
Privacy-preserving auditable token payments in a permissioned
blockchain system

Elli Androulaki

IBM Research – Zurich

lli@zurich.ibm.com

Jan Camenisch

DFINITY – Switzerland

jan@dfinity.org

Angelo De Caro

IBM Research – Zurich

adc@zurich.ibm.com

Maria Dubovitskaya

DFINITY – Switzerland

maria@dfinity.org

Kaoutar Elkhiyaoui

IBM Research – Zurich

kao@zurich.ibm.com

Björn Tackmann

DFINITY – Switzerland

bjoern@dfinity.org

ABSTRACT
Token payment systems were the first application of blockchain

technology and are still the most widely used one. Early implemen-

tations of such systems, like Bitcoin or Ethereum, provide virtually

no privacy beyond basic pseudonymity: all transactions are written

in plain to the blockchain, which makes them linkable and traceable.

Several more recent blockchain systems, such as Monero or Zero-

cash, implement improved levels of privacy. Most of these systems

target the permissionless setting, and as such are not suited for en-
terprise networks. These require token systems to be permissioned
and to bind tokens to user identities instead of pseudonymous ad-

dresses. They also require auditing functionalities in order to satisfy
regulations such as AML/KYC.

We present a privacy-preserving token management system that

is designed for permissioned blockchains and supports fine-grained

auditing. The scheme is secure under computational assumptions

in bilinear groups, in the random-oracle model. We provide perfor-

mance measurements for our prototype implementation built on

top of Hyperledger Fabric.

1 INTRODUCTION
1.1 Motivation
As the blockchain technology matures, public and private compa-

nies alike are exploring the technology to streamline their busi-

ness [32]. An emerging paradigm to accommodate enterprise use-

cases is tokenization [33]. Tokens provide a natural abstraction to

describe the lifecycle of an asset in terms of simple operations such

as issue and transfer. However, moving to blockchain-based token

systems raises the challenge of preserving privacy.

Several approaches already exist to add different levels of privacy

to blockchain-based token systems. Tumblers such as CoinJoin [37]

combine several transfer operations from different users and ob-

scure the relation between senders and receivers. In mix-in-based
systems such as CryptoNote [48], token transactions reference mul-

tiple superfluous senders that do however not actually participate

in the transaction and only serve as a cover-up for the actual sender.

Confidential Assets [42] hide the values in a token transfer but

leave the sender-receiver relation in the open. Finally, advanced

systems such as Zerocash [3] both encrypt the values and fully hide

the sender-receiver relation.

All of these solutions are however designed for permissionless
blockchains. Enterprise networks, on the other hand, favor permis-
sioned platforms for their higher throughput and built-in gover-

nance [31, 32], with the latter being achieved by a combination of

identity management, auditability and non-deniability. Although

existing solutions can be tailored for permissioned networks, they

are not designed with auditability and accountability in mind. This

paper bridges that gap: it hides the content of transactions without

preventing authorized parties from inspecting them.

Another goal of this paper is to move away from complex and

non-falsifiable computational assumptions that underpin zkSNARK-

based schemes and instead work with more conservative assump-

tions. This is driven by financial use-cases that have a preference

for well-established primitives with standard security assumptions.

By restricting ourselves to the permissioned setting we were able

to leverage a combination of signatures and standard ZK-proofs to

achieve this goal.

1.2 Results
We describe a token management system for permissioned net-

works that enjoys the following properties:

Privacy: Transactions written on the blockchain conceal both

the values that are transferred and the sender-receiver

relationship. A transaction leaks no information about the

tokens being spent beyond that they are valid and unspent.

Authorization: Users authorize transactions via credentials; i.e.,

the authorization for spending a token is bound to the

user’s identity instead of a pseudonym (or address). The

authorization makes use of anonymous credentials and is

privacy-preserving.

Auditability: Each user has an assigned auditor that sees all the

transaction information related to that particular user with-
out the latter’s explicit consent.

Satisfying these three requirements is crucial for implementing

a token system that ensures governance, protects user privacy and

at the same time complies with regulations such as AML/KYC.

The system we propose is based on the unspent transaction out-

put (UTXO) model pioneered by Bitcoin [39] and supports multi-

input-multi-output transactions. It inherits several ideas from prior

work, such as the use of Pedersen commitments from Confiden-

tial Assets [42] and the use of serial numbers to prevent double-

spending from Zerocash [3]. These are combined with a blind cer-

tification mechanism that guarantees the validity of tokens via

threshold signatures, and with an auditing mechanism that allows

flexible and fine-grained assignment of users to auditors.

We use a selection of cryptographic schemes that are based

in the discrete-logarithm or pairing settings and are structure-

preserving, such as Dodis-Yampolskiy VRF [20], ElGamal encryp-

tion [21], Groth signatures [27], Pedersen commitments [41], and

Pointcheval-Sanders signatures [43]. This allows us to use the rela-

tively efficient Groth-Sahai proofs [29] and achieve security under

standard assumptions, in the random-oracle model.

1.3 Related work
Miers et al. [38] introduced Zerocoin, which enables users to anonymize

their bitcoins by converting them into zerocoins using Pedersen com-

mitments and zero-knowledge proofs. Zerocoins can be changed

back to bitcoins without leaking their origin. Zerocoin however

does not offer any transacting or auditing capabilites.

Confidential Assets of Poelstra et al. [42] protect privacy (in a

limited form) by hiding the types and the values of the traded assets.

The idea, similarly to Zerocoin, is to use Pedersen commitments to

encode the amount and types of traded assets, and zero-knowledge

proofs to show the validity of a transaction. The proposed scheme

however does not hide the transaction graph or the public keys of

the transactors. While this allows for some form of public auditabil-

ity, it hinders the privacy of the transacting parties. Pretty Good

Confidentiality of Chen et al. [19] follows a similar approach but

adds explicit auditing functionality.

Zerocash [3] is the first fully anonymous decentralized payment

scheme. It offers unconditional anonymity, to the extent that users

can repudiate their participation in a transaction. Thanks to a com-

bination of hash-based commitments and zkSNARKs, Zerocash

validates payments and prevents double-spending relatively effi-

ciently. On the downside, Zerocash requires a trusted setup and

an expensive transaction generation and its security relies on non-

falsifiable assumptions.

Extensions to Zerocash have been proposed in [23] to support

expressive validity rules to provide accountability: notably, the pro-

posed solution ensures regulatory closure (i.e. allowing exchanges

of assets of the same type only) and enforcing spending limits. In

terms of accountability, the proposed scheme allows the tracing of

certain tainted coins, while not really extensively and consistently

allowing transactions to be audited. By building on Zerocash, the

proposed scheme inherits the same limitations regarding computa-

tional assumptions and trusted setup.

QuisQuis [22] and Zether [4] propose solutions that provide

partial anonymity. On a high level, instead of sending a transaction

that refers only to the accounts of the sender and the recipients of

a payment, the sender adds accounts of other users, who act as an

anonymity set (similar to CryptoNote [48]). Both schemes couple

ElGamal encryption with Schnorr zero-knowledge proofs to ensure

that user accounts reflect the correct payment flows. Contrary to

Zerocash, QuisQuis and Zether rely on falsifiable assumptions and

do not require any trusted setup. Furthermore, both schemes can

be extended to provide auditability in a permissioned setting using

verifiable public-key encryption. However, their privacy guarantees

are weaker than ours: namely, the anonymity set in our solution

corresponds to all system participants.

Solidus [17] is a privacy-preserving protocol for asset transfer

that is suitable for intermediated bilateral transactions, where banks

act as mediators. Solidus conceals the transaction graph and values

by using banks as proxies. The authors leverage ORAMs to allow

banks to update the accounts of their clients without revealing

exactly which accounts are being updated. The novelty of Solidus

is PVORM, which is an ORAM that comes with zero-knowledge

proofs that show that the ORAM updates are correct with respect

to the transaction triggering them. In Solidus there is no dedicated

auditing functionality; however banks could open the content of

relevant transactions at the behest of authorized auditors.

The zkLedger protocol of Narula, Vasquez, and Virza [40] is a

permissioned asset transfer scheme that hides transaction amounts

as well as the sender-receiver relationship and supports auditing.

One main difference with our approach is the end user: zkLedger

aims at a setting where the transacting parties are banks, whereas

our solution considers the end user to be the client of “a bank.” This

is why zkLedger enjoys relatively more efficient proofs and could

afford a transaction size that grows linearly with the number of total
transactors in the platform (i.e. banks), which is inherently small.

In our scheme, transaction size does not grow with the number of

overall parties; it only depends on the number of parties involved

in the transaction. Concerning auditability, zkLedger offers richer

and more flexible semantics but requires the participation of the

banks for the audit to take place.

Centralized e-cash. Our solution uses threshold blind signatures

to validate tokens and allow them to be transferred. While this

shows similarities with centralized e-cash [10, 11, 18, 45], our solu-

tion, by leveraging the blockchain, differs in the following funda-

mental ways: (i) double spending detection is performed in real–

time by all the nodes in the network; (ii) and a receiver of a token

is assured of its validity without contacting the issuing bank.

Outline. The remainder of the paper is structured as follows. In

Section 2, we provide further background on several important

techniques. Section 3 then shows an overview of our protocol.

Section 4 describes the types of cryptographic schemes used in the

protocol, before Section 5 specifies the security model. Section 6

contains the protocol description and the security statement. In

Section 7, we describe the implementation and the performance

measurements. Section 8 concludes.

2 BACKGROUND
2.1 Decentralized token systems
Adecentralized token transfer is performed by appending a transfer
transaction to the blockchain. Such a transaction comprises the

transfer details (e.g. sender, receivers, type and value) and a proof

that the author of the transaction possesses enough liquidity to

perform the transfer. The transaction is then validated against the

blockchain state (i.e. the ledger). More precisely, the blockchain

checks that the origin of the transaction has the right to transfer the

token and that the overall quantity of tokens is preserved during the

transfer. Existing decentralized token systems can be account-based
(e.g. [30]) or unspent transaction outputs (UTXO)-based (cf. [39]). A

valid transfer in an account-based system results in updating the

accounts of the sender and the receivers. In a UTXO-based token

system, a transfer transaction includes a set of inputs—tokens to

be consumed—and outputs—tokens to be created. A valid transfer

in such systems destroys the inputs and adds the outputs to the

ledger to be later consumed by subsequent transactions.

2.2 Privacy-preserving token systems
Decentralization of token systems gives rise to serious privacy

threats: if transactions contain the transfer information in the clear,

then anyone with access to the ledger is able to learn each party’s

transaction history. We call a decentralized token system privacy-
preserving if it partially or fully hides the transfer details. Examples

of decentralized and privacy-preserving token systems are Con-

fidential Assets [42], Zether [4], QuisQuis [22] and Zerocash [3],

with the latter offering the highest level of privacy protection.

Zerocash. The privacy in Zerocash relies on a combination of com-

mitments, zkSNARKs and Merkle-tree membership proofs. Namely,

a token in Zerocash is computed as a hiding commitment to a value,

a type and an owner’s pseudonym. After its creation, a token is

added to a public Merkle tree and during a transfer, the origin of

the transaction proves in zero-knowledge that the token is valid

(i.e. included in the Merkle tree), that it was not spent before and

that she owns it. Thanks to zkSNARKs, transaction validation in

Zerocash is quite fast. Yet, this comes at the cost of a complex trusted
setup and a very expensive proof generation. To obviate these two

limitations, we exploit the properties of permissioned token systems
to replace Merkle trees with signature-based membership proofs,

and devise a solution that does not use zkSNARKs.

2.3 Permissioned token systems
In a permissioned token system such as Hyperledger Fabric [1]

or Quorum [34], a user is given a long-term credential that re-

flects her attributes. Tokens are introduced by special users, called

issuers, through issue transactions. These transactions are then

validated against predefined policies that reflect existing norms

and regulations. For example, issuing policies define which issuers

are authorized to create which tokens and under which conditions.

Similarly to issue transactions, transfer can also be validated

against policies: the simplest of which is that a transfer can take

place only between registered users. A fundamental property of

permissioned systems is that transactions are signed using long-

term credentials. As a by-product, transactions can be traced back

to their origin, enforcing thus the requirements of auditability and

accountability.

2.4 Signature-based membership proofs
Weuse signatures to implement zero-knowledgemembership proofs

[5]. Roughly speaking, consider a set S that consists of elements

that are signed using a secret key sk associated with S. Proving
knowledge of some element 𝑒 in S in zero-knowledge amounts

to (i) computing a hiding commitment of 𝑒; (ii) and then proving

knowledge of a signature, computed with sk, on the committed

value. In this paper, we use this mechanism for two purposes: (i) to
prove that a user is in the set of registered users; (ii) and to show

that a token is in the set of valid tokens recorded in the ledger.

2.5 Encryption-based auditability
In an encryption-based auditable token system, transactions carry

ciphertexts intended for the authorized auditors, see e.g. [10, 11, 23].

For such a mechanism to be viable, it is important to ensure that

(i) the ciphertexts encrypt the correct information; (ii) and they are
computed using the correct keys. This can be achieved through zero-

knowledge proofs—computed by the creator of the transaction—that

link the ciphertexts to the transfer details and attest that the two

requirements listed above are not violated.

3 OVERVIEW
3.1 Design Approach
The first component of our solution is token encoding. Each token is

represented by a hiding commitment (e.g. Pedersen’s) that contains

the identifier of the token owner, the value of the token and its type.

The life-cycle of a token is governed by two transactions: issue
and transfer. An issue transaction creates a token of a given type
and value and assigns it to the issuer (i.e. author of the transaction).

For an issue transaction to be valid it should be submitted by the

authorized issuer. For ease of exposition, we assume that a token

issuer can issue only one type of token and we conflate the type of a

token with its issuer. Once a token is created, it changes ownership

through transfer transaction. Given that we operate within the

UTXO framework, a transfer transaction consists of a set of input

tokens to be consumed and a set of output tokens to be created and

it is validated against the following rules:

• The author of the transaction is the rightful owner of the

input tokens;

• the owners of the output tokens are registered;

• the type and the value of tokens are preserved;

• the input tokens can be traced back to valid transactions

in the ledger;

• the input tokens were not consumed before (to prevent

double spending).

Our solution moves away from zkSNARK and their trusted setup

assumption and relies only on standard NIZK proofs (e.g. Groth-

Sahai’s [29]). More precisely, it leverages the permissioned setting
to use ZK signature-based membership proofs to ascertain that

a user is registered and that a token belongs to the ledger in a

privacy-preserving manner. Namely, we assume that there is a

registration authority that provides authorized users with long-term

credentials (i.e. signatures) with their attributes, and a certifier that
a user contacts with a certification request to vouch for the validity

of tokens she owns. A certification request contains a token (i.e.

commitment) and upon receiving such a request the certifier checks

whether the token is included in a valid transaction in the ledger. If

so, the certifier blindly signs the token and the resulting signature

can be used subsequently to prove that the token is legitimate.

