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Abstract. Middle-product learning with errors (MP-LWE) was recently intro-
duced by Rosca, Sakzad, Steinfeld and Stehlé (CRYPTO 2017) as a way to com-
bine the e�ciency of Ring-LWE with the more robust security guarantees of
plain LWE. While Ring-LWE is at the heart of e�cient lattice-based cryptosys-
tems, it involves the choice of an underlying ring which is essentially arbitrary.
In other words, the e�ect of this choice on the security of Ring-LWE is poorly
understood. On the other hand, Rosca et al. showed that a new LWE variant,
called MP-LWE, is as secure as Polynomial-LWE (another variant of Ring-LWE)
over any of a broad class of number �elds. They also demonstrated the usefulness
of MP-LWE by constructing an MP-LWE based public-key encryption scheme
whose e�ciency is comparable to Ring-LWE based public-key encryption. In
this work, we take this line of research further by showing how to construct
Identity-Based Encryption (IBE) schemes that are secure under a variant of the
MP-LWE assumption. Our IBE schemes match the e�ciency of Ring-LWE based
IBE, including a scheme in the random oracle model with keys and ciphertexts
of size Õ(n) (for n-bit identities).

We construct our IBE scheme following the lattice trapdoors paradigm of
[Gentry, Peikert, and Vaikuntanathan, STOC’08]; our main technical contribu-
tions are introducing a new leftover hash lemma and instantiating a new variant
of lattice trapdoors compatible with MP-LWE.

This work demonstrates that the e�ciency/security tradeo� gains of MP-
LWE can be extended beyond public-key encryption to more complex lattice-
based primitives.

Keywords: Middle-Product LWE · Identity-Based Encryption · Lattice Trap-
doors.

1 Introduction

Cryptographic schemes based on the polynomial learning with errors problem (PLWE)
[23] and the ring learning with errors problem (RLWE) [13] have the advantage of
having key size and algorithm runtime that are quasi-linear in the security parameter.
However, their security guarantees are not as strong as that of the original learning
with errors problem (LWE) [20].

One of the main di�erences between these two settings is that the PLWE prob-
lem parametrized by some (say, irreducible) polynomial f , denoted PLWE(f), is only
known to be as hard as a worst-case problem on some class of lattices that depends
?? Work done while at MIT
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on the polynomial f , which could possibly be easier to solve for some choices of f as
compared to others. In particular, we do not have a clear understanding of the relative
hardness of PLWE(f) for di�erent f , making it hard for a cryptosystem designer to
pick the right f . In contrast, with the LWE problem, there is no such ambiguity. For
essentially any choice of possible modulus q, LWE is as hard as worst-case problems
on arbitrary lattices [20, 17]. In summary, the concrete e�ciency gains of RLWE and
PLWE have only been obtained through a trade-o� involving making both quantita-
tively and qualitatively more questionable security assumptions.

Recently, following on an earlier work of Lyubashevsky [11] who initiated the
study of ring-independent assumptions, Rosca et al. [21] introduced the “middle-product
learning with errors” assumption (MP-LWE), a new variant of LWE that uses the “mid-
dle product” of polynomials modulo q. For any f in a broad class of polynomials,
they show a reduction from PLWE(f) to the MP-LWE problem, which is de�ned in-
dependently of any such f , freeing the cryptosystem designer from making an essen-
tially arbitrary choice of f . They also describe a public key encryption (PKE) scheme
that has quasi-linear (optimal) key size and algorithm runtime, while being IND-CPA
secure under the MP-LWE assumption. Thus, they obtain a public-key encryption
scheme with the same e�ciency gains over LWE-based PKE as enjoyed by PLWE-
based schemes, but prove security under a worst-case assumption on a comparatively
broader class of lattices.

While the idea of using MP-LWE as an alternative to Ring-LWE, as proposed by
[21], is intriguing, it is only currently known how to construct plain public-key en-
cryption from MP-LWE. In this work, we consider and make progress on the following
question.

Can we instantiate more complex lattice-based primitives using middle-product LWE
while maintaining the improved e�ciency/security tradeo�?

Indeed, it is explicitly left open by [21] to instantiate more complex lattice-based
primitives, such as lattice trapdoors [8] and their applications, using MP-LWE.

1.1 Our Results

We construct an Identity-Based Encryption (IBE) scheme based on MP-LWE. This
scheme is IND-CPA secure in the random oracle model under the MP-LWE assumption
and has quasi-linear key size and algorithm runtime.

Our construction follows the “lattice trapdoors” paradigm of [8]. Speci�cally, we
construct a "dual" of the public key encryption scheme in [21], then combine the dual
scheme with Micciancio-Peikert style lattice trapdoors [15] to obtain the IBE scheme.
In addition to our IBE scheme in the random oracle model, we sketch how techniques
for constructing IBE schemes in the standard model [3, 2, 7] can also be adapted to the
MP-LWE setting using our lattice trapdoors.

Our main IBE construction from MP-LWE can be stated informally as follows.

Theorem 1 (Informal). For any ε ≥ 2−poly(logn), there is a (T, ε)-secure IBE scheme
(in the random oracle model) under the (T ′, ε′) MP-LWE assumption with T ′ ≈ T ,
ε′ ≈ ε. This scheme has quasi-linear Õ(n) key size and encryption runtime.
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By (T, ε)-security, we mean that any T -time adversary fails to break the primi-
tive/assumption with advantage greater than ε. In particular, assuming that MP-LWE
is hard for T (n) = 2αn-time adversaries, we show that our IBE scheme is hard to
break in time roughly T with better than some inverse quasi-polynomial advantage.

Our IBE scheme demonstrates that the better e�ciency/security trade-o� obtained
by [21] for public key encryption can be extended to more expressive cryptographic
primitives such as IBE. Tables 1 and 2 compare the e�ciency of our PKE and IBE
schemes to prior works.

Table 1. Summary of parameters of our "dual Regev"-like public encryption scheme from MP-
LWE versus prior ones.

PKE scheme LWE based [19] RLWE based [13] MP-LWE based
("primal"-[21], "dual"-this work)

pk size Õ(n2) Õ(n) Õ(n)

sk size Õ(n) Õ(n) Õ(n)

Enc/Dec runtime
per encrypted bit Õ(n)-amortized Õ(1) Õ(1)

IBE scheme LWE based [8, 15] RLWE based [15] MP-LWE based
(this work)

mpk size Õ(n2) Õ(n) Õ(n)

msk size Õ(n2) Õ(n) Õ(n)

Enc/Dec runtime
per encrypted bit Õ(n)-amortized Õ(1) Õ(1)

Table 2. Summary of parameters of our identity-based encryption (IBE) scheme from MP-LWE
versus prior ones that are from LWE and Ring-LWE.

1.2 Technical Overview

As mentioned before, we follow the “lattice trapdoors” paradigm of [8]. We �rst recall
the approach of [8] for constructing IBE from LWE. The high-level idea is as follows:
using a random oracleH , design a key pair (distribution) (mpk,msk) such that for any
identity id, pkid := (mpk, H(id)) is a valid public key for some public key encryption
scheme PKE. In order for this to yield an IBE scheme, it must be possible to derive a
corresponding secret key skid, using msk, from the public valueH(id). This is achieved
in the following way.

– Step 1: Dual Regev Encryption. First, [8] constructs a “dual” variant of Regev
encryption [20] in which public keys are (statistically close to) uniformly random.
In slightly more detail, public keys have the form (A, u = Ar) forA $← Zn×mq and
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r
$← χm for some distribution χ of “small numbers.” This step is done so that in

an associated IBE scheme, u = H(id) can be interpreted as (part of) a dual Regev
public key.

– Step 2: Lattice Trapdoors. The most technically complicated step in [8] is de-
signing an alternative procedure TrapGen that outputs a (statistically close to)
uniformly random matrix A along with a trapdoor TA that allows for sampling,
given an input u ∈ Znq , a random preimage r ← χm | Ar = u. This step allows
for e�cient secret key extraction from a public key (A, u).

– Step 3: Constructing IBE. As has been implicitly described already, [8] then
write down an IBE scheme with a master key pair (A, TA) sampled usingTrapGen,
so that encryption for an identity id uses dual Regev encryption with public key
(A, u = H(id)), and secret keys skid = r can be extracted from (A, u = H(id))
using msk = TA.

We now describe how we instantiate this framework using middle-product LWE.

Step 1: MP-LWE based dual Regev. Our �rst step is to develop an analogue of dual
Regev encryption based on middle-product LWE. We �rst recall from [21] that the
middle-product learning with errors assumption over Zq with degrees (n, d) is that
the distribution

{(ai, ai �d s+ ei)
t
i=1}

is computationally pseudorandom, where s is a uniformly random degree n polyno-
mial,3 each ai is a uniformly random degree n − d polynomial, each ei is a random
“small” degree d polynomial, and ai �d s is the “middle product” consisting of the d
“middle terms” of the polynomial product a · s. [21] show that this assumption suf-
�ces to construct a “primal Regev” public key encryption scheme, and show that this
assumption follows from the hardness of PLWE(f) for various polynomials f .

We would like to develop a “dual Regev” public-key encryption scheme similar to
the PKE of [21], and a natural approach suggests itself (based on [21]): Let a1, . . . , at
be t i.i.d. degree n polynomials, let r1, . . . , rt be t i.i.d. degree k polynomials (for some
additional parameter k), and set(

pk = (a1, . . . , at, u =
∑

airi), sk = (r1, . . . , rt)
)
.

