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Abstract. The Gimli permutation was proposed in CHES 2017 and the hash mode
Gimli-Hash is now included in the Round 2 candidate Gimli in NIST’s Lightweight
Cryptography Standardization process. In the Gimli document, the security of the
Gimli permutation has been intensively investigated. However, little is known about
the security of Gimli-Hash. The designers of Gimli have claimed 2128 security against
all attacks on Gimli-Hash, whose hash is a 256-bit value. Firstly, we present the
trivial generic preimage attack on the structure of Gimli-Hash matching the 2128

security bound, both, in time and memory complexity. Following such a generic
preimage attack framework, we then describe specific preimage attacks on the first
2/3/4/5 rounds and the last 2/3/4 rounds (out of 24) of Gimli-Hash using the divide-
and-conquer methods. As will be shown, the application of the divide-and-conquer
methods much benefits from the properties of the SP-box and the linear layer of Gimli.
Therefore, this work can also be viewed as a first step to exploit specific properties of
the SP-box. Finally, the divide-and-conquer method was also applied to a collision
attack on up to 5-round Gimli-Hash. Among all the attacks, the preimage attacks on
the first and the last 2 rounds of Gimli-Hash are practical. The collision attack on the
first 3 rounds of Gimli-Hash is practical. The collision attack and second preimage
attack on the last 3 rounds of Gimli-Hash are practical. All practical attacks are
experimentally verified. We hope our analysis can advance the understanding of
Gimli-Hash.
Keywords: hash function · Gimli · Gimli-Hash · (second) preimage attack · collision
attack · divide-and-conquer

1 Introduction
As the demand for lightweight cryptographic primitives in industry increases, NIST is
currently holding a public lightweight cryptography competition, aiming at selecting a
lightweight cryptography standardization by combining the efforts from both academia and
industry. Although such a competition started to call for submissions in 2018, considerable
efforts have been put on the lightweight cryptography in academia since the publication
of the ultra-lightweight block cipher PRESENT in CHES 2007 [8]. The last decade has
also witnessed a lot of designs of lightweight cryptographic primitives, like PICCOLO [11],
PHOTON [9], SIMON/SPECK [5], Midori [3], SKINNY [6], GIFT [4], and QARMA [2],
etc.
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Gimli was proposed by Bernstein et al. in CHES 2017 [7]. As the designers claimed,
Gimli is distinguished from other well-known permutation-based primitives for its cross-
platform performance. The main strategy to improve the performance of Gimli is to
process the 384-bit data in four 96-bit columns independently and make only a 32-bit
word swapping among the four columns every two rounds. Soon after its publication,
the security of such a design strategy received a doubt from Hamburg, who posted a
paper [10] to explain how dangerous such a strategy would be. The attack described in [10]
is for an ad-hoc mode and mainly exploits the fact that there is occasional 32-bit word
communication among the 4 columns. As a response, the designers of Gimli claimed that
such an ad-hoc mode has never appeared before and would never threaten the official
authenticated encryption scheme and hash scheme based on Gimli.

Since Gimli has been included in the Round 2 candidates in NIST’s Lightweight
Cryptography Standardization process, it is of practical importance to further investigate
its security, especially for its authenticated encryption scheme and hash scheme. As can
be noted in the Gimli document [7], there has been an intensive scrutiny for the Gimli
permutation. However, little is known about the AEAD and hash scheme. Thus, we are
motivated to make the first step to look into the security of its hash scheme Gimli-Hash.
Specifically, we would like to see whether it is still possible to exploit the fact that there is
little communication between the 4 columns as done by Hamburg [10] to devise an attack
on the AEAD scheme or the hash scheme.

As a result, the divide-and-conquer method starts to occur in our mind, which may
fit well with the fact that there is little communication between the 4 columns. However,
only exploiting such a fact is obviously insufficient. Thus, to make our divide-and-conquer
method feasible and efficient, we further exploit the properties of the SP-box of Gimli and
they are proved to be useful, as can be seen from our attacks.

Our Contributions. In this paper, we develop a divide-and-conquer method to analyze
the security of Gimli-Hash. This method much benefits from the little communication
between the 4 columns (linear layer) and the properties of the SP-box. While the property
of the linear layer has been intensively exploited in Hamburg’s attack [10], we are the first
to investigate the properties of the SP-box and combine it with the linear layer to devise
several attacks.

Specifically, we describe a trivial generic preimage attack on the structure of Gimli-Hash
to match the claimed 2128 security bound at first. Following such a generic preimage
attack framework, we can further devise specific improved preimage attacks on the first
2/3/4/5 rounds and the last 2/3/4 rounds of Gimli-Hash with divide-and-conquer methods.
Moreover, the divide-and-conquer method is also applied to a collision attack on up to
5-round Gimli-Hash. Among all the attacks, the preimage attacks on the first and last 2
rounds of Gimli-Hash are practical. The collision attack on the first 3 rounds of Gimli-Hash
is practical. The collision attack and second preimage attack on the last 3 rounds of
Gimli-Hash are practical. Our results are summarized in Table 1.

Organization. This paper is organized as follows. In Section 2, we introduce the notations,
the Gimli permutation, some useful properties of the SP-box and the hash scheme Gimli-
Hash. Then, the generic preimage attack on the structure of Gimli-Hash will be described
in Section 3. Following such a generic framework, we present the preimage attacks and
collision attacks on the first 2/3/4/5 rounds of Gimli-Hash using divide-and-conquer
methods in Section 4 and Section 5 respectively. The practical second preimage attacks
and collision attacks on the last 2/3 rounds of Gimli-Hash are described in Section 6.
Finally, the paper is concluded in Section 7.
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Table 1: The analytical results of reduced Gimli-Hash, where the practical attacks are
marked in red.

Method Attack Type Rounds Memory Time Ref.
Meet-in-the-Middle (second) preimage arbitrary 2128 2128

Divide-and-conquer

(second) preimage

2 (24∼23) 232 242.4 Sec. 4.2
3 (24∼22) 232 264 Sec. 4.3
4 (24∼21) 264 296 Sec. 4.4
5 (24∼20) 264 296 Sec. 4.5

collision
3 (24∼22) 232 233 Sec. 5.2
4 (24∼21) 264 265 Sec. 5.1
5 (24∼20) 264 265 Sec. 5.1

Divide-and-conquer

preimage 2 (2∼1) 232 242.4 App. A.1
preimage 3 (3∼1) 264 264 App. A.2

(second) preimage 4 (4∼1) 264 296 Sec. 4.4
second preimage 2 (2∼1) 1 1 Sec. 6
second preimage 3 (3∼1) 1 1 Sec. 6

collision 2 (2∼1) 1 1 Sec. 6
collision 3 (3∼1) 1 1 Sec. 6
collision 4 (4∼1) 264 265 Sec. 5.1

2 Preliminaries
In this section, we will present some notations, the description of the Gimli permutation
and Gimli-Hash. Meanwhile, some useful properties of the SP-box will be discussed as
well.

2.1 Notation
1. �, �, ≪, ≫, ⊕, ∨, ∧ represent the logic operations ,shift left, shift right, rotate

left, rotate right, exclusive or, or, and, respectively.

2. Z[i] represent the (i+ 1)-th bit of the 32-bit word Z. where the least significant bit is
the 1st bit and the most significant bit is the 32nd bit. For example, Z[0] represents
the least significant bit of Z.

3. Z[i ∼ j](0 ≤ j < i ≤ 31) represents the (j + 1)-th bit to the (i + 1)-th bit of the
32-bit word Z. For example, Z[1 ∼ 0] represents the two bits Z[1] and Z[0] of Z.

4. A||B represents the concatenation of A and B. For example, if A = 0012 and
B = 10012, then A||B = 00110012.

5. 0n represent an all-zero string of length n.

6. SP represents the application of the 96-bit SP-box.

7. SP−1 represents the application of the inverse of the 96-bit SP-box.

8. SP r represents the application of the 96-bit SP-box for r consecutive times.

9. SP−r represents the application of the inverse of the 96-bit SP-box for r consecutive
times.

10. C0, C1, C2, C3, C4 and C5 represent the round constants used in round 24, 20, 16,
12, 8, and 4 respectively.
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2.2 Description of Gimli
Gimli was proposed in CHES 2017 [7] and now is a Round 2 candidate in NIST’s Lightweight
Cryptography Standardization process [1]. The Gimli state can be viewed as a two-
dimensional state s = (si,j) (0 ≤ i ≤ 2, 0 ≤ j ≤ 3), where si,j ∈ F 32

2 , as illustrated in
Figure 1.

Figure 1: The Gimli state

The Gimli permutation is described in Algorithm 1. As can be seen from the
description of the Gimli permutation, the permutation can be viewed as the following
sequence of operations. For simplicity, we denote the SP-box, Small-Swap, Big-Swap and
AddRoundConstant by SP, S_SW, B_SW and AC respectively.

(SP→ S_SW→ AC)→ (SP)→ (SP→ B_SW)→ (SP)
→ (SP→ S_SW→ AC)→ (SP)→ (SP→ B_SW)→ (SP)
→ (SP→ S_SW→ AC)→ (SP)→ (SP→ B_SW)→ (SP)
→ (SP→ S_SW→ AC)→ (SP)→ (SP→ B_SW)→ (SP)
→ (SP→ S_SW→ AC)→ (SP)→ (SP→ B_SW)→ (SP)
→ (SP→ S_SW→ AC)→ (SP)→ (SP→ B_SW)→ (SP).

Since the round counter decreases from 24 through 1, in the official Gimli document [1],
the designers have suggested the terminology "first R rounds" for round counters 24, 23,
· · ·, 25−R, while "last R rounds" for round counter R, R − 1, · · ·, 1. In this paper, we
will describe attacks on both reduced versions.

2.3 SP-box
In this section, we present some useful properties of the SP-box in Gimli. The SP-box
consists of three sub-operations: rotations of the first and second words; a 3-input nonlinear
T-function; and a swap of the first and third words. Specifically, consider one column
(x, y, z) ∈ F 3

232 . Then the SP-box will update (x, y, z) as follows:

x ← x≪ 24
y ← y ≪ 9
x ← x⊕ z � 1⊕ (y ∧ z)� 2
y ← y ⊕ x⊕ (x ∨ z)� 1
z ← z ⊕ y ⊕ (x ∧ y)� 3
x ← z

z ← x

Property 1. Suppose the input to an SP-box is (x, y, z) and the corresponding output is
(x′, y′, z′). Then, if y[31 ∼ 23] = 0 and y[19 ∼ 0] = 0, we can know that x′ is independent
of x.
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Algorithm 1 Description of Gimli permutation
Input: s = (si,j)

1: for r from 24 down to 1 inclusive do
2: for j from 0 to 3 inclusive do
3: x← s0,j ≪ 24
4: y ← s1,j ≪ 9
5: z ← s2,j

6:
7: s2,j ← x⊕ z � 1⊕ (y ∧ z)� 2
8: s1,j ← y ⊕ x⊕ (x ∨ z)� 1
9: s0,j ← z ⊕ y ⊕ (x ∧ y)� 3

10: end for
11:
12: if r mod 4 =0 then
13: s0,0, s0,1, s0,2, s0,3 ← s0,1, s0,0, s0,3, s0,2 . Small-Swap
14: else if r mod 2 =0 then
15: s0,0, s0,1, s0,2, s0,3 ← s0,2, s0,3, s0,0, s0,1 . Big-Swap
16: end if
17:
18: if r mod 4 =0 then
19: s0,0 ← s0,0 ⊕ 0x9e377900⊕ r
20: end if
21: end for
22: return (si,j)

Proof. This can be easily proved by considering the expression to calculate x′ as follows.

x′ = z ⊕ (y ≪ 9)⊕ ((x≪ 24) ∧ (y ≪ 9))� 3.