To prevent double spending, we leverage serial numbers to iden-

tify tokens when they are consumed as in Zerocash. It is important

that these serial numbers satisfy the following security properties:

(i) collision resistance: two tokens result in two different serial

numbers; (ii) determinism: the same token always yields the same

serial number; (iii) unforgeability: only the owner of the token can

produce a valid serial number. We use verifiable random functions

(e.g. Dodis-Yampolskiy [20]) to generate serial numbers that are a

function of the token owner’s secret key and a randomness that is

tied to the token at its creation time.

To enable auditability, we encrypt the information in transfer
transactions (i.e. sender, receivers, types and values) under the pub-

lic keys of the sender’s and the receivers’ auditors. To accommodate

real-world use-cases, our solution does not assume a single auditor

for all users. This means that the encryption scheme must not only

be semantically-secure but also key-private, such as ElGamal.

3.2 Architectural Model
3.2.1 Participants. Our solution involves the following parties:

Users. They own tokens that represent some real-world assets

and wish to exchange their tokens with other users in the network.

This is achieved through transfer transactions.

Issuers. They are users who are authorized to introduce tokens

in the system through issue transactions. For simplicity purposes,

an issuer is assumed to introduce one type of tokens only and that

the type of a token is defined as the identifier of its issuer.

Auditors. These are entities with the authority to inspect trans-

actions. We assume that each user in the system is assigned an

auditor at registration time and that this assignment is immutable.

Certifier. This is a privileged potentially-distributed party that

provides users with certificates that vouch for the validity of their

tokens. More specifically, a user who wishes to transfer a token

contacts the certifier with the token; the certifier in turn inspects

whether the token appears in a valid transaction in the ledger. If so,

the certifier sends back a certificate (i.e. signature) to that effect.

Registration authority. This is a privileged party that gener-

ates long-term credentials for all the participants in the system,

including users, issuers, auditors and certifiers. Namely, the creden-

tials tie the real-world identity of the requestor to her attributes

and her public keys. An example of an attribute is role (e.g., “user”,
“auditor”, “certifier”) that determines the type of credentials to be

generated. A user credential is a signature that binds the user’s pub-
lic keys to her identifier and the identifier of her auditor; whereas an

auditor credential is a signature that links the auditor’s encryption
key to her identifier; finally the certifier’s credential is a signature

of her public key.

Ledger. This is a decentralized data store that keeps records

of all issue and transfer transactions that have been previously

submitted. It is accessible to all parties to read from and submit

transactions to. The ledger has a genesis block that contains (i) the
system security parameters; (ii) the public information of the regis-

tration authority and the credentials of the certifier; and (iii) the
identifiers of the issuers authorized to introduce new tokens.

3.2.2 Interactions. The interactions between system participants

are shown in Figure 1. At first users, issuers, auditors and certifier

engage with the registration authority in a registration protocol to

get long-term credentials for their subsequent interactions.

A genesis block is created that announces the system parameters,

the public information of the registration authority, the credentials

of the certifiers and an initial list of authorized issuers. From now

Figure 1: This figure shows the interactions between the participants in
our system. Users, issuers, auditors and the certifier are granted credentials
by interacting with the registration authority. To create new tokens, an issuer
submits an issue transaction to the ledger and the ledger automatically adds
the transaction. To transfer a token, a user contacts the certifier with a certifi-
cation request that references the token to be signed and the transaction that
created it. If it is an issue transaction, the certifier checks if the author of the
transaction is authorized. If it is a transfer transaction, the certifier verifies
if the ZK proof is valid. Once the owner of a token receives the corresponding
certificate, she can transfer it to registered users. Finally, auditors assigned to
a user can audit that user’s transactions by obtaining access to the ledger.

on, the system is able to accommodate token management requests.

More precisely, issuers submit issue transactions to the ledger

to introduce new tokens, and the ledger ensures that all incom-

ing transactions are correctly stored. Anyone with access to the

ledger, in particular the certifier and auditors, can verify whether

a transaction is valid or not using the information in the genesis
block. Subsequently, token transfer operations take place between
users through transfer transactions. The ledger again stores the

transaction to make it available to all participants. For simplicity,

we assume that the ledger accepts all transactions without verifica-

tion. However to transfer a token, a user contacts the certifier that

checks if the transaction including the token is valid. Only then the

certifier signs the token making it transferable. To inspect a user’s

activity, an auditor reads transactions from the ledger, checks their

validity and tries to decrypt them with her secret key only if they

are valid.

3.3 Trust Model
Registration authority. We assume that the registration au-

thority is trusted to assign correct credentials to all parties in the

system. A participant presents a set of attributes and her public

key to the registration authority and receives in return a credential

that binds her attributes to her public key. It is incumbent upon the

registration authority to verify the correctness of the attributes of

a participant prior to sending the credential. For example, it should

verify that the participant knows the secret key underlying the ad-

vertised public key. In the case of users, it should also verify that the

announced auditors are legitimate. Furthermore, the registration

authority is trusted to assign one unique credential per participant.
However, it is not trusted regarding the privacy of users.

Notice that the trust assumption in the registration authority

can be relaxed via a distributed registration protocol.

Users. Users may collude to compromise the security of the sys-

tem. They may attempt to steal tokens of others, double-spend their

own tokens, forge new tokens, transfer tokens to non-registered

users, encrypt incorrect information in the auditors’ ciphertexts,

etc. They may also attempt to undermine the privacy of honest

users by de-anonymizing transactors, linking tokens, learning the

content of transactions, etc.

Issuers. Issuers are users that are trusted to introduce tokens

of a certain type. However, issuers may collude to surreptitiously

create tokens on behalf of other honest issuers, compromise the

privacy of users and obviate auditing among other things.

Certifier. To transfer a token, a user contacts the certifier to

receive a signature that proves the token validity (i.e. inclusion in

a valid transaction in the ledger). The certifier is hence trusted to

generate signatures only for tokens created by valid transactions.

We relax this trust assumption using a threshold signature scheme

that distributes the certification process and guarantees its integrity

as long as the majority of the signers (i.e. certifiers) is honest.

While certifiers may be able to link transfer transactions ref-
erencing certified tokens to certification requests, they should not

be able to derive any further information about the transactions in

the ledger or the tokens they certify.

Auditors. Auditors are authorized to only learn the information

pertained to their assigned users. That is, colluding users and audi-

tors should not be able to derive any information about the token

history of users who are not assigned to the malicious auditors.

Ledger. For simplicity purposes, we use the ledger only as a

time-stamping service. It does not validate transactions, rather

it stores the full transaction including the proofs of correctness.

Anyone later can check the transaction, verify the proofs and decide

if the transaction is valid or not. We assume however that the ledger

is live and immutable: a transaction submitted to the ledger will

eventually be included and cannot be deleted afterwards.

4 CRYPTOGRAPHIC SCHEMES
The section presents the cryptographic schemes that will be used

to build the protocol. We only present them briefly, and provide

more information on concrete instantiations later in the paper. All

cryptographic algorithms are parametrized by a so-called security
parameter 𝜆 ∈ N given (sometimes implicitly) to the algorithms.

4.1 Commitment schemes
A commitment scheme COM consists of three algorithms ccrsgen,

commit, and open. The common reference string (CRS) generator
ccrsgen is probabilistic and, on input the security parameter 𝜆,

samples a CRS crs←$ ccrsgen(𝜆). The commitment algorithm is a

probabilistic algorithm that, on input of a vector (𝑚1, . . . ,𝑚ℓ) of
messages, outputs a pair (cm, rcm) ←$ commit(crs, (𝑚1, . . . ,𝑚ℓ))
of commitment cm and opening rcm. We also use the notation

cm← commit(crs, (𝑚1, . . . ,𝑚ℓ); rcm) to emphasize that a specific

randomness rcm is used. Finally, open(crs, cm, (𝑚1, . . . ,𝑚ℓ), rcm) is
a deterministic algorithm that outputs either true or false.

Commitments must be hiding in the sense that, without knowl-

edge of rcm, they do not reveal information on the committed mes-

sages, and they must be binding in the sense that it must be infeasi-

ble to find a different set of messages𝑚′
1
, . . . ,𝑚′

ℓ
and randomness

r ′
cm

that open the same commitment.

4.2 Digital signature schemes
A digital signature scheme SIG consists of algorithms skeygen, sign,

and verify. The key generation algorithm (sk, pk) ←$ skeygen(𝜆)
takes as input the security parameter 𝜆 and outputs a pair of

private (or secret) key sk and public key pk. Signing algorithm

s←$ sign(sk,m) takes as input private key sk and message m,

and produces a signature s. Deterministic verification algorithm

𝑏 ← verify(pk,m, s) takes as input public key pk, message m, and

signature s, and outputs a Boolean 𝑏 that signifies whether s is a
valid signature on m relative to public key pk. The standard defini-

tion of signature scheme security, existential unforgeability under

chosen-message attack, has been introduced by Goldwasser, Micali,

and Rivest [26]. It states that given an oracle that generates valid

signatures, it is infeasible for an efficient adversary to output a valid

signature on a message that has not been queried to the oracle. The

security of a signature scheme can also be described by an ideal

functionality Fsig, which can be found in Appendix A.4.

4.3 Threshold signature schemes
A non-interactive threshold signature scheme TSIG consists of

four algorithms tkeygen, sign, combine, and verify. Threshold key

generation (sk1, . . . , sk𝑛, pk1
, . . . , pk𝑛, pk) ←$ tkeygen(𝜆, 𝑛, 𝑡) gets

as input security parameter 𝜆, total number of parties 𝑛, and thresh-

old 𝑡 . Each party can sign with their own secret key sk𝑖 as above
to generate a partial signature s𝑖 . Any 𝑡 valid signatures can be

combined using combine into a full signature s, which is verified as

in the non-threshold case. A signature produced honestly by any 𝑡

parties verifies correctly, but any signature produced by less than 𝑡

parties will not verify.

4.4 Public-key encryption.
Apublic-key encryption scheme PKE consists of algorithms ekeygen,

enc, and dec. Key-generation algorithm (sk, pk) ←$ ekeygen(𝜆)
takes as input security parameter 𝜆 and outputs a pair of pri-

vate key sk and public key pk. Probabilistic encryption algorithm

c←$ enc(pk,m) takes as input message m and public key pk and

produces ciphertext c. We also write c ← enc(pk,m; 𝑟) to empha-

size that the encryption uses randomness 𝑟 . Deterministic decryp-

tion m← dec(sk, c) takes as input ciphertext c and private key sk
and recoversmessagem. Correctness requires that dec(sk, enc(pk,m)) =
m for all (sk, pk) generated by ekeygen. For our work, we require

semantic security as first defined by Goldwasser and Micali [25].

The scheme must additionally satisfy key privacy as defined by Bel-

lare et al. [2], which ensures that, given a ciphertext c, it is hard to

determine the public key under which the ciphertext is computed.

4.5 Verifiable random functions
A verifiable random function VRF consists of three algorithms

vkeygen, eval, and check. Key generation (vsk, vpk) ←$ vkeygen(𝜆)
takes as input the security parameter and outputs a pair of private

key vsk and public key vpk. Deterministic evaluation (𝑦, 𝜋) ←
eval(vsk, 𝑥) takes as input secret key vsk and input value 𝑥 , and

produces as output the value 𝑦 with proof 𝜋 . Deterministic verifica-

tion 𝑏 ← check(vpk, 𝑥,𝑦, 𝜋) takes as input public key vpk, input 𝑥 ,
output 𝑦, and proof 𝜋 , and outputs a Boolean that signifies whether

the proof should be accepted.

The scheme satisfies correctness if honest proofs are always ac-
cepted. Soundnessmeans that it is infeasible to produce a valid proof

for an output value that was not correctly computed. The scheme

must satisfy pseudo-randomness which means that, given only vpk,
the output 𝑦 for a fresh input 𝑥 is indistinguishable from a random

output.

4.6 Non-interactive zero-knowledge proofs of
knowledge

Let R be a binary relation. For pairs (𝑥,𝑤) ∈ R, 𝑥 is called state-

ment (i.e. public input) whereas 𝑤 is called witness (i.e. private

input). L = {𝑥, ∃ 𝑤 s.t. (𝑥,𝑤) ∈ R} is called the language of re-

lation R. A non-interactive ZK proof-of-knowledge system NIZK

for language L comprises three algorithms: zkcrsgen, prove and

verify. CRS generation crs←$ zkcrsgen(𝜆,R) takes as input the
security parameter 𝜆 and a relation R and outputs a common ref-

erence string. On input of (𝑥,𝑤) ∈ L and crs, proof generation

𝜓 ←$ prove(𝑥,𝑤, crs) returns a proof𝜓 . Proof𝜓 is verified by calling

algorithm 𝑏 ← verify(𝜓, 𝑥, crs), which in turn outputs a Boolean

that indicates whether the proof is valid or not.

Correctness for such a proof systemmeans that honestly-generated

proofs are always accepted. Knowledge soundness implies that a

prover that produces a valid proof for some 𝑥 must know a witness

𝑤 with (𝑥,𝑤) ∈ R, in the sense that 𝑤 can be extracted. Finally,

zero-knowledge ensures that the verification of correct statements

yields nothing beyond the fact that they are correct. We describe

the security of NIZK proofs of knowledge more formally using an

ideal functionality Fnizk deferred to Appendix A.2.

In the remainder of the paper, we succinctly represent zero

knowledge proofs of knowledge using the common notation intro-

duced by Camenisch and Stadler [12], namely PK {(𝑤) : 𝑥} denotes
a proof of knowledge of witness 𝑤 for statement 𝑥 .

5 SECURITY FORMALIZATION
Notation.We use sans-serif fonts to denote constants such as true
or false, and typewriter fonts to denote string constants.

5.1 Universal composition and MUC
In this section, we only recall basic notation and specific parts of the

model that we need in this work. Details can be found in [13–15].

The UC framework follows the simulation paradigm, and the

entities taking part in the protocol execution (protocol machines,

functionalities, adversary, and environment) are described as in-
teractive Turing machines (ITMs). The execution is an interaction

of ITM instances (ITIs) and is initiated by the environmentZ that

provides input to and obtains output from the protocol machines,

and also communicates with adversary A. The adversary has ac-

cess to the protocols as well as functionalities used by them. Each

ITI has an identity that consists of a party identifier pid and a ses-

sion identifier sid. The environment and adversary have specific,

constant identifiers, and ideal functionalities have party identifier

⊥. The understanding here is that all ITIs that share the same code

and the same sid are considered a session of a protocol. It is natural

to use the same pid for all ITIs that are considered the same party.