Encrypting a message µ then consists of sampling a random MP-LWE secret s and
outputting middle products4 (ai � s,+2ei)i≤t along with u � s+2e′+µ. We would
then like to argue, as in [21], that the security of this scheme follows from MP-LWE
(with secret s).

Technical Challenges. However, there are two main issues that arise from this approach
to Step 1 (which both arise again when implementing Step 2):

3 The parameters are slightly simpli�ed for exposition
4 We omit some details regarding degrees; it turns out that the middle products ai � s will

have a di�erent degree from the middle product u� s in order to get decryption correctness.
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– We need a new variant of the leftover hash lemma to argue that the polynomial
u =

∑
airi is (statistically close to) uniformly random. The reason that previ-

ous leftover hash lemma variants seem insu�cient is related to the fact that the
map r 7→

∑
i airi has a larger range (degree n + k polynomials) than its do-

main (degree k polynomials); this stands in contrast to the PLWE setting, where
r 7→

∑
airi (mod f ) is reduced modulo a degree n polynomial f . Indeed, the

hash function ha1,...,at(r1, . . . , rt) =
∑
airi is not 2-universal, unlike the hash

function considered in [21], so we have to argue the desired statistical indistin-
guishability directly. We state and prove our new variant of the LHL in Section 4.
We use techniques from [14] designed to prove a variant of the LHL in the Ring-
LWE setting; however, these techniques must be substantially modi�ed to handle
the distinction between multiplication of bounded-degree polynomials in Zq[x]
(as in our setting) and multiplication over rings of the form Rq = Zq[x]/f(x) (as
in the RLWE/PLWE setting).

– Middle-product LWE as de�ned in [21] does not seem directly applicable to (the
security of) our dual-Regev encryption scheme; the reason is that the “coe�cient
polynomials” (a1, . . . , at, u) do not all have the same degree.5 In order to prove
security, we have to consider a new variant of MP-LWE in which “coe�cient poly-
nomials” {ai} can have di�erent degrees; we consider a variant in which the ad-
versary can specify a new degree di for each sample in advance. In Section 3, we
show that (a simple modi�cation of) the [21] reduction from PLWE to MP-LWE
carries over to our variant of MP-LWE, which we call “degree-parametrized MP-
LWE.”

After addressing these two di�culties, the approach outlined in Step 1 can be made
to work, yielding a dual-Regev encryption scheme based on MP-LWE.

Step 2: Lattice Trapdoors for MP-LWE. Having developed a variant of dual Regev en-
cryption, we next turn to constructing lattice trapdoors [8] that are compatible with
this new encryption scheme. To do so, we make use of the work [15], which gives a
highly general roadmap for constructing lattice trapdoors.

Following the basic idea of [15], our procedure TrapGen will produce polynomials
a1, . . . , at, at+1, . . . , at′ such that for t < i ≤ t′,

ai = ci −
t∑

j=1

ajwij

for random, small “trapdoor” polynomials {wij} and speci�c polynomials {cj = 2uxdv}
which are our analogue to the “Gmatrix” in plain LWE-based constructions. Similarly
to the Ring-LWE setting, we can think of these polynomials as “structured matrices”
by associating a polynomial g(x) with the “multiplication by g(x)” matrix acting on a
vector space of bounded-degree polynomials. We show that with this choice of polyno-
mials {cj}, the matrixA corresponding to (a1, . . . , at′) has a “G-trapdoor” (as de�ned

5 In fact, after introducing lattice trapdoors, our scheme will be modi�ed so that three di�erent
degrees will be used rather than two (as it is currently written).



6 Lombardi et al.

in [15]) that can be e�ciently described using our trapdoor {wij}. The preimage sam-
pling algorithm of [15] can then be adapted to yield a corresponding preimage sam-
pling algorithm for polynomial sum-products; moreover, we show that our preimage
sampling algorithm has the same Õ(n) e�ciency gain over plain LWE that is enjoyed
by Ring-LWE based constructions. See Section 5 for more details.

Finally, we note that we are implicitly relying on resolutions to both “technical
challenges” mentioned above in this step; our leftover hash lemma is what guarantees
that TrapGen outputs a distribution {(a1, . . . , at′)} that is statistically close to uni-
form, while our “degree-parametrized MP-LWE” allows us to redesign our dual Regev
scheme to have public key (a1, . . . , at′ , u) such that {a1, . . . , at} and {at+1, . . . , at′}
have di�erent degrees.

Step 3: Constructing IBE Schemes. Given our variant of dual Regev encryption from
MP-LWE (Step 1) and our variant of lattice trapdoors compatible with this new en-
cryption scheme (Step 2), constructing IBE is fairly straightforward given prior work.
We describe constructions analogous to those of [8] (in the random oracle model) and
[3] (in the standard model) using our new tools.

Remark On Concrete E�ciency/Security. As usual, some care is required when compar-
ing the e�ciency of various LWE-based cryptosystems to take into account their ex-
pected levels of security. We give an overview of the comparison of LWE/RLWE/MPLWE-
based IBE schemes using concrete security [5].

The concrete security of all relevant lattice-based cryptosystems is based on as-
sumptions of the following form.

De�nition 1 ((T, ε)-secure X-LWE, Informal). Any time T adversary breaks the
X-LWE assumption with advantage at most ε.

Our main IBE construction from MP-LWE (as stated in Theorem 1) constructs
(T, ε)-secure IBE from roughly (T, ε)-secure LWE, as long as ε ≥ 2−poly logn. This
technical limitation is due to the achievable parameters of our leftover hash lemma
(which was already implicitly noted in [21]) when used in a standard hybrid argument
to prove security of the IBE scheme. This barrier also appears in the Ring-LWE con-
text (see, e.g., the signature scheme of [15]) when quasi-linear e�ciency is desired.
However, these works (and ours) still attain a meaningful form of concrete security
because security is proved against adversaries that run in exponential time (assuming
that the LWE variants are exponentially secure).

In addition, with some more work, it is possible to improve Theorem 1 to hold
for smaller values of ε (without sacri�cing e�ciency). This improved security proof is
based on the use of Renyi divergence (as opposed to statistical distance), as demon-
strated in [4], and will appear in the full version of this paper.

1.3 Organization

The rest of the paper is organized as follows. In Section 2, we review basic de�nitions
and other preliminaries. In Section 3, we introduce and prove the hardness of our
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“degree-parametrized MP-LWE,” a slight variant on the original de�ntion. In Section 4,
we prove our new leftover hash lemma for bounded degree polynomials. In Section 5,
we use our new LHL in combination with [15] to develop lattice trapdoors for middle-
product LWE. Finally, in Section 6, we combine our new tools to construct MP-LWE
based dual Regev public-key encryption and IBE.

2 Preliminaries

Negligible Functions. We use n to denote the security parameter. We use standard
big-O notation to classify the growth of functions, and say that f(n) = Õ(g(n)) if
f(n) = O(g(n) · logc n) for some �xed constant c. We let poly(n) denote an un-
speci�ed function f(n) = O(nc) for some constant c. We say that a function f(n) is
negligible (denoted f(n) = negl(n)) if f(n) = o(n−c) for every �xed constant c. We
say that a probability (or fraction) is overwhelming if it is 1− negl(n).

Statistical and Computational Indistinguishability. The statistical distance between two
distributions X and Y over a countable domain Ω is de�ned to be ∆(X,Y ) := 1

2 ·∑
d∈Ω |X(d)−Y (d)|.We say that two distributionsX,Y (formally, two ensembles of

distributions indexed by n) are statistically indistinguishable if ∆(X,Y ) = negl(n),
and write X ≈s Y.

Two ensembles of distributions {Xn} and {Yn} are computationally indistinguish-
able if for every probabilistic poly-time machineA, |Pr[A(1n, Xn) = 1]−Pr[A(1n, Yn) =
1]| = negl(n); we denote this relationship by X ≈c Y.

Polynomials. LetR be a ring. For any integer d > 0 and any set S ⊆ R,we let S<d[x]
denote the set of polynomials in R[x] of degree < d whose coe�cients are in S. For
any distribution χ de�ned over R, let χd[x] denote the distribution on polynomials in
R<d[x] where each coe�cient is sampled independently according to χ.

Given a polynomial a =
∑d−1
i=0 aix

i ∈ R<d[x], de�ne the coe�cient vector of a
as a := (a0, · · · , ad−1)T ∈ Rd. In particular, for any 0 ≤ i ≤ d − 1, ai denotes the
coe�cient of xi in a.

Probability. For any distribution X de�ned on a countable domain Ω, we de�ne the
collision probability

CP(X) := Pr
X,X′ i.i.d.

[X = X ′]

as well as the Renyi entropy of X ,

H2(X) := log2

1

CP(X)
,

and the min-entropy of X ,

H∞(X) := log2 min
x∈Ω

1

Pr[X = x]
.
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We remark that H2(X) ≥ H∞(X) for all distributions X . For a �nite set Ω, we
let U(Ω) denote the uniform distribution over Ω, and we use the notation X $← Ω to
denote thatX is sampled uniformly at random fromΩ. For a distribution χ over R, let
χk denote the distribution over Rk where each coordinate is independently sampled
from χ. For a distribution D over Rk, let D[x] be the distribution over R<k[x] where
the coe�cient vector of polynomials is sampled from D.

