ‘btle’ | N1 || N2 || A1 A2 256) I

AES-CMACr (1 || ‘btle’ || N1 || N2 | A1 || A2 || 256),
where
T = AES-CMACg;7(DHKey),
and where SALT is the 128-bit constant value defined in [7].

Function f6 — Check Value generation function, defined by:

f6(W, N1,N2, R, IOcap, A1, A2) =
AES-CMACyw (N1 || N2 || R || IOcap || A1 || A2).



Fig. 2. Phase 3 — Authentication (Numeric Comparison)

Initiating
Device A

Non-initiating
Device B

Authentication Stage1:
Just Works

2b. Select Random Nb
3b. Setrbandrato 0

3c. Compute confirmation:
Cb=f4(PKb, PKa,Nb,0)

2a. Select Random Na

3a.Setraand b to 0

4.Cb

5. Na
6. Nb

6a. Check if Cb=f4(PKb,PKa,Nb,0)
If check fails, abort

Va and Vb are 6 digit
numbers to be displayed
on each side, if possible.

7a. Va=g2(PKa,PKb,Na,Nb) 7b. Vb=g2(PKa, PKb,Na,Nb)

Proceed if user USER checks if Va=Vb Proceed if user
Confirms “OK” Proceed if each USER confirms ‘OK’ Confirms “OK”

2.1.2 Phase 2 - ECDH Key Exchange

Both participating devices exchange ECDH public keys using the standard
NIST curve P-256 domain parameters. Each party computes the shared secret
DHKey as described in Subsection

2.1.3 Phase 3 — Authentication (Numeric Comparison)

The Numeric Comparison association model is used when both participating
devices are capable of displaying a 6-digit decimal number and at least one of
them can accept a “Confirm or Deny” input.

1.
2.

> W

6.

Each party selects a random 128-bit nonce Na and Nb.
The non-initiator commits (Cb) to Nb and public keys using Function f4,
such that Cb = f4(PKax, PKbx, Nb,0).

. Both parties reveal their nonces, first the initiator and then the non-initiator.
. The initiator validates the commitment.
5.

Both sides display the six least significant decimal digits of the User Con-
firm Value (Va and Vb), which are computed by ¢2(PKax, PKbx, Na, Nb).
The user compares the values and confirms or denies accordingly.

Notice that the y-coordinates of the public keys are not authenticated during
this phase. This observation is crucial to our attack.

The third phase using Numeric Comparison is outlined in Figure [2| (taken
from [7]).



Table 1. Function f6 Inputs

Numeric Comparison Passkey Entry
Ea f6(MacKey, Na, Nb,0,10capA, A, B) f6(MacKey, Na20, Nb20,rb, IOcapA, A, B)
Eb f6(MacKey, Nb,Na,0,10capB, B, A) f6(MacKey, Nb20, Na20,ra, IOcapB, B, A)

2.1.4 Phase 3 — Authentication (Passkey Entry)

The Passkey Entry association model is used when at least one of the partici-
pating devices is capable of receiving numeric input from the user, while the
other is capable of displaying a six-digit number.

1. The Passkey is generated and displayed on one device, and the user then
types it into the other device.

2. Each party selects a 128-bit random nonce Nal or Nbl.

3. Each party commits to its nonce, public keys and the first bit (ral and rbl)
of the Passkey using Function f4, first the initiator by transmitting

f4(PKax, PKbx, Nal,ral),
and then the non-initiator by transmitting
f4(PKbx, PKax, Nb1,rb1).

4. Both parties reveal their nonces and validate the commitments, first the
initiator and then the non-initiator.

5. Steps are repeated 20 times, where ral and rb1 are replaced with the
next bit of the Passkey.

Notice that also here, the y-coordinates are not authenticated.
The third phase using Passkey Entry is outlined in Figure [3| (taken from [7]).

2.1.5 Phase 4 — Session Key Derivation and Validation

The fourth phase of the pairing is responsible for session key derivation.

1. Both parties derive the session keys (MacKey and LTK) from the DHKey
using f5(DHKey, Na, Nb, A, B).

2. Each device computes its Check Value (Ea and Eb) using Function f6. The
inputs of Function {6 are listed in Table

3. The initiator sends his Check Value to the non-initiator, which responds in
turn with his Check Value.

4. Each side validates its correspondent’s Check Value.

The fourth phase is outlined in Figure [4 (taken from [7]).