ITIs can invoke other ITIs by sending them messages, new in-

stances are created adaptively during the protocol execution when

they are first invoked by another ITI. To use composition, some ad-

ditional restrictions on protocols are necessary. In a protocol 𝜇𝜙→𝜋
,

which means that all calls within 𝜇 to protocol 𝜙 are replaced by

calls to protocol 𝜋 , both protocols 𝜙 and 𝜋 must be subroutine re-
specting. This means, in a nutshell, that while those protocols may

have further subroutines, all inputs to and outputs from subroutines

of 𝜙 or 𝜋 must only be given and obtained through 𝜙 or 𝜋 , never

by directly interacting with their subroutines. (This requirement is

natural, since a higher-level protocol should never directly access

the internal structure of 𝜙 or 𝜋 ; this would obviously hurt compo-

sition.) Also, protocol 𝜇 must be compliant. This roughly means

that 𝜇 should not be invoking instances of 𝜋 with the same sid as

instances of 𝜙 , as otherwise these instances of 𝜋 would interact

with the ones obtained by the operation 𝜇𝜙→𝜋
.

In summary, a protocol execution involves the following types

of ITIs: the environmentZ, the adversary A, instances of the pro-

tocol machines 𝜋 , and (possibly) further ITIs invoked by A or any

instance of 𝜋 (or their subroutines). The contents of the environ-

ment’s output tape after the execution is denoted by the random

variable exec𝜋,A,Z (𝜆, 𝑧), where 𝜆 ∈ N is the security parameter
and 𝑧 ∈ {0, 1}∗ is the input to the environment Z. The formal

details of the execution are specified in [14]. We say that a protocol

𝜋 UC-realizes a functionality F if

∀A ∃S ∀Z : exec𝜋,A,Z ≈ exec𝜙,S,Z,

where “≈” denotes indistinguishability of the respective distribution
ensembles, S refers to the simulator and 𝜙 is the dummy protocol

that simply relays all inputs to and outputs from functionality F.

Multi-protocol UC. The standard UC framework does not allow

to modularly prove protocols in which, e.g., a zero-knowledge proof

system is used to prove that a party has performed a certain eval-

uation of a cryptographic scheme correctly. Camenisch et al. [6]

recently showed how this can be overcome. In a nutshell, they start

from the standard F 𝑅
nizk

-functionality which is parametrized by a

relation 𝑅, and show that if 𝑅 is described in terms of evaluating a

protocol, then the protocol can equivalently be evaluated outside of

the functionality, and even used to realize another functionality F.
This results in a setting where Fnizk validates a pair (𝑦,𝑤) of state-
ment 𝑦 and witness𝑤 by “calling out” to the other functionality F.
We use this proof technique extensively in this work.

5.2 The privacy-preserving token functionality
The functionality Ftoken realized by our privacy-preserving token

system is formalized in Figure 2. To keep the presentation simple,

the functionality formalizes the guarantees for the case of a single

token issuer I . The functionality initially requires registration au-

thority A, certifier C, and issuer I to initialize. (This corresponds

to the fact that all protocol steps depend on those parties’ keys.)

Likewise, regular parties 𝑃 have to generate and register their keys

before they can perform operations. Each party can then read the

tokens they own and generate transfer transactions that refer-

ence those tokens and transfer them to one or more receivers. The

issuer can additionally issue new tokens. In the inputs and out-

puts of the functionality, v always represents the value of a token,

and cm serves as a handle identifying the token (it stems from the

commitment that represents the token on the ledger). Finally, the

functionality specifies which information is potentially leaked to

the adversary, and which operations the adversary can perform in

the name of corrupted parties.

5.3 Set-up functionalities
Our protocol calls for a number of set-up functionalities; most of

which are widely used in the literature. This is why we only briefly

describe them here and defer the details to Appendix A.

Common reference string. Functionality Fcrs provides a string
that is sampled at random from a given distribution and accessible to

all participants. All parties can simply query Fcrs for the reference
string. The functionality is generally used to generate common

public parameters used in a cryptographic scheme.

Transaction ledger. We describe a simplified transaction ledger

functionality as Fledger in Figure 3. In a nutshell, every party can

append bit strings to a globally available ledger, and every party

can retrieve the current ledger.

Fledger intentionally idealizes the guarantees achieved by a real-
world ledger; transactions are immediately appended, final, and

available to all parties. We also use Fledger as a local functionality.

These simplifications are intended to keep the paper more digestible.

Secure and private message transfer. Functionality Fsmt provides

a message transfer mechanism between parties. The functionality

builds on the ones described by Canetti and Krawczyk [16], but

additionally hides the sender and receiver of a message, if both are

honest. This is required since our protocol passes information be-

tween transacting parties, and leaking the communication pattern

would revoke the anonymity otherwise provided by our protocol.

Public-key registration. The registration functionality Freg mod-

els a public-key infrastructure. It allows each party 𝑃 to input one

value 𝑥 ∈ {0, 1}∗ and makes the pair (𝑃, 𝑥) available to all other

parties. This is generally used to publish public keys, binding them

to the identity of a party.

Anonymous authentication. As our protocol is in the permis-

sioned setting but supposed to provide privacy, we need anony-

mous credentials to authorize transactions. Our schemes integrate

well with the Identity Mixer family of protocols [9]. As these topics

are not the core interest of this paper, we abstract the necessary

mechanisms in the functionality Fa-auth as depicted in Figure 4.

Fa-auth allows parties to first register and then “authorize” com-

mitments; the functionality returns “proofs” 𝜓 assuring that the

party’s identity is contained in a certain position of that commit-

ment. Fa-auth also allows to bind the proof to a bit string m, which

intuitively can be understood as “party 𝑃 (as referenced in the com-

mitment) signs message m.” The exact reason for this mechanism

will become clear in the protocol description in Section 6.5.

Privacy-preserving token functionality Ftoken
Functionality Ftoken stores a list of registered users and an ini-

tially empty map Records. The session identifier is of the form

sid = (A,C, I , sid ′).
• Upon input init from 𝑃 ∈ {A,C, I }, output to A
(initialized, 𝑃). (This must happen for all three before

anything else.)

• Upon input register from a party 𝑃 , if 𝑃 is unregistered,

then mark 𝑃 as registered and output (registered, 𝑃)
to A. (Otherwise ignore.)

• Upon input read from a registered party 𝑃 , issue

(read?, 𝑃) to A. Upon receiving response (read!, 𝑃)
fromA, return to 𝑃 a list of all records of the type (cm, v)
that belong to 𝑃 .

• Upon input (issue, v) from I , output (issue, v) to
A. Receiving from A a response (issue, cm), if

Records[cm] ≠ ⊥ then abort, else set Records[cm] ←
(v , I , alive) . Return (issued, cm) to I .

• Upon receiving an input (issue, v , cm) from A, where

I is corrupt, check and record the commitment as in the

previous step. Return to A.

• Upon input

(
transfer, (cm𝑖)𝑚𝑖=1

, (vout

𝑗
, R𝑗)𝑛𝑗=1

)
from an

honest party 𝑃 , where 𝑃 and all R𝑗 for 𝑗 = 1, . . . , 𝑛 are

registered, proceed as follows.

(1) If, for any 𝑖 ∈ {1, . . . ,𝑚}, Records[cm𝑖] = ⊥ then

abort, else set (vin

𝑖
, 𝑃 ′

𝑖
, st𝑖) ← Records[cm𝑖].

(2) If, for any 𝑖 ∈ {1, . . . ,𝑚}, st𝑖 ≠ alive or 𝑃 ′
𝑖
≠ 𝑃 ,

then abort.

(3) If

∑𝑚
𝑖=1

vin

𝑖
≠
∑𝑛

𝑗=1
vout

𝑗
then abort.

(4) Let 𝐿 be an empty list. For all 𝑗 = 1, . . . , 𝑛, if

R𝑗 is corrupt then append to 𝐿 the information

(𝑗, 𝑃, R𝑗 , vout

𝑗
). Output (transfer,𝑚, 𝑛, 𝐿) to A.

(5) Receiving from A a response

(transfer, (cmout

𝑗
)𝑛
𝑗=1
), if Records[cmout

𝑗
] ≠ ⊥

for any 𝑗 ∈ {1, . . . , 𝑛} then abort, else set

Records[cmout

𝑗
] ← (vout

𝑗
, R𝑗 , delayed) for

all 𝑗 ∈ {1, . . . , 𝑛} and set Records[cm𝑖] ←
(vin

𝑖
, 𝑃 ′, consumed) for all 𝑖 ∈ {1, . . . ,𝑚}.

(6) Return (transferred, (cmout

𝑗
)𝑛
𝑗=1
) to 𝑃 .

• On (transfer, 𝑃, (cmin

𝑖
)𝑚
𝑖=1

, (R𝑗 , vout

𝑗
, cmout

𝑗
)𝑛
𝑗=1
) from

A where 𝑃 is corrupt, proceed analogously to above.

• Upon receiving an input (deliver, cm) from A with

Records[cm] = (v , 𝑃, delayed) for some v and 𝑃 , set

Records[cm] ← (v , 𝑃, alive). If C is corrupted, then

output 𝑃 to A.

Figure 2: Privacy-preserving token functionality

Our description of Fa-auth is simplistic and tailored to an easy

treatment in our proofs. For a complete composable model of anony-

mous authentication schemes, see for e.g. the work of Camenisch,

Dubovitskaya, Haralambiev, and Kohlweiss [7].

Ledger functionality Fledger
Functionality Fledger stores an initially empty list 𝐿 of bit strings.

• Upon input (append, 𝑥) from a party 𝑃 , append 𝑥 to 𝐿.

If 𝑃 is corrupt then send (append, 𝑥, 𝑃) toA, else return

to 𝑃 .

• Upon input retrieve from a party 𝑃 or A, return 𝐿.

Figure 3: Ledger functionality

Extended anonymous authentication functionality
Fa-auth

Functionality Fa-auth is parametrized by a commitment opening

algorithm open. It stores an initially empty setU of registered

users, and an initially empty list of records.

• Upon input register from a party 𝑃 where 𝑃 ∉ U, set

U ←U ∪ {𝑃} and output (registered, 𝑃) to A.

• Upon input (lookup, 𝑃 ′) from a party 𝑃 , return (the re-

sult of) 𝑃 ′ ∈ U.

• Upon input (prove, crs, cm, rcm, 𝑥,𝑦,m) from a regis-

tered party 𝑃 , if open(crs, cm, (𝑥, 𝑃,𝑦), rcm) then gener-

ate a proof𝜓 , store the record (transfer, crs, cm,𝜓,m)
internally and output𝜓 to 𝑃 .

• Upon input (verify, crs,𝜓,m) from some 𝑃 , look up if

there is a record (transfer, crs, cm,𝜓,m) and output

success (only) if it exists.

Figure 4: Extended anonymous registration functionality

6 PRIVACY-PRESERVING AUDITABLE UTXO
This section describes the complete protocol. We begin by introduc-

ing the core ideas and mechanisms in Sections 6.1 – 6.3. Section 6.4

introduces multi-input multi-output transactions, followed by Sec-

tion 6.5 that assembles all pieces and describes the full protocol.

Section 6.6 presents the extension that makes the protocol auditable

and Section 6.7 states the main security result of the paper.

6.1 Core protocol ideas
The protocol uses commitments (cm, rcm) ←$ commit(crs, (v , 𝑃))
to represent tokens, where v is the value and 𝑃 is the current owner.

Issuers create new tokens in their own name. Transferring tokens

(v , 𝑃) to a party Rmeans replacing the commitment to (v , 𝑃) with a
commitment to (v , R). We now describe the protocol steps in more

detail, but still at an informal level.

To issue a token of value v , the issuer generates a new commit-

ment (cm, rcm) ←$ commit(crs, (v , I)), which means a token with

value v is created with owner I . The protocol generates a proof

𝜓0 ← PK {(rcm) : open(crs, cm, rcm, (v , I)) = true}

which shows that the commitment contains the expected informa-

tion. Issuer I also creates a signature s on message (v , cm,𝜓0). The
information written to Fledger is tx = (issue, v , cm,𝜓0, s).

A party 𝑃 transfers a token (i.e. a commitment cm) to a receiver R
by computing a new commitment (cm′, r ′

cm
) ←$ commit(crs, (v , R)).

She generates a first NIZK 𝜓1 showing that cm′ contains the cor-
rect information and that the receiver is registered, and a sec-

ond proof 𝜓2 of eligibility (i.e. the initiator of the transfer owns

cm) using Fa-auth. The information written to Fledger is tx =

(transfer, cm′,𝜓1,𝜓2). At this point, we cannot yet describe how
𝑃 proves that (a) cm is a valid commitment on the ledger—we can-

not include cm in the transaction as that would hurt privacy—and

(b) that 𝑃 is not double-spending cm. These aspects will be covered

subsequently. Party 𝑃 also sends the message (token, cm′, r ′
cm

, v)
to R privately.

So far, we have shown how to transfer a single token from a party

𝑃 to a receiver R. Following sections show how to (i) make sure

that only valid and unspent tokens are transferred; and (ii) support
multi-input multi-output transfers.

6.2 Certification via blind signatures

(Threshold) blind signature functionality F (TSIG,commit)
blindsig

Functionality Fblindsig requires that sid =

((C1, . . . ,C𝑛), 𝑡, ℓ, sid ′), where C1, . . . ,C𝑛 are the party identifiers

of the signers and ℓ is the size of the vectors of messages to

be signed. It is parametrized by the (deterministic) commit

algorithm of the commitment as well as the a threshold signature

scheme TSIG = (tkeygen, sign, verify). The functionality keeps

an initially empty set Σ of signed messages.

• Upon init from some C𝑖 , run (sk1, . . . , sk𝑛,
pk

1
, . . . , pk𝑛, pk) ←$ tkeygen(𝜆, 𝑛, 𝑡, ℓ), where 𝜆 is

obtained from the security parameter tape, and store

(sk1, . . . , sk𝑛, pk). Output (init,C𝑖) to A.

• Upon input pubkey from party 𝑃 , return (pubkey, pk).
• On input (request, crs, rcm, (𝑚1, . . . ,𝑚ℓ)) from party 𝑃 :

(1) Compute cm ← commit(crs, (𝑚1, . . . ,𝑚ℓ); rcm)
and store it internally along with the messages and

randomness.

(2) Send delayed output (request, 𝑃, crs, cm) to each

C𝑖 , 𝑖 ∈ {1, . . . , 𝑛}.
• Upon input (sign, cm) from C𝑖 :

(1) If no record with commitment cm exists, then abort.

(2) If there is a record ((𝑚1, . . . ,𝑚ℓ), 𝑆) ∈ Σ with 𝑆 ⊆
{C1, . . . ,C𝑛}, update the record with 𝑆 ← 𝑆 ∪ {C𝑖 }.
Else set Σ← Σ ∪ {((𝑚1, . . . ,𝑚ℓ), {C𝑖 })}.

(3) If |𝑆 | ≥ 𝑡 , then compute s← sign(sk, (𝑚1, . . . ,𝑚ℓ))
and output s to requestor 𝑃 .