2.1 Identity-Based Encryption

We recall the standard syntax and de�nition of security under chosen-plaintext and
chosen-identity attack [6, 1] for IBE. An IBE scheme consists of four algorithms.
– A setup algorithm IBESetup (on input 1n) outputs a master public key mpk and

master secret key msk.
– A secret key extraction algorithm IBEExtract, given msk and an identity id, out-

puts a secret key skid.
– An encryption algorithm Enc, given the master public key mpk, an identity id, and

a message m, outputs a ciphertext c.
– A decryption algorithm Dec, given the secret key sk and a ciphertext c, outputs a

message m.

We require that an IBE scheme IBE = (IBESetup, IBEExtract,Enc,Dec) satis�es two
properties.

– Correctness: For all identities id and messages m, we have

Pr[Dec(skid,Enc(mpk, id,m)) = m] = 1− negl(n),

where the probability is taken with respect to the randomness of IBESetup, IBEExtract,
Enc, and Dec.

– Security: Security is de�ned by the following game (de�ned for a given PPT ad-
versary A).
• (mpk,msk) ← IBESetup(1n) is sampled. De�ne a (randomized) oracle O(·)

that on input id outputs IBEExtract(msk, id).
• AO(·)(mpk) outputs a challenge (id∗,m0,m1).
• b← U({0, 1}) is sampled uniformly at random.
• ct∗ ← Enc(mpk, id∗,mb) is sampled.
• AO(·)(ct∗) outputs a bit b′ and wins if (1) O(id∗) was not queried and (2)
b′ = b.

We say that the scheme is secure if every PPT adversary A wins the above game
with probability at most 1

2 + negl(n)

2.2 Middle Product of Polynomials [21]

De�nition 2 ([21], De�nition 3.1). Let da, db, d, k be integers such that da+db−1 =
d+2k. The middle product�d : R<da [x]×R<db [x]→ R<d[x] is de�ned to be the map

(a, b) 7→ a �d b = b (a · b) mod xk+d

xk
c =

∑
k≤i+j≤k+d−1

(aibj)xi+j ,
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where a and b are the coe�cient vectors of a and b, respectively. In other words, a �d b
is obtained by deleting the k highest and k lowest degree terms of the polynomial product
a · b, then dividing the remaining d terms by xk.

Immediately from De�nition 2, the middle product is commutative, i.e., a �d b =
b �d a for all polynomials a, b. The middle product also satis�es a “quasi-associative”
property.

Lemma 1 ([21]). Let d, k, n > 0. For all r ∈ R<k+1[x], a ∈ R<n[x], s ∈ R<n+d+k−1[x],
we have

r �d (a �d+k s) = (r · a) �d s.

2.3 Lattices

An n-dimensional lattice Λ is a discrete additive subgroup of Rn. A lattice has rank
k ≤ m if it is generated as the set of all Z-linear combinations of some k linearly
independent basis vectors B = (b1, · · · , bk); we say Λ is full-rank if k = m. The dual
lattice Λ∗ is the set of all v ∈ SpanR(Λ) such that 〈v, x〉 ∈ Z for every x ∈ Λ. If B is
a basis of Λ, then B∗ = B(BtB)−1 is a basis of Λ∗. Note that when Λ is full-rank, B
is invertible and hence B∗ = B−1.

For any set S = (s1, · · · , sk) of linearly independent vectors, let S̃ denote its Gram-
Schmidt orthogonalization, de�ned iteratively in the following way: s̃1 = s1, and for
each i = 2, · · · , n, s̃i is the component of si orthogonal to span(s1, · · · , si−1).

For positive integers n, q and any matrix A ∈ Zn×mq , let Λ⊥(A) := {z ∈ Zm :

Az = 0 mod q}. For u ∈ Znq such that ∃t ∈ Zmq satisfying At = u, let Λ⊥u (A) :=

{z ∈ Zm : Az = u mod q} = Λ⊥(A) + t.

Gaussian Distributions

De�nition 3 (Continuous Gaussian distribution). For a positive semide�nite ma-
trix Σ ∈ Rn×n, the continuous Gaussian distributionDΣ is the probability distribution
over Rn whose density is proportional to ρΣ(x) = exp(−πxTΣ−1x).

De�nition 4 (Discrete Gaussian distribution). Given countable set S ⊂ Rn and
s > 0, the discrete Gaussian distribution DS,σ,c is the probability distribution over S
whose density is proportional to ρσ,c(x) := exp(−π · ||x− c||2/σ2). That is, for x ∈ S :

DS,σ,c =
ρσ,c(x)
ρσ,c(S)

. If c = 0, we can omit c and write DS,σ instead.

As usual, we will make use of various statistical properties of the discrete Gaussian
DΛ,σ when σ is large compared to the smoothing parameter of the lattice Λ, de�ned
below.

De�nition 5 ([16]). For any n-dimensional lattice Λ and real ε > 0, the smoothing
parameter ηε(Λ) is de�ned to be the smallest real s > 0 such that ρ1/s(Λ∗ \ {0}) ≤ ε.

The following lemma gives an upper bound on the smoothing parameter of Λ in
terms of its Gram-Schmidt basis B̃.
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Lemma 2 ([8], Theorem 3.1). Let Λ ⊂ Rn be a lattice with basis B and real ε > 0.
Then,

ηε(Λ) ≤ ||B̃|| ·
√

ln(2n(1 + ε−1))/π.

where B̃ = (b̃1, · · · , b̃k) is the Gram-Schmidt orthogonalization of B as de�ned in Sec-
tion 2.3, and ||B̃|| = maxi∈[k] ||b̃i||.

We will make use of tail bounds on DΛ,σ (for σ larger than the smoothing param-
eter).

Lemma 3 ([8], Lemma 2.9). For any ε > 0, any σ ≥ ηε(Z), and any t > 0, we have

Pr
x←DZ,σ,c

[|x− c| ≥ t · σ] ≤ 2e−πt
2

· 1 + ε

1− ε
.

In particular, for ε ∈ (0, 1/2) and t ≥ ω(
√

log n), the probability that |x− c| ≥ t · σ is
negligible in n.

In addition, we will make use of entropy bounds on DΛ,σ (again for σ su�ciently
large). In order to prove these bounds, we �rst recall the following approximation.

Lemma 4 ([18], Lemma 2.10). Let Λ ⊂ Rd be a full-rank lattice. For any s ≥ ηε(Λ),
we have

sd det(Λ∗) · (1− ε) ≤ ρs(Λ) ≤ sd det(Λ∗) · (1 + ε).

Using Lemma 4, we can bound H∞(DΛ,σ) and H2(DΛ,σ).

Lemma 5. For a full-rank lattice Λ ⊂ Rd and discrete Gaussian distribution χ = DΛ,σ

with parameters ε ∈ (0, 1), δ ∈ (0, 1), and σ ≥ max(
√

2, δ−1) · ηε(Λ), we have

2−H∞(χ) ≤ δd 1 + ε

1− ε

and

CP(χ) ≤
(
δ√
2

)d
(
1 + ε

1− ε
)2.

Proof. Using Lemma 4, we obtain the bound

DΛ,σ(x) ≤ 1

σd det(Λ∗) · (1− ε)

for all x ∈ Λ. Moreover, we assumed that σδ ≥ ηε(Λ), so by Lemma 4 we also have

1 ≤ ρσδ(Λ) ≤ (σδ)d det(Λ∗) · (1 + ε).

Combining this with the �rst inequality, we see that

DΛ,σ(x) ≤ δd 1 + ε

1− ε
,

yielding the desired bound on 2−H∞(χ). In order to bound CP(χ), we write



Lattice Trapdoors and IBE from Middle-Product LWE 11

CP(χ) =
∑
x∈Λ

DΛ,σ(x)2 = ρσ(Λ)−2
∑
x∈Λ

ρσ(x)2 = ρσ(Λ)−2 · ρσ/√2(Λ),

where the last equality uses the identity ρσ(x)2 = ρσ/
√
2(x). Since we assumed that

σ > δσ ≥ ηε(Λ), Lemma 4 (applied three times, to parameters σ, σ√
2

and σδ) tells us
that

ρσ(Λ)−2ρσ/
√
2(Λ) ≤ (σ/

√
2)d det(Λ∗)(1 + ε)

σ2d det2(Λ∗)(1− ε)2

=

(
δ√
2

)d(
1 + ε

1− ε

)2
1

(σδ)d det(Λ∗)(1 + ε)

≤
(
δ√
2

)d
(
1 + ε

1− ε
)2,

completing the proof.

2.4 Polynomials and Matrices

For a vector v ∈ Rn, let ||v||, ||v||∞ denote the Euclidean and sup norm respec-
tively. We de�ne the largest singular value of a matrix A ∈ Rm×n as σ1(A) :=
max||u||=1 ||Au||.

Lemma 6. For any matrix A ∈ Rm×n, we have σ1(A) ≤
√
mnmaxi,j |Aij |.

We will make use of the following matrix representation of polynomial multipli-
cation.

De�nition 6. Let R be a ring and d, k,> 0 be positive integers. For any polynomial
a ∈ R<k[x] of degree less than k, let T k,d(a) denote the matrix in R(k+d−1)×d whose
i-th column, for i = 1, · · · , d, is given by the coe�cients of xi−1 · a, listed from lowest
to highest degree. In particular, T k,1(a) is the coe�cient vector a of the polynomial a
(possibly with zeros appended).