Property 2. Suppose the input to an SP-box is (x, y, z) and the corresponding output is
(x′, y′, z′). Then, given (y, z, x′), the probability Pr that (y, z, x′) is a valid tuple is 2−15

without knowing x.

Proof. Based on the expression to calculate x′, we already know that 3 bits of x′ are
independent of x, which are x′j (0 ≤ j ≤ 2). Moreover, supposing y′′ = y ≪ 9, if y′′i = 0
(0 ≤ i ≤ 28), we can also compute x′i+3 without the knowledge of x.

x′ = z ⊕ y′′ ⊕ ((x≪ 24) ∧ y′′)� 3.

Supposing y is uniformly distributed, Pr can be calculated as follows:

Pr = 2−3 ×
∑29

i=0(Ci
29 × 2−i)

229 ≈ 2−15.

To verify it, we first randomly generate a value for x′. Then, we randomly generate n pairs
of (y, z) and determine the computable bits of x′ for each pair. If these computable bits
match those of x′, we increase the counter cnt by 1. Experiments show that cnt

n is close to
2−15 and slightly lower.

Property 3. Suppose the input to an SP-box is (x, y, z) and the corresponding output is
(x′, y′, z′). Then, given (z′, y, z), we can determine (x, x′, y′). Moreover, given a random
tuple (z′, y′, y, z), the probability that it is valid is 2−32.
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Proof. Considering the expression to calculate z′, it is easy to compute x if (z′, y, z) are
fixed, as shown below.

z′ = (x≪ 24)⊕ z � 1⊕ ((y ≪ 9) ∧ z)� 2.
x = (z′ ⊕ z � 1⊕ ((y ≪ 9) ∧ z)� 2) ≫ 24.

After x is computed, (x, y, z) are all known and we can therefore compute (x′, y′).
Since we can compute y′ according to the knowledge of (z′, y, z), it is natural to conclude

that a random tuple (z′, y′, y, z) is valid with probability 2−32.

Property 4. Suppose the input to an SP-box is (x, y, z) and the corresponding output is
(x′, y′, z′). Then, given (z′, y′, x), it is a valid tuple with probability 2−1. Once it is a valid
tuple, we can determine (x′[30 ∼ 0], y, z[30 ∼ 0]).

Proof. To prove this, let x′′ = x≪ 24 and y′′ = y ≪ 9. Then, x′′ is also known. Consider
the expressions to calculate z′ and y′, as shown below.

z′ = x′′ ⊕ z � 1⊕ (y′′ ∧ z)� 2,
y′ = y′′ ⊕ x′′ ⊕ (x′′ ∨ z)� 1.

Firstly, we can compute

y′′[0] = y′[0]⊕ x′′[0],
z[0] = z′[1]⊕ x′′[1],
z[1] = z′[2]⊕ x′′[2],
y′′[1] = y′[1]⊕ x′′[1]⊕ (x′′[0] ∨ z[0]).

Then, we can recursively compute

y′′[j] = y′[j]⊕ x′′[j]⊕ (x′′[j − 1] ∨ z[j − 1]),
z[k] = z′[k + 1]⊕ x′′[k + 1]⊕ (y′′[k − 1] ∧ z[k − 1]).

for (2 ≤ j ≤ 31) and (2 ≤ k ≤ 30). Thus, we can uniquely compute y and z[30 ∼ 0] if
given (z′, y′, x). Then, according to the following expression to calculate x′

x′ = z ⊕ y′′ ⊕ ((x≪ 24) ∧ y′′)� 3,

we can also determine x′[30 ∼ 0].
Moreover, note that z′0 = x′′0 . Thus, if given a random tuple (z′, y′, x), it is a valid

tuple with probability 2−1.

Property 5. Suppose the input to an SP-box is (x0, y0, z0) and the corresponding output
is (x1, y1, z1). Moreover, suppose the output of the SP-box is (x′, y′, z′) when the input is
(x2, y1, z1), where x2 is a randomly chosen value. If given a random value of (y0, z0, y

′, z′),
the pair (x0, x2) can be recovered with 210.4 time complexity.

Proof. For simplicity, let v = x0 ≪ 24. Firstly, let us consider the relations between
(x0, y0, z0) and (y1, z1):

z1 = v ⊕ z0 � 1⊕ ((y0 ≪ 9) ∧ z0)� 2,
y1 = (y0 ≪ 9)⊕ v ⊕ (v ∨ z0)� 1.

It can be easily observed that when (y0, z0) are constants, each bit of (z1, y1) can be
expressed as follows:

z1[i] = v[i] + γi,

y1[i] = v[i] + µi[j]v[i− 1] + λi,
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where γi, µi and λi (0 ≤ i ≤ 31) are constants over GF (2), which can be calculated
according to (y0, z0).

For convenience, let y = y1 ≪ 9, z = z1, x = x2 ≪ 24. Then, each bit of (z, y) can be
expressed as follows:

z[i] = v[i] + γi,

y[i] = v[i− 9] + αi[j]v[i− 10] + βi,

where γi, αi and βi (0 ≤ i ≤ 31) are constants over GF (2), which can be calculated
according to (y0, z0).

Now, consider the relations between (x, y, z) and (y′, z′) as follows:

z′ = x⊕ z � 1⊕ (yz)� 2,
y′ = y ⊕ x⊕ (x ∨ z)� 1 = y ⊕ x⊕ (xz ⊕ x⊕ z)� 1.

We rewrite the expression of y′ as follows:

y′ = y ⊕ x⊕ (xz ⊕ x⊕ z)� 1 = y ⊕ (x⊕ z � 1)⊕ (xz ⊕ x)� 1.

By involving z′ into the expression of y′, we can obtain that

y′ = y ⊕ (x⊕ z � 1)⊕ (xz ⊕ x)� 1
= y ⊕ z′ ⊕ (yz)� 2⊕ (xz)� 1.

Therefore, we can obtain that

x = z′ ⊕ z � 1⊕ (yz)� 2,
y′ ⊕ z′ = y ⊕ (yz)� 2⊕ (xz)� 1,
y′ ⊕ z′ = y ⊕ (yz)� 2⊕ (z(z′ ⊕ z � 1⊕ (yz)� 2))� 1.

Now, we consider the expression from the bit level. For simplicity, let Y = y′ ⊕ z′.
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Specifically, we can know the following equations:

Y [0] = y[0], (1)
Y [1] = y[1]⊕ z′[0]z[0], (2)
Y [2] = y[2]⊕ y[0]z[0]⊕ z[1](z′[1]⊕ z[0]), (3)
Y [3] = y[3]⊕ y[1]z[1]⊕ z[2](z′[2]⊕ z[1]⊕ y[0]z[0]), (4)
Y [4] = y[4]⊕ y[2]z[2]⊕ z[3](z′[3]⊕ z[2]⊕ y[1]z[1]), (5)
Y [5] = y[5]⊕ y[3]z[3]⊕ z[4](z′[4]⊕ z[3]⊕ y[2]z[2]), (6)
Y [6] = y[6]⊕ y[4]z[4]⊕ z[5](z′[5]⊕ z[4]⊕ y[3]z[3]), (7)
Y [7] = y[7]⊕ y[5]z[5]⊕ z[6](z′[6]⊕ z[5]⊕ y[4]z[4]), (8)
Y [8] = y[8]⊕ y[6]z[6]⊕ z[7](z′[7]⊕ z[6]⊕ y[5]z[5]), (9)
Y [9] = y[9]⊕ y[7]z[7]⊕ z[8](z′[8]⊕ z[7]⊕ y[6]z[6]), (10)
Y [10] = y[10]⊕ y[8]z[8]⊕ z[9](z′[9]⊕ z[8]⊕ y[7]z[7]), (11)
Y [11] = y[11]⊕ y[9]z[9]⊕ z[10](z′[10]⊕ z[9]⊕ y[8]z[8]), (12)
Y [12] = y[12]⊕ y[10]z[10]⊕ z[11](z′[11]⊕ z[10]⊕ y[9]z[9]), (13)
Y [13] = y[13]⊕ y[11]z[11]⊕ z[12](z′[12]⊕ z[11]⊕ y[10]z[10]), (14)
Y [14] = y[14]⊕ y[12]z[12]⊕ z[13](z′[13]⊕ z[12]⊕ y[11]z[11]), (15)
Y [15] = y[15]⊕ y[13]z[13]⊕ z[14](z′[14]⊕ z[13]⊕ y[12]z[12]), (16)
Y [16] = y[16]⊕ y[14]z[14]⊕ z[15](z′[15]⊕ z[14]⊕ y[13]z[13]), (17)
Y [17] = y[17]⊕ y[15]z[15]⊕ z[16](z′[16]⊕ z[15]⊕ y[14]z[14]), (18)
Y [18] = y[18]⊕ y[16]z[16]⊕ z[17](z′[17]⊕ z[16]⊕ y[15]z[15]), (19)
Y [19] = y[19]⊕ y[17]z[17]⊕ z[18](z′[18]⊕ z[17]⊕ y[16]z[16]), (20)
Y [20] = y[20]⊕ y[18]z[18]⊕ z[19](z′[19]⊕ z[18]⊕ y[17]z[17]), (21)
Y [21] = y[21]⊕ y[19]z[19]⊕ z[20](z′[20]⊕ z[19]⊕ y[18]z[18]), (22)
Y [22] = y[22]⊕ y[20]z[20]⊕ z[21](z′[21]⊕ z[20]⊕ y[19]z[19]), (23)
Y [23] = y[23]⊕ y[21]z[21]⊕ z[22](z′[22]⊕ z[21]⊕ y[20]z[20]), (24)
Y [24] = y[24]⊕ y[22]z[22]⊕ z[23](z′[23]⊕ z[22]⊕ y[21]z[21]), (25)
Y [25] = y[25]⊕ y[23]z[23]⊕ z[24](z′[24]⊕ z[23]⊕ y[22]z[22]), (26)
Y [26] = y[26]⊕ y[24]z[24]⊕ z[25](z′[25]⊕ z[24]⊕ y[23]z[23]), (27)
Y [27] = y[27]⊕ y[25]z[25]⊕ z[26](z′[26]⊕ z[25]⊕ y[24]z[24]), (28)
Y [28] = y[28]⊕ y[26]z[26]⊕ z[27](z′[27]⊕ z[26]⊕ y[25]z[25]), (29)
Y [29] = y[29]⊕ y[27]z[27]⊕ z[28](z′[28]⊕ z[27]⊕ y[26]z[26]), (30)
Y [30] = y[30]⊕ y[28]z[28]⊕ z[29](z′[29]⊕ z[28]⊕ y[27]z[27]), (31)
Y [31] = y[31]⊕ y[29]z[29]⊕ z[30](z′[30]⊕ z[29]⊕ y[28]z[28]). (32)

The procedure to solve the above equation system is described as follows:

Step 1: Guess (z[0], z[1], z[2], z[3], z[4]). For each such guess, v[i] (0 ≤ i ≤ 4) becomes
known. Based on Eq. 1∼6, we can also uniquely compute

(y[0], y[1], y[2], y[3], y[4], y[5]).