Fig. 3. Phase 3 — Authentication (Passkey Entry)

Authentication Stage1:
Passkey Entry

2a. Inject secret ra, setrb =ra 2b. Inject secret rb, setra =rb

Execute 20 times:
ra=ral|ra2]|...ra20
tb=rb1|rb2] ... b20

New random numbers are
selected in each round

3a. Select random Nai 3b. Select random Nbi

4b. Compute confirm:

4a. Compute confirm:
Cbi=f4(PKb, PKa, Nbi, rbi)

Cai=f4(PKa, PKb, Nai, rai)

5. Cai o
6. Cbi
7. Nai o
7a. Check if

Cai=f4(Pka, PKb, Nai, rbi).
If check fails, abort.

8. Nbi

8a. Check if
Cbi=f4(PKb,Pka,Nbi,rai).
If check fails, abort.

Fig. 4. Phase 4 — Session Key Derivation and Validation

Initiating Non-initiating

Device A Device B

Authentication Stage 2:
|I0capA is from Pairing Request LTK Calculation

10capB is from Pairing Response
A =BD_ADDR of A used during pairing
B = BD_ADDR of B used during pairing

9. Compute the LTK and MacKey: 9. Compute the LTK and MacKey:
MacKey || LTK = f5(DHKey,Na,Nb A B) MacKey || LTK = f5(DHKey,Na,Nb,A B),
10a. Compute: Ea = 10b. Compute: Eb =
fé(MacKey,Na.Nb,rb,|OcapA,A,B) f6(MacKey,Nb.Na,ra,|0capB,B,A)
10. Ea

11. Check if Ea =
fé(MacKey,Na,Nb,rb,|0OcapA,A,B)
If check fails, abort.

12. Eb

12a. Check if Eb =
f6(MacKey,Nb,Na,ra, I0OcapB,B,A)
If check fails, abort.




2.2 Secure Simple Pairing (SSP)

Secure Simple Pairing was the inspiration behind LE SC. There are two main
differences between the two protocols. The first difference is the support of
both P-192 and P-256 curves in the key exchange in SSP. The second difference
is that SSP uses SHA-256 based HMAC functions, while LE SC uses AES-
CMAC based functions. Other than those differences, SSP and LE SC are al-
most identical. Both of them have the same stages with similar functions and
inputs. Due to these similarities they are interchangeable for the sake of this
paper, and every statement regarding the security of one of them applies also
to the other.

3 The Invalid Curve Attack

The Invalid Curve Attack, presented by Biehl et. al. [2] and further described
by Antipa et. al. [1]], exploits implementations of ECDH that improperly vali-
date the received public keys. The invalid curve attack belongs to a larger fam-
ily of attacks named Small subgroup key recovery attacks. This group of attacks
utilizes small subgroups of finite groups in order to extract non-ephemeral
secret information.

3.1 The Group Operation

Given domain parameters D = {g,a,b, P,n} and two points P = (Py, P,), Q =
(Qx, Qy), the basic operations are defined as follows:

— Consider Q = [—1]P, where [—1]P is defined by [-1]P = (Px, —Py) € E.
The sum P + Q is defined to be the identity element co € E. Note that
P, =0 (mod q) is a special case where P = Q = [~1]P = (Py,0).

- Consider that P # Q and Q # [—1]P. The point addition R = P+ Q, is
defined by drawing the line that intersects with P and Q. This line also
intersects with a third point on the curve. The sum point R is the reflection
of this third point across the x-axis. This computation is expressed by the
following formulae:

5= (Py— Qy)(Px—Qx)" (mod q)
Rx =s?>—Px—Qx (mod q)
Ry = Py —s(Rx — Px) (mod q)

Notice that these formulae do not involve the curve parameters 4 and b.

- Consider P = Q and Q # [—1]P. The point doubling R = P+ P = [2]P,
is defined by drawing the tangent line of the curve at point P. This line
intersects with a second point on the curve. The sum point R is computed

10



by reflecting this second point across the x-axis. This computation is ex-
pressed by the following formulae:

s = (3Px* +a)(2Py)~! (mod q)
Rx =s* —2Px (mod q)
Ry = Py —s(Rx — Px) (mod q)

Notice that these formulae do not involve the curve parameter b.

3.2 Private Key Retrieval

Let E’ be a different group with the curve equation y?> = x3 + ax + b’ (same a
and a different b’), such that there exists a point Q; € E’ with a small prime
order pp. The attacker provides Q; as his ECDH public-key. Denote the private
key of the victim by SK, and denote the shared DH key from the victim’s per-
spective by x1. The victim then calculates x; = [SK]Q; and sends H(x7) to the
attacker, where H is a publicly known function that follows the computation
of the protocol regarding x;. Given the output H(x;) = hj, the attacker can
exhaustively search for the value a; that satisfies H([a1]Q1) = hj. This search
is computationally feasible since the order of Q; is low. The resultant discrete
log a1 provides the information x = [a1]Q; = [SK]Q;, and therefore it can
be concluded that SK = a; (mod p1). The attacker then repeats this process
using a different point Q;, which has a different small prime order p;. This
exchange repeats until the product of the primes satisfies Hile pi > n. Finally,
the attacker recovers the victim’s private key using the Chinese Remainder
Theorem.