Lemma 7. For `, k, d > 0, a ∈ R<k[x], b ∈ R<`[x], T k,`+d−1(a)·T `,d(b) = T `+k−1,d(a·
b).

De�nition 7 ([21], from [12]). Let f ∈ Z[x] have degreem. The expansion factor of
f is de�ned as

EF(f) := max
g∈Z<2m−1[x]

||g mod f ||∞
||g||∞

.

For our purposes, we are interested in polynomials with poly(n)-bounded expan-
sion factors. One such class [12] is the family of all f = xm +h where deg(h) ≤ m/2
and ||h||∞ ≤ poly(n).
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De�nition 8. Let f be a monic polynomial over a ringR of degreem. De�ne the (Han-
kel) matrix Mf ∈ Rm×m such that for 1 ≤ i, j ≤ m, (Mf )i,j is the constant coe�cient
of xi+j−2 mod f.

Under suitable conditions on f , the matrix Mf is guaranteed to be invertible.
Lemma 8. If f ∈ R[x] has constant coe�cient f0 which is invertible in R, then Mf is
an invertible matrix.

Proof. Rearranging the columns of Mf gives a triangular matrix whose diagonal is the
constant coe�cient of f .

Moreover, when f ∈ Z[x], we will make use of singular value bounds on Mf and
related matrices in terms of the expansion factor of f . For a matrix A ∈ Rm×n let
A(d) denote the matrix whose rows are the �rst d rows of A.
Lemma 9. For any f ∈ Z[x], σ1(M(d)

f ) ≤
√
dEF(f).

Remark 1. This inequality generalizes and improves on [Theorem 2.8]MPLWE by a
factor of

√
d.

Proof. We want to show that for all nonzero vectors u ∈ Rm, the following inequality
holds:

||M(d)
f u||
||u||

≤
√
dEF(f).

We �rst note that because Q is dense in R, it su�ces to show the same inequality for
all nonzero u ∈ Qn. Moreover, since the inequality is scale-invariant, we may further
reduce to the case where u ∈ Zm.

Given any nonzero vector u ∈ Zm, we de�ne v := Mfu. Then, letting g ∈ R<m[x]
denote the degree < m polynomial with coe�cient vector u, we know by [Lemma
2.4]MPLWE that vi is the constant coe�cient of xi−1 · g mod f . Thus,

|vi| ≤ ||g · xi−1 mod f ||∞ ≤ EF(f)||xi−1 · g||∞ = EF(f)||u||∞.

We conclude that

||M(d)
f u||
||u||

≤
√
d
||u||∞
||u||

EF(f) ≤
√
dEF(f),

where the last inequality holds because ||u||∞ ≤ ||u||.

3 Degree-Parametrized MP-LWE

In this section, we de�ne and consider a variant of MP-LWE in which samples gen-
erated from a �xed secret s (which are polynomials with coe�cients in Zq) can have
varying (pre-speci�ed) degrees. This is in contrast to the variant considered in [21],
in which all samples have the same degree. We then prove a hardness reduction re-
lating polynomial LWE (PLWE) to our variant of MP-LWE, which we call degree-
parametrized MP-LWE.
For the rest of the paper, we will let Rq denote R/qZ.
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De�nition 9 (Degree-Parametrized MP-LWE). Let n > 0, q ≥ 2,m > 0,d ∈
[n2 ]t, and let χ be a distribution over Rq . For s ∈ Zq<n−1[x], we de�ne the distribution
MPq,n,d,χ(s) over

∏t
i=1(Zq<n−di [x]× Rq<di [x]) as follows.

– For each i ∈ [t], sample ai
$← Zq<n−di [x]) and sample ei ← χdi (interpreted as a

degree < di polynomial).
– Output (ai, bi := ai �di s+ ei)i∈[t] .

The (degree-parametrized) MP-LWE problem consists of distinguishing between arbitrar-
ilymany samples fromMPq,n,d,χ(s) and the same number of samples from

∏t
i=1 U(Zq<n−di [x]×

Rq<di [x]) with non-negligible probability over the choice of s $← Zq<n−1[x].

Following [21], we show that degree-parametrized MP-LWE is as hard as the polynomial-
LWE problem PLWEf for a wide class of polynomials f . The reduction is e�ectively
the same as that of [21], although we obtain better parameters due to an improved sin-
gular value bound on the matrix Mf (Lemma 6). We recall the de�nition of PLWEf ,
taken from [21].

De�nition 10 (PLWE). Let q ≥ 2,m > 0, f a polynomial of degree m, χ a distri-
bution over R[x]/f. The decision problem PLWE(f)

q,χ consists in distinguishing between
arbitrarily many samples

{a $← Zq[x]/f, e← χ : (a, a · s+ e)}

and the same number of samples from U(Zq[x]/f ×Rq[x]/f) with non-negligible prob-

ability over choice of s $← Zq[x]/f.

Theorem 2 (Hardness of MP-LWE). Let n > 0, q ≥ 2, t > 0,d ∈ [n2 ]t, and
α ∈ (0, 1). For S > 0, let F(S,d, n) be the set of polynomials in Z[x] that are monic,
have constant coe�cient coprime with q, have degreem in

⋂t
i=1[di, n− di] and satisfy

EF(f) < S. Then, there exists a ppt reduction from PLWE
(f)
Dα·q

for any f ∈ F(S,d, n)

toMPLWEq,n,d,Dα′·q with α
′ = α ·

√
n
2 · S.

Proof. For d ∈ [n/2] and any polynomial f of degree m ∈ [d, n − d], we describe a
ppt mapping

φn,d : (a, b) ∈ Zq[x]/f × Rq[x]/f 7→ (a′, b′) ∈ Zq<n−d[x]× Rq<d[x].

We will then show that φmapsU(Zq[x]/f×Zq[x]/f) toU(Zq<n−d[x]×Zq<d[x]) and
maps a random PLWE sample (with secret s) to a random MP-LWE sample with secret
s′ depending on s. This mapping (with slightly di�erent parameters) was previously
de�ned in [21].

Let (a, b) ∈ Zq[x]/f×Rq[x]/f be an input pair. Then, the pair (a′, b′)← φn,d(a, b)
is sampled by the following process.

– De�ne the matrix Σ = (α′q)2Id − (αq)2Jd · M
(d)
f , where Id denotes the d × d

identity matrix and Jd denotes the d× d anti-diagonal matrix.
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– Sample h $← Zq<n−d−m[x] and ε← DΣ .
– Set a′ = a + h · f and set b′ to be the polynomial with coe�cient vector b′ =

Jd ·M
(d)
f · b + ε.

We note that the matrix Σ above is positive de�nite (and hence the distribution DΣ

is well-de�ned) by the following calculation: using Lemma 9,

σ1

(
(αq)2Jd ·M

(d)
f

)
≤ αq · σ1(Jd) · σ1(M(d)

f ) ≤ αq · 1 ·
√
dEF(f) < α′ · q.

We �rst show that if (a, b)
$← Zq[x]/f×Rq[x]/f , then (a′, b′) is distributed uniformly

on the set Zq<n−d[x] × Rq<d[x]. Since a and h are uniformly random distributed
in Zq<m[x] and Zq<n−d−m[x] respectively, we see that a′ is uniformly distributed
over Zq<n−d[x].Moreover, if b is uniformly distributed in Rq[x]/f, then its coe�cient
vector b is uniformly distributed in Rmq . Since J and Mf are invertible (see Lemma 8),
Jd ·M

(d)
f ·b is therefore uniformly distributed (over Rdq ), thus so is b′ and its polynomial

representation b′.
We next show that if (a, b) is a PLWE-sample, then (a′, b′) is a MP-LWE sample.

Suppose that b = a · s + e for s ∈ Zq[x]/f and error polynomial e with coe�cient
vector e← χd. Let s′ ∈ Zq<n−1[x] be de�ned so that it has coe�cient vector

s′ = Jn−1 · (Bn−1,f ·Mf · s),

where Bn−1,f ∈ Zn−1×mq is de�ned so that the ith row of Bn−1,f is the coe�cient
vector of xi−1 mod f . Moreover, de�ne e′ ∈ Rq<d[x] to have coe�cient vector

e′ = Jd ·M
(d)
f · e + ε.

We refer to [21] for a proof that b′ = a′ �d s′ + e′. Since ε is sampled independent
of e, the distribution of e′ is Dα′·q by standard (continuous) Gaussian distribution
identities.

As in [21], the collection of maps φn,di (ranging over all i ∈ [t]) can be used
to implement a MP-LWE oracle using a PLWE oracle, and hence immediately give a
reduction from PLWE

(f)
Dα·q

for any f ∈ F(S,d, n) to MPLWEq,n,d,Dα′·q .

4 A Leftover Hash Lemma for Polynomials

In this section, we state and prove Theorem 3, a Leftover Hash Lemma for polynomials
with bounded degree. The closest previous work is [14], in which the author proves a
Leftover Hash Lemma for elements of the ring R := Zq[α]/[αn − 1]; the proof tech-
nique in [14] inspires our proof of Theorem 3. However, we encounter some subtleties
as a result of working with bounded-degree polynomials; speci�cally, di�culties arise
due to the fact that the set of bounded-degree polynomials is not closed under multi-
plication.