• Upon input (verify, pk′, (𝑚1, . . . ,𝑚ℓ), s) from 𝑃 , com-

pute 𝑏 ← verify(pk′, (𝑚1, . . . ,𝑚ℓ), s). If pk = pk′ ∧
𝑏 ∧

(
((𝑚1, . . . ,𝑚ℓ), 𝑆) ∉ Σ ∨ |𝑆 | < 𝑡

)
then output

(result, false) to 𝑃 . Else output (result, 𝑏) to 𝑃 .
• Upon input (seckey, 𝑖) from A, if C𝑖 is corrupted, then

return sk𝑖 .

Figure 5: Blind signature functionality, threshold version.

The problem of verification of token validity during transfer

is resolved by certification. We consider a specific party, called a

certifier C, which vouches for the validity of a token (v , 𝑃) stored

as a commitment cm on Fledger by issuing a signature s on (v , 𝑃).
In the proof𝜓1, 𝑃 refers to signature s instead of commitment cm.

A naive implementation of the above schemewould require party

𝑃 to reveal the content (v , 𝑃) of cm to certifier C, so that the latter

issues the corresponding signature s: prior to signing, C checks that

cm opens to (v , 𝑃) and that cm is stored on Fledger. Disclosing the

pair (v , 𝑃) to C is both undesired and unnecessary. Instead we rely

on a blind signature protocol, in which C learns only the value of

commitment cm and blindly signs its content.

While C learns cm during the protocol, it will not be able to

leverage the data on Fledger to trace when 𝑃 makes use of the

corresponding signature s. More precisely, within𝜓1, party 𝑃 only

proves knowledge of a signature s and does not reveal it.

Note that a malicious certifier can essentially generate tokens

by providing its signature without checking for existence of the

commitment on Fledger. Appendix D describes how to distribute

the certification task, so that no single party is trusted for verifica-

tion. Figure 5 shows a threshold blind signature ideal functionality,

which we will use in the description of our solution in Section 6.5.

6.3 Serial numbers prevent double-spending
Double-spending prevention is achieved via a scheme that is in-

spired by Zerocash [3] in that it uses a VRF to compute serial

numbers for tokens when they are spent. The VRF key is here, how-

ever, bound to a user via a signature from the registration authority.

On a very high level, the above protocol is extended as follows.

(1) Each user 𝑃 creates a VRF key pair (vsk, vpk). They obtain

a signature sA from registration authority A that binds vpk
to their identity 𝑃 .

(2) Each commitment contains an additional value 𝜌 .

(3) During transfer, the value 𝜌 is used to derive the serial

number (sn, 𝜋) ← eval(vsk, 𝜌). The transaction stored in

Fledger also contains sn.
(4) We cannot store the VRF proof 𝜋 on Fledger, as it is bound

to vpk and would deanonymize 𝑃 . Instead, 𝑃 proves knowl-

edge of signature sA, which binds vpk to her identity, and

proves in zero-knowledge that check(vpk, 𝜌 , sn, 𝜋) = true.

We stress that authority A must be trusted to prevent double-

spending, otherwise it could register multiple VRF keys for the

same user. It is thus recommended to implement A in a distributed

fashion.

The proof𝜓1 made by 𝑃 during a transfer of token (v , 𝑃, 𝜌 in) is

𝜓1 ← PK

{(
r ′
cm

, sA, sC , R, 𝑃, 𝜌 in, 𝜌out, 𝜋, v
)

:

verify(pkC , (v , 𝑃, 𝜌 in), sC) ∧ open(crs, cm′, (v , R, 𝜌out), r ′
cm
)

∧ verify(pkA, (𝑃, vpk), sA) ∧ check(vpk, 𝜌 in, sn, 𝜋)
}

which can be parsed as follows: prior to the transfer, 𝑃 obtains

signature sC on (v , 𝑃, 𝜌 in) under pkC from certifier C. The first

condition in the proof statement checks that 𝑃 knows signature sC
on the triplet (v , 𝑃, 𝜌 in). The second condition checks that the new

commitment cm′ contains the same value v . These two conditions,

together with trust in the correctness of C, ensure that the token
corresponding to cm′ is properly derived from a token existing on

Fledger. The third condition checks that the VRF public key vpk

indeed belongs to 𝑃 , and the fourth condition checks that the com-

putation of the serial number sn is correct. These two conditions,

together with trust in the correctness of A, prevent token (v , 𝑃, 𝜌 in)
from being double-spent.

6.4 Multi-input multi-output transactions
Multi-input multi-output transactions allow a sender to transfer

tokens contained in multiple commitments at once, and to split the

accumulated value into multiple outputs for potentially different

receivers. We therefore modify the transaction format to contain

multiple inputs and multiple outputs. We also have to extend the

NIZK: besides the fact that we have to prove consistency of multiple

inputs and multiple outputs, we now have to show that the sum of

the inputs equals the sum of the outputs.

Due to arithmetics in finite algebraic structures, we also have to

prove that no wrap-arounds occur. This is achieved, as in previous

work, by the use of range proofs. For a given valuemax ∈ {1, . . . , 𝑝},
the condition is that 0 ≤ v ≤ max for any value v that appears in

an output commitment.

The proof, in more detail, now becomes

𝜓1 ← PK

{(
(s𝑖 , vin

𝑖 , 𝜌 in

𝑖 , 𝜋𝑖)𝑚𝑖=1
, 𝑃, sA,

(R𝑗 , r 𝑗cm
, vout

𝑗 , 𝜌out

𝑗 , vpk 𝑗 , s
𝑗

A)
𝑛
𝑗=1

)
:

∀𝑖 ∈ {1, . . . ,𝑚} : verify(pkC , (vin

𝑖 , 𝑃, 𝜌 in

𝑖), s𝑖)

∧ ∀𝑗 ∈ {1, . . . , 𝑛} : open(crs, cm𝑗 , (vout

𝑗 , R𝑗 , 𝜌out

𝑗), r
𝑗
cm
)

∧ verify(pkA, (𝑃, vpk), sA)

∧ ∀𝑗 ∈ {1, . . . , 𝑛} : verify(pkA, (R𝑗 , vpk 𝑗), s
𝑗

A)

∧ ∀𝑖 ∈ {1, . . . ,𝑚} : check(vpk, 𝜌 in

𝑖 , sn𝑖 , 𝜋𝑖)

∧
𝑚∑︁
𝑖=1

vin

𝑖 =

𝑚∑︁
𝑗=1

vout

𝑗

∧ ∀𝑗 ∈ {1, . . . , 𝑛} : 0 ≤ vout

𝑗 ≤ max
}
. (1)

The processing of the transaction is analogously modified to

check this more complex NIZK. We now argue that the statement

proved in the NIZK indeed guarantees the consistency of the system.

The first sub-statement (together with the honesty of C) guaran-
tees that all commitments used as inputs indeed exist in the ledger,

and the fact that the commitment is binding further implies that

the values (vin

𝑖
, 𝑃, 𝜌 in

𝑖
) indeed correspond to the expected state of

the system. The next sub-statement shows that the output commit-

ments indeed contain the expected values (vout

𝑗
, R𝑗 , 𝜌out

𝑗
). The two

subsequent statements ensure that all parties are registered users,

and the statement check(vpk, 𝜌 in

𝑖
, sn𝑖 , 𝜋𝑖) prevents double-spending

by showing that the serial numbers are computed correctly.

The final two equations guarantee the global consistency of the

system: the summation equation shows that no tokens have been

created or destroyed in this transaction; whereas the range proof

shows that all outputs contain a value in the valid range, which

avoids wrap-arounds.

6.5 The protocol 𝜋token
This section describes the protocol sketched previously more for-

mally. The protocol has a bit registered ← false and keeps an ini-

tially empty list of commitments. We begin by describing the pro-

tocol for a user 𝑃 of the system.

• Upon input register, if registered is set, then return. Else,

retrieve the public keys of A, C and I from Freg. Query
crs from Fcrs. Generate a VRF key pair (vsk, vpk) and
send a message (register, vpk) to A via Fsmt to obtain

a signature sA on (𝑃, vpk). If all steps succeeded, then set

registered ← true send register to Fa-auth.
• Process pending messages and retrieve new data from

Fledger. This is a subroutine called from functions below.

– For transactions tx = (issue, v , cm,𝜓0, s) fromFledger,
validate𝜓0 by inputting (verify, (crs, cm, v , I),𝜓0) to
Fnizk and verify s via verify(pk𝐼 , (v , cm,𝜓0), s). If both
checks succeed, record cm as a valid commitment.

– For tx = (transfer, (sn𝑖 ,𝜓2,𝑖)𝑚𝑖=1
, (cm𝑗)𝑛𝑗=1

,𝜓1), check
the serial numbers sn1, . . . , sn𝑚 for uniqueness, val-

idate 𝜓1 via Fnizk and verify 𝜓2,1, . . . ,𝜓2,𝑛 by call-

ing Fa-auth with input (verify, crs,𝜓2,𝑖 ,m) for m =

((𝑠𝑛𝑖)𝑚𝑖=1
, (cm𝑗)𝑛𝑗=1

,𝜓1). If all checks succeed, then store
cm1, . . . , cm𝑛 as valid.

– For each incoming message (sent, 𝑆, 𝑃,𝑚) buffered
from Fsmt, parse𝑚 as (token, cm, rcm, v , 𝜌) and test

whether the commitment is correct, i.e. whether it

holds that open(crs, cm, rcm, (v , 𝑃, 𝜌)) = true. Check
whether there is a valid transfer transaction tx that

appears in Fledger and contains cm. If all checks are

successful, input (request, rcm, (v , 𝑃, 𝜌)) to Fblindsig
and wait for a response sC . Store the complete infor-

mation in the internal list.

• Upon input read, if¬registered then abort, else first process
pending messages. Then return a list of all unspent assets

(cm, v) owned by the party.

• Upon input

(
transfer, (cmin

𝑖
)𝑚
𝑖=1

, (vout

𝑗
, R𝑗)𝑛𝑗=1

)
, assuming

that registered, query (lookup, R𝑗) toFreg for all 𝑗 = 1, . . . , 𝑛

in order to make sure that R𝑗 is registered. Then process

pending messages and proceed as follows.

(1) If, for any 𝑖 ∈ {1, . . . ,𝑚}, there is no internal record

of commitment (cmin

𝑖
, r𝑖

cm
, vin

𝑖
, 𝑃, 𝜌 in

𝑖
), then abort.

(2) If

∑𝑚
𝑖=1

vin

𝑖
≠
∑𝑚

𝑗=1
vout

𝑗
then abort.

(3) Choose uniformly a random 𝜌out

𝑗
for 𝑗 = 1, . . . , 𝑛 and

compute (cm𝑗 , r
𝑗
cm
) ←$ commit(crs, (vout

𝑗
, R𝑗 , 𝜌out

𝑗
)).

(4) Compute the serial numbers (sn𝑖 , 𝜋𝑖) ← eval(vsk, 𝜌 in

𝑖
),

for 𝑖 = 1, . . . ,𝑚.

(5) Generate proof𝜓1 as in Equation (1).

(6) Set m ← ((sn𝑖)𝑚𝑖=1
, (cm𝑗)𝑛𝑗=1

,𝜓1). For 𝑖 = 1, . . . ,𝑚

send (prove, cmin

𝑖
, 𝑟𝑖 , vin

𝑖
, 𝜌 in

𝑖
,m) to Fa-auth to obtain

𝜓2,𝑖 .

(7) Send (token, cm𝑗 , r
𝑗
cm

, vout

𝑗
, 𝜌out

𝑗
) to R𝑗 via Fsmt for

𝑗 = 1, . . . , 𝑛 and call Fledger with input (append, tx)
for tx = (transfer, (sn𝑖 ,𝜓2,𝑖)𝑚𝑖=1

, (cm𝑗)𝑛𝑗=1
,𝜓1).

(8) Delete the internal records of cmin

𝑖
for 𝑖 = 1, . . . ,𝑚

and return (transferred, (cm𝑗)𝑛𝑗=1
).

• Upon receiving (sent, 𝑆, 𝑃,𝑚) from Fsmt, buffer it for later
processing. Respond ok to sender 𝑆 .

The protocolmachines for parties I ,C andA are easier to describe.

Issuer I behaves the same as a user 𝑃 except when introducing new

tokens. More specifically:

(1) Upon init, generate a key pair (sk𝐼 , pk𝐼) ←$ skeygen(𝜆)
for the signature scheme and input (register, pk𝐼) to
Freg.

(2) Upon (issue, v), choose randomly 𝜌 and compute commit-

ment (cm, rcm) ←$ commit(crs, (v , I , 𝜌)) and proof 𝜓0 ←
PK {(rcm, 𝜌) : open(crs, cm, rcm, (v , I , 𝜌)) = true}, where I
and v are publicly known. This is achieved by sending

(prove, 𝑥,𝑤) to Fnizk, where 𝑥 = (crs, cm, v , I) and 𝑤 =

(rcm, 𝜌). Next compute a signature s←$ sign(sk𝐼 , (v , cm,𝜓0))
and send (append, tx), with tx = (issue, v , cm,𝜓0, s), to
Fledger. Finally, store (cm, rcm, v , 𝜌) internally and return

(issued, cm).
Certifier C signs a commitment if it finds it in a valid transaction

in the ledger. In more detail:

(1) Upon init get crs from Fcrs and input init to Fblindsig.
(2) Upon receiving (request, 𝑃, crs′, cm) fromFblindsig, check

that crs = crs′. Query Fledger for the entire ledger. For

each yet unprocessed transaction tx on Fledger, validate
the proofs as described previously. Check whether cm is

marked as a valid commitment.

(3) If the above check is successful, send (sign, cm) toFblindsig.
Registration authority A signs VRF public keys of the parties.

(1) Upon init, generate a key pair (skA, pkA) ←$ skeygen(𝜆)
for the signature scheme and input (register, pkA) to
Freg.

(2) When activated, input retrieve to Fsmt to obtain the next
message. Let it bem from 𝑃 . If no message has been signed

for 𝑃 yet, then sign sA ← sign(skA, (𝑃,m)) and send sA
via Fsmt back to 𝑃 .

6.6 Auditing
Each user U in the system is assigned an auditor 𝐴𝑈 , which can

decrypt all transaction information related to U . Notably, the trans-

action outputs owned by U and the full content of transactions

produced by U . We denote the set of auditors by AU.
We formalize next our security guarantees using functional-

ity Fatoken. Fatoken stores a list of registered users and an ini-

tially empty map Records and has as a session identifier sid =

(A,C, I ,AU, sid ′).
• Upon input init from 𝑃 ∈ {A,C, I } ∪ AU, output to A
(initialized, 𝑃). (This must happen for all before any-

thing else.)

• For inputs register, read, issue and deliver see Ftoken.
• Upon input (bind,U , 𝐴𝑈) from A, where U is a registered

user and𝐴𝑈 ∈ AU is an initialized auditor, and there is not

yet a pair (U , 𝐴𝑈 ′) with 𝐴𝑈 ≠ 𝐴𝑈 ′ ∈ AU, record (U , 𝐴𝑈)
and output (bound,U , 𝐴𝑈) to A.