4 Our attack

In this section we introduce the Fixed Coordinate Invalid Curve Attack, which
is MitM attack which modifies the y-coordinates of the transmitted public
keys. Our attack exploits invalid-curve-points in a different way than Biehl
et. al.’s original Invalid curve attack. Specifically, we use the ability to forge
low order ECDH public keys that preserve the x-coordinate of the original
public-keys. Our attack is based on the observation that only the x-coordinate
of each party is authenticated during the Bluetooth pairing protocol and on the
fact that the protocol does not require its implementations to validate whether
a given public-key satisfies the curve equationﬂ Our new attack can be applied
to both SSP and LE SC.

As opposed to the classical Invalid Curve Attack our attack belongs to the
family of attacks named Small subgroup confinement attack. In this family the
attacker attempts to compromise the shared secret by forcing a key to be con-
fined to an unexpectedly small subgroup.

1 Note that all of the implementations we tested did not add this validation voluntarily.

11



Fig. 5. Example of an elliptic curve with an order-two point at (—3,0)
10

--- x=-3
7y2:x3—3x+18

|
I I I I I 1
T T T T T >

-10 -8 —6 —4-8-2 0 2 4 6 8 10

0,

—10 +

4.1 A Semi-Passive Attack

Our attack exploits the fact that given an elliptic curve in Weierstrass notation
y? = x> + ax + b, both point-doubling and point-addition operations are inde-
pendent of b. Given an elliptic curve group E and a point Q = (Qx, Qy) € E,
let Q" = (Qx,0) be its projection on the x-axis. We can easily find a differ-
ent curve E’ with an equation y?> = x% + ax + b/, such that P’ € E’, using the
same curve parameter 4 and a different parameter b’. This manipulation is not
detected by the protocol since the x-coordinates are left unchanged.
According to the group definition, given a point Q = (Qx, Qy), the inverse of
Q is found by reflecting it across the x-axis [-1]Q = (Qx, —Qy). Therefore,
every point of the form (Qx,0) equals its own inverse, and has order two. An
example of such a point is outlined in Figure 5 Since the y-coordinate is forced
to zero on the given point, the new curve parameter b’ on which (Qy,0) € E’
can easily be calculated by

V=-Q—a-Q; (modg).

Using this observation we introduce the Semi-Passive Fixed Coordinate Invalid
Curve Attack. The semi-passive attack is thus as follows:

Eavesdrop both parties throughout the pairing protocol.

Let both parties perform the first phase of the pairing (feature exchange).

Let the parties transmit their ECDH public keys.

Modify the y-coordinates of the public keys to zero in both transmissions.
Conclude that both parties result with DHKey = co.

Do not intervene with rest the of the pairing protocol.

Observe if the pairing succeeds, otherwise, quit.

Derive the symmetric session keys (LTK and MacKey) using the expected
DHKey = oo and the public parameters.

After the pairing is finished, forge or passively decrypt packets sent be-
tween the participating devices using the derived keys.

PN LD

Ao

12



Fig. 6. Fixed Coordinate Invalid Curve Attack — Phase 2

Device A Attacker Device B

PKa = [SKb]P PKb = [SKb]P
Change the
PKa = (PKax, PKay) | y-coordinate | PKqa' = (PKax,0)
of >
PKV' = (PKbx,0) | each public | PKb = (PKbx, PKby)
key to zero

;’_/

With probability of 25% both shared keys equal the identity element

DHKey, = DHKey, = co.

The message interception during the second phase is illustrated in Figure [|
After the interception of the second phase the rest of the communication can
be eavesdropped without further interaction, as outlined in Figure

Steps [7] and [§] above require elaboration: In step [ the attacker confines each
of the public keys to a sub-group of order two by projecting it on the x-
axis. If both SK; and SKj are even, this confinement implies that the at-
tack succeeds. In this case the computed DHKey of both parties are equal:
DHKey, = DHKey;, = co. This result occurs with probability 0.25. In all other
cases the parties compute different DHKeys, and thus the pairing protocol
fails.

4.2 Fully-Active MitM Attack

The semi-passive attack requires a message interception only during the sec-
ond phase of the pairing. The rest of the communication can be passively
eavesdropped. We can further improve the attack success probability to 0.5 by
also intercepting messages during the fourth phase. In order to achieve this
better success rate we should consider the four possible values of DHKey,
computed by each party after the interception of the second phase, as listed
in Table 2| The first row in the table represents the success case of the semi-
passive attack.