Let q = poly(n) be a sequence of prime numbers, so that Zq is a �eld for ev-
ery q = q(n). For polynomials z1, · · · , zt ∈ Zq[x], we adopt the convention that
gcd(z1, · · · , zt) is always monic.
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Our goal is to prove that the hash function

ha1,...,at(z1, . . . , zt) =

t∑
i=1

aizi,

with hash key~a = (a1, . . . , at) consisting of t polynomials drawn i.i.d. fromU(Zq<n[x]),
extracts uniform randomness from high entropy sources of bounded-degree polyno-
mials, in the special case of sources that are product distributions.

Following the approach of [14], we want to analyze, for any �xed input ~z =
(z1, . . . , zt), the distribution of outputs H(~z) := ha1,...,at(z1, . . . , zt) over the choice
of uniformly random hash key. In [14], the ai and zi are all elements of a ring R,
so the set {ha1,··· ,at(z1, · · · , zt)|(a1, · · · , at) ∈ Rt} is simply the ideal generated by
z1, · · · , zt. Moreover, a simple argument shows that H(~z) is uniform over this set.
Here, however, we are working with bounded degree polynomials, so the characteri-
zation of H(~z) is not as immediate. Lemma 10 characterizes H(~z).

Lemma 10 (Range of hash output). Consider z1, · · · , zt ∈ Zq<n[x] that are not all
zero polynomials. Let I denote the set of degree-bounded linear combinations of {zi},
that is,

I =

{
t∑
i=1

aizi | ai ∈ Zq<n[x]

}
.

Moreover, let d = maxi deg(zi), and let g = gcd(z1, . . . , zt). Then,

I = (g · Zq[x]) ∩ Zq<n+d[x]

Moreover, for polynomials (a1, . . . , at) sampled i.i.d. from U(Zq<n[x]), the distribution{∑t
i=1 ai · zi

}
is uniform on the set I .

Proof. Recall that g = gcd(z1, · · · , zt) is some monic polynomial in Zq[x] dividing
each zi. Therefore, the inclusion

I ⊂ (g · Zq[x]) ∩ Zq<n+d[x]

is immediate. For the rest of the proof, we aim to show the opposite inclusion. We
assume without loss of generality that all zi are nonzero and prove the claim by in-
duction on t.

We begin with a base case of t = 2 and further assume (at �rst) that g = 1. Fix
polynomials (z1, z2) with gcd(z1, z2) = 1, and assume WLOG that d = deg(z1). We
want to show that for every α ∈ Zq<n+d[x], there exists a key (a1, a2) such that
ha1,a2(z1, z2) = α. To do this, we write

α = z1z2Q+R

for polynomials (Q,R) satisfying deg(Q) < n + d − deg(z1z2) = n − deg(z2),
deg(R) < deg(z1z2). By the Chinese remainder theorem, we know that there exist
polynomials s1, s2 satisfying deg(s1) < deg(z2), deg(s2) < deg(z1), and

s1z1 + s2z2 = R.
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Then, choosing a1 = Qz2 + s1 and a2 = s2, we see that deg(a1) < n, deg(a2) < n,
and

a1z1 + a2z2 = z1z2Q+ (s1z1 + s2z2) = α,

as desired.
In the case that gcd(z1, z2) = g 6= 1, for any α ∈ gZq[x] ∩ Zq<n+d[x] write

α = gα′ with deg(α′) < n + d − deg(g). Since gcd( z1g ,
z2
g ) = 1, we just showed

that there exist a1, a2 with deg(ai) < n and a1 z1g + a2
z2
g = α′, which implies that

a1z1 + a2z2 = gα′ = α. This completes the base case.
For the inductive step, consider any t ≥ 3 and any polynomials (z1, . . . zt) with

d = maxi deg(zi) and g = gcd(z1, . . . , zt). We want to show that for any α ∈
gZq[x] ∩ Zq<n+d[x], there exist polynomials (a1, . . . , at) with deg(ai) < n and∑
i aizi = α.
We suppose without loss of generality that deg(z1) = d. Then, let g′ = gcd(z2, . . . ,

zt), and note that by the base case, there exist polynomials (a1, a
∗) such that deg(a1) <

n, deg(a∗) < n, and
a1z1 + a∗g′ = α.

The base case applies because max(deg(z1),deg(g′)) = d and gcd(z1, g
′) = g. Now,

further note that deg(a∗g′) < n + deg(g′) ≤ n + max2≤i≤t deg(zi). Therefore, by
the inductive hypothesis (applied to (z2, . . . , zt)), there exist polynomials (a2, . . . , at)
such that deg(ai) < n for all i, and

n∑
i=2

aizi = a∗g′.

This completes the inductive step.
Finally, we prove the distributional claim. Our reasoning follows the proof of ([14],

Lemma 4.4). For every α ∈ I , de�ne the set

Sα =

{
(a1, · · · , at) ∈ (Zq<n[x])t :

t∑
i=1

aizi = α

}
.

By construction, the sets Sα for α ∈ I partition (Zq<n[x])t. In order to prove the
distributional claim, we only need to show that |S0| = |Sα| for all α ∈ I. To see
this, note that for a given α ∈ I , we have already shown that Sα 6= ∅, so there exist
a′1, · · · , a′t such that deg(a′i) < n and

∑t
i=1 a

′
izi = b. Then, the function (ai)i≤t 7→

(ai − a′i)i≤t is a bijection from Sα to S0, proving that |Sα| = |S0|, as desired.

Having proved Lemma 10, we are ready to state and prove our variant of the left-
over hash lemma.

Theorem 3. Let χ be a distribution over Zq and δ ∈ (0, 1) be such that H∞(χ) ≥
log( 1

δ ). De�ne the distribution V := (~a, h~a(~r)) over S = (Zq<n[x])t × Zq<n+n
′−1[x],

where ~a = (a1, . . . at) consists of i.i.d. samples from U(Zq<n[x]), and ~r = (r1, . . . , rt)

consists of i.i.d. samples from χn
′
[x].
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Then, for n′ ≤ n, if δtq = o(1),

∆(V,U(S)) = O
(
δ
t
2 q + δ

n′t
2 q

n+n′+1
2

)
.

In particular, for any q = poly(n), if δ−1 = ω(1) and n′t/n = Ω(log n), we have
V ≈s U(S).

Proof. By ([10], Claim 2) (i.e., by applying a generalized mean inequality), in order to
prove that ∆(V,U(S)) ≤ ε, it su�ces to show that CP(V ) ≤ 1+4ε2

|S| ; note that in our
case, |S| = qnt × qn+n′−1.

More precisely, let ~a = (ai)i∈[t],~a
′ = (a′i)i∈[t], ~r = (ri)i∈[t], ~r

′ = (r′i)i∈[t] consist
of i.i.d. samples from U(Zq<n[x]) and χn′ [x] respectively. We want to show that

CP(V ) = Pr

[
~a = ~a′ ∧

t∑
i=1

airi =

t∑
i=1

a′ir
′
i

]
≤ 1 + 4ε2

qnt+n+n′−1
.

We �rst partially evaluate the left-hand side of this inequality:

Pr

[
~a = ~a′ ∧

t∑
i=1

airi =

t∑
i=1

a′ir
′
i

]
= Pr

[
~a = ~a′ ∧

t∑
i=1

ai(ri − r′i) = 0

]

= q−nt Pr

[
t∑
i=1

ai(ri − r′i) = 0

]
. (1)

De�ning the random variable ~v = ~r − ~r′, we then have

q−nt Pr

[
t∑
i=1

ai(ri − r′i) = 0

]
= q−nt

∑
~z

Pr [~v = ~z] Pr

[
t∑
i=1

aizi = 0

]

≤ q−nt
CP(χ)n

′t +
∑
~z 6=0

Pr[~v = ~z]

|I(~z)|

 , (2)

where I(z) :=
{∑t

i=1 aizi | ai ∈ Zq<n[x]
}

= gcd(z1, . . . , zt)Zq[x]∩Zq<n+maxi deg(zi)[x]

as in Lemma 10. The last inequality follows from the distributional claim in Lemma 10.
To further simplify, we know by assumption that CP(χ) ≤ 2−H∞(χ) ≤ δ. In

addition, we group terms of the summation by the associated sets I(z). That is, for
every monic polynomial g ∈ Zq<n

′
[x] and degree d < n′, we de�ne Ig,d = gZq[x] ∩

Zq<n+d[x] and obtain

q−nt

CP(χ)n
′t +

∑
~z 6=0

Pr[~v = ~z]

|I(z)|

 ≤ q−nt
δn′t +

∑
g monic ∈Zq<n

′
[x]

d<n′

Pr [I(~v) = Ig,d]
1

|Ig,d|


≤ q−nt

δn′t +
∑
g,d

Pr [I(~v) ⊂ Ig,d]
1

|Ig,d|

 .