• Upon input

(
transfer, (cm𝑖)𝑚𝑖=1

, (vout

𝑗
, R𝑗)𝑛𝑗=1

)
from an hon-

est party 𝑃 , where 𝑃 and all R𝑗 for 𝑗 = 1, . . . , 𝑛 are regis-

tered, proceed as follows.

(1) If, for any 𝑖 ∈ {1, . . . ,𝑚}, Records[cm𝑖] = ⊥ then

abort, else set (vin

𝑖
, 𝑃 ′

𝑖
, st𝑖) ← Records[cm𝑖].

(2) If, for any 𝑖 ∈ {1, . . . ,𝑚}, st𝑖 ≠ alive or 𝑃 ′
𝑖
≠ 𝑃 , then

abort.

(3) If

∑𝑚
𝑖=1

vin

𝑖
≠
∑𝑛

𝑗=1
vout

𝑗
then abort.

(4) Let 𝐿 be an empty list. For all 𝑗 = 1, . . . , 𝑛, if R𝑗 or its
auditor 𝐴𝑈 𝑗 are corrupt, then append to 𝐿 the infor-

mation (𝑃, R𝑗 , vout

𝑗
). If the auditor 𝐴𝑈 of 𝑃 is corrupt,

include the information for all inputs and all outputs.

Output (transfer, 𝐿) to A.

(5) Receiving fromA a response (transfer, (cmout

𝑗
)𝑛
𝑗=1
),

if Records[cmout

𝑗
] ≠ ⊥ for any 𝑗 ∈ {1, . . . , 𝑛} then

abort, else set Records[cmout

𝑗
] ← (vout

𝑗
, R𝑗 , delayed)

for all 𝑗 ∈ {1, . . . , 𝑛} and for all 𝑖 ∈ {1, . . . ,𝑚} set
Records[cm𝑖] ← (vin

𝑖
, 𝑃, consumed).

(6) Return (transferred, (cmout

𝑗
)𝑛
𝑗=1
) to 𝑃 .

• Upon input (audit, cm) from auditor𝐴𝑈 , ifRecords[cm] =
⊥ then return ⊥. Otherwise, set (v , 𝑃, st) ← Records[cm].
If 𝑃 is not audited by 𝐴𝑈 , then return ⊥, else return (v , 𝑃).

The protocol is adapted as follows. First, each commitment also

contains the identity of the previous owner. This is not technically

necessary but helps prove that the auditable information is correct

while keeping the description here compact. The binding between

the auditor and the user is achieved through a (structure-preserving)

signature from A. A party 𝑃 that executes a transfer allows auditing

by first encrypting the following information.

• To its own auditor, for each input the value vin
and current

owner 𝑃 . For each output the value vout

𝑗
, sender 𝑃 , and

receiver R𝑗 .
• For each output to R𝑗 , to the auditor of R𝑗 the value vout

𝑗
,

sender 𝑃 , and receiver R𝑗 .

Then 𝑃 includes the resulting ciphertexts in the transfer transaction,

and proves that the encryption is consistent with the information

in the commitments.

For concreteness, consider an input described by commitment

cm = commit(crs, (vin, 𝑃, 𝑃 ′, 𝜌 in); rcm). We encrypt current owner

c1 = enc(pk𝐴𝑈 , 𝑃 ; 𝑟1) and value c2 = enc(pk𝐴𝑈 , v ; 𝑟2). Then we

generate a NIZK proof:

PK

{(
vin, 𝑃, 𝑃 ′, 𝜌 in, sC , pk𝐴𝑈 , sA, 𝑟1, 𝑟2

)
:

verify(pkC , (vin, 𝑃, 𝑃 ′, 𝜌 in), sC)
∧ verify(pkA, (𝑃, pk𝐴𝑈), sA) ∧ c1 = enc(pk𝐴𝑈 , 𝑃 ; 𝑟1)

∧ c2 = enc(pk𝐴𝑈 , vin
; 𝑟2)

}
where pkC and pkA are public, and c1 and c2 are part of the trans-

action.

Similarly, for a transfer from 𝑃 to R and an output commitment

cm = commit(crs, (vout, R, 𝑃, 𝜌out); rcm), we encrypt to the auditor

(here we use the one of 𝑃) the sender c1 = enc(pk𝐴𝑈 , 𝑃 ; 𝑟1), the re-
ceiver c2 = enc(pk𝐴𝑈 , R; 𝑟2), and the value c3 = enc(pk𝐴𝑈 , vout

; 𝑟3).

We then generate a NIZK proof:

PK

{(
vout, R, 𝑃, 𝜌out, rcm, pk𝐴𝑈 , sA, 𝑟1, 𝑟2, 𝑟3

)
:

open(crs, cm, (vout, R, 𝑃, 𝜌out), rcm)
∧ verify(pkA, (𝑃, pk𝐴𝑈), sA) ∧ c1 = enc(pk𝐴𝑈 , 𝑃 ; 𝑟1)
∧ c2 = enc(pk𝐴𝑈 , R; 𝑟2) ∧ c3 = enc(pk𝐴𝑈 , vout

; 𝑟3)
}

with public parameters crs and pkA, as well as cm, c1, c2, and c3

taken from the transaction.

Appendix C provides details on how to instantiate the above

protocol using well-established primitives that do not require any

complex setup assumptions.

6.7 Security analysis
This section shows that the protocol in Section 6.5 instantiates

functionality Ftoken.

Theorem 6.1. Assume that COM = (ccrsgen, commit, open) is a
perfectly hiding and computationally binding commitment scheme.
Assume that VRF = (vkeygen, eval, check) is a verifiable random
function. Then 𝜋token realizes Ftoken with static corruption. Corrup-
tion is malicious for I and users, and honest-but-curious for C. A is
required to be honest, but is inactive during the main protocol phase.

The restriction that C is only honest-but-curious is necessary;

otherwise C can sign arbitrary commitments, even ones that are

not stored in Fledger. The proof is deferred to Appendix B.

7 IMPLEMENTATION AND PERFORMANCE
To evaluate our protocol, we implemented a prototype using the

primitives described in Appendix C. By design, our prototype is

compatible with Hyperledger Fabric and requires minimal changes

to be integrated. This section elaborates on the integration effort

and measures the overhead incurred by our scheme.

7.1 Hyperledger Fabric
Hyperledger Fabric is a permissioned blockchain system in which

entities exchange messages, called transactions. A transaction is

used to introduce either a new smart contract (chaincode in Hyper-

ledger Fabric terms) into the system or changes to the state of an

already existing chaincode. The first process is called chaincode in-
stantiation, whereas the latter is referred to as chaincode invocation.
A special type of transactions, reconfiguration transactions, is used
to introduce changes to the system configuration.

In Hyperledger Fabric, we identify three types of participants:

(i) clients who submit transactions to the network in order to instan-

tiate or invoke chaincodes, or to reconfigure the system; (ii) peers
which execute chaincodes, validate transactions and maintain a

(consistent) copy of the ledger; and (iii) orderers which jointly de-

cide the order in which transactions would appear in the ledger.

For the proper operation of the system, each instance of Hyper-

ledger Fabric considers one or more membership service providers

(in short, MSPs) that issue long-term identities to parties falling un-

der their authority. These identities allow system entities to securely

interact with each other; essentially, MSPs provide the required

abstractions to compute and verify signatures. The configuration

of valid MSPs is included in the genesis block of each Hyperledger

Fabric instance and is updated via reconfiguration transactions.

Hyperledger Fabric follows an execute-order-validatemodel. Here,

chaincodes are speculatively executed on one or more peers upon

a client request, called chaincode proposal, prior to submitting the

resulting transaction for ordering. Execution results are signed by

the peers that generated them in chaincode endorsements and are

returned to the client who requested them. Endorsements (i.e. peer

signatures) are included in the transaction that the client constructs

and sends to the ordering service. The latter orders the transac-

tions it receives and outputs a first version of the ledger called raw
ledger. Raw ledger is provided to the peers of the network upon

demand. Upon receiving the raw ledger, peers validate the ordered
transactions against the endorsement policy of their origin chain-

codes. An endorsement policy specifies the endorsements that a

transaction should carry to be deemed valid. If validation completes

successfully, then the transaction is committed to the ledger.

Notice that although there is a separation in Hyperledger Fabric

between clients and peers, there still is a communication channel

between the two, leveraged by the clients to acquire endorsements

on the chaincodes they wish to invoke, and perform queries on the

ledger state. In the following section, we show how to make use of

this channel to extend Hyperledger Fabric with our protocol.

7.2 Integration architecture
We first require that each issuer, user and auditor operates a Hy-

perledger Fabric client. These clients are used to generate an issue
or transfer transactions, submit token certification requests and

read from the ledger. Along these lines, we outsource the crypto-

graphic operations required to generate token transactions to a

prover chaincode in the aim of alleviating the load at the client. This

setting assumes that each client possesses a peer that she trusts

with the computation of the zero-knowledge proofs and serial num-

bers. We contend that this is a reasonable assumption especially

for Hyperledger Fabric that focuses on enterprise applications.

We also make use of the already-existing communication proto-

col between the clients and the peers to implement what we call, for

convenience, certifier chaincode. This is a chaincode that runs only
on a selective set of peers chosen at setup time and trusted to jointly

certify valid tokens, following the protocol in Appendix D. Each

such a peer is endowed with a share of the certification signing key,

and whenever invoked, provides its share to the certifier chaincode.

Finally, we leverage the membership service infrastructure of Hy-

perledger Fabric to grant long-term identities to issuers and users.

In particular, we integrate the identity mixer MSP of Hyperledger

Fabric with our solution to allow privacy preserving user authenti-

cation. To assign auditors to users, we use an off-band channel to

bind identity mixer user identities with auditor encryption public

keys. In a real implementation, this could be accommodated by an

external identity management service, preferably distributed
1
.

Notice that our protocol uses the ledger only as a time-stamping

service, without any validation functionalities; those are offloaded

indirectly to certifiers and auditors. This could be supported in

Hyperledger Fabric directly by setting the endorsement policy of

1
The auditor assignment requires structure preserving signatures, which as of now

lack single-round distributed instantiations.

the prover chaincode to any. We note that we plan to extend our

prototype to allow the ledger to also validate token transactions.

More concretely, we intend to exploit the fact that Hyperledger

Fabric supports pluggable transaction validation [35] that allows

chaincodes to specify their own custom validation rules, in our case,

the custom validation would consist of verifying the ZK proofs.

7.3 Performance numbers
We installed Hyperledger Fabric client and peer infrastructure on a

MacBook Pro (15-inch, 2016), with 2.7 GHz Intel Core i7, and 16 GB

of RAM. We implemented our prototype in golang, as this is the

core language of Hyperledger Fabric, and used EC groups in BN256

curves. We instantiated both prover and certifier chaincodes on

all the peers in the network, while disseminating the secret shares

needed for token certification only to the peers reserved for that

purpose. For efficiency reasons, we used Schnorr proofs [46] to

implement some of the zero-knowledge proofs
2
.

Wemeasured the time required to produce and validate a transfer
transaction as these operations are the most costly. We produced

our results using the measurements of 100 runs of each operation.

Our results are shown in Table 1 for transfers with two inputs and

two outputs. Although our scheme supports an arbitrary number

of inputs and outputs, we opt for this combination as it is the most

common configuration in existing schemes. We assume that there

is one certifier and that the maximum value of a token that can be

issued or transferred at anytime is capped at 2
16
.

In the performance evaluation of transaction generation and vali-

dation, we present separately the overhead resulting from (i) check-
ing that the input and outputs preserve value and type; (ii) hiding
the transaction graph, cf. entries token validity and serial numbers;

(iii) and auditability. Our measurements show that the overall trans-

action construction time is little less than 2s, whereas transaction

validation takes a little less than 3s. Auditability is the most ex-

pensive operation as it requires the generation and the verification

of multiple proofs of correct encryption under obfuscated public

keys; around 2/3 of the overall computation time. Second comes the

operations that hide the transaction graph with proof generation

time of almost 0.5s and verification time of roughly 0.7s. This shows

that in applications where auditability and full privacy are not a

priority, our solution performs relatively-well, less than 158ms for

transaction generation and 287ms for its verification. Our perfor-

mance figures exclude proofs of ownership as the performance of

those is outweighed by the Identity Mixer overhead.

While these numbers are not yet favorable to a wide adoption,

we would like to stress that the AMCL library underlying our imple-

mentation is not optimized. An optimization in the crypto libraries

is expected to bring in a speedup of at least one order of magni-

tude [36]. We also note that the current implementation did not

investigate possibilities of parallelization.

We also measured the time it takes to get a token certificate.

Table 1 shows that the computation at the user takes around 199ms,

whereas the overhead at the certifier is 123ms.

2
To preserve universal composability one would need to use an online extractable

variant of Schnorr proofs.

token certification
user 198.90

certifier 123.36

proof generation proof validation

overall computation 1992.844 2885.134

in-out consistency 157.43 287.21

token validity 263.02 322.34

serial number 208.24 452.55

auditability 1361.99 1823.01

Table 1: Performance numbers of token certification and transfer in mil-
liseconds (ms). Transaction size is a little over 63KB; this figure however can
be further optimized.

8 CONCLUSION
We described a privacy-preserving and auditable token manage-

ment scheme for permissioned blockchains, which is instantiated

without complex setup and relies only on falsifiable assumptions.

Through the use of structure-preserving primitives, we achieve

practical transaction size and near-practical computation times that

are expected to become practical once an optimized implementation

of the underlying schemes is available.

REFERENCES
[1] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti-

nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady

Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh

Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula

Stathakopoulou, Marko Vukolić, Sharon Weed Cocco, and Jason Yellick. Hyper-

ledger fabric: A distributed operating system for permissioned blockchains. In

Proceedings of the Thirteenth EuroSys Conference, EuroSys ’18, pages 30:1–30:15,
New York, NY, USA, 2018. ACM.

[2] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-

privacy in public-key encryption. In Colin Boyd, editor, Advances in Cryptology
– ASIACRYPT, volume 2248 of LNCS, pages 566–582. Springer, 2001.

[3] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,

Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments

from bitcoin. In IEEE Symposium on Security and Privacy, pages 459–474. IEEE,
2014.

[4] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. Zether:

Towards privacy in a smart contract world. IACR Cryptology ePrint Archive, 2019.
[5] Jan Camenisch, Rafik Chaabouni, and abhi shelat. Efficient protocols for set

membership and range proofs. In Josef Pieprzyk, editor, Advances in Cryptology
— ASIACRYPT, volume 5350 of LNCS, pages 234–252. Springer, 2008.

[6] Jan Camenisch, Manu Drijvers, and Björn Tackmann. Multi-protocol UC and

its use for building modular and efficient protocols. Cryptology eprint archive,

report 2019/065, January 2019.