The session key is derived using the shared DHKey, ra, rb and several pub-
lic parameters: nonce Na, nonce Nb, BD_ADDR of device A and BD_ADDR
of device B. The values ra and rb differ between the Passkey Entry and the

13



Fig.7. Semi-Passive MitM Attack — Passive Eavesdropping

| Device A | | Attacker | | Device B |

Ci = Errx(Msg;)

Passively eavesdrops and
decrypts each message
using
MacKey || LTK =
£5(co, Na, Nb, A, B)

Table 2. The possible values for DHKey, and DHKey,

DHKey, DHKey,

00 00
00 PKa'

PKV’ 00

PKV’ PKa'

14



Numeric Comparison association models. In the Numeric Comparison model
ra = rb = 0. In contrast, in the Passkey Entry model ra and rb are 6-digit
decimal values expressed as 128-bit integers.

These values are not transmitted in plaintext but could still be retrieved with a
small effort. The attacker could retrieve the passkey by exhaustively searching
through the 10 ~ 22 possible values. An even better solution for extracting
the passkey is by iterating through all possible values of rai and rbi, which
are used during the third phase as inputs for Function f4. Each value of rai
and rbi represents a single bit of the passkey. The attacker can test each bit
independently and thus he should iterate through at most 2 - 20 = 40 options
to determine the correct values of ra and rb.

In the fourth phase both devices derive the session keys (see Subsection 2.1.5).
The first message of the fourth phase (Ea) reveals information about DHKey,.
The attacker uses this information to determine whether DHKey, equals PKb’
or co. If DHKey, = oo, the attacker continues as in semi-passive attack, without
further interception.

If DHKey, = PKUV', the attacker guesses the yet unknown value of DHKey,
to be either co or PKa’, and calculates the appropriate check-value Ea’ ac-
cordingly. He then sends Ea’ to the non-initiator instead of Ea. If the guess
is incorrect, the non-initiator replies with the message “Pairing Failed (Check
Value Failed)”. Otherwise, the non-initiator replies with his check-value and
the attacker concludes that the guess is correct. The fully-active attack is thus
as follows:

1. Apply steps 1-3 as in the semi-passive attack.

2. Do not intervene with the third phase of the pairing protocol.

3. If the association model is Passkey Entry, find the correct value of ra and rb
using one of the methods described above, otherwise, assume ra = rb = 0.

4. In the fourth phase of the pairing, receive the check-value (Ea), but distort
it so it will not reach its destination (i.e., by destroying the checksum or
preamble).

5. Use the check-value in order to validate whether DHKey, equals co or
PKV'.

(a) If the DHKey, = oo, send the original check-value, and continue as
with the semi-passive attack.

(b) If DHKey, = PKV', randomly guess the value of DHKey,; to be either
co or PKa'.

6. Compute and transmit the value of Ea” according to the guess of DHKeyy,
instead of the distorted value from step 4.

7. If the guess is incorrect, the pairing protocol is terminated with a “Pairing
Failed (Check Value Failed)” message.

8. Otherwise, Compute the session keys LTK,, MacKey, and LTK,, MacKey,
associated with DHKey, and DHKey;, and act as a relay between the par-
ticipating devices by decrypting and re-encrypting each message, or send
forged packets of your choice.

15



Table 3. Success Rate — Semi-Passive Attack

DHKeyy

!/
DHKey, PKa

[ee]

oo Success

PKY'

Total Semi-Passive Attack: 25%

Table 4. Success Rate — Fully-Active Attack (when guessing DHKey;, = o)

DHKeyy

’
DHKey, ) PKa

o0 Success

PKV’ Success

Total of this case: 50%

The message interception during the fourth phase considering DHKey, =
PKUV' is illustrated in Figure |8 Note that using this improvement the attacker
has to continually relay packets and act as MitM for the rest of the session:
each message sent between the victim devices has to be intercepted by the
attacker, decrypted using the sender’s key, re-encrypted using the recipient’s
key, and sent to the recipient. The relay operation is illustrated in Figure [9}

4.3 Success Rate

The success rate of our attack is calculated under the assumption that the
private keys SK, are chosen uniformly at random. For the semi-passive at-
tack suppose that the shared keys computed by both parties are the point-
at-infinity. Denote this event by V = (DHKey, = oo) N (DHKey, = ). As
each of the terms is satisfied only when the corresponding SK is even, the
probability of this event is Pr(V) = 25%.

For the fully-active attack suppose that the shared key as derived by the initia-
tor is PKV/, and that the attacker correctly guesses the shared key as derived
by non-initiator. Denote this event by U = (DHKey, = PKb') N (DHKey; =
DHKeyy). The probability of this event is also Pr(U) = 25%. Consequentially
the success probability of the fully-active attack is Pr(UU V) = 25% + 25% =
50%.