Note that we need to compute y[i] before computing y[i+ 1] (0 ≤ i ≤ 4).

Step 2: Consider the expression of y[i] as follows:

y[i] = v[i− 9] + αiv[j − 10] + βi.
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Since (y[0], y[1], y[2], y[3], y[4], y[5]) are known, we can uniquely determine v[i]
(22 ≤ i ≤ 28) by guessing v[22].

Step 3: Guess (y[22], y[23], y[24]). Since v[i] (22 ≤ i ≤ 28) have been determined at Step 2,
we can compute the corresponding z[i] (22 ≤ i ≤ 28). Then, based on Eq. 26∼30,
we can uniquely compute

(y[25], y[26], y[27], y[28], y[29]).

Then

(y[22], y[23], y[24], y[25], y[26], y[27], y[28], y[29])

become determined. Therefore, we can uniquely determine v[i] (12 ≤ i ≤ 20) by
guessing v[12].

Step 4: At this step, only v[i] (i ∈ {5, 6, 7, 8, 8, 10, 11, 21, 29, 30, 31}) are unknown. We
can compute (y[11], y[12], y[13]) according to the knowledge of (v[1], v[2], v[3], v[4]).
Observing Eq. 15, when z[13] = 1 or y[11] = 0, we can uniquely compute y[14]
since the unknown z[11] will not influence the calculation of y[14] anymore. After
y[14] is obtained, based on Eq. 16∼21, we can uniquely compute

(y[15], y[16], y[17], y[18], y[19], y[20]).

Then, the value of v[i] (i ∈ {5, 6, 7, 8, 8, 10, 11}) are determined.
If z[13] = 0 and y[11] = 1, which occurs with probability 2−2, similarly, we simply
guess z[11] and then obtain the value of

(y[14], y[15], y[16], y[17], y[18], y[19], y[20]),

which will correspond to a solution to v[i] (i ∈ {5, 6, 7, 8, 8, 10, 11}). Compare the
value of v[11] with its guessed value (we can obtain v[11] from z[11]). If they are
consistent, we find a correct solution of v[i] (i ∈ {5, 6, 7, 8, 8, 10, 11}). Otherwise,
it is wrong.
In conclusion, whatever the case is, we could only get one solution of v[11]
(i ∈ {5, 6, 7, 8, 8, 10, 11}). The average cost at this step can be estimated as
3
4 + 1

4 × 2 ≈ 20.4.

Step 5: Since (v[5], v[6], v[7]) are determined, we can compute (z[5], z[6], z[7]). Then,
based on Eq. 7∼9, we can uniquely compute (y[6], y[7], [8]), thus determining
(v[29], v[30], v[31]) and (z[29], z[30], z[31]). Then, we can compute y[30] based on
Eq. 31 because z[29] becomes known. After y[30] is computed, we can uniquely
determine v[21]. Until this phase, v is fully determined and we can check its
correctness by considering the remaining not used equations.

Now, let us calculate the time complexity to solve the above equation system. At Step
1, we need to guess (z[0], z[1], z[2], z[3], z[4]). At Step 2, we need to guess v[22]. At Step 3,
we need to guess (y[22], y[23], y[24], v[12]). At Step 4, the cost of guess can be evaluated as
20.4. As a result, the time complexity to traverse all solutions of the above equation system
is 25+1+4+0.4 = 210.4. On the other hand, we do not construct any coefficient matrix nor
use Gauss elimination when solving the above equation system. We only need to calculate
the unknown values by considering the corresponding expressions, which is very efficient.

For each obtained solution, x0 is known and we can therefore compute (y1, z1).
According to Property 3, (y1, z1, y

′, z′) is valid with probability 2−32. If it is not a
valid tuple, we consider the next solution of x0 until all solutions of the equation system
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are traversed, whose time complexity is 210.5. Since there are at most 232 possible values
of x0, we expect that only one valid tuple (y1, z1, y

′, z′) will remain. Once it is a valid
tuple, x2 can be computed according to Property 3. Thus, we can recover (x0, x2) in 210.4

time and the expected number of solutions is 1.

Property 6. If the input of the SP-box is (0,0,0), the output must be (0,0,0) as well.
Therefore, we have SP r(0, 0, 0) = (0, 0, 0).

Proof. This is can be trivially proved by considering the definition of the SP-box.

2.4 Linear Layer
The linear layer consists of two swap operations, namely Small-Swap and Big-Swap. Small-
Swap occurs every 4 rounds starting from the 1st round. Big-Swap occurs every 4 rounds
starting from the 3rd round. The illustration of Small-Swap and Big-Swap can be referred
to Figure 2. In the rest part, we denote Small-Swap by S_SW and denote Big-Swap by
B_SW.

Figure 2: The linear layer

2.5 Gimli-Hash
How Gimli-Hash compresses a message is illustrated in Figure 3. Specifically, Gimli-
Hash initializes a 48-byte Gimli state to all-zero. It then reads sequentially through a
variable-length input as a series of 16-byte input blocks, denoted by M0, M1, · · ·.

Figure 3: The process to compress the message

Each full 16-byte input block is handled as follows:

• XOR the block into the first 16 bytes of the state (i.e., the top row of 4 words).

• Apply the Gimli permutation.

The input ends with exactly one final non-full (empty or partial) block, having b bytes
where 0 ≤ b ≤ 15. This final block is handled as follows:

• XOR the block into the first b bytes of the state.
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• XOR 1 into the next byte of the state, position b.

• XOR 1 into the last byte of the state, position 47.

• Apply the Gimli permutation.

After the input is fully processed, a 32-byte hash output is obtained as follows:

• Output the first 16 bytes of the state (i.e., the top row of 4 words), denoted by H0.

• Apply the Gimli permutation.

• Output the first 16 bytes of the state (i.e., the top row of 4 words), denoted by H1.

As depicted in Figure 3, for simplicity, we denote the initial state (all zero) by A′0.
The state after the first block message is added is denoted by A0. Recursively, we denote
the state before adding the i-th (i ≥ 0) message block Mi by A′i. After Mi is added, the
state is denoted by Ai. Formally, we have the following relations:

Ai = A′i ⊕ (Mi||0256),
A′i+1 = f(Ai).

Finally, the last two states of the output are denoted by Ah0 and Ah1 respectively.

3 Generic Preimage Attack on Gimli-Hash
The designers of Gimli-Hash claim that it achieves 2128 security against all attacks. To have
a better understanding, we show the generic preimage attack on Gimli-Hash to explain
the claimed security bound. The attack is illustrated in Figure 4.

Figure 4: Generic preimage attack on Gimli-Hash

Specifically, given a hash value (H0, H1), the generic preimage attack procedure can be
divided into two phases:

Phase 1: Set the rate part of Ah0 to the value of H0. Randomly choose a value for the
capacity part of Ah0. In this way, Ah0 is fully determined and we can compute
Ah1 = f(Ah0). It is expected to make the rate part of Ah1 match with H1 after
trying 2128 random values for the capacity part of Ah0, Once a valid capacity
part of Ah0 is found, a valid value for the full state of Ah0 is determined, thus
making the application of f−1 to Ah0 feasible. Then, we randomly choose 2128

values for (M3,M4) (note that M4 can not take 2128 values due to the padding
rule) and compute backward to obtain the capacity part of A2 denoted by C2.
Store the corresponding 2128 values of C2 in a table TA0.
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Phase 2: Similarly, randomly choose 2128 values of (M0,M1) and compute the capacity
part of A′2, which is also C2. Store the 2128 values of C2 in a table TA1. Find a
match between TA0 and TA1. Since there are 2128+128 = 2256 pairs and C2 is a
256-bit value, it is expected that there is one match. Once the match is found,
we can compute M2 and therefore obtain the preimage.

Consequently, the time complexity and memory complexity of this generic preimage
attack are both 2128.

3.1 Discussion
As can be seen from the generic attack in Figure 4, it consists of two phases.

The first phase is to find a valid capacity part of the Ah0. After it is found, we apply
f−1 to this state and obtain A4. To satisfy the padding rule, we choose a random value of
M4, whose size is smaller than 16 bytes. Then, we can compute A′4. Then, we can further
apply f−1 to A′4 and obtain another new state A3. Next, we choose a random value for
M3 of size 16 bytes and compute A′3. Finally, we apply f−1 to A′3 and obtain the value of
the capacity part of A′2, i.e. C2. At this phase, 2128 possible random values of (M3,M4)
will be tried in order to collect 2128 possible values of C2.

At the second phase, we choose 2128 random values of (M0,M1) and compute the
corresponding C2. Then, if we can find a match in C2 which is computed by (M0,M1)
and (M3,M4) respectively, we can always use the degree of freedom of M2 to connect the
choice for (M0,M1) and (M3,M4) and finally obtain the preimage.

What we want to emphasize here is that such a generic attack is irrelevant to the
padding rule, which can be satisfied by choosing a non-full (smaller than 16 bytes) value
for M4.

4 Preimage Attacks with Divide-and-Conquer Methods
Inspired by the above generic preimage attack, we can devise preimage attacks on the first
2/3/4/5 rounds of Gimli-Hash. The main idea is to reduce the time complexity of the first
and second phase of the generic attack respectively. To gain advantage over the generic
attack, some properties of the SP-box and the linear layer will be exploited.

4.1 Overview
We extend the above generic preimage attack on Gimli-Hash illustrated in Figure 4 to
specific preimage attacks on 2/3/4/5 rounds of Gimli-Hash. Our attack consists of two
phases as well.

The first phase is to find a valid capacity part of Ah0 as in the generic attack. Then, we
properly choose just one (not 2128) value for two message blocks (M3,M4) and compute
backward to obtain the capacity part of A′2, i.e. C2. As explained in the generic attack,
the padding rule can be satisfied by properly choosing M4. Thus, the influence of the
padding rule has been eliminated at this phase.

At the second phase, different from the generic attack which uses a meet-in-the-middle
method to achieve the match in C2, we will use a divide-and-conquer method to match
the C2 computed at the first phase. To achieve it, the degree of freedom of (M0,M1)
will be utilized. Note that (M0,M1) can take 2256 possible values and C2 is a 256-bit
value. Therefore we can expect to find one solution of (M0,M1) to match C2 . If it cannot
be found, which happens with a negligible probability, we choose another proper value
of (M3,M4) and repeat. We have to stress that it is expected to use only one value of
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(M3,M4). Once a solution of (M0,M1) is found, we can immediately compute M2 as
follows and obtain the preimage (M0,M1,M2,M3,M4) of the hash value (H0, H1).

(M2||0256) = A2 ⊕A′2.