[7] Jan Camenisch, Maria Dubovitskaya, Kristiyan Haralambiev, and Markulf

Kohlweiss. Composable and modular anonymous credentials: Definitions and

practical constructions. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in
Cryptology – ASIACRYPT, volume 9453 of LNCS, pages 262–288. Springer, 2015.

[8] Jan Camenisch, Robert R. Enderlein, Stephan Krenn, Ralf Küsters, and Daniel

Rausch. Universal composition with responsive environments. In Jung Hee

Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology – ASIACRYPT,
volume 10032 of LNCS, pages 807–840. Springer, 2016.

[9] Jan Camenisch and Els Van Herreweghen. Design and implementation of the

idemix anonymous credential system. In ACM CCS, pages 21–30. ACM, 2002.

[10] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact e-cash.

In Ronald Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, pages
302–321, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[11] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Balancing ac-

countability and privacy using e-cash (extended abstract). In Roberto De Prisco

and Moti Yung, editors, Security and Cryptography for Networks, pages 141–155,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[12] Jan Camenisch and Markus Stadler. Efficient group signature schemes for large

groups. In Burton S. Kaliski Jr., editor, Advances in Cryptology — CRYPTO, volume

1294 of LNCS, pages 410–424. Springer, 1997.
[13] Ran Canetti. Universally composable security: A new paradigm for cryptographic

protocols. In Foundations of Computer Science. IEEE, 2001.
[14] Ran Canetti. Universally composable security: A new paradigm for cryptographic

protocols. Cryptology eprint archive, report 2000/067, December 2018.

[15] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally com-

posable securitywith global setup. In Salil Vadhan, editor, Theory of Cryptography,
volume 4392 of LNCS, pages 61–85. Springer, 2007.

[16] Ran Canetti and Hugo Krawczyk. Universally composable notions of key ex-

change and secure channels. In Lars R. Knudsen, editor, Advances in Cryptology
— EUROCRYPT, volume 2332 of LNCS, pages 337–351. Springer, 2002.

[17] Ethan Cecchetti, Fan Zhang, Yan Ji, Ahmed Kosba, Ari Juels, and Elaine Shi.

Solidus: Confidential distributed ledger transactions via PVORM. In ACM CCS,
pages 701–717. ACM, 2017.

[18] David Chaum. Blind signatures for untraceable payments. In David Chaum,

Ronald L. Rivest, and Alan T. Sherman, editors, Advances in Cryptology, pages
199–203, Boston, MA, 1983. Springer US.

[19] Yu Chen, Xuecheng Ma, Cong Tang, and Man Ho Au. PGC: decentralized

confidential payment system with auditability. Cryptology eprint archive, May

2019.

[20] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with

short proofs and keys. In Serge Vaudenay, editor, Public Key Cryptography —
PKC, volume 3386 of LNCS, pages 416–431. Springer, 2005.

[21] Taher ElGamal. A public-key cryptosystem and a signature scheme based on

discrete logarithms. IEEE Transactions on Information Theory, 31(4):469–472,
1985.

[22] Prastudy Fauzi, Sarah Meiklejohn, Rebekah Mercer, and Claudio Orlandi.

Quisquis: A new design for anonymous cryptocurrencies. IACR Cryptology
ePrint Archive, 2018.

[23] Christina Garman, Matthew Green, and Ian Miers. Accountable privacy for

decentralized anonymous payments. In Jens Grossklags and Bart Preneel, editors,

Financial Cryptography and Data Security, volume 9603 of LNCS, pages 81–98.
Springer, 2016.

[24] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure

distributed key generation for discrete-log based cryptosystems. Journal of
Cryptology, 20(1):51–83, 2007.

[25] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer
and System Sciences, 28(2):270–299, 1984.

[26] Shafi Goldwasser, Silvio Micali, and Ron Rivest. A digital signature scheme

secure against adaptive chosen-message attacks. SIAM Journal of Computing,
17(2):281–308, April 1988.

[27] Jens Groth. Efficient fully structure-preserving signatures for large messages. In

Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology — ASIACRYPT,
volume 9452 of LNCS, pages 239–259. Springer, 2015.

[28] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive

zero-knowledge. Journal of the ACM, 59(3), June 2012.

[29] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear

groups. In Nigel Smart, editor, Advances in Cryptology — EUROCRYPT, volume

4965 of LNCS, pages 415–432. Springer, 2008.
[30] https://github.com/ethereum/wiki/wiki/White Paper.

[31] https://www2.deloitte.com/ch/en/pages/risk/articles/security-controls-for-

blockchain applications.html.

[32] https://www2.deloitte.com/content/dam/Deloitte/cz/Documents/financial-

services/cz-2018-deloitte-global-blockchain survey.pdf, 2018.

[33] https://www2.deloitte.com/content/dam/Deloitte/lu/Documents/financial-

services/lu-tokenization-of-assets-disrupting-financial industry.pdf.

[34] https://www.goquorum.com/.

[35] Hyperledger Fabric Maintainers. Hyperledger Fabric pluggable endorse-

ment and validation. https://hyperledger-fabric.readthedocs.io/en/release-

1.4/pluggable_endorsement_and_validation.html.

[36] Vlad Krasnov. Go crypto: bridging the performance gap.

https://blog.cloudflare.com/go-crypto-bridging-the-performance-gap/, May

2015.

[37] Gregory Maxwell. CoinJoin: Bitcoin privacy for the real world. bitcointalk.org,

August 2013.

[38] Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Zerocoin:

Anonymous distributed e-cash from bitcoin. In IEEE Symposium on Security and
Privacy, pages 397–411. IEEE, 2013.

[39] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.

http://bitcoin.org/bitcoin.pdf, 2008.

[40] Neha Narula, Willy Vasquez, and Madars Virza. zkledger: Privacy-preserving

auditing for distributed ledgers. In Symposium on Networked Systems Design and
Implementation, pages 65–80. USENIX, 2018.

[41] Torben Pryds Pedersen. Non-interactive and information-theoretic secure ver-

ifiable secret sharing. In Joan Feigenbaum, editor, Advances in Cryptology —
CRYPTO, volume 576 of LNCS, pages 129–140. Springer, 1991.

[42] Andrew Poelstra, Adam Back, Mark Friedenbach, Gregory Maxwell, and Pieter

Wuille. Confidential assets. In Aviv Zohar, Ittay Eyal, Vanessa Teague, Jeremy

Clark, Andrea Bracciali, Federico Pintore, and Massimiliano Sata, editors, Fi-
nancial Cryptography and Data Security, volume 10958 of LNCS, pages 43–63.
Springer, 2018.

[43] David Pointcheval and Olivier Sanders. Short randomizable signatures. In Kazue

Sako, editor, Proceedings of the Cryptographers Track at the RSA Conference,
volume 9610 of LNCS, pages 111–126. Springer, 2016.

[44] David Pointcheval and Olivier Sanders. Reassessing security of randomizable

signatures. In Nigel Smart, editor, Topics in Cryptology — CT-RSA, volume 10808

of LNCS, pages 319–338. Springer, 2018.
[45] Tomas Sander and Amnon Ta-Shma. Auditable, anonymous electronic cash. In

Michael Wiener, editor, Advances in Cryptology — CRYPTO’ 99, pages 555–572,
Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[46] C. P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, Jan 1991.

[47] Alberto Sonnino,Mustafa Al-Bassam, Sherar Bano, SarahMeiklejohn, andGeorge

Danezis. Coconut: Threshold issuance selective disclosure credentials with

applications to distributed ledgers. arXiv:1802.07344, August 2018.

[48] Nicolas van Saberhagen. CryptoNote v 2.0. https://cryptonote.org/whitepaper.

pdf, October 2013.

bitcointalk.org
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf

A FUNCTIONALITIES
We describe here in more detail some ideal functionalities that are

commonly used and that we therefore omitted from the preliminar-

ies of the paper.

Functionality F crsgen

crs

Fcrs is parametrized by a probabilistic algorithm crsgen. Initially,

it sets crs←$ crsgen(𝜆).
(1) On input read from a party 𝑃 , return crs to 𝑃 .

Figure 6: Common reference string

A.1 Common reference string
Functionality Fcrs is parametrized by a CRS generator crsgen,

which on input of security parameter 𝜆 samples a fresh random

string crs←$ crsgen(𝜆).

Functionality F 𝑅
nizk

Fnizk is parametrized by a relation 𝑅 for which we can efficiently

check membership. It keeps an initially empty list 𝐿 of proven

statements and a list 𝐿0 of proofs that do not verify.

(1) On input (prove, 𝑦,𝑤) from a party 𝑃 , such that (𝑦,𝑤) ∈
𝑅a, send (prove, 𝑦) to A.

(2) Upon receiving a message (done,𝜓) from A, with𝜓 ∈
{0, 1}∗, record (𝑦,𝜓) in 𝐿 and send (done,𝜓) to 𝑃 .

(3) Upon receiving (verify, 𝑦,𝜓) from some party 𝑃 , check

whether (𝑦,𝜓) ∈ 𝐿, then return 1 to 𝑃 , or whether

(𝑦,𝜓) ∈ 𝐿0, then return 0 to 𝑃 . If neither, then out-

put (verify, 𝑦,𝜓) to A and wait for receiving answer

(witness,𝑤). Check (𝑦,𝑤) ∈ 𝑅 and if so, store (𝑦,𝜓) in
𝐿, else store it in 𝐿0. If (𝑦,𝜓) is valid, then output 1 to 𝑃 ,

else output 0.

a
Inputs that do not satisfy the respective relation are ignored.

Figure 7: Non-interactive zero-knowledge functionality
based on the one described by Groth et al. [28].

A.2 Non-interactive zero-knowledge
Our functionality Fnizk is adapted from the work of Groth et al. [28],

with a few modifications, most of which are mainly stylistic. The

most relevant difference is that we store a set 𝐿0 of false statements

that have been verified. We need this to ensure that a statement that

was evaluated as false by one honest party will also be evaluated

as false by all other honest parties. Otherwise Fnizk has the two

expected types of inputs prove and verify, and the adversary is

allowed to delay proof generation unless Fnizk is used in the context
of responsive environments [8].

A.3 Secure message transmission
Functionality Fsmt models a secure channel between a sender 𝑆

and a receiver R. In comparison to the functionality introduced by

Secure message transmission functionality Fsmt
Functionality Fsmt is for transmitting messages in a secure and

private manner.

• Upon input (send, R,𝑚) from a party 𝑆 :

– If both 𝑆 and R are honest, provide a private delayed

output (sent, 𝑆, R,𝑚) to R.
– If at least one of 𝑆 and R is corrupt, provide a public

delayed output (sent, 𝑆, R,𝑚) to A’s queue.

Figure 8: Secure message transmission functionality

Canetti and Krawczyk [16], our functionality additionally provides

privacy and hides the parties that are involved in the transmission.

Functionality F (skeygen,sign,verify)
sig

Functionality Fsig requires that sid = (𝑆, sid ′), where 𝑆 is the

party identifier of the signer. Set C, initially empty, specifies the

set of currently corrupted parties. The functionality keeps a set

Σ of properly signed messages.

(0) Upon the first activation from 𝑆 , run

(sk, pk) ←$ skeygen(𝜆), where 𝜆 is obtained from

the security parameter tape, and store (sk, pk).
(1) Upon input pubkey from party 𝑃 , output (pubkey, pk)

to 𝑃 .

(2) Upon input (sign,𝑚) from party 𝑆 with 𝑚 ∈ {0, 1}∗,
compute s←$ sign(sk,𝑚). Set Σ← Σ ∪ {𝑚} and output

𝑠 to 𝑆 .

(3) Upon input (verify, pk′,𝑚′, 𝑠 ′) from party 𝑃 , compute

𝑏 ← verify(pk′,𝑚′, 𝑠 ′). If 𝑆 ∉ C ∧ pk = pk′∧𝑏 ∧𝑚′ ∉ Σ
then output (result, 0) to 𝑃 . Else output (result, 𝑏) to
𝑃 .

(4) Upon input (corrupt, 𝑃) from the adversary, set C ←
C ∪ {𝑃}. If 𝑃 = 𝑆 , then additionally output sk to A.

Figure 9: Signature functionality

A.4 Digital signatures
We use the variant of the signature functionality Fsig that was

introduced by Camenisch et al. [6]. This version of the functionality

is compatible with the modular NIZK proof technique introduced

in the same paper.

A.5 Distributed key generation
Functionality Fdkg idealizes a distributed key-generation proto-

col such as, for discrete-log based schemes, the one of Gennaro

et al. [24]. The simplified functionality given in Figure 10 is not

directly realizable since it does not model for example that the

communication may be delayed or prevented by the adversary. We

decided to still use this version to simplify the overall treatment.

Functionality F tkeygen

dkg

Fdkg is parameterized by a PPT algorithm tkeygen. The session

identifier sid specifies the total number of parties𝑛 and the thresh-

old bound 𝑡 .

• Upon input init from a party C𝑖 :
– If no keys (sk1, . . . , sk𝑛, pk) are stored yet, generate
(sk1, . . . , sk𝑛, pk) ←$ tkeygen(𝜆, 𝑛, 𝑡).

– Return (sk𝑖 , pk) to C𝑖 .

Figure 10: Distributed key generation functionality

B SECURITY PROOF
This section proves Theorem 6.1. We use the composition result

of [6] to prove this, since we want to prove correctness of the

evaluation of the verification algorithm.

Proof. We use the proof technique of Camenisch et al. [6] in

instantiating the functionalities Fnizk, Fsig, and Fblindsig in a way

that Fnizk can call out to Fsig and Fblindsig for the verification of

signatures. This has the advantage that the respective clauses in

the statement are ideally verified.

We then need to describe a simulator. Simulator S emulates

functionalities Fledger, Freg, Fa-auth, Fnizk, Fsig, and Fsmt. To
emulate Fledger, S manages an initially empty internal ledger and

allows A to read it via retrieve or append messages as described

below. S initially sets initialized ← false. We start by describing

the behavior of S upon outputs provided by Fledger.
• Upon receiving (initialized, 𝑃) for 𝑃 ∈ {A,C, I }, gen-

erate a signature key pair for the respective party and

simulate the public key of the respective party being reg-

istered at Freg. After receiving this for A, C and I , set
initialized ← true.

• Upon receiving (registered, 𝑃) from Ftoken, mark 𝑃 as

registered and generate output (registered, 𝑃) as a mes-

sage from Fa-auth to A.

• Processing of pending messages (on several occasions as

depicted below) for party 𝑃 : for every record tx marked for

delayed processing, proceed as follows.

– If I is corrupt and tx = (issue, I , v , cm0,𝜓0, s), then
issue (verify, 𝑦,𝜓0) toA as an output of Fnizk, with
𝑦 = (crs, cm0, v , I), and expect as response a witness

𝑤 . If 𝑤 = (rcm, 𝜌
in) is valid for cm0, and signature s

is valid according to the simulated instance of Fsig,
then provide the input (issue, v , cm0) to Ftoken.