The success probabilities of the various cases of our attack are summarized in

Tables [3] 4] and

16



Fig. 8. Fully-Active MitM (Considering DHKey, = PKV') — Phase 4

Device A

Attacker

Device B

Compute the LTK and Compute the LTK and
MacKey: MacKey, || LTK, = MacKey: MacKey, | LTK, =
f5(DHKey, = PKb',Na, Nb, A, B) f5(DHKey,, Na, Nb, A, B)
Compute: Compute:
Ea = Eb =
f6(MacKey,, Na, Nb,rb, [Ocap A, A, B) f6(MacKey,, Nb, Na, ra, [OcapB, B, A)

( Compute: h

Ea |MacKey, || LTK, = f5(PKb’, Na, Nb, A, B)

>

Select an arbitrary value
DHKey;, € {PKa', 00}

Compute the LTK and MacKey
accordingly: MacKey,, || LTK} =

f5(DHKey;, Na, Nb, A, B)
Compute: Ea’ =
f6(MacKey;, Na, Nb,rb, [OcapA, A, B)

- J

Check if Ea' =
f6(MacKey,, Na, Nb,rb, [Ocap A, A, B)
if check fails, abort

Reaching here only if the guess was correct
(DHKey, = DHKeyy,)

EV

Compute: Eb’ =

Eb
f6(MacKey,, Nb, Na, ra, IOcapB, B, A) ]‘*

17




Fig.9. Fully-Active MitM — Relay

Device A Device B

( A
Ci = Eprk, (Msg;) Decrypt using LTK, and C} = Errk, (Msg;)
re-encrypt using LTK),

. J

( A
Ciy1 = Errx, (Msgiy1) | Decrypt using LTK, and | Ciy1 = Eprk, (Msgis1)
re-encrypt using LTK,

Table 5. Success Rate — Fully-Active Attack (when guessing DHKey; = PKa')

DHKeyy
DHKey,

(o]

Success

PKV’ Success

Total of this case: 50%

5 Design Flaws and Mitigations

In this section we discuss multiple security flaws of the pairing protocol used
in this paper, and point to which mitigations should be applied in order to
protect a platform. We also warn from mitigations which are insufficient to
protect against our attack.

5.1 Design Flaws

There are two major design flaws that make our attack possible. The first
design flaw is sending both the x-coordinate and the y-coordinate during
the public key exchange. This is unnecessary and highly inadvisable, since
it greatly increases the attack surface, while calculating the y-coordinate from
a given x-coordinate is simple.

The second major flaw is that although both coordinates of each public key
are sent during the second phase of the pairing, the protocol authenticates
only the x-coordinate. We are not aware of any reason why the designers de-
cided to leave the y-coordinate unauthenticated, other than for saving a tiny
computational effort. Even though the point validity should be checked by the
implementation, our attack could have also been avoided if both coordinates
were authenticated.

18



Another less significant flaw is that in [7, Part H, Section 5.1] the protocol de-
signers state that “To protect a device’s private key, a device should implement
a method to prevent an attacker from retrieving useful information about the
device’s private key using invalid public keys. For this purpose, a device can
use one of the following methods”. In this quote, the specification uses the
term “should” (as opposed to “must”). Therefore, implementors may skip the
instruction as it is not mandatory for compliance with the specification.

5.2 Mitigations

The obvious (and recommended) mitigation against our attack is to test if
a given ECDH public-key satisfies the curve equation (i.e., the point is on
the curve). This mitigation indeed became mandatory in the Bluetooth core
specification as a response to our responsible disclosure.

In case that the order n of the base point P is prime, another acceptable mitiga-
tion is to validate whether the given public key (PK) satisfies [n]PK = oco. This
mitigation applies since it verifies the order of the given key, thus preventing
public keys with smaller orders.

These mitigations are applicable to both LE SC and SSP.

5.3 Insufficient Mitigation

The commonly used mitigation proposed by the Bluetooth Core Specifica-
tion [7] against Invalid Curve Attack is refreshing the ECDH key pair every
pairing attempt. We stress that our attack applies even when this mitigation is
applied.

We must also note that although checking whether the y-coordinate equals
zero protects against our specific attack, it is not a sufficient mitigation. An
extended version of our attack can still be devised using slightly higher order
points with a decreased success probability. For example, given the same do-
main parameters D = {g,4,b, P,n} and a valid public key PK = (PKx, PKy),
we can easily forge a public key PK’ = (PKx, PKy') with order four, such
that PKy’ # 0. Let Q = (Qx, Qy) be the point defined by Q = [2]PK’. Such
PK’ point with order four can be generated by forcing Qy = 0. Substituting
(PKx, PKy') into the point doubling equations we get

s = (3PKx* +a)(2PKy')™!  (mod q)
Qx =s?>—2PKx (mod gq)
Qy =PKy —s(Qx—PKx) =0 (mod q)
from which we can deduce
PKy' = (3PKx? +a)(2PKy')"1(Qx — PKx) (mod q)
2PKy"? = (3PKx® +a)(Qx — PKx) (mod q)

PKy' = i\/(3PKx2 +a)(Qx — PKx)2~1  (mod q).