In this way, our preimage attacks are reduced to two subproblems. The first problem
is how to find a valid capacity part of Ah0 to match H1 with complexity less than 2128.
The second problem is how to match a given capacity part with complexity less than
2128. Thus, in the following description of our preimage attacks on 2/3/4/5 rounds of
Gimli-Hash, we will separately explain how to find a valid capacity part of Ah0 and how
to match a given capacity part by utilizing the degree of freedom of (M0,M1).

4.2 Preimage Attack on 2-Round Gimli-Hash
We present the details of the preimage attack on 2-round Gimli-Hash in this part. As
shown in Figure 5, we denote the hash value by

(h0, h1, h2, h3, h4, h5, h6, h7),

where hi ∈ F 32
2 . Moreover, the capacity part of Ah0 is denoted by si,j (1 ≤ i ≤ 2, 0 ≤ j ≤

3).

4.2.1 Computing a Valid Capacity Part

Similar to the generic attack, we first generate a valid value for the capacity part of Ah0,
as illustrated in Figure 5. The corresponding procedure is described as follows.

Figure 5: Generate a valid capacity part for the preimage attack on 2-round Gimli-Hash

Step 1: Randomly choose 232 values of (s1,0, s2,0). Then, with the Property 2 of the
SP-box, we can find about 232−15 = 217 candidates for (s1,0, s2,0) which may
match h4. Store these values in a table CT0.

Step 2: Similarly, we randomly choose 232 values of (s1,j , s2,j) (1 ≤ j ≤ 3) and partially
match hj+4. Store the candidates in table CTj respectively.

Step 3: Exhaust all possible combinations between CT0 and CT1. For each combination,
(h4, h5) can be fully computed and we compare it with the given hash value. It is
expected that there is only one valid value of (s1,0, s2,0, s1,1, s2,1) since there are
totally 264 random values for it.

Step 4: Similarly, we can obtain the value of (s1,2, s2,2, s1,3, s2,3) to match (h6, h7).

The time complexity can be evaluated as 232 + 217+17 = 234 times of 2-round Gimli
permutation. In this way, we can find a valid capacity part of Ah0.
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Figure 6: Preimage attack on 2-round Gimli-Hash

4.2.2 Matching the Capacity Part

We expand on how to match a given capacity part by utilizing the degree of freedom of
the first two blocks. To have a better understanding, it is better to refer to Figure 6 for
the meaning of the notations in the following description. Specifically, (s0,0, s0,1, s0,2, s0,3)
and (b0,0, b0,1, b0,2, b0,3) can be randomly chosen. The goal is to match a given

(c1,0, c1,1, c1,2, c1,3, c2,0, c2,1, c2,2, c2,3).

The procedure to achieve the goal is described below.

Step 1: Exhaust all 264 possible values of (s0,0, b0,0). Then, the tuple (d0,1, d1,0, d2,0) can
be computed for each guess of (s0,0, b0,0). According to the Property 3 of the
SP-box, the tuple (d1,0, d2,0, c1,0, c2,0) is valid with probability 2−32. Thus, we
expect to obtain 264−32 possible values of (s0,0, b0,0) to match (c1,0, c2,0). For
these 232 valid values, we will collect 232 possible values of (d0,0, d0,1). Note that
according to the Property 3, d0,0 can be computed when (d1,0, d2,0, c1,0, c2,0, ) is a
valid tuple. Store all the 232 valid values of the tuple (d0,0, d0,1, s0,0, b0,0) in the
table GA0.

Step 2: Similarly, exhaust all 264 possible values of (s0,1, b0,1). In this way, we can obtain
232 valid values of the tuple (d0,0, d0,1, s0,1, b0,1) and store them in the table GA1.

Step 3: Similarly, exhaust all 264 possible values of (s0,2, b0,2). In this way, we can obtain
232 valid values of the tuple (d0,2, d0,3, s0,2, b0,2) and store them in the table GA2.

Step 4: Similarly, exhaust all 264 possible values of (s0,3, b0,3). In this way, we can obtain
232 valid values of the tuple (d0,2, d0,3, s0,3, b0,3) and store them in the table GA3.

After obtaining GA0, GA1, GA2 and GA3, we can use GA0 and GA1 and expect to
find a match in (d0,0, d0,1) since there are 264 pairs in total. Similarly, we can use GA2
and GA3 to find a match in (d0,2, d0,3). Once the match is found, we get the solution of

(s0,0, s0,1, s0,2, s0,3, b0,0, b0,1, b0,2, b0,3)

which will correspond to the given capacity part

(c1,0, c1,1, c1,2, c1,3, c2,0, c2,1, c2,2, c2,3).

Therefore, the time and memory complexity of the above method to match a given
capacity part are 264 and 232 respectively. Now, we describe how to significantly improve
the above method by considering Property 5. The corresponding attack procedure is as
follows:
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Step 1: Exhaust all 232 possible values of s0,0. Then, the tuple (b1,0, b2,0) can be computed
for each guess of s0,0. According to the Property 5 of the SP-box, given a tuple
(b1,0, b2,0, c1,0, c2,0), instead of exhausting all possible values of b0,0, we can find a
solution of (b0,0, d0,0) with 210.4 time complexity. For each such solution, we can
compute d0,1. Thus, we will finally collect 232 tuples of (d0,0, d0,1, s0,0, b0,0), which
will be stored in the table GA′0.

Step 2: Similarly, exhaust all 232 possible values of s0,1. For each guess of s0,1, we can
compute the corresponding (b0,1, d0,0, d0,1) in 210.4 time. In this way, we can
obtain 232 valid values of the tuple (d0,0, d0,1, s0,1, b0,1) and store them in the table
GA′1.

Step 3: Similarly, exhaust all 232 possible values of s0,2. For each guess of s0,2, we can
compute the corresponding (b0,2, d0,2, d0,3) in 210.4 time. In this way, we can
obtain 232 valid values of the tuple (d0,2, d0,3, s0,2, b0,2) and store them in the table
GA′2.

Step 4: Similarly, exhaust all 232 possible values of s0,3. For each guess of s0,3, we can
compute the corresponding (b0,3, d0,2, d0,3) in 210.4 time. In this way, we can
obtain 232 valid values of the tuple (d0,2, d0,3, s0,3, b0,3) and store them in the table
GA′3.

Then, we can find a match in (d0,0, d0,1) between GA′0 and GA′1. And we can find a match
in (d0,2, d0,3) between GA′2 and GA′3. Once the match is found, we get the solution of

(s0,0, s0,1, s0,2, s0,3, b0,0, b0,1, b0,2, b0,3)

which will correspond to the given capacity part

(c1,0, c1,1, c1,2, c1,3, c2,0, c2,1, c2,2, c2,3).

Therefore, the time complexity and memory complexity of the preimage attack on 2-round
Gimli-Hash are 232 and 232+10.4 = 242.4 respectively.

To support our method, we provide a message (M0,M1,M2,M3,M4) which can lead
to an all-zero state in Table 2. Note that with such a message, we can construct any
second preimage and colliding message pair for 2-round Gimli-Hash with time complexity
1. Specifically, given a message Mx, (Mx,M0||M1||M2||M3||M4||Mx) is a colliding message
pair. Moreover, given a message Mx and its hash value Hx, M0||M1||M2||M3||M4||Mx is
a second preimage of Hx.

Table 2: A message leading to an all-zero state for 2-round Gimli-Hash
M0 0x1c5c59da 0x41b61bb7 0 0
M1 0x9cf49a4e 0x9a80d115 0 0
M2 0xa31c3903 0x41e6e73c 0 0
M3 0x456723c6 0xdc515cff 0 0
M4 0x98694873 0x944a58ec 0 0

Full-state Value
0 0 0 0
0 0 0 0
0 0 0 0

4.3 Preimage Attack on 3-Round Gimli-Hash
We present the details of the preimage attack on 3-round Gimli-Hash in this part. As
shown in Figure 7, we denote the hash value by

(h0, h1, h2, h3, h4, h5, h6, h7),
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where hi ∈ F 32
2 . Moreover, the capacity part of Ah0 is denoted by si,j (1 ≤ i ≤ 2, 0 ≤ j ≤

3).

4.3.1 Computing a Valid Capacity Part

The main idea to compute a valid capacity part of Ah0 for the preimage attack on 3-round
Gimli-Hash is illustrated in Figure 7. The procedure can be divided into two parallel
computations, as shown below.

Figure 7: Generate a valid capacity part for the preimage attack on 3-round Gimli-Hash

Parallel-1: Randomly choose 264 values of (s1,0, s2,0, s1,1, s2,1). Then, we can compute
(h6, h7). Compare the computed (h6, h7) with the given hash value. It is
expected that there will be one value of (s1,0, s2,0, s1,1, s2,1) to match the given
(h6, h7).

Parallel-2: Randomly choose 264 values of (s1,2, s2,2, s1,3, s2,3). Then, we can compute
(h4, h5). Compare the computed (h4, h5) with the given hash value. It is
expected that there will be one value of (s1,2, s2,2, s1,3, s2,3) to match the given
(h4, h5).

Hence, we can find a valid capacity part of Ah0 with 264 time complexity.

4.3.2 Matching the Capacity Part

As shown in Figure 8, (s0,0, s0,1, s0,2, s0,3) and (b0,0, b0,1, b0,2, b0,3) can be randomly chosen.
The goal is to match a given

(c1,0, c1,1, c1,2, c1,3, c2,0, c2,1, c2,2, c2,3).

The procedure to gain this goal is as follows. To have a better understanding, we
suggest to refer to Figure 8 for the meaning of the notations in the following description.

Step 1: Exhaust all 264 possible values of (s0,0, c0,2). Note that we can compute backward
to obtain (d1,0, d2,0) for each guess of c0,2. Moreover, we can compute forward
to obtain (b1,0, b2,0) for each guess of s0,0. In other words, for each value of
(s0,0, c0,2), we can obtain a tuple (d1,0, d2,0, b1,0, b2,0). Thanks to the Property 3 of
the SP-box, the obtained tuple (d1,0, d2,0, b1,0, b2,0) is valid with probability 2−32.
Consequently, we will finally obtain 232 valid values of (s0,0, c0,2). Each valid
value of (s0,0, c0,2) will suggest a valid value of (d0,0, d0,1), where d0,0 is computed
according to the valid tuple (d1,0, d2,0, b1,0, b2,0). Finally, we can collect 232 values
of the tuple (d0,0, d0,1, s0,0, c0,2) and store them in MT0.

Step 2: Similarly, exhaust all 264 possible values of (s0,1, c0,3). In this way, we can obtain
232 valid values of the tuple (d0,0, d0,1, s0,1, c0,3) and store them in MT1.
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Figure 8: Preimage attack on 3-round Gimli-Hash

Step 3: Similarly, exhaust all 264 possible values of (s0,2, c0,0). In this way, we can obtain
232 valid values of the tuple (d0,2, d0,3, s0,2, c0,0) and store them in MT2.

Step 4: Similarly, exhaust all 264 possible values of (s0,3, c0,1). In this way, we can obtain
232 valid values of the tuple (d0,2, d0,3, s0,3, c0,1) and store them in MT3.