– If tx = (transfer, (sn𝑖 ,𝜓2,𝑖)𝑚𝑖=1
, (cm𝑗)𝑛𝑗=1

,𝜓1), issue
(verify, 𝑦,𝜓1) to A as an output of Fnizk, with 𝑦 =

(pkC , crs, (cm𝑗)𝑛𝑗=1
, pkA, (sn𝑖)𝑚𝑖=1

). Expect as response
from adversary A a witness𝑤 = ((s𝑖 , vin

𝑖
, 𝜌 in

𝑖
, 𝜋𝑖)𝑚𝑖=1

,

𝑃, sA, (R𝑗 , r 𝑗cm
, vout

𝑗
, 𝜌out

𝑗
)𝑛
𝑗=1
). If𝑤 and (𝜓2,1, . . . ,𝜓2,𝑛)

are valid according to the simulated instance ofFa-auth,
and corresponding messages have been sent to re-

spective receivers, then mark tx as valid. Send a re-

quest (transfer, 𝑃, (cm𝑖)𝑚𝑖=1
, (R𝑗 , vout

𝑗
, cmout

𝑗
)𝑛
𝑗=1
) to

Ftoken.

– For all valid transactions tx where in themeantime the

corresponding private message (request, 𝑃, crs, cm𝑗)
is delivered toFblindsig, input (deliver, cm𝑗) toFtoken.

• WhenA instructsS to deliver amessage (token, cm𝑗 , r
𝑗
cm

, vout

𝑗
, 𝜌out

𝑗
)

anonymously to its receiver, simulate the corresponding

private delayedmessage (request, 𝑃, crs, cm𝑗) fromFblindsig.
• Upon receiving (read?, 𝑃) from Ftoken, process pending

messages and return (read!, 𝑃) to Ftoken.
• On receiving (issue, v) from Ftoken, first process pend-

ing messages. Then, generate a new all-zero commitment

(cm∗, r∗
cm
) ←$ commit(crs, (0, 0, 0)). Next, emulate an out-

put (prove, 𝑦) fromFnizk for the statement𝑦 = (crs, cm∗, v , I)
and proceed upon an input (done,𝜓∗

0
) for the same instance

of Fnizk. Emulate the signature s∗ as in Fsig, storing the re-
spective instance as a record. Append (issue, v , cm∗,𝜓∗

0
, s∗)

to the internal ledger. Input (issue, cm∗) to Ftoken.
• Upon receiving (transfer,𝑚, 𝑛, 𝐿) from Ftoken, first pro-

cess pending messages. For each 𝑖 = 1, . . . ,𝑚 generate a

random serial number sn∗
𝑖
. Then proceed as follows for

𝑗 = 1, . . . , 𝑛. If there is no entry for 𝑗 in 𝐿, then generate a

commitment (cm∗
𝑗
, r 𝑗

cm
) ←$ commit(crs, (0, 0, 0)). If there

is an entry (𝑗, 𝑃, R𝑗 , vout

𝑗
), then randomly sample 𝜌out

𝑗
and

compute (cm∗
𝑗
, r 𝑗

cm
) ←$ commit(crs, (vout

𝑗
, R𝑗 , 𝜌out

𝑗
)). Next,

emulate the output (prove, 𝑦) from Fnizk for instance 𝑦 =

(pkC , crs, (cm∗𝑗)
𝑛
𝑗=1

, pkA, (sn∗𝑖)
𝑚
𝑖=1
) and record the proof𝜓∗

1

returned by A. Emulate the proofs 𝜓∗
2,1
, . . . ,𝜓∗

2,𝑚
as in

Fa-auth. Append (transfer, (sn∗𝑖 ,𝜓2,𝑖)𝑚𝑖=1
, (cm∗

𝑗
)𝑛
𝑗=1

,𝜓∗
1
) to

the internal ledger and emulate transmission of 𝑛 messages

of the same length as (token, cm∗
𝑗
, r 𝑗

cm
, v

𝑗
, 𝜌out

𝑗
) on Fsmt

(i.e., append the length to the internal queue). Respondwith

(transfer, (cm∗
𝑗
)𝑛
𝑗=1
) to Ftoken. When A delivers a mes-

sage on Fsmt, input (deliver, cm∗𝑗) for the corresponding
𝑗 to Ftoken.

• Upon input (append, 𝑥, 𝑃 ′) fromA for a corrupt 𝑃 ’, append

𝑥 to the ledger and mark for delayed processing. Return to

A.

If S obtains fromA a query to Fa-auth in the name of a corrupt

party 𝑃 that is marked as registered, then S internally handles the

inputs prove and verify just like Fa-auth. If A provides an input

message 𝑥 to Fsmt on behalf of a corrupted party 𝑃 , then the mes-

sage is ignored unless it is of the format 𝑥 = (token, cm, rcm, v , 𝜌).
If it has the right format, then S checks whether the corresponding

transaction tx exists on Fledger; if it does, then input the respective

deliver message to Ftoken. If such a transaction does not exist,

then store the message 𝑥 for later.

Our goal is now to prove that if the commitment and the VRF are

secure, then the ideal and real experiments are indistinguishable.

We prove this by describing a sequence of experiments, where

exec0 is the real experiment and we transform it step-by-step into

the ideal experiment, showing for each adjacent pair of steps that

they are indistinguishable. The overall statement then follows via

the triangle inequality.

Experiment exec1 is almost the same as exec0 but commitments

generated during (issue, v) at an honest party 𝑃 as well as com-

mitments generated during (transfer, . . .) at an honest party 𝑃 ,

where receiver R is also honest, are replaced by commitments gen-

erated via (cm, rcm) ←$ commit(crs, (0, 0, 0)). Functionality Fnizk
is changed so that it does not actually check the input of honest

parties.

Experiments exec0 and exec1 are equivalent since the commit-

ment is perfectly hiding and therefore the distribution of the output

to the adversary is unchanged. As all inputs of the honest parties’

protocols to Fnizk are correct, omitting the checks has no effect.

Experiment exec2 is almost the same as exec1 but serial num-

bers output by honest parties are replaced by uniformly random

values from the same set. Experiments exec2 and exec1 are indis-

tinguishable because of the pseudorandomness of VRF, which is

easily proved by reduction. Note that the environment never sees

honestly generated proofs.

In the following, we describe the response to environment queries

in both exec2 and the ideal experiment and point out the differ-

ences. We assume that the state in terms of valid commitments

is the same prior to the environment’s query, and show that the

output to the query is the same and the state in terms of valid com-

mitments remains consistent. The consistency of the input-output

behavior is relatively straightforward to check for most inputs. We

focus here on the ones used in transfer.

• On input (transfer, . . .) from an honest user 𝑃 , if not

both of 𝑃 and all R1, . . . , R𝑛 are registered, then the request

is ignored in both cases. Also if not all transferable com-

mitments cm1, . . . , cm𝑚 exist and are associated to user 𝑃 ,

both invocations abort. The protocol 𝜋token then gener-

ates new commitments cm′
1
, . . . , cm′𝑛 and send them for the

proof to Fnizk, which requests a proof𝜓1 fromA. Upon re-

turn, 𝜋token generates an additional proof𝜓2 via Fa-auth,
sends the transaction (transfer, . . .) to Fledger and the

token messages to Fsmt. If any R𝑗 is corrupt, this latter
invocation means thatA learns (r 𝑗

cm
, vout

𝑗
, 𝜌out

𝑗
) as well as

the sender 𝑃 via Fsmt in addition.

The functionality Ftoken provides either just𝑚,𝑛—if all

R1, . . . , R𝑗 are honest—or the values (𝑗, 𝑃, R𝑗 , vout

𝑗
) for each

corrupt R𝑗 . In the first case, S generates a commitment

to all-zero messages and requests the proof 𝜓1 from A
via Fnizk-interaction, in the second case S has all the data

available to perform the same computations as the protocol.

The output distribution is the same since in both cases

the commitment is an all-zero commitment and the serial

number is uniformly random.

• Processing of pending transactions. For all new (possibly

adversarial) transactions onFledger, the honest parties first
attempt to verify the proofs via Fnizk. For adversarially-
generated proofs, the first attempt for each such proof may

lead to a message from Fnizk requesting the witness from

A. The same messages are generated by S, which then

records the messages and issues the proper requests to

Ftoken. (Note that this processing in Ftoken takes place at

this point in time, but the timing is indistinguishable from

that in the protocol as each honest user input leads to that

user processing the pending transactions in the protocol.)

For (passively) corrupt C, if a commitment cm is de-

livered to the receiver, the simulator learns the receiver’s

identity and emulates the behavior in the real protocol

where C also learns both the commitment and the identity

of the receiver.

For adversarial transfers sent to the party via Fsmt, it
may mean that the message sent on Fsmt is not proper

(so it is ignored by both 𝜋token and S), or that it parses
correctly but it does not have a corresponding transaction

in Fledger (in the sense that the commitment cm∗ in the

message does not exist there—then it is also ignored), or

that both message and transaction can be found, in which

case the view of the party changes when the tokens are

found.

The only difference between the two above executions is when

the adversary fabricates a transaction in the name of a corrupt party

that makes a state transition that is different from the one that is

done in Ftoken. Let us first consider issue transactions, where the

statement is 𝑦 = (crs, cm∗, v , I). When an honest party verifies the

proof with Fnizk, thenA has to provide a proper witness (r∗
cm

, 𝜌 ∗)
such that open(crs, cm∗, (v , I , 𝜌 ∗), r∗

cm
) = true.

Consider transaction tx = (transfer, (sn∗
𝑖
,𝜓2,𝑖)𝑚𝑖=1

, (cm∗
𝑗
)𝑛
𝑗=1

,𝜓∗
1
)

input by the adversary.When𝜓∗
1
is verified by the honest party, then

A is given the statement𝑦 = (pkC , crs, (cm∗𝑗)
𝑛
𝑗=1

, pkA, (sn∗𝑖)
𝑚
𝑖=1
) and

sends awitness𝑤 = ((s𝑖 , vin

𝑖
, 𝜌 in

𝑖
, 𝜋𝑖)𝑚𝑖=1

, 𝑃, sA, (R𝑗 , r 𝑗cm
, vout

𝑗
, 𝜌out

𝑗
)𝑛
𝑗=1
)

as a response, that satisfies the following PK-statement

PK

{(
(s𝑖 , vin

𝑖 , 𝜌 in

𝑖 , 𝜋𝑖)𝑚𝑖=1
, 𝑃, sA, (R𝑗 , r 𝑗cm

, vout

𝑗 , 𝜌out

𝑗)
𝑛
𝑗=1

)
:

∀𝑖 ∈ {1, . . . ,𝑚} : verify(pkC , (vin

𝑖 , 𝑃, 𝜌 in

𝑖), s𝑖)

∧ ∀𝑗 ∈ {1, . . . , 𝑛} : open(crs, cm∗𝑗 , (v
out

𝑗 , R𝑗 , 𝜌out

𝑗), r
𝑗
cm
)

∧ verify(pkA, (𝑃, vpk), sA)

∧ ∀𝑖 ∈ {1, . . . ,𝑚} : check(vpk, 𝜌 in

𝑖 , sn𝑖 , 𝜋𝑖)

∧
𝑚∑︁
𝑖=1

vin

𝑖 =

𝑚∑︁
𝑗=1

vout

𝑗

∧ ∀𝑗 ∈ {1, . . . , 𝑛} : 0 ≤ vout

𝑗 ≤ max
}
.

As verify(pkC , (vin

𝑗
, 𝑃, 𝜌 in

𝑖
), s𝑖) are evaluated via Fblindsig, and C

checks the correctness of crs, we also know that s1, . . . , s𝑚 were

generated for inputs (request, crs, r𝑖
cm

, (vin

𝑖
, 𝑃, 𝜌 in

𝑖
)), and the com-

mitment cm𝑖 = commit(crs, (vin

𝑖
, 𝑃, 𝜌 in

𝑖
); r𝑖

cm
) indeed exists on the

ledger. Then either cm𝑖 was created during a previous transaction

with the same input (vin

𝑖
, 𝑃, 𝜌 in

𝑖
) or we can turnZ into an adversary

that breaks the binding property of COM.

As verify(pkA, (𝑃, vpk), sA) is evaluated via a call to Fsig, and
the correctness of both Fsig and the honesty of A implies that vpk is
the unique VRF public key associated to 𝑃 . So at this point we know
that vpk and 𝜌 in

𝑖
are correct. As check(vpk, 𝜌 in

𝑖
, sn∗

𝑖
, 𝜋𝑖) = true,

either (sn∗
𝑖
, _) ← eval(vsk, 𝜌 in

𝑖
) or we can turnZ into an adversary

against the soundness of VRF. This means that sn∗
𝑖
is also correct,

no double-spending occurred. The last two lines mean that the sum

of all output values and the sum of all input values are the same,

so the overall value is preserved (and the input provided by the

simulator is accepted by Ftoken).
The construction has negligible correctness error due to collision

of serial numbers. □

C INSTANTIATION
C.1 Pedersen commitments
The commitment scheme is instantiated with Pedersen commit-

ments [41] on multiple values. Consider a group G and generators

g0, g1, . . . , gℓ ∈ G such that the relative discrete logarithms between

the g𝑖 are not known. A commitment to a vector (𝑥1, . . . , 𝑥ℓ) ∈
{1, . . . , |G|}ℓ of inputs is computed by choosing a uniformly ran-

dom 𝑟 ∈ {1, . . . , |G|} and computing (cm, rcm) ← (g𝑟
0
g𝑥1

1
· · · g𝑥ℓ

ℓ
, 𝑟).

Pedersen commitments are perfectly hiding and computationally

binding under the discrete-logarithm assumption in group G.

C.2 Pointcheval-Sanders (PS) signatures
We use the signature scheme of Pointcheval and Sanders [43] to

implement the blind signature used for token certification. The

scheme operates in an asymmetric pairing setting with groups

G1 and G2 of order 𝑝 , with target group GT and bilinear map

𝑒 : G1 × G2 → GT. Key generation skeygen chooses 𝑔 ∈ G2

and (𝑥,𝑦1, . . . , 𝑦ℓ) ∈ Zℓ+1𝑝 and sets sk ← (𝑥,𝑦1, . . . , 𝑦ℓ) and pk ←
(𝑔,𝑔𝑥 , 𝑔𝑦1 , . . . , 𝑔𝑦ℓ) = (𝑔, 𝑋̃ , 𝑌̃1, . . . , 𝑌̃ℓ). A signature s on message

vector (𝑚1, . . . ,𝑚ℓ) ∈ Zℓ𝑝 is computed as sign(sk, (𝑚1, . . . ,𝑚ℓ)) ←
𝑠 = (ℎ,ℎ𝑥+

∑
𝑗 𝑦 𝑗𝑚 𝑗) with ℎ randomly-chosen in G1. Verification

of signature s = (s1, s2) is performed by checking s1 ≠ 1G1
and

𝑒 (s1, 𝑋̃
∏

𝑗 𝑌̃
𝑚 𝑗

𝑗
) = 𝑒 (s2, 𝑔).