19



Ignoring the negligible chance that 3PKx? +a = 0 (mod q), we can assign
any value Qx that satisfies Qx # PKx for which (3PKx? + a)(Qx — PKx)2~!
is a quadratic-residue modulo g. This generalized form of our attack provides
success rate of 25%. Therefore, checking whether the y-coordinate equals zero
is not a sufficient mitigation.

6 Vulnerable Platforms

We have tested the vulnerability of multiple devices from several manufactur-
ers and discovered that almost all of the Bluetooth pairing implementations
are vulnerable to our attack. Every vulnerable implementation we tested can
be used in both master and slave roles, depending on the configuration.

Our tests used CY5677 programmable USB Bluetooth dongle by Cypress with
modified dedicated firmware as our test platform. The following modifications
were added to the dongle’s Bluetooth stack:

1. We zeroize the y-coordinate of our public key just before transmission.
2. We zeroize the y-coordinate of the remote public key immediately after it
is received.

We then examined the target responses, measured the pairing success rate and
compared it to our expectations.

We used this “synthetic” validation method since it provides the most realistic
setting while giving us enough flexibility to precisely test our attack. We stress
that this validation proves that the target device is vulnerable since it performs
exactly the same manipulations as a MitM implementation of the attack would
do.

6.1 Vulnerable Bluetooth Low Energy Platforms

Since LE SC is implemented in the host, the vulnerability is found in the host’s
operating system, regardless of the Bluetooth adapter. We found the Android
Bluetooth stack, “Bluedroid”, to be VulnerableE] Note that Apple’s iOS and
MacOS implementations were also found to be vulnerable (as identified by
Apple following our disclosure). On the other hand, Microsoft Windows did
not support LE SC — the secure pairing was added to Windows 10 only after
our disclosure.

6.2 Vulnerable Bluetooth BR/EDR Platforms

The vulnerability in SSP depends on the Bluetooth chip firmware implemen-
tation, since unlike LE SC, the key exchange is performed by the chip, rather
than by the host. During our research we found that devices of most major
chip vendors are affected. In particular, Qualcomm’s, Broadcom’s and Intel’s
chipsE] are vulnerable, which together constitute most of the Bluetooth chips

2 Tested on Nexus 5X devices with Android version 8.1.
3 The examined Bluetooth adapters were: Qualcomm’s QCA6174A, Broadcom’s
BCM4358 and Intel’s 8265.

20



market. We stress that every device (e.g., mobile phone, laptop or car) that
uses such a chip is vulnerable.

7 Practical Considerations

In the following section we consider the requirements and obstacles facing
attackers who wish to implement our attack in real-life environments.

7.1 Over the Air Implementation

Our attack requires the ability to manipulate the Bluetooth communication be-
tween two victim devices. In a wireless environment this is usually done by
jamming the receiver while eavesdropping to the sender, before transmitting
the modified message. Due to physical obstacles (such as frequency hopping
and different clock synchronizations) Bluetooth eavesdropping and traffic in-
terceptions are much more difficult than in other radio-based protocols (such
as 802.11). Until recent years, in order to sniff Bluetooth traffic one had to pur-
chase expensive equipment such as the “Ellisys Bluetooth Explorer”, which
costs in the range of 10K-20K US dollars.

In 2010 Michal Ossman introduced an open-source project called “Project
Ubertooth” [15], which introduced a highly accessible and inexpensive util-
ity for Bluetooth sniffing, and costs only about $100. Moreover, Mike Ryan
suggested in [17] how an attacker can break the frequency hopping param-
eters used in Bluetooth Low Energy allowing to easily sniff Bluetooth traffic
using Ubertooth. A similar technique is used in Ubertooth in order to sniff
Bluetooth Basic Rate traffic, but not yet intercept. It is therefore clear that fre-
quency hopping is not a valid security mitigation against MitM.

After the success of Ubertooth a lot of new products were introduced improv-
ing the capabilities provided by Ubertooth and adding the ability to perform
over the air MitM to Bluetooth LE traffic. One of the most popular solutions is
“GATTack” [18] presented during Blackhat USA 2016. This tool is a software
based framework providing over the air BLE MitM capabilities with equip-
ment that costs about $10.

Unfortunately, all of the solutions we found are limited to Bluetooth 4.0 and do
not support Bluetooth 4.2 due to its larger packet size. It is safe to assume that
the next generation of these products will support Bluetooth 4.2 as it becomes
more popular.