After obtaining MTi (0 ≤ i ≤ 3), we can use MT0 and MT1 to find a match in
(d0,0, d0,1). Since there are 264 such pairs and they match with each other with probability
2−64, we expect to find one match. Similarly, we can use MT2 and MT3 to find a match
in (d0,2, d0,3). After finding the match, we can obtain the final valid tuple

(s0,0, s0,1, s0,2, s0,3, c0,0, c0,1, c0,2, c0,3),

which can be used to compute

(s0,0, s0,1, s0,2, s0,3, b0,0, b0,1, b0,2, b0,3).

Hence, the time and memory complexity for the preimage attack on 3-round Gimli-Hash
are 264 and 232 respectively.

4.4 Preimage Attack on 4-Round Gimli-Hash
We present the details of the preimage attack on 4-round Gimli-Hash in this part. As
shown in Figure 9, we denote the hash value by

(h0, h1, h2, h3, h4, h5, h6, h7),

where hi ∈ F 32
2 . Moreover, the capacity part of Ah0 is denoted by si,j (1 ≤ i ≤ 2, 0 ≤ j ≤

3).
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Figure 9: Generate a valid capacity part for the preimage attack on 4-round Gimli-Hash

4.4.1 Computing a Valid Capacity Part

The main idea to compute a valid capacity part of Ah0 for the preimage attack on 4-round
Gimli-Hash is illustrated in Figure 9. The procedure can be divided into three steps, as
shown below.

Step 1: Randomly choose 264 values of (s1,0, s2,0, s1,1, s2,1). Then, according to the
Property 2 of the SP-box, we can partially compute (h4, h5). Compare the
computable bits of (h4, h5) with the given hash value. It is expected there will be
264−15×2 = 234 valid values of (s1,0, s2,0, s1,1, s2,1) left. Store these values in the
table LT0.

Step 2: Randomly choose 264 values of (s1,2, s2,2, s1,3, s2,3). Then, according to the
Property 2 of the SP-box, we can partially compute (h6, h7). Compare the
computable bits of (h6, h7) with the given hash value. It is expected there will
be 264−30 = 234 valid values of (s1,2, s2,2, s1,3, s2,3) left. Store these values in the
table LT1.

Step 3: Exhaust all the 234+34 = 268 possible combinations for si,j (1 ≤ i ≤ 2, 0 ≤ j ≤ 3)
between LT0 and LT1. For each combination, we can compute the complete
(h4, h5, h6, h7) and compare it with the given hash value. Since we tried 2128

possible values for si,j (1 ≤ i ≤ 2, 0 ≤ j ≤ 3), it is expected that one of them will
match the given hash value.

Hence, with 268 time and 234 memory, we can find a valid capacity part of Ah0.

4.4.2 Matching the Capacity Part

As shown in Figure 10, (s0,0, s0,1, s0,2, s0,3) and (b0,0, b0,1, b0,2, b0,3) can be randomly chosen.
The goal is to match a given

(c1,0, c1,1, c1,2, c1,3, c2,0, c2,1, c2,2, c2,3).

For a better understanding, we suggest to refer to Figure 10 for the meaning of the
notations in the following description.

Pre-computing some tables. Before explaining the details, we firstly introduce some
tables. According to Figure 10, we can easily observe that

• (b1,0, b2,0, b1,2, b2,2) only depends on (s0,0, s0,2), thus taking at most 264 possible
values.

• (b1,1, b2,1, b1,3, b2,3) only depends on (s0,1, s0,3), thus taking at most 264 possible
values.
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Figure 10: Preimage attack on 4-round Gimli-Hash

Thus, we can pre-compute a table of size 264 to store the above mapping relations.
Specifically, by exhausting all 264 possible values of (s0,0, s0,2), we can obtain 264 values of
the tuple

(b1,0, b2,0, b1,2, b2,2, s0,0, s0,2).

Store the 264 values in a table ST0 of size 264, where the (b1,0 × 232 + b2,0)-th row of ST0
stores the value of (b1,2, b2,2, s0,0, s0,2).

Similarly, by exhausting all 264 possible values of (s0,1, s0,3), we can obtain 264 values
of the tuple

(b1,1, b2,1, b1,3, b2,3, s0,1, s0,3).

Store the 264 values in a table ST1 of size 264, where the (b1,1 × 232 + b2,1)-th row of ST1
stores the value of (b1,3, b2,3, s0,1, s0,3).

Starting using the tables. After preparing the above two tables, we now describe how
to match a given capacity part by utilizing the first two message blocks. We suggest the
readers to refer to Figure 10 for a better understanding of our following attack procedure.

Step 1: Exhaust 264 possible values of (c0,0, c0,2). For each guess of (c0,0, c0,2),
(d1,0, d2,0, d1,2, d2,2) will be determined. Then, for each such guess, we further
exhaust 232 possible values of d0,0. For each guessed value of (c0,0, c0,2, d0,0),
(d0,0, d1,0, d2,0) can be fully determined and we can therefore compute (b1,0, b2,0).
According to the computed value of (b1,0, b2,0), we retrieve the (b1,0×232 + b2,0)-th
row of ST0 and obtain the corresponding value of (b1,2, b2,2, s0,0, s0,2). At this
point, (b1,2, b2,2, d1,2, d2,2) is determined. According to the Property 3 of the SP-
box, the obtained tuple (b1,2, b2,2, d1,2, d2,2) is valid with probability 2−32. Once
it is valid, we can obtain the corresponding value of d0,2. In other words, each
guessed value of (c0,0, c0,2, d0,0) is correct with probability 2−32. Thus, only 264
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possible values of (c0,0, c0,2, d0,0) will survive. Thus, we can finally obtain 264

possible values of the following tuple

(d0,0, d0,1, d0,2, d0,3, c0,0, c0,2, s0,0, s0,2).

Store the 264 values in a table FT0.

Step 2: Exhaust 264 possible values of (c0,1, c0,3). For each guess of (c0,1, c0,3),
(d1,1, d2,1, d1,3, d2,3) will be determined. Then, for each such guess, we further
exhaust 232 possible values of d0,1. For each guessed value of (c0,1, c0,3, d0,1),
(d0,1, d1,1, d2,1) can be fully determined and we can therefore compute (b1,1, b2,1).
According to the computed value of (b1,1, b2,1), we retrieve the (b1,1×232 + b2,1)-th
row of ST1 and obtain the corresponding value of (b1,3, b2,3, s0,1, s0,3). At this
point, (b1,3, b2,3, d1,3, d2,3) is determined. According to the Property 3 of the SP-
box, the obtained tuple (b1,3, b2,3, d1,3, d2,3) is valid with probability 2−32. Once
it is valid, we can obtain the corresponding value of d0,3. In other words, each
guessed value of (c0,1, c0,3, d0,1) is correct with probability 2−32. Thus, only 264

possible values of (c0,1, c0,3, d0,1) will survive. Thus, we can finally obtain 264

possible values of the following tuple

(d0,0, d0,1, d0,2, d0,3, c0,1, c0,3, s0,1, s0,3).

Store the 264 values in a table FT1.

After obtaining FT0 and FT1, find a match in (d0,0, d0,1, d0,2, d0,3) between the
table FT0 and FT1. Since there are 2128 pairs and the probability that they match
each other is 2−128, we expect to find one match. For this match, we can know the
corresponding (s0,0, s0,2, c0,0, c0,2, s0,1, s0,3, c0,1, c0,3), which can be used to compute the
tuple (s0,0, s0,1, s0,2, s0,3, b0,0, b0,1, b0,2, b0,3).

Consequently, the time complexity of the preimage attack on 4-round Gimli-Hash is
296 while the memory complexity is 264.

4.5 Preimage Attack on 5-Round Gimli-Hash
We present the details of the preimage attack on 5-round Gimli-Hash in this part. As
shown in Figure 11, we denote the hash value by

(h0, h1, h2, h3, h4, h5, h6, h7),

where hi ∈ F 32
2 . Moreover, the capacity part of Ah0 is denoted by si,j (1 ≤ i ≤ 2, 0 ≤ j ≤

3).

4.5.1 Computing a Valid Capacity Part

The main idea to compute a valid capacity part of Ah0 for the preimage attack on 5-round
Gimli-Hash is illustrated in Figure 11. The procedure can be divided into 6 steps, as shown
below.

Step 1: Randomly choose 264 values of (s1,0, s2,0, s1,1, s2,1). For each value of
(s1,0, s2,0, s1,1, s2,1), we can compute the corresponding (b1,0, b2,0, b1,1, b2,1). Store
the 264 values of the tuple

(b1,0, b2,0, b1,1, b2,1, s1,0, s2,0, s1,1, s2,1)

in table denoted by BT0.
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Figure 11: Generate a valid capacity part for the preimage attack on 5-round Gimli-Hash

Step 2: Randomly choose 264 values of (d1,0, d2,0, d1,1, d2,1). For each value of
(d1,0, d2,0, d1,1, d2,1), we can compute (e0,0, e1,0, e2,0, e0,1, e1,1, e2,1) and therefore
can compute (b0,0, b1,0, b2,0, b0,1, b1,1, b2,1). Store the 264 values of the tuple

(b1,0, b2,0, b1,1, b2,1, b0,0, b0,1, d1,0, d2,0, d1,1, d2,1)

in table denoted by BT1.

Step 3: Find a match in (b1,0, b2,0, b1,1, b2,1) between the table BT0 and BT1. Since the
matching probability is 2−128 and there are 2128 pairs, we expect to find one match.
After the match is found, we record the corresponding valid value of the tuple

(s1,0, s2,0, s1,1, s2,1, d1,0, d2,0, d1,1, d2,1, b0,0, b0,1, b0,2, b0,3).

Step 4: Exhaust 264 values for (d1,2, d2,2). For each value of (d1,2, d2,2), we can compute
(e0,2, e1,2, e2,2) and therefore can compute (b0,2, b1,2, b2,2). Compare the computed
value b0,2 with the one in the recorded tuple obtained at Step 3. It is expected
only 232 valid values of (d1,2, d2,2) will remain. Then, for each of the 232 valid
(d1,2, d2,2), we can compute backward to obtain (g1,2, g2,2). According to the
Property 4 of the SP-box, (g1,2, g2,2, h2) is a valid tuple with probability 2−1.
Thus, we will finally to obtain 231 valid values of (d1,2, d2,2) and the corresponding
valid value of (g1,2, g2,2, h2). We again use the Property 4 of the SP-box to compute
the corresponding (s1,2, s2,2[30 ∼ 0]) with the valid tuple (g1,2, g2,2, h2). When
(s1,2, s2,2[30 ∼ 0]) is determined, we can compute g0,3[30 ∼ 0]. Note that we can
also determine g0,2 when computing backward. In other words, we will have 231

valid values of (g0,2, g0,3[31 ∼ 0]), each of which will correspond to a valid value of
(d1,2, d2,2). Thus, we can store the 231 valid values of (d1,2, d2,2, g0,2, g0,3[30 ∼ 0])
in a table denoted by GT0.