(3)
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We next bound the probability that I(~v) ⊂ Ig,d for any �xed g, d. To do this, we
note by inspection that I(~v) ⊂ Ig,d if and only if vi ∈ gZq[x] ∩ Zq<d+1[x] for all i.
For a �xed i, this occurs with probability

Pr
[
vi ∈ gZq[x] ∩ Zq<d+1[x]

]
= Pr

[
vi ∈ Zq<d+1[x]

]
Pr
[
vi ∈ gZq[x] | vi ∈ Zq<d+1[x]

]
= CP(χ)n

′−d−1 Pr
[
vi ∈ gZq[x] | vi ∈ Zq<d+1[x]

]
≤ δn

′−d−1 Pr
[
vi ∈ gZq[x] | vi ∈ Zq<d+1[x]

]
(4)

In order to bound this probability, we de�ne random variables wi, w′i to be drawn
i.i.d. from χd+1[x] and compute

Pr
[
vi ∈ gZq[x] | vi ∈ Zq<d+1[x]

]
= Pr [wi − w′i ∈ gZq[x]]

≤ max
w∈Zq<deg(g)[x]

Pr [wi − w ∈ gZq[x]] (5)

Fix an arbitrary w̄. For a vector v ∈ Zd+1−deg(g)
q let Tv be set of polynomials wi ∈

Zq<d+1[x] whose (d + 1 − deg(g)) highest order coe�cients are �xed to match v.
Then, the “reduction mod g” map is a bijection from Tv to Zq<deg(g)[x]. Letting w̄v
denote the unique inverse of w̄ in Tv and making use of the fact thatH∞(χ) ≥ log( 1

δ ),
we compute

Pr [wi − w ∈ gZq[x]] =
∑

v∈Zd+1−deg(g)
q

Pr[wi ∈ Tv] Pr[wi = wv | wi ∈ Tv]

≤
∑

v∈Zd+1−deg(g)
q

Pr[wi ∈ Tv]δdeg(g)

= δdeg(g). (6)
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Combining our calculations (equations (1)-(6)), we conclude that

CP(V ) ≤ q−ntδn
′t + q−ntδ(n

′−1)t
∑

g monic ∈Zq<n
′
[x]

d<n′

δdeg(g)−d
1

|Ig,d|

= q−ntδn
′t + q−ntδ(n

′−1)t
∑

g monic ∈Zq<n
′
[x]

d<n′

δ(deg(g)−d)t
1

qn+d−deg(g)

= q−ntδn
′t + q−nt−nδ(n

′−1)t
∑

d′=deg(g)<n′

d<n′

qd
′
(δtq)d

′−d

= q−ntδn
′t + q−nt−nδ(n

′−1)t
∑
d′<n′

d<n′

δ(d
′−d)tq2d

′−d

≤ q−ntδn
′t + q−nt−n−n

′+1(1 +O(δtq2))

= q−nt−n−n
′+1
(

1 +O(δtq2 + δn
′tqn+n

′−1)
)
,

where the �nal inequality follows from the assumption that δtq2 = o(1). This com-
pletes the proof of Theorem 3.

For our application to IBE, we are interested in applying Theorem 3 in the case
of a discrete Gaussian input distribution DZ,σ . We now show that the hypothesis of
Theorem 3 holds for su�ciently large σ.

Lemma 11. Letχ := DZ,σ andχq := χ mod q. Forσ = poly(n), q = ω(σ log1/2 n), σ =
ω(1), we have H∞(χq) ≥ log(σc )for some constant c.

Proof. Since q = ω(σ log1/2 n), only a negligible fraction of χ’s probability mass
“wraps around,” i.e., is not contained in the interval [− q2 ,

q
2 ), so the min-entropy bound

we proved about χ directly gives a min-entropy bound on χq .
In more detail, �x ε ∈ (0, 1/2) to be a small constant. By Lemma 2, nε(Z) ≤

c′ log(1 + ε−1) for some constant c′. By Lemma 3 and our hypothesis, we see that

Pr
x∼χ

[|x| ≥ q/2] = negl(n).

Given this, we can compute

2−H∞(χq) = max
z∈Zq

Pr
x∼χ

[x ≡ z (mod q)]

≤ Pr
x∼χ

[|x| ≥ q/2] + max
z∈Z∩[−q/2,q/2]

Pr[x ≡ z (mod q)]

≤ 2−H∞(χ) + negl(n).

The bound 2−H∞(χq) ≤ c
σ then follows from Lemma 5 applied to parameter δ =

σ−1c′ log(1 + ε−1) < 1/
√

2; this parameter setting is possible since σ = ω(1).
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5 Lattice Trapdoors for MP-LWE

In this section, we implement the “lattice trapdoors” paradigm of [8] for middle-product
LWE. In particular, we show that the Micciancio-Peikert variant of lattice trapdoors
[15] can be instantiated for MP-LWE.

In our setting, we want an algorithm TrapGen for generating random polynomi-
als (a1, . . . , at′) along with a trapdoor td that allows for sampling polynomials (ri)
satisfying

t′∑
i=1

airi = u

given any polynomial u (of the correct degree).
We brie�y describe the method for generating (ai). Let t ≤ t′, d, n and distri-

bution χ over Zq be parameters to be de�ned later. For (i, j) ∈ [t] × [t′ − t], we
sample ai

$← Zq<n[x] and wi,j ← χd[x], and construct at+j = cj −
∑
i≤t ai · wi,j ,

where (cj)j∈[t′−t] is an analogue of matrix G in De�nition 11. Note that (ai)i≤t′ ∈
(Zq<n[x])t× (Zq<n+d−1[x])t

′−t. We will choose d according to Theorem 3 to ensure
that the distribution of each at+j is close to random. Finally, we will show that the
trapdoor {wij} can be used to implement the preimage sampling algorithm of [15] by
considering the polynomials (ai) as structured matrices, similarly to the Ring-LWE
setting.

For the rest of this section, let τ := dlog2 qe. We �rst recall the notion of a “G-
trapdoor” from [15].

De�nition 11 ([15], De�nition 5.2). Let G := Ik ⊗
[
1 2 · · · 2τ−1

]
∈ Zk×kτq . Then,

given a matrix A ∈ Zk×(m+kτ), we say that a matrix R ∈ Zm×kτ is a G-trapdoor for
A if

A

[
R
Ikτ

]
= G.

We make use of the following result in [15], Section 5.4, which states that G-
trapdoors allow for e�cient Gaussian preimage sampling in the style of [8].

Theorem 4 ([15], Theorem5.5). LetG := Ik⊗
[
1 2 · · · 2τ−1

]
∈ Zk×kτq andmatrices

A ∈ Zk×(m+kτ), R ∈ Zm×kτ be such that

A

[
R
Ikτ

]
= G.

There exists an e�cient algorithm C = (C1, C2) that operates as follows:

– In the o�line phase, C1(A,R, σ) does some polynomial-time preprocessing on input
(A,R, σ) and outputs a state st.

– In the online phase, C2(st, u), additionally given a vectoru, samples fromDΛ⊥u (A),σ ,
as long as σ ≥ ω(

√
log k)

√
7(σ1(R)2 + 1).

Moreover, the runtime of C2 is the time to compute Rz for z ∈ Zkτ plus Õ(m+ kτ).
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We note that the proof of Theorem 4 given in [15] has a minor error that we correct
in the Appendix. We now use Theorem 4 to instantiate lattice trapdoors for MP-LWE.

Theorem 5. Suppose that q = poly(n), d ≤ n, dt/n = Ω(log n), σ = ω(log2 n)
√
ndt

and γ = n+2d−2
d is an integer. Then, there exist ppt algorithms (TrapGen,SamplePre)

with the following properties.

– TrapGen(1n) generates polynomials

(a1, · · · , at, at+1, · · · , at+γτ ) ≈s U((Zq<n[x])t × (Zq<n+d−1[x])γτ )

together with a trapdoor td that can be stored in O(nτt) space.
– SamplePre(td, u) that operates as follow:
• In the o�line phase, does some polynomial-time preprocessing with trapdoor td
and parameter σ, and output a state st.

• In the online phase, given state st and a syndrome u ∈ Zq<n+2d−2[x], outputs
(ri)

t+γτ
i=1 satisfying

t+γτ∑
i=1

ai · ri = u

in Õ(nt) time. Moreover, the output distribution of (ri) is exactly the conditional
distribution

(DZ2d−1,σ[x])t × (DZd,σ[x])γτ |
t+γτ∑
i=1

ai · ri = u,

Proof. Let β :=
⌈
log2 n

2

⌉
.

TrapGen Algorithm: We �rst describe TrapGen and prove that it outputs the right
distribution of polynomials (ai).

– For (i, j) ∈ [t] × [γτ ], sample ai
$← Zq<n[x] and wi,j ← χd[x] where χ =

U({−β, · · · , β}). Since β � q/2, we can interpret samples from χ as elements
of Zq.

– For all j ∈ [γτ ], de�ne polynomials

uj =

t∑
i=1

ai · wi,j

at+j = cj − uj

for cj ∈ Zq<n+d−2[x] dependent only on j. Speci�cally, cj = 2uxdv for j =
vτ + u+ 1 where u ∈ {0, · · · , τ − 1}, v ∈ {0, · · · , γ − 1}.

– Output (a1, . . . , at+γτ ) with associated trapdoor td = (wi,j).
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We �rst note that the amount of space required to store td = (wi,j) isO(d(γτ)t) =
O(nτt), since γd = n+ 2d− 2 ≤ 3n.

To see that the sampled polynomials (a1, . . . , at+γτ ) are statistically close to uni-
form, we apply our Leftover Hash Lemma (Theorem 3). In particular,H∞(χ) = log( 1

β ) ≥
log log n− 1. Therefore, by Theorem 3,

(a1, · · · , at, u1, · · · , uγτ ) ≈s U(Zq<n[x]t × Zq<n+d−1[x]γτ ),

and so

(ai)
t+γτ
i=1 = (a1, · · · , at, c1− u1, · · · , cγτ − uγτ ) ≈s U(Zq<n[x]t×Zq<n+d−1[x]γτ ).

SamplePre Algorithm: We next describe SamplePre using the algorithm from Theo-
rem 4.

– Implicitly de�ne matrices A,L by the following equations.