PS signatures are CMA-secure under an interactive computa-

tional assumption. In follow-up work, Pointcheval and Sanders [44]

showed that the scheme can be modified to be secure under a

non-interactive assumption, by adding and signing another ran-

dom element m0. For simplicity, we use the original version in this

instantiation.

C.3 Certification through blind signatures
The functionality Fblindsig is instantiated with the following pro-

tocol 𝜋blindsig, which operates in the {Fnizk, Freg, Fsmt}-hybrid
model. 𝜋blindsig is based on the Coconut system proposed by Son-

nino et al. [47], with the only difference that we sign a vector of

messages instead of a single message.

Let 𝐻G : G1 → G1 denote a cryptographic hash function mod-

eled as a random oracle.

• Upon input init, signerC generates a new key pair (sk, pk)
with sk = (𝑥,𝑦1, . . . , 𝑦ℓ) and pk = (𝑔, 𝑋̃ , 𝑌̃1, . . . , 𝑌̃ℓ), and
sends (register, pk) to Freg.

• Upon input pubkey, party 𝑃 sends (query,C) to Freg and

outputs the result.

• Upon input (request, crs, rcm, (m1, . . . ,mℓ)), 𝑃 proceed as

follows.

(1) Pick 𝑧←$ Z𝑝 and compute 𝑢 ← g𝑧 . Compute cm←
grcm

0

∏ℓ
𝑖=1

gm𝑖

𝑖
and ℎ ← 𝐻G (cm).

(2) For each 𝑖 = 1, . . . , ℓ , choose 𝑟𝑖 ←$ Z𝑝 , 𝑎𝑖 ← 𝑢𝑟𝑖 , and

𝑏𝑖 ← ℎ𝑚𝑖 g𝑟𝑖 .
(3) Obtain the proof

𝜁 ← PK

{(
(𝑚𝑖 , 𝑟𝑖)ℓ𝑖=1

, rcm

)
:

ℓ∧
𝑖=1

(𝑎𝑖 = 𝑢𝑟𝑖 ∧ 𝑏𝑖 = ℎ𝑚𝑖 g𝑟𝑖) ∧ cm = grcm

0

ℓ∏
𝑖=1

gm𝑖

𝑖

}

on input (prove, 𝑦,𝑤) at Fnizk with 𝑦 = (cm, ℎ,𝑢, 𝑎1,

. . . , 𝑎ℓ , 𝑏1, . . . , 𝑏ℓ) and𝑤 = ((𝑚𝑖 , 𝑟𝑖)ℓ𝑖=1
, rcm).

(4) Call Fsmt with (send,C, (𝜁 , crs, cm, 𝑢, (𝑎𝑖 , 𝑏𝑖)ℓ𝑖=1
)).

• Upon receiving (sent, 𝑃, (𝜁 , crs, cm, 𝑢, (𝑎𝑖 , 𝑏𝑖)ℓ𝑖=1
)) fromFsmt,

signer C proceeds as follows:

(1) Verify 𝜁 via Fnizk and compute ℎ ← 𝐻G (cm). If veri-
fication fails, input (send, 𝑃,⊥) to Fsmt and stop.

(2) Store (𝜁 , crs, cm, 𝑢, (𝑎𝑖 , 𝑏𝑖)ℓ𝑖=1
, ℎ) internally and output

message (request, 𝑃, crs, cm).
• Upon input (sign, cm):

(1) Compute
¯𝑏 ← ℎ𝑥

∏ℓ
𝑖=1

𝑏
𝑦𝑖
𝑖

= g𝑟ℎ𝑥
∏ℓ

𝑖=1
ℎm𝑖𝑦𝑖

and

𝑎 ←∏ℓ
𝑖=1

𝑎
𝑦𝑖
𝑖

= 𝑢𝑟 .

(2) Call Fsmt with (send, 𝑃, (𝑎, ¯𝑏)).
• Upon receiving (sent,C, 𝑚̄) from Fsmt, receiver 𝑃 pro-

ceeds as follows:

(1) If𝑚̄ cannot be parsed as (𝑎, ¯𝑏) ∈ G2

1
output (result,⊥)

and stop.

(2) Compute ℎ′ ← ¯𝑏𝑎−𝑧 and check 𝑒 (ℎ, 𝑋̃ ∏ℓ
𝑖=1

𝑌̃
m𝑖

𝑖
) ?

=

𝑒 (ℎ′, g̃). If the check fails, output (result,⊥) and stop.
Else output (result, (ℎ,ℎ′)).

As in Coconut [47], we use a deterministic variant of Pointcheval-

Sanders signatures. Namely, generator ℎ is not selected randomly

in G1, rather it is computed as the hash of commitment cm. The

reason behind this slight modification is to enable a non-interactive

distributed signature (i.e. signers do not need to interact), see Ap-

pendix D for further details. It is easy to show that the security of

this variant holds in the random-oracle model, cf. [47].

C.4 Groth signatures
We use Groth’s structure preserving signatures [27] to bind a user

public key to an auditor public key. The signature scheme oper-

ates in a pairing setting with groups G1, G2 and GT, and mes-

sages in G1. Let g and g̃ be random generators of G1 and G2

respectively. Key generation skeygen(𝜆, ℓ) selects a vector sk =

(𝑥,𝑦1, . . . , 𝑦ℓ−1) ←$ Zℓ𝑝 and a random generator ℎ←$ G1, and com-

putes pk ← (ℎ, 𝑋̃ , 𝑌̃1, . . . , 𝑌̃ℓ−1) = (ℎ, g̃𝑥 , g̃𝑦1 , . . . , g̃𝑦ℓ−1). Signature
sign(sk, (m1, . . . ,mℓ)) selects uniformly at random 𝑟 ←$ Z𝑝 , com-

putes 𝑎 ← g̃1/𝑟
, 𝑏 ← (ℎg𝑥)𝑟 , and 𝑐 ← (ℎ𝑥mℓ

∏ℓ−1

𝑖=1
m𝑦𝑖
𝑖
)𝑟 , and

sets s← (𝑎, 𝑏, 𝑐). Verification of signature s = (𝑎, 𝑏, 𝑐) for messages

(m1, . . . ,mℓ) checks two pairing equations 𝑒 (𝑏, 𝑎) = 𝑒 (ℎ, g̃)𝑒 (g, 𝑋̃)
and

𝑒 (𝑐, 𝑎) = 𝑒 (ℎ, 𝑋̃)𝑒 (mℓ , g̃)
ℓ−1∏
𝑖=1

𝑒 (m𝑖 , 𝑌̃𝑖) .

C.4.1 Dodis-Yampolskiy VRF. We use the VRF of Dodis and

Yampolskiy [20] that operates in the pairing setting. Key genera-

tion vkeygen(𝜆) chooses a random sk←$ Z𝑝 and sets pk ← gsk .
Evaluation eval(sk, 𝑥) aborts if sk + 𝑥 ∉ Z×𝑝 . It computes output

𝑦 ← 𝑒 (g, g̃)1/(sk+𝑥) ∈ GT and proof 𝜋 ← 𝑔1/(sk+𝑥) ∈ G2. Veri-

fication check(pk, 𝑥,𝑦, 𝜋) checks whether 𝑒 (g, 𝜋) = 𝑦 and 𝑒 (pk ·
g𝑥 , 𝜋) = 𝑒 (𝑔,𝑔); if so it outputs 𝑏 = 1.

C.5 Groth-Sahai NIZK
Since all equations we have to verify — for the Pointcheval-Sanders

signatures, the Pedersen commitments, the Groth signatures, and

the Dodis Yampolskiy VRF — are defined in terms of bilinear groups,

we propose to use Groth-Sahai proofs [29] to instantiate Fnizk in

our solution.

C.6 ElGamal public-key encryption
Weuse ElGamal encryption [21]. Key generation ekeygen(𝜆) chooses
a uniformly random exponent sk←$ {1, . . . , |G|} and computes

pk ← gsk . Encryption enc(pk,m) chooses a uniformly random

𝑟 ←$ {1, . . . , |G|} and computes c ← (g𝑟 , pk𝑟m). Decryption dec(sk, c)
with c = (c1, c2) computes m← c2c−sk

1
. The encryption scheme is

semantically secure
3
and key private under the decisional Diffie-

Hellman assumption.

C.7 Range proofs
Our protocol requires range proofs to ensure that no field wrap-

arounds are exploited to increase the quantity of tokens in a trans-

fer. The range proof we use is based on the work of Camenisch,

Chaabouni, and shelat [5], instantiated with Pointcheval-Sanders

signatures.

D DISTRIBUTING CERTIFICATION
The Pointcheval-Sanders signature scheme can be extended into

a non-interactive 𝑡-out-of-𝑛 threshold signature scheme. Consider

𝑛 signers C1, . . . ,C𝑛 from which a party 𝑃 collects at least 𝑡 signa-

ture shares that can be combined into a complete signature. We

describe the process with a trusted key generation, however, no-

tice that it is straightforward to convert the key generation mech-

anism into a multiparty computation between the signers (see

e.g. [24]). We describe the key generation algorithm tkeygen and

the reconstruction algorithm combine. The algorithm to produce

a signature share is identical to original signing algorithm (tak-

ing secret key share as input instead of the overall secret key).

That is, to sign a message (m1, . . . ,mℓ), signer C𝑗 calls algorithm

(ℎ,ℎ′) ←$ sign(sk 𝑗 , (m1, . . . ,mℓ)) with sk 𝑗 = (𝑥 𝑗 , 𝑦1𝑗 , . . . , 𝑦ℓ 𝑗). The
resulting signature share is a valid Pointcheval-Sanders signature

for public key pk 𝑗 = (𝑋̃ 𝑗 , 𝑌̃1𝑗 , . . . , 𝑌̃ℓ 𝑗).
Algorithm tkeygen(𝜆, 𝑛, 𝑡, ℓ) computes (sk 𝑗 , pk 𝑗)𝑛𝑗=1

, pk as fol-

lows:

• Pick ℓ + 1 random polynomials 𝑝𝑥 , 𝑝𝑦1
, . . . 𝑝𝑦ℓ of degree

𝑡 − 1 with coefficients from Z𝑝 .

• Compute 𝑋̃ ← g𝑝𝑥 (0) , 𝑌̃1 ← g𝑝𝑦1
(0) , . . . , 𝑌̃ℓ ← g𝑝𝑦ℓ (0) .

• Compute all 𝑥 𝑗 = 𝑝𝑥 (𝑗) and 𝑦𝑖 𝑗 = 𝑝𝑦𝑖 (𝑗).
• Compute all 𝑋̃ 𝑗 = g𝑥 𝑗

and 𝑌̃𝑖 𝑗 ← g𝑦𝑖 𝑗 .
• Set pk = (𝑋̃ , 𝑌̃1, . . . , 𝑌̃ℓ). Set sk 𝑗 = (𝑥 𝑗 , 𝑦1𝑗 , . . . , 𝑦ℓ 𝑗) and

pk 𝑗 = (𝑋̃ 𝑗 , 𝑌̃1𝑗 , . . . , 𝑌̃ℓ 𝑗).
• Output (sk1, . . . , sk𝑛, pk1

, . . . , pk𝑛, pk).
Algorithm combine, on input {(s𝑗 , pk 𝑗)} 𝑗 ∈𝑆 , (m1, . . . ,mℓ), for a set
𝑆 ⊆ {1, . . . , 𝑛} with |𝑆 | = 𝑡 , proceeds as follows.

• Output ⊥ if not all {(s𝑗 , pk 𝑗)} 𝑗 ∈𝑆 with s𝑗 = (ℎ 𝑗 , ℎ′𝑗) have
the sameℎ and if verify((𝑋̃ 𝑗 , 𝑌̃1𝑗 , . . . , 𝑌̃ℓ 𝑗), (m1, . . . ,mℓ), (ℎ,ℎ′𝑗))
does not hold for all 𝑗 ∈ 𝑆 .

3
Our protocol only requires a semantically secure encryption thanks to transaction

authentication via Fa-auth . The latter ensures that the content of the transaction

cannot be tampered with without detection.

• Compute Lagrange coefficients 𝜆 𝑗 =
∏

𝑖∈𝑆\𝑗
𝑖

𝑖−𝑗 for all

𝑗 ∈ 𝑆 .
• Compute and output (ℎ,ℎ′ = ∏

𝑗 ∈𝑆 ℎ
′
𝑗
𝜆 𝑗).

Protocol 𝜋blindsig from Appendix C.3 has to be modified as follows:

• Instead of generating a key locally atC, all signersC1, . . . ,C𝑛
together use Fdkg to generate the set of keys. Signer C1

registers the public key pk at Freg.
• Requestor 𝑃 sends the requestmessage to partiesC1, . . . ,C𝑛

until it has collected 𝑡 signatures that verify. It then uses

combine to combine that into a single signature that veri-

fies relatively to pk.

Theorem D.1. Let 𝑛 ∈ N and 𝑡 < 𝑛. The above-described variant
of the protocol realizes the threshold variant of Fblindsig.

No further adaptations to the users’ protocol beyond the use

of the threshold functionality are necessary, as the verification

equation for the signatures remains the same.

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Results
	1.3 Related work

	2 Background
	2.1 Decentralized token systems
	2.2 Privacy-preserving token systems
	2.3 Permissioned token systems
	2.4 Signature-based membership proofs
	2.5 Encryption-based auditability

	3 Overview
	3.1 Design Approach
	3.2 Architectural Model
	3.3 Trust Model

	4 Cryptographic schemes
	4.1 Commitment schemes
	4.2 Digital signature schemes
	4.3 Threshold signature schemes
	4.4 Public-key encryption.
	4.5 Verifiable random functions
	4.6 Non-interactive zero-knowledge proofs of knowledge

	5 Security formalization
	5.1 Universal composition and MUC
	5.2 The privacy-preserving token functionality
	5.3 Set-up functionalities

	6 Privacy-preserving auditable UTXO
	6.1 Core protocol ideas
	6.2 Certification via blind signatures
	6.3 Serial numbers prevent double-spending
	6.4 Multi-input multi-output transactions
	6.5 The protocol [token]
	6.6 Auditing
	6.7 Security analysis

	7 Implementation and performance
	7.1 Hyperledger Fabric
	7.2 Integration architecture
	7.3 Performance numbers

	8 Conclusion
	References
	A Functionalities
	A.1 Common reference string
	A.2 Non-interactive zero-knowledge
	A.3 Secure message transmission
	A.4 Digital signatures
	A.5 Distributed key generation

	B Security proof
	C Instantiation
	C.1 Pedersen commitments
	C.2 Pointcheval-Sanders (PS) signatures
	C.3 Certification through blind signatures
	C.4 Groth signatures
	C.5 Groth-Sahai NIZK
	C.6 ElGamal public-key encryption
	C.7 Range proofs

	D Distributing certification