Step 5: Similar to dealing with (d1,2, d2,2), we can exhaust 264 values for (d1,3, d2,3).
For each guess of (d1,3, d2,3), (e0,3, e1,3, e2,3) is determined and we can therefore
compute (b0,3, b1,3, b2,3). Compare the computed value of b0,3 with the one in
the recorded tuple obtain at Step 3. It is expected only 232 valid values of
(d1,3, d2,3) will remain. Then, for each of the valid tuple (d1,3, d2,3), we can
compute (g1,3, g2,3[30 ∼ 0]). According to the Property 4 of the SP-box, the tuple
(g1,3, g2,3, h3) is a valid tuple with probability 2−1. Once it is valid, we can obtain
the corresponding g0,2[30 ∼ 0]. Note the we can determine g0,3 when computing
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Figure 12: Preimage attack on 5-round Gimli-Hash

backward. Thus, we can finally obtain 231 valid tuples (d1,3, d2,3, g0,2[30 ∼ 0], g0,3),
which will be stored in a table denoted by GT1.

Step 6: Use GT0 and GT1 to find a match in (g0,2[30 ∼ 0], g0,3[30 ∼ 0]). Note there are
262 pairs and the matching probability is 2−62. Therefore, we can expect to find a
match. Once a match is found, we can know the corresponding g0,2[31] according
to GT0 and the corresponding g0,3[31] according to GT1. Then, we can compute
the corresponding (s1,2, s2,2, s1,3, s2,3).

Hence, a valid capacity part of Ah0 can be found in 264 time. The memory complexity at
this phase is 264.

4.5.2 Matching the Capacity Part

As shown in Figure 12, (s0,0, s0,1, s0,2, s0,3) and (b0,0, b0,1, b0,2, b0,3) can be randomly chosen.
The goal is to match a given

(c1,0, c1,1, c1,2, c1,3, c2,0, c2,1, c2,2, c2,3).

The procedure to reach this goal is the same with that of the preimage attack on
4-round Gimli-Hash. One only need to refer to Figure 12 when reading the contents in
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Matching the Capacity Part in the preimage attack on 4-round Gimli-Hash. In brief,
we first compute two tables ST0 and ST1 to store the following two mappings.

(b1,0, b2,0)→ (b1,2, b2,2, s0,0, s0,2),
(b1,1, b2,1)→ (b1,3, b2,3, s0,1, s0,3).

Then, we obtain two tables FT0 and FT1 with 296 time to store the candidate values
of (d0,0, d0,1, d0,2, d0,3). Finally, find a match in (d0,0, d0,1, d0,2, d0,3) between the tables
FT0 and FT1. Consequently, the time complexity of the preimage attack on 5-round
Gimli-Hash is 296 while the memory complexity is 264.

5 Collision Attack on Reduced Gimli-Hash
After the preimage attacks on 2/3/4/5 rounds of Gimli-Hash were presented, it is natural
to ask whether it is possible to find a better collision attack than the preimage attack.
This motivates us to devise the following collision attacks on 3/4/5-round Gimli-Hash.
Especially, we can provide the first colliding message pair for 3-round Gimli-Hash.

Similar to the preimage attack, we will try to find a collision in the capacity part,
which can then be easily converted into a valid collision for the reduced Gimli-Hash. Our
collision attack procedure consists of two phases on the whole. The first phase is to find
two different messages which satisfy a certain condition. The second phase is to utilize the
degree of freedom of one-block message to generate a collision in the capacity part.

5.1 Collision Attacks on 4/5-round Gimli-Hash
As described at the beginning of this section, we will describe the two phases of the collision
attack respectively.

5.1.1 The First Phase

At the first phase, we hope to find two random messages m and m′. Denote the state after
m and m′ are absorbed by q = (qi,j) and q′ = (q′i,j) (0 ≤ i ≤ 2, 0 ≤ j ≤ 3) respectively.
Specially, we have the following conditions on q and q′.

(q1,1 ≪ 9)[28 ∼ 0] = (q1,3 ≪ 9)[28 ∼ 0] = 0,
(q′1,1 ≪ 9)[28 ∼ 0] = (q′1,3 ≪ 9)[28 ∼ 0] = 0.

Therefore, by trying 229+29 = 258 random values of m, we expect to obtain the q
satisfying the condition. By trying 258 random values of m′, we expect to find the
corresponding q′ satisfying the condition. In other words, the time complexity to find a
valid m and m′ at this phase is 259 = 258 + 258. After they are found, we move to the
second phase.

5.1.2 The Second Phase

After the first phase, two states q = (qi,j) and q′ = (q′i,j) (0 ≤ i ≤ 2, 0 ≤ j ≤ 3) can be
collected. Now, we explain how to use one more message block to achieve the collision
attack. For a better understanding, we suggest to refer to Figure 13.

Once there is one more message block to be processed, the message will be first added
to (q0,0, q0,1, q0,2, q0,3) and (q′0,0, q

′
0,1, q

′
0,2, q

′
0,3) respectively according to the specification

of Gimli-Hash. Then, the Gimli permutation will be applied. To avoid introducing more
notations and for simplicity, we treat (q0,0, q0,1, q0,2, q0,3) and (q′0,0, q

′
0,1, q

′
0,2, q

′
0,3) as the

controllable variables by the attacker rather a constant value obtained at the first phase.
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Moreover, denote the state after the one more message block is absorbed by c = (ci,j)
(0 ≤ i ≤ 2, 0 ≤ j ≤ 3), as shown in Figure 13. Then, the collision attack can be described
as follows.

Figure 13: Collision attack on 5-round Gimli-Hash

Step 1: Exhaust all 264 possible values of (q0,0, q0,2). Thanks to the Property 1 of the
SP-box, we can compute (c1,0, c2,0, c1,2, c2,2) for each guessed value of (q0,0, q0,2),
which is irrelevant to the value of (q0,1, q0,3). Therefore, we can store the 264

values of

(q0,0, q0,2, c1,0, c2,0, c1,2, c2,2)

in a table denoted by L0.

Step 2: Exhaust all 264 possible values of (q′0,0, q
′
0,2). Thanks to the Property 1 of the SP-

box, we can also compute (c1,0, c2,0, c1,2, c2,2) for each guessed value of (q′0,0, q
′
0,2),

which is irrelevant to the value of (q′0,1, q
′
0,3). Therefore, we can store the 264

values of

(q′0,0, q
′
0,2, c1,0, c2,0, c1,2, c2,2)

in a table denoted by L′0.

Step 3: Find a match in (c1,0, c2,0, c1,2, c2,2) between L0 and L′0. Since there are 264+64 =
2128 pairs, we expect to find a match. After the match is found, (q0,0, q0,2, q

′
0,0, q

′
0,2)

becomes a fixed constant.

Step 4: Exhaust all 264 possible values of (q0,1, q0,3). Since (q0,0, q0,2) has been fixed,
the full state of q is known for each guess of (q0,1, q0,3) and we can compute
(c1,1, c2,1, c1,3, c2,3). Store the 264 values of

(q0,1, q0,3, c1,1, c2,1, c1,3, c2,3)

in a table denoted by L1.

Step 5: Exhaust all 264 possible values of (q′0,1, q
′
0,3). Since (q′0,0, q

′
0,2) has been fixed,

the full state of q′ is known for each guess of (q′0,1, q
′
0,3) and we can compute

(c1,1, c2,1, c1,3, c2,3). Store the 264 values of

(q′0,1, q
′
0,3, c1,1, c2,1, c1,3, c2,3)

in a table denoted by L′1.
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Step 6: Find a match in (c1,1, c2,1, c1,3, c2,3) between L1 and L′1. Since there are 264+64 =
2128 pairs, we expect to find a match. After the match is found, (q0,1, q0,3, q

′
0,1, q

′
0,3)

becomes a fixed constant.

Complexity Evaluation. After the above procedure, we know that f(q) and f(q′) will
share the same capacity part. Then, we use two different one-block messages to eliminate
the difference at the rate part of f(q) and f(q′). In this way, we can obtain a full-state
collision. Finally, we use another non-full one-block message to satisfy the padding rule,
which will make the collision valid. Obviously, the time and memory complexity of our
collision attack are 265 and 264 respectively.

5.1.3 Collision Attack on 4-round Gimli-Hash

The above collision attack procedure can be directly applied to the collision attack on
4-round Gimli-Hash. The first phase is the same. As for the second phase, one only need
to refer to Figure 14 when reading the above attack procedure of the collision attack on
5-round Gimli-Hash. Thus, the time and memory complexity of the collision attack on
4-round Gimli-Hash are also 265 and 264 respectively.

Figure 14: Collision attack on 4-round Gimli-Hash

5.2 Practical Collision Attack on 3-Round Gimli-Hash
Like the collision attack on 4/5-round Gimli-Hash, we will also explain the two phases of
the collision attack on 3-round Gimli-Hash respectively.

5.2.1 The First Phase

Similar to the attack on 5-round Gimli-Hash, at this phase, we will generate two different
messages which satisfy a certain condition after they are absorbed. Denote the two
messages by M and M ′ respectively. Moreover, after M and M ′ are absorbed, denote
their corresponding state by q = (qi,j) and q′ = (q′i,j) (0 ≤ i ≤ 2, 0 ≤ j ≤ 3) respectively.
Especially, we constrain that both M and M ′ are a two-block message, although such a
constraint is indeed not necessary. Different from the first phase for the 5-round collision
attack, we only need to add the condition on one 32-bit word of q and q′ as follows.

(q1,2 ≪ 9)[28 ∼ 0] = 0,
(q′1,2 ≪ 9)[28 ∼ 0] = 0.

In addition, we have the following conditions on the first two columns of q and q′, i.e. they
are the same.

qu,v = q′u,v,

where (1 ≤ u ≤ 2, 0 ≤ v ≤ 1).
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Now, we expand on how to generate such a pair of (M,M ′). For a better understanding,
we refer the readers to Figure 15, especially for the notations used in the following
description.

Figure 15: Generate candidates for the first two blocks for the collision attack on 3-round
Gimli-Hash

Step 1: Randomly choose a value of (s0,2, s0,3, b0,2, b0,3). Note that after (s0,2, s0,3) are
fixed, we can always compute (b1,2, b2,2, b1,3, b2,3), which is irrelevant to the value
of (s0,0, s0,1). Then, after fixing (b0,2, b0,3), the last two columns of the state

(b0,2, b0,3, b1,2, b2,2, b1,3, b2,3)

are all known, thus making the computation of (q1,2, q2,2, q1,3, q2,3) feasible, which
is irrelevant to the value of (b0,0, b0,1). Since q1,2 has to satisfy the following
condition

(q1,2 ≪ 9)[28 ∼ 0] = 0,

we expect to obtain two values of (s0,2, s0,3, b0,2, b0,3) which can make this condition
hold after trying 229+1 = 230 possible values. For a better understanding and
simplicity, we denote the two values by

(s0,2, s0,3, b0,2, b0,3),
(s′0,2, s

′
0,3, b

′
0,2, b

′
0,3),

which will make

(q1,2 ≪ 9)[28 ∼ 0] = 0,
(q′1,2 ≪ 9)[28 ∼ 0] = 0.

hold respectively.
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Step 2: Randomly choose a fixed value (c0, c1) ∈ F 2
232 for (s0,0, s0,1) and (s′0,0, s

′
0,1), i.e.

s0,0 = s′0,0 = c0,

s0,1 = s′0,1 = c1.

In this way, the first message block of m and m′ denoted by m0 and m′0 are fixed
as follows.

M0 = (c0, c1, s0,2, s0,3),
M ′0 = (c0, c1, s

′
0,2, s

′
0,3).