Ã =
[
Tn,2d−1(a1)| · · · |Tn,2d−1(at)

]
L̃ =

T
d,d(w1,1) · · · T d,d(w1,γτ )

...
...

T d,d(wt,1) · · · T d,d(wt,γτ )


Γ (h) =

[
Tn+d−1,d(h)| · · · |Tn+d−1,d(h2τ−1)

]
G =

[
Γ (1)|Γ (xd)| · · · |Γ (x(γ−1)d)

]
I = Iγdτ =

T 1,d(1) · · ·
· · · · · ·

T 1,d(1)


A = [Ã|G− ÃL̃]

L =

[
L̃
I

]

(7)

so that AL = G = Iγd ⊗ [1 · · · 2τ−1], i.e., L is a G-trapdoor for A.
– Let u = Tn+2d−2(u) ∈ Zn+2d−2

q be the coe�cient vector of u.
– Apply the algorithm from Theorem 4 (for k = γd = n+ 2d− 2) to sample y from
DΛ⊥u (A),σ where

σ = ω(
√

log(γd))β
√

7((γdτ) · d · t+ 1) = c ω(log2 n)
√
n · (dt),

for some constant c.

– Write y as



T 2d−1,1(r1)
...

T 2d−1,1(rt)
T d,1(rt+1)

...
T d,1(rt+γτ )


, where deg(ri)

{
< 2d− 1 for i ∈ [t]

< d for i ∈ {t+ 1, · · · , t+ γτ}
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– Output (r1, . . . , rt+γτ ).

In order to analyze the correctness of SamplePre, we �rst note that by construction,
maxi,j |L̃ij | ≤ β, and so σ1(L̃) ≤ β

√
(γdτ) · (2d− 1)t by Lemma 6. Combined with

Theorem 4 (for k = γd = n + 2d − 2), this tells us that y is sampled from from
DΛ⊥u (A),σ where

σ = ω(
√

log(γd))β
√

7((γdτ) · d · t+ 1) = c ω(log2 n)
√
n · (dt)

for some constant c. Theorem 4 applies because of our parameter settings of γd =
n+ 2d− 2 ≤ 3n and τ = θ(log q) = θ(log n) for q = poly(n).

Moreover, by Lemma 7 and Equation (7),

ÃL̃ =
[
Tn+d−1,d(u1)| · · · |Tn+d−1,d(uγτ )

]
, and

A =
[
Tn,2d−1(a1)| · · · |Tn,2d−1(at)|Tn+d−1,d(at+1)| · · · |Tn+d−1,d(at+γτ )

]
,

(8)

and so by Equation (8) and Lemma 7

Ay = Tn+2d−2,1(

t+γτ∑
i=1

ai · ri). (9)

Thus, y ∈ Λ⊥u (A) if and only if
∑t+γτ
i=1 ai · ri = u.

To prove the claim about distribution of r = (ri), we note that the columns of
A generate Zn+2d−2 since (1) the columns of G generate Zn+2d−2 and (2) AL = G.
Hence, there exists y∗ such that Ay∗ = u. Then, Lemma 5.2 in [8] applies, allowing
us to conclude that the distribution of y sampled by our algorithm is exactly

DΛ⊥u (A),σ ≡ y∗ +DΛ⊥(A),σ,−y∗ ≡ D
(2d−1)t+dγτ
Z,σ | Ay = u.

To see that the �rst equality of distributions holds, note that the two distributions
have the same support (i.e., t+ Λ⊥(A) = Λ⊥u (A)), and for all x ∈ Λ⊥u (A),

DΛ⊥u (A),σ(x) =
ρσ(x)

ρσ(Λ⊥u (A))
=

ρσ(x− t+ t)

ρσ(Λ⊥(A)) + t
= DΛ⊥(A),σ,−t(x− t).

Thus, the conditional distribution of r is as claimed. Finally, we analyze the runtime
of SamplePre’s online phase, which is precisely the runtime of C2. Computing L̃z for
z ∈ Zγdτq can be performed, using polynomial multiplication, in O((d log d)tγτ) =

Õ(nt) time; this bound uses the fact that γd ≤ 3n, log d ≤ log n and τ = Θ(log n).

6 New Encryption Schemes from Middle-Product LWE

In this section, we describe how to build a “Dual Regev”-style public-key encryption
scheme, as well as an identity-based encryption scheme, whose security is based on
the hardness of MP-LWE. As in [8], our IBE scheme is constructed by combining the
Dual Regev scheme with lattice trapdoors as constructed in Section 5.
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6.1 Middle Product Dual Regev Encryption

Unless otherwise stated, the following parameters are positive integers.
Let q = q(n) be a prime, τ := dlog2 qe, n, d, k be such that γ = n+2d−2

d ∈ N and
2d + k ≤ n. Let t > 0, t′ = t + γτ. Let χ := bDα·qe be the distribution over Z in
which ε← Dα·q is sampled and then rounded to the nearest integer.

Finally, let σ ∈ R>0 be a parameter to be speci�ed later. We then de�ne a public-
key encryption scheme with message spaceM = {0, 1}<k+1

[x].

– Key Generation: KeyGen(1n) operates as follows.
• For 1 ≤ i ≤ t, sample ai

$← Zq<n[x], ri ← DZ2d−1,σ[x];
• For t+ 1 ≤ i ≤ t′, sample ai

$← Zq<n+d−1[x], ri ← DZd,σ[x].
• Computeu =

∑t′

i=1 airi and output pk := (a1, . . . , at′ , u); sk := (r1, . . . , rt′)

– Encryption: Enc(pk = ((ai)i≤t′ , u), µ) operates as follows.

• Sample s $← Zq<n+2d+k−1[x]
• For 1 ≤ i ≤ t, sample ei ← χ2d+k[x], and compute bi = ai �2d+k s+ 2ei
• For t+ 1 ≤ i ≤ t′, sample ei ← χd+k+1[x], and compute bi = ai�d+k+1 s+

2ei
• Sample e′ ← χk+1[x], and compute c1 = µ+ u�k+1 s+ 2e′

• Output c = (c1, (bi)i≤t′).
– Decryption: Dec(sk = (ri)i≤t, c = (c1, (bi)i≤t′) outputs (c1 −

∑t′

i=1 bi �k+1 ri
mod q) mod 2.

Lemma 12. For α−1 > (4ω(log n)σK + 1) whereK := t(2d− 1) + γτd, the scheme
satis�es (1− negl(n))-correctness.

Proof. We want to show that Dec(sk,Enc(pk, µ)) = 1 with probability 1 − negl(n)
over the randomness of KeyGen and Enc. Consider a random key pair (pk, sk) ←
KeyGen(1n) and ciphertext c = (c1, (bi)i≤t′) ← Enc(pk, µ). By Lemma 1 (the quasi-
associative law for middle products),

c1 = µ+

t′∑
i=1

(ri · ai) �k+1 s+ 2e′

= µ+

t∑
i=1

ri �k+1 (ai �2d+k s) +

t′∑
i=t+1

ri �k+1 (ai �d+k+1 s).

Therefore, we see that

c1 −
t′∑
i=1

bi �k+1 ri = µ+ 2(e′ −
t′∑
i=1

ri �k+1 ei).

We conclude that if
∣∣∣∣∣∣µ+ 2(e′ −

∑t′

i=1 ri �k+1 ei)
∣∣∣∣∣∣
∞
< q/2, then Dec(sk, c) will

indeed output the message µ.
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To complete the proof of correctness, we want to bound the coe�cients of
∑t′

i=1 ri�k+1

ei. The coe�cient of x` in ri �k+1 ei is∑
w∈[0,deg(ri)]∩[`+k−deg(ei),z+k]

(ri)w(ei)`+k−w.

Using our discrete Gaussian tail inequality (see Lemma 3) and a union bound, we
obtain the following bounds on ||ri||∞ and ||ei||∞:

Pr[||ri||∞ > ω(
√

log n)σ] = negl(n).

Pr[||ei||∞ > ω(
√

log n)αq] = negl(n).

Thus, again by union bound, except with negl(n) probability∣∣∣∣∣∣
∣∣∣∣∣∣e′ −

t′∑
i=1

ri �k+1 ei

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

< K(ω(
√

log n)σ)(ω(
√

log n)α · q) + (ω(
√

log n)α · q).

for K := t(2d− 1) + γτd ≥
∑t′

i=1(deg(ri) + 1). Picking α < (4ω(log n)σK + 1)−1,
the above is less than q/4 and so the scheme is (1− negl(n))-correct.

Theorem 6. Assume that σ = ω(1), dt/n = Ω(log n), q is a prime polynomial in
n, q = Ω(α−1n1/2+1/2+c) and q = ω(log1/2 n)σ. The scheme is semantically se-
cure assuming PLWE

(f)
q,Dα′·q

is hard for some polynomial f such that the constant co-
e�cient of f is coprime with q,deg(f) ∈ [2d + k, n],EF(f) = O(nc) and error
α′ = Ω(

√
deg(f)/q).

Proof. By Theorem 3, Lemma 11 and hypothesis on σ and dt, we have:(
(ai)

t
i=1,

t∑
i=1

ai · ri

)
ai

$←Zq<n[x]
ri←DZ2d−1,σ

[x]

≈s
(

(ai)
t
i=1, u

′
)

ai
$←Zq<n[x]

u′
$←Zq<n+2d−2[x]

Since an honestly generated public key has the form pk = (a1 . . . , at′ , u) for u =∑t
i=1 ai ·ri+

∑t′

i=t+1 ai ·ri, we see that pk is computationally indistinguishable from
a public key p̃k of the form

p̃k = (a1, . . . , at′ , u), u
$← Zq<n+2d−2[x].