7.2 Public Key Manipulation

In addition to the straight-forward MitM technique, there is a much simpler
technique for attacking SSP. Observe that the SSP packet size is limited to
16 bytes, while the ECDH public-key is either 192 - 2 = 384bits = 48bytes or
256 - 2 = 512bits = 64bytes. To accompany this restriction the public key is

21



divided into either 3 or 4 packets, allowing the attacker to forge the packet of
the y-coordinate, without affecting the x-coordinate.

It is interesting to note that the P-192 variant is actually harder to forge than
the P-256 variant, as the second packet in the P-192 variant contains data of
both coordinates (x and y), while the P-256 variant separates the coordinates
to different packets.

The maximal packet size in LE SC is much larger compared to SSP, limited by
256 bytes instead of 16. Thus both public key coordinates are encoded in the
same packet.

7.3 Encoding of the Point-at-Infinity

In the description of our attack we repeatedly consider the point-at-infinity
(aka. the identity element co) as a possible solution for the scalar multiplica-
tion. This requires a delicate discussion since the encoding of this point is not
defined by the Bluetooth specification nor there is any standard encoding for it.
If the encoding of the point-at-infinity is different between the master and the
slave, the shared DH key will be different, even when both shared DH keys
equals the point-at-infinity. This is of course a compatibility problem rather
than just a theoretical issue. Nevertheless, our fully-active attack still applies
in such a case by using the specific encoding for each of the victim devices.
However, during our tests we found that all the popular implementations rep-
resent the point-at-infinity as (0, 0), so this potential problem does not occur
in practice.

8 Summary

In this paper we introduced the Fixed Coordinate Invalid Curve Attack which
provides a new tool for attacking the ECDH protocols, and presented the ap-
plication of our new attack to the Bluetooth pairing protocol.

During our research we discovered multiple design flaws in the Bluetooth
specification. We then tested different Bluetooth implementations and found
that a large majority of the Bluetooth devices are vulnerable.

Shortly after we discovered the attack we informed the affected vendors with
the help of the Cert Coordination Center (CERT/CC). As a result, CVE-2018-
5383 was assigned to this vulnerability in the Bluetooth protocol. In our re-
sponsible disclosure we recommended the Bluetooth Special Interest Group to
fix the design flaws in future Bluetooth versions. We further suggested that
the specification should require manufacturers to add the necessary valida-
tions, rather than having it optional. We also urged the manufacturers to add
the proposed validations, even if it is not mandatory. Although we expect that
most of the currently used Bluetooth peripherals will never be patched (as
patching most devices is infeasible), patching all the mobile-phones and com-
puters (where a software update is relatively easy) will greatly decrease the
risk of this vulnerability.

22



Several months after our notification, all of the major vendors managed to
coordinately patch their products which resulted in a vast amount of platforms
that needed to be updated. The following vendors released a software update
addressing our attack: Google (Android OS), Apple (MacOS), Apple (iOS),
Intel, Broadcom, Qualcomm, Lenovo, Samsung, LG, Huawei and Dell.
Another implication of our disclosure was an update of the Bluetooth core
specification which now mandates implementors to validate whether a given
Diffie-Hellman public-key satisfies the curve equation. The update was re-
leased with the following announcement: “To remedy the vulnerability, the
Bluetooth SIG has now updated the Bluetooth specification to require prod-
ucts to validate any public key received as part of public key-based security
procedure”.

References

1. Antipa A., Brown D.R.L., Menezes A., Struik R., and Vanstone S.A. Validation of
elliptic curve public keys. Public Key Cryptography PKC 2003, 2567:211-223, 2003.
2. Ingrid Biehl, Bernd Meyer, and Volker Mller. Differential fault attacks on elliptic
curve cryptosystems. Advances in Cryptology CRYPTO 2000, 1880:131-146, 2000.
3. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. Transac-
tions on Infromation Theory, IT-22, NO. 6:644-654, 1976.
4. Bluetooth Special Interest Group. Specification of the bluetooth system v2.0. 0,
2004.
5. Bluetooth Special Interest Group. Specification of the bluetooth system v3.0. 0,
2009.
6. Bluetooth Special Interest Group. Specification of the bluetooth system v4.0. 0,
2010.
7. Bluetooth Special Interest Group. Specification of the bluetooth system v4.2. 0,
2014.
8. Bluetooth Special Interest Group. Specification of the bluetooth system v5.0. 0,
2016.
9. IEEE. Specification of the bluetooth system v1.0b. 1, 1999.
10. IEEE. Specification of the bluetooth system v1.1. 1, 2001.
11. Tibor Jager, Jorg Schwenk, and Juraj Somorovsky. Practical invalid curve attacks on
tls-ecdh. Computer Security — ESORICS 2015, 1880:407-425, 2000.
12. Peter Landrock and Jan Ulrik Kjaersgaard. Protecting against security attack. 2013.
US Patent 8077866 B2.
13. Koblitz N. Elliptic curve cryptosystems. Mathematics of Computation, 48:203-209,
1987.
14. National Institute of Standards and Technology. Federal information processing
standards publication 186-2. 2000.
15. Michael Ossmann. Project ubertooth.
http: //ubertooth. sourceforge. net!
16. Mike Ryan. Crackle cracks ble encryption. https://github. com/mikeryan/
crackle.
17. Mike Ryan. With low energy comes low security. USENIX WOOT, pages 4—4, 2013.
18. securing. Gattack.
http: //gattack. ol