Then, we can compute

p = (pi,j) = f(m0||0256),
p′ = (p′i,j) = f(m′0||0256),

where (0 ≤ i ≤ 2, 0 ≤ j ≤ 3). For such a value of (m0,m
′
0), we can know that

pu,v = p′u,v,

where (1 ≤ u ≤ 2, 0 ≤ v ≤ 1).

Step 3: Randomly choose a fixed value (c2, c3) ∈ F 2
232 for (b0,0, b0,1) and (b′0,0, b

′
0,1), i.e.

b0,0 = b′0,0 = c2,

b0,1 = b′0,1 = c3.

In this way, the second message block of m and m′ denoted by m1 and m′1 are
fixed as follows.

M1 = (c2 ⊕ p0,0, c3 ⊕ p0,1, b0,2 ⊕ p0,2, b0,3 ⊕ p0,3),
M ′1 = (c2 ⊕ p′0,0, c3 ⊕ p′0,1, b

′
0,2 ⊕ p′0,2, b

′
0,3 ⊕ p′0,3).

With the first message block, we have ensured that

bu,v = b′u,v,

where (1 ≤ u ≤ 2, 0 ≤ v ≤ 1).
With the second message block, we can therefore ensure that

qu,v = q′u,v,

where (1 ≤ u ≤ 2, 0 ≤ v ≤ 1).

Obviously, the time complexity of the first phase is dominated by Step 1 in the above
attack procedure. Therefore, the time complexity of the first phase is 230.

5.2.2 The Second Phase

After obtaining two potential messages M and M ′, we can further utilize the degree of
freedom of one more message block M2 (resp. M ′2) to generate a collision in the capacity
part, as in the collision attack on 5-round Gimli-Hash. Now, we expand on how to use one
more message block to achieve the collision attack. For a better understanding, we suggest
to refer to Figure 16.



28
Preimages and Collisions for Up to 5-Round Gimli-Hash Using Divide-and-Conquer

Methods

Figure 16: Collision attack on 3-round Gimli-Hash

Once there is one more message block to be processed, the message will be first added
to (q0,0, q0,1, q0,2, q0,3) and (q′0,0, q

′
0,1, q

′
0,2, q

′
0,3) respectively. Then, the Gimli permutation

will be applied. To avoid introducing more notations and for simplicity, let us treat
(q0,0, q0,1, q0,2, q0,3) and (q′0,0, q

′
0,1, q

′
0,2, q

′
0,3) as the controllable variables by the attacker

rather a constant value obtained at the first phase. Moreover, denote the state after the
one more message block m2 is absorbed by c = (ci,j) (0 ≤ i ≤ 2, 0 ≤ j ≤ 3), as shown in
Figure 16.

Similar to the first phase, we can adjust two words of M2 and M ′2 to keep

q0,0 = q′0,0,

q0,1 = q′0,1.

Moreover, we have ensured at the first phase that

qu,v = q′u,v,

where (1 ≤ u ≤ 2, 0 ≤ v ≤ 1). In this way, we have already made the collision occur in

(c1,0, c2,0, c1,1, c2,1).

Therefore, the main target at the second phase is to find the value of (q0,2, q0,3) and
(q′0,2, q

′
0,3) which can make the collision occur in

(c1,2, c2,2, c1,3, c2,3).

The corresponding attack procedure is described below. Once again, we refer the readers
to Figure 16 for a clear understanding.

Step 1: Exhaust all 232 possible values of q0,3. Thanks to the Property 1 of the SP-box,
we can compute (c1,3, c2,3) for each guessed value of q0,3, which is irrelevant to the
value of q0,2. Therefore, we can store the 232 values of

(q0,3, c1,3, c2,3)

in a table denoted by LI0.

Step 2: Exhaust all 232 possible values of q′0,3. Thanks to the Property 1 of the SP-box,
we can compute (c1,3, c2,3) for each guessed value of q′0,3, which is irrelevant to the
value of q′0,2. Therefore, we can store the 232 values of

(q′0,3, c1,3, c2,3)

in a table denoted by LI ′0.
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Step 3: Find a match in (c1,3, c2,3) between LI0 and LI ′0. Since there are 232+32 = 264

pairs, we expect to find a match. After the match is found, (q0,3, q
′
0,3) becomes a

fixed constant.

Step 4: Exhaust all 232 possible values of q0,2. Since q0,3 has been fixed at Step 3, we can
compute (c1,2, c2,2). Store the 232 values of

(q0,2, c1,2, c2,2)

in a table denoted by LI1.

Step 5: Exhaust all 232 possible values of q′0,2. Since q′0,3 has been fixed at Step 3, we can
compute (c1,2, c2,2). Store the 232 values of

(q′0,2, c1,2, c2,2)

in a table denoted by LI ′1.

Step 6: Find a match in (c1,2, c2,2) between LI1 and LI ′1. Since there are 232+32 = 264

pairs, we expect to find a match. After the match is found, (q0,2, q
′
0,2) becomes a

fixed constant.

After the above procedure, we know that f(q) and f(q′) will share the same capacity
part. Then, we use two different one-block messages (M3,M

′
3) to eliminate the difference

at the rate part of f(q) and f(q′). In this way, we can obtain a full-state collision. Finally,
we use another non-full one-block message to satisfy the padding rule, which will make the
collision valid. Obviously, the time and memory complexity of our collision attack are 233

and 232 respectively.

Experimental Verification. Due to the practical time and memory complexity, we have
implemented the collision attack on 3-round Gimli-Hash. After the whole attack procedure
(the first and second phase) is repeated twice, we obtained the following four-block message
pair that can lead a full-state collision, as listed in Table 3. By appending another arbitrary
non-full message block and considering the padding rule, we can generate an arbitrary
valid collision.

Table 3: Four-block message pair for full-state collision of 3-round Gimli-Hash
M0 0xb28d37cb 0xf45c55d6 0xde66f7c3 0x311b4daf
M1 0xff2ecb4b 0xad17efea 0x72cd23ee 0xd9b8184
M2 0xe6c17a12 0x4e6b8149 0x6bcf4f78 0xb2bb53c3
M3 0x41dc5ce8 0x556eee8c 0xe2a8eec 0xc6f2b830
M ′0 0xb28d37cb 0xf45c55d6 0x6385d8fc 0x2c337f96
M ′1 0xe2d9e2fb 0xd86356a7 0xb6e4ad39 0x23205c31
M ′2 0x1ded3fee 0xc29968a4 0x3a53f26 0x8e721abb
M ′3 0xa7604db7 0x271cc14a 0xe2a8eec 0xc6f2b830

Full-state Value
0xb058f51 0x7bdae866 0x9d91e603 0x2990292f
0x3fc4504a 0x72dcd367 0xf28ddd2f 0x68af4c32
0x28015655 0x7c507696 0x5f998b7f 0xb8638e53

6 Practical Attacks on the Last 2/3-Round Gimli-Hash
In this section, we present the practical second preimage and collision attacks on 2 and 3
rounds of Gimli-Hash. The main idea is to find a target message TM which can lead to
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an all-zero full state. Once such a TM is found, given any message AM , (AM,TM ||AM)
becomes a colliding message pair. Moreover, given any message AM and its corresponding
hash value AH, TM ||AM will be a second preimage for AH. It is very easy to prove it
since the value of the initial state is zero for Gimli-Hash.

Now, we describe how to find such a TM for 2 and 3 rounds of Gimli-Hash. First of all,
it can be observed that there is no constant addition in the last 2/3-round permutation.
Consider a sequence of message blocks (M0,M1, · · ·,Mn−1), where Mi = (Xi, Xi, Xi, Xi)
and Xi ∈ F 32

2 . Then, setting the initial state to zero, after applying n times of 2/3-round
permutation to the sequence of message blocks, we will obtain an output state OS. Since
there is no constant addition and the linear layer is just to swap a 32-bit word among the
columns in the last 2/3-round permutation, we can easily know that the four columns of
OS are the same with each other. Formally, we have

OS0,0 = OS0,1 = OS0,2 = OS0,3,

OS1,0 = OS1,1 = OS1,2 = OS1,3,

OS2,0 = OS2,1 = OS2,2 = OS2,3.

Based on Property 6, TM can be easily constructed. Specifically, Set

TM = (0, 0, 0, 0).

After 2/3-round permutation, the value of the state after absorbing TM is still zero, which
is identical with the initial state. Thus, we can mount a second preimage and collision
attack on the last 2/3-round Gimli-Hash with time complexity 1.

A more complex way to construct TM is given in the Appendix A.3. Moreover, the
preimage attacks on the last 2 and 3 rounds of Gimli-Hash are also placed in the Appendix.

7 Conclusion
Following the generic preimage attack framework for Gimli-Hash, specific preimage attacks
on the first 2/3/4/5 rounds and the last 2/3/4 rounds of Gimli-Hash with divide-and-
conquer methods are developed. The divide-and-conquer methods much rely on the
properties of the SP-box and the linear layer. Moreover, to obtain better collision attacks
on the first 3/4/5 rounds of Gimli-Hash, we extend the divide-and-conquer method and
achieve the collision attacks on the first 4/5-round Gimli-Hash with time complexity 265

and memory complexity 264. In addition, by leveraging the symmetry of the last 2/3-round
Gimli permutation, we successfully mount practical second preimage and collision attacks
on the last 2/3-round Gimli-Hash with time complexity 1. It is natural to ask whether it
is possible to extend the divide-and-conquer method to attack more rounds.
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A Attacks on the Last 2/3 Rounds of Gimli-Hash
In this section, we present preimage attacks on the last 2/3 rounds of Gimli-Hash.
Specifically, the sequence of the last 2/3-round permutation is shown as follows:

2− round : (SP→ B_SW)→ (SP),
3− round : (SP)→ (SP→ B_SW)→ (SP).

Note that the sequence of the first and last 4-round permutation is the same. Therefore,
the attacks on 4-round Gimli-Hash in the main content work for both reduced versions.
As for the attack on 5-round Gimli-Hash, we however could not find a better attack than
the generic one.
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Figure 17: Generate a valid capacity part for the preimage attack on 2-round Gimli-Hash

A.1 Preimage Attacks on 2-round Gimli-Hash
We present the details of the preimage attack on 2-round Gimli-Hash in this part. As
shown in Figure 17, we denote the hash value by

(h0, h1, h2, h3, h4, h5, h6, h7),

where hi ∈ F 32
2 . Moreover, the capacity part of Ah0 is denoted by si,j (1 ≤ i ≤ 2, 0 ≤ j ≤

3).

Computing a Valid Capacity Part. At first, we generate a valid value for the capacity
part of the first output block, as illustrated in Figure 17.

The procedure can be described as follows. Please refer to Figure 17 to understand the
meaning of notations.

Step 1: Randomly choose 232 values of (s1,0, s2,0). Then, with the Property 2 of the
SP-box, we can find about 232−15 = 217 candidates for (s1,0, s2,0) which may
match h4. Store these values in a table CT0.

Step 2: Similarly, we randomly choose 232 values of (s1,j , s2,j) (1 ≤ j ≤ 3) and partially
match hj+4. Store the candidates in table CTj respectively.