Thus, we see that for any message µ, we have(
pk,Enc(pk, µ)

)
≈s
(
p̃k,Enc(p̃k, µ)

)
.

Moreover, we have (
p̃k,Enc(p̃k, µ)

)
≈c
(
p̃k,Enc(p̃k, 0)

)
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assuming the hardness of (degree-parametrized) MPLWEq,n+2d+k,d,bDα·qe with de-
gree vector

di =


2d+ k, if i ∈ [t]

d+ k + 1, if t+ 1 ≤ i ≤ t′

k + 2, if i = t′ + 1.

The hardness ofMPLWEq,n+2d+k,d,bDα·qe follows from the hardness ofMPLWEq,n+2d+k,d,Dα·q
via a standard reduction that maps (a, b) ∈ Zq[x] × Rq[x] to (a, dbc), where dbc is
the polynomial obtained by rounding every coe�cient of b to the nearest integer. Fi-
nally, Theorem 2 tells us that MPLWEq,n+2d+k,d,Dα·q is hard assuming the hardness
of PLWE

(f)
q,Dα′·q

, for α · q = Ω(n1/2+1/2+c) ≥ α′ · q
√

n+2d+k
2 nc. This completes the

proof of semantic security.

6.2 IBE in the Random Oracle model

We construct an IBE scheme in the random oracle model by combining our “Dual
Regev” scheme (Section 6.1) with our MP-LWE lattice trapdoors (Section 5). The IBE
construction is essentially identical to that of [8]; we give an explicit description for
completeness. Let the set of identity be I = Zn+2d−2

q . We assume the parameters are
chosen such that Theorem 5 holds. Use algorithm TrapGen to generate mpk:=(ai)

t′

i=1

and msk:=L̃. Given an identity id, interpret it as an element u ∈ Zq<n+2d−2[x] and
use algorithm SamplePre to generate skid := (ri)

t′

i=1 such that
∑t′

i=1 ai · ri = u.

Then use the Dual Regev scheme with public key pk := ((ai)
t′

i=1, u) and secret key
sk := (ri)

t′

i=1 for encryption/decryption of message.

– Setup: The setup algorithm IBESetup (on input 1n) calls TrapGen(1n), obtaining
polynomials (a1, . . . , at′) along with a trapdoor td. It outputs master public key
mpk = (a1, . . . , at′) and master secret key msk = td.

– Key Extraction: The secret key extraction algorithm IBEExtract, given msk and
an identity id, calls SamplePre(td, H(id)), where H(·) is modelled as a random
oracle. It outputs skid = (r1, . . . , rt′), the output of SamplePre.

– Encryption: The encryption algorithm Enc, given the master public key mpk =
(a1, . . . , at′), an identity id, and a message µ, computes u = H(id) and outputs
a ciphertext c← DualRegev.Enc(pkid, µ) (using the Dual Regev encryption algo-
rithm) for pkid = (a1, . . . , at′ , u)

– Decryption:The decryption algorithmDec, given the secret key skid = (r1, . . . , rt′)
and a ciphertext c, outputs DualRegev.Dec(skid, c).

Theorem 7. Assume the parameters are picked as in Theorem 5 and Theorem 6 (so that
the Dual Regev Scheme is correct and semantically secure). Then the above IBE scheme is
correct and CPA-secure in the random oracle model.

Proof. See ([8], Theorem 7.2).
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Remark 2 (E�ciency). Pick d, k = Θ(n), t = log n and σ, α−1, q satisfying bounds in
Theorems 5 and 6. By construction, the schemes in subsections 6.1 and 6.2 have key
size and ciphertext size Õ(n). We show that encryption and decryption algorithms in
these schemes take Õ(n) time. As in [21], products and middle products of polynomials
can be computed in Õ(n) time using FFT-based techniques [22, 9]. By doing some
preprocessing, sampling from χ = bDα·qe can be done in quasi-constant time via
table look-up as in [15]. Thus, encryption and decryption in our Dual-Regev like public
key scheme and IBE scheme take Õ(n) time; since the message is of size k = Θ(n),
runtime per encrypted bit is Õ(1).

6.3 IBE in the Standard model

[2, 7] present IBE schemes secure in the standard model from the same framework of
lattice trapdoors and dual-Regev encryption. A simpli�ed version of one construction
is presented in [3], Section 3. We give a brief summary of [3]’s IBE construction, and
sketch how to adapt it to the MP-LWE setting.

Suppose we have an identity space {0, 1}`. Set m = O(n log n). In IBESetup,
the [3] scheme samples a random matrix A ∈ Zn×mq together with trapdoor TA, as
well as random matrices Hi,b ∈ Zn×mq for i ∈ [`] and b ∈ {0, 1}. The public key
is (A, (Hi,b)(i,b)∈[`]×{0,1}, u0) where u0 is a random vector in Znq . The master secret
key is TA. The key extraction algorithm IBEExtract, given an identity id = id1 · · · id`,
assemblesHid = H1,id1 | · · · |H`,id` ∈ Zn×`mq as the concatenation of `matrices. It then
samples random vectors ri ∈ Zmq , and constructs a vector r = (ri)i∈` ∈ Z`mq . Finally,
the trapdoor TA is used to sample preimages e ∈ Zmq satisfying Ae = u0 +Hid r, i.e.[
A | −Hid

] [e
r

]
= u0, yielding a secret key skid = (e, r). Encryption and Decryption

then proceed as in Dual Regev encryption.
[3] proves that their scheme is selective-ID secure in the standard model. Selective-

ID security is de�ned by a game similar to that in Section 2.1, except that the ad-
versary generates the challenge identity id∗ before seeing the public parameters of
the scheme. [2]’s proof of selective-ID security relies on replacing each random ma-
trix Hi,b with an indistinguishable matrix H ′i,b equipped with trapdoor Ti,b. Then,
given an extraction query id that di�ers from the challenge id∗, letting i denote an
index on which idi 6= id∗i , the trapdoor Ti,idi can be used to sample ri such that
H ′i,idi ri = Ae −

∑
j 6=iH

′
j,idj

rj − u0, where e and rj are sampled randomly from
Zmq , to produce a secret key skid = (e, r). Crucially, sampling (e, r) using trapdoor
Ti,idi is (statistically) indistinguishable from the honest key extraction procedure (that
uses TA).

Our MP-LWE Dual Regev encryption scheme, combined with the lattice trapdoors
of Theorem 5, can be used to create a standard model IBE scheme analogous to the
one just described. Speci�cally, we replace the matrix A and its trapdoor TA with tu-
ple (aj)j≤t of t = Õ(1) polynomials and its trapdoor as generated by Theorem 5. We
replace each matrix Hi,b with tuple h̄(i,b) = (hj)

(i,b)
j≤t of random polynomials, and re-

place random vector u0 with a random polynomial. Theorem 5 allows us to replace any
particular h̄(i,b) with h̃(i,b) that is equipped with a trapdoor Ti,b, and our SamplePre
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algorithm guarantees the same (TA, Ti,b) indistinguishability that was leveraged by
[3].

To summarize, this allows for an IBE scheme in the standard model based on MP-
LWE with e�ciency gains of Õ(n) over the [3] scheme.
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Appendix

We describe a minor correction to the proof of ([15], Theorem 5.5).
In [15], it is mistakenly claimed (see Section 2.1) that for positive semi-de�nite

B ≥ A ≥ 0, the inequality A+ ≥ B+ holds. This is not true in general. For example,
when B is positive de�nite (that is, B > 0), we have B+ = B−1 > 0; if A+ ≥ B+

then A+ > 0 so A > 0 (a contradiction if A is not invertible).
However, the proof of ([15], Theorem 5.5) can be modi�ed to avoid using the mis-

taken claim. The relevant setting is as follows: consider a matrix of the form

Σ3 = (Σ+
y +Σ+

p )+
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such that Σy = 2

[
R
I

] [
RT I

]
and Σp > 2

[
R
I

] [
RT I

]
.6 We want to prove that

Σ3 ≥
[
R
I

] [
RT I

]
(see p.29)

To prove this, we write 2

[
R
I

] [
RT I

]
= Q

[
D 0
0 0

]
QT where Q is orthogonal and

D is diagonal matrix of positive entries. Then, there exists some small ε > 0 s.t. Σp ≥

Q

[
D 0
0 εI

]
QT > 0. Thus,

0 < Σ+
p = Σ−1p ≤ Q

[
D−1 0

0 ε−1I

]
QT =

1

2

([
R
I

] [
RT I

])+

+

[
0 0
0 ε−1I

]
and so

0 < Σ+
p +Σ+

y ≤
([
R
I

] [
RT I

])+

+

[
0 0
0 ε−1I

]
= Q

[
2D−1 0

0 ε−1I

]
QT .

We conclude that

(Σ+
y +Σ+

p )+ = (Σ+
y +Σ+

p )−1 ≥ Q
[
1
2D 0
0 εI

]
QT ≥

[
R
I

] [
RT I

]
.

6 Our assumptions on Σy and Σp are slightly di�erent from those of [15]; these minor modi-
�cations are without loss of generality with respect to the application to Gaussian sampling
but necessary for the proof to go through.