23


http://ubertooth.sourceforge.net
https://github.com/mikeryan/crackle
https://github.com/mikeryan/crackle
http://gattack.io

19. JH. Song, R. Poovendran, J. Lee, and T. Iwata. The AES-CMAC Algorithm. (4493):1-
20, June 2006.

20. Miller V.S. Use of elliptic curves in cryptography. Advances in Cryptology CRYPTO
85 Proceedings, 218:417-426, 1986.

A Bluetooth Versions

Bluetooth has several versions. Each new version introduces extended capabil-
ities or a complete new set of sub-protocols.

The initial releases of Bluetooth, versions 1.0 and 1.0B [9], had many prob-
lems, and manufacturers had difficulty making their products interoperable.
The manufacturers included a mandatory Bluetooth hardware device address
(BD_ADDR) for transmission in the connecting process, which made anonymity
impossible at the protocol level. This was a major setback for certain services
planned for use in Bluetooth environments.

Bluetooth versions 1.1 [10] introduced major improvements over their prede-
cessors and addressed many of the errors found in v1.0B. New features were
added, among them: RSSI for measurement of the power present in a received
radio signal, faster connection, faster discovery, adaptive frequency-hopping
and higher transmission speeds.

Version 2.0 [4] was released in 2004. It introduced an even faster data transfer
with throughput of up to 3 Mbit/s. The throughput enhancement was due
to the use of GFSK and PSK modulation. This new method of modulation is
called EDR, or Enhanced Data Rate, while the older modulation is called BR, or
Basic Rate. When both of the modulations are implemented together it is called
BR/EDR.

Version 2.1 of the protocol added secured pairing named Secure Simple Pair-
ing (SSP) to support Man-in-the-Middle (MitM) protection using authenticated
Diffie-Hellman during the pairing stage.

Bluetooth 3.0 [5] introduced the support for an alternative MAC/PHY (AMP).
AMP is a new feature, allowing the use of an alternative data channel. While
the negotiation and establishment are still performed similarly to former ver-
sions, the data flow uses an alternative MAC PHY 802.11 (typically associated
with Wi-Fi). The 802.11 standard defines different protocols for the physical
layer and for the link layer. It is characterized by a high transfer-rate and a
relatively high signal range. After the connection is established the 802.11 link
encapsulates the data packets of the BT established connection. The result is a
much higher transfer rate of up to 24 Mbit/s. This new feature was intended
to allow streaming over Bluetooth, whose throughput was still poor compared
to other protocols.

Bluetooth Core Specification version 4.0 [6] introduced a new modulation
mode and link layer packet format called Bluetooth Low Energy (BTLE). BTLE is
intended for use in low power embedded devices. It was rapidly adopted by
various consumer devices, such as smart phones, wearable technology, sports
tracking devices and recently even health and medical equipment. BTLE PHY

24



divides the RF spectrum into 40 channels, each of which is 2MHz in width,
from 2402MHz to 2482MHz. Three of those 40 channels are labeled as adver-
tising channels used for pairing and discovery packets. The rest are labeled as
data channels, used for establishing connections and transmission of the data.
The link layer was also redesigned and a new pairing protocol was added.
On December 2014, core specification 4.2 [7] was introduced, providing several
new features to the BTLE protocol intended to make it the main protocol for
the IoT (Internet of Things). These features include a new LE Secure Connec-
tions mode, as well as several security and privacy related features.

The latest version of Bluetooth, released on December 2016 was version 5.0 [8].
The new version added several performance features for Bluetooth Low En-
ergy, most of them in the physical layer of the protocol. Among the new fea-
tures were extended range, higher throughput and higher advertisement ca-
pacity.

In this paper we study the pairing protocols SSP used by Bluetooth BR/EDR
and LE Secure Connections used by Bluetooth Low Energy. These are the only
secure pairing protocols to date.

25



	Breaking the Bluetooth Pairing – The Fixed Coordinate Invalid Curve Attack 