Step 3: Exhaust all possible combinations between CT0 and CT2. For each combination,
(h4, h6) can be fully computed and we compare it with the given hash value. It is
expected that there is only one valid value of (s1,0, s2,0, s1,2, s2,2) since there are
totally 264 random values for it.

Step 4: Similarly, we can obtain the value of (s1,1, s2,1, s1,3, s2,3) to match (h5, h7).

The time complexity can be evaluated as 232 + 217+17 = 234 times of 2-round Gimli
permutation. In this way, we can find a valid capacity part of Ah0.

Matching the Capacity Part We expand on how to match a given capacity part by
utilizing the degree of freedom of the first two blocks. To have a better understanding, it
is better to refer to Figure 18 for the meaning of the notations in the following description.
Specifically, (s0,0, s0,1, s0,2, s0,3) and (b0,0, b0,1, b0,2, b0,3) can be randomly chosen. The goal
is to match a given

(c1,0, c1,1, c1,2, c1,3, c2,0, c2,1, c2,2, c2,3).

The corresponding attack procedure to reach this goal is as follows:

Step 1: Exhaust all 232 possible values of s0,0. Then, the tuple (b1,0, b2,0) can be computed
for each guess of s0,0. According to the Property 5 of the SP-box, given a tuple
(b1,0, b2,0, c1,0, c2,0), instead of exhausting all possible values of b0,0, we can find a
solution of (b0,0, d0,0) with 210.4 time complexity. For each such solution, we can
compute d0,2. Thus, we will finally collect 232 tuples of (d0,0, d0,2, s0,0, b0,0), which
will be stored in the table GA′0.
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Figure 18: Preimage attack on 2-round Gimli-Hash

Step 2: Similarly, exhaust all 232 possible values of s0,1. For each guess of s0,1, we can
compute the corresponding (b0,1, d0,1, d0,3) in 210.4 time. In this way, we can
obtain 232 valid values of the tuple (d0,1, d0,3, s0,1, b0,1) and store them in the table
GA′1.

Step 3: Similarly, exhaust all 232 possible values of s0,2. For each guess of s0,2, we can
compute the corresponding (b0,2, d0,0, d0,2) in 210.4 time. In this way, we can
obtain 232 valid values of the tuple (d0,0, d0,2, s0,2, b0,2) and store them in the table
GA′2.

Step 4: Similarly, exhaust all 232 possible values of s0,3. For each guess of s0,3, we can
compute the corresponding (b0,3, d0,1, d0,3) in 210.4 time. In this way, we can
obtain 232 valid values of the tuple (d0,1, d0,3, s0,3, b0,3) and store them in the table
GA′3.

Then, we can find a match in (d0,0, d0,2) between GA′0 and GA′2. And we can find a match
in (d0,1, d0,3) between GA′1 and GA′3. Once the match is found, we get the solution of

(s0,0, s0,1, s0,2, s0,3, b0,0, b0,1, b0,2, b0,3)

which will correspond to the given capacity part

(c1,0, c1,1, c1,2, c1,3, c2,0, c2,1, c2,2, c2,3).

Therefore, the time complexity and memory complexity of the preimage attack on 2-round
Gimli-Hash are 232 and 232+10.4 = 242.4 respectively.

A.2 Preimage Attacks on 3-round Gimli-Hash
The preimage attack on 3-round Gimli-Hash will be discussed in this part. As shown in
Figure 19, we denote the hash value by

(h0, h1, h2, h3, h4, h5, h6, h7),

where hi ∈ F 32
2 . Moreover, the capacity part of Ah0 is denoted by si,j (1 ≤ i ≤ 2, 0 ≤ j ≤

3).

Computing a Valid Capacity Part. The main idea to compute a valid capacity part
for the preimage attack on 3-round Gimli-Hash is illustrated in Figure 19. The procedure
can be divided into 4 steps, as shown below. Please refer to Figure 19 for the meaning of
the notations.

Step 1: Randomly choose 232 values of (s1,0, s2,0). Then, with the Property 2 of the
SP-box, we can find about 232−15 = 217 candidates for (s1,0, s2,0) which may
match h4. Store these values in a table CT0.
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Figure 19: Generate a valid capacity part for preimage attack on 3-round Gimli-Hash

Figure 20: Preimage attack on 3-round Gimli-Hash

Step 2: Similarly, we randomly choose 232 values of (s1,j , s2,j) (1 ≤ j ≤ 3) and partially
match hj+4. Store the candidates in table CTj respectively.

Step 3: Exhaust all possible combinations between CT0 and CT2. For each combination,
(h4, h6) can be fully computed and we compare it with the given hash value. It is
expected that there is only one valid value of (s1,0, s2,0, s1,2, s2,2) since there are
totally 264 random values for it.

Step 4: Similarly, we can obtain the value of (s1,1, s2,1, s1,3, s2,3) to match (h5, h7).

Hence, with 217+17 = 234 time, we can find a valid capacity part for the first output block.

Matching the Capacity Part. Now we describe how to match a given capacity part. It
is better to refer to Figure 20 for the meaning of the notations in the following description.
Specifically, (s0,0, s0,1, s0,2, s0,3) and (b0,0, b0,1, b0,2, b0,3) can be randomly chosen. The goal
is to match a given

(c1,0, c1,1, c1,2, c1,3, c2,0, c2,1, c2,2, c2,3).

The attack procedure can be found below.
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Step 1: Exhaust all possible values of (s0,0, s0,2). Then we can collect 264 values of

(b1,0, b2,0, b1,2, b2,2, s0,0, s0,2).

Store these values in a table MT0 of size 264.

Step 2: Exhaust all possible values of (c0,0, c0,2). Then we collect 264 values of

(b1,0, b2,0, b1,2, b2,2, c0,0, c0,2).

Store these values in a table MT1 of size 264.

Step 3: Exhaust all possible values of (s0,1, s0,3). Then we can collect 264 values of

(b1,1, b2,1, b1,3, b2,3, s0,1, s0,3).

Store these values in a table MT2 of size 264.

Step 4: Exhaust all possible values of (c0,1, c0,3). Then we collect 264 values of

(b1,1, b2,1, b1,3, b2,3, c0,1, c0,3).

Store these values in a table MT3 of size 264.

Step 5: Find a match in (b1,0, b2,0, b1,2, b2,2) between the tables MT0 and MT1. There are
2128 such pairs and they match with each other with probability 2−128. Therefore, it
is expected to find only one match. Record the corresponding (s0,0, s0,2, c0,0, c0,2).

Step 6: Use MT2 and MT3 to find one match in (b1,1, b2,1, b1,3, b2,3). Record the
corresponding (s0,1, s0,3, c0,1, c0,3).

After the above procedure, we can obtain the solution of

(s0,0, s0,1, s0,2, s0,3, c0,0, c0,1, c0,2, c0,3),

which can be used to compute the corresponding

(s0,0, s0,1, s0,2, s0,3, b0,0, b0,1, b0,2, b0,3)

and will match the given capacity part

(c1,0, c1,1, c1,2, c1,3, c2,0, c2,1, c2,2, c2,3).

Hence, the time and memory complexity for the preimage attack on 3-round Gimli-Hash
are both 264.

A.3 A More Complex Way to Construct T M

Based on the symmetry of the last 2/3-round permutaion discussed in Section 6, we
can search TM in the following way. Suppose we are attacking r (r ∈ {2, 3}) rounds of
Gimli-Hash.

Step 1: Consider a tuple (x0, y0, z0) where y0 = 0 and z0 = 0. Exhaust 232 possible values
of x0. For each value of x0, compute (ox0, oy0, oz0) with

(ox0, oy0, oz0) = SP r(x0, y0, z0).

Store the 232 values of (x0, oy0, oz0) in a table T sorted by (oy0, oz0).
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Step 2: Set (x5, y5, z5) = SP−r(0, 0, 0). Then, randomly choose three values of (x4, x3, x2).
For each value of (x4, x3, x2), we compute (ox1, oy1, oz1) with

(ox1, oy1, oz1) = SP−r(SP−r(SP−r(x5 ⊕ x4, y5, z5)⊕ (x3, 0, 0))⊕ (x2, 0, 0)).

Use the binary search to check whether there is a tuple (x0, oy0, oz0) in T satisfying
oy0 = oy1 and oz0 = oz1. If there is, record the tuple (x0, oy0, oz0) and compute
x1 as follows and output (x0, x1, x2, x3, x4):

(ox0, oy0, oz0) = SP r(x0, y0, z0),
x1 = ox1 ⊕ ox0.

Otherwise, consider another value of (x4, x3, x2) until a match is found.

Obviously, the time and memory complexity to obtain an output (x0, x1, x2, x3, x4) are
both 232. It can be easily proved that

(x, y, z) = SP r(SP r(SP r(x0, 0, 0)⊕ (x1, 0, 0))⊕ (x2, 0, 0))
(0, 0, 0) = SP r(SP r(x⊕ x3, y, z)⊕ (x4, 0, 0)).

Thus, TM = M0||M1||M2||M3||M4, where

M0 = (x0, x0, x0, x0),
M1 = (x1, x1, x1, x1),
M2 = (x2, x2, x2, x2),
M3 = (x3, x3, x3, x3),
M4 = (x4, x4, x4, x4).

Results for 2-round Gimli-Hash. For 2-round Gimli-Hash, one solution of
(x0, x1, x2, x3, x4) is

x0 = 0x5f6e8329,

x1 = 0x85cc11e1,

x2 = 0x5a324611,

x3 = 0x7fa159f7,

x4 = 0xec76a6c1.

We also have verified that the following TM = (M0||M1||M2||M3||M4) will lead to an
all-zero state, as shown in Table 4.

Table 4: Five-block message leading to an all-zero state for 2-round Gimli-Hash
M0 0x5f6e8329 0x5f6e8329 0x5f6e8329 0x5f6e8329
M1 0x85cc11e1 0x85cc11e1 0x85cc11e1 0x85cc11e1
M2 0x5a324611 0x5a324611 0x5a324611 0x5a324611
M3 0x7fa159f7 0x7fa159f7 0x7fa159f7 0x7fa159f7
M4 0xec76a6c1 0xec76a6c1 0xec76a6c1 0xec76a6c1

Full-state Value
0 0 0 0
0 0 0 0
0 0 0 0
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Results for 3-round Gimli-Hash. For 3-round Gimli-Hash, one solution of
(x0, x1, x2, x3, x4) is

x0 = 0x6a29e261,

x1 = 0x3553ae23,

x2 = 0x5921badf,

x3 = 0xa5ab32e8,

x4 = 0x64ab9bdd.

We also have verified that the following TM = (M0||M1||M2||M3||M4) will lead to an
all-zero state, as shown in Table 5.

Table 5: Five-block message leading to an all-zero state for 3-round Gimli-Hash
M0 0x6a29e261 0x6a29e261 0x6a29e261 0x6a29e261
M1 0x3553ae23 0x3553ae23 0x3553ae23 0x3553ae23
M2 0x5921badf 0x5921badf 0x5921badf 0x5921badf
M3 0xa5ab32e8 0xa5ab32e8 0xa5ab32e8 0xa5ab32e8
M4 0x64ab9bdd 0x64ab9bdd 0x64ab9bdd 0x64ab9bdd

Full-state Value
0 0 0 0
0 0 0 0
0 0 0 0
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