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Abstract. Multikey fully homomorphic encryption (MFHE) scheme
enables homomorphic computation on data encrypted under different
keys. To decrypt a result ciphertext, all the involved secret keys are
required. For multi decryptor setting, decryption is a protocol with
minimal interaction among parties. However, all prior schemes supporting
the protocol are not secure in public channel against a passive external
adversary who can see any public information not joining the protocol.
Furthermore, the possible adversaries have not been defined clearly.
In this paper, we revisit the security of MFHE and present a secure
one-round decryption protocol. We apply it to one of existing schemes
and prove the scheme is secure against possible static adversaries. As an
application, we construct a two round multiparty computation without
common random string.

Keywords: security of MFHE · MPC without CRS · Multikey homo-
morphic encryption.

1 Introduction

1.1 Multikey fully Homomorphic Encryption schemes

Fully homomorphic encryption (FHE) supports arbitrary computation on en-
crypted data under the same key. Multikey fully homomorphic encryption (MFHE)
is a generalization of FHE, which allows arbitrary computation on encrypted
data under different keys. The important thing is that all relevant secret keys
are required to decrypt a ciphertext. This concept was first proposed by Lopez,
Tromer, and Vaikuntanathan [17] in 2012, which is intended to apply to on-the-fly
multiparty computation. In fact, MFHE has been an interesting topic for round
efficient secure computation with minimal communication cost [5,9,16,18]. There
are several results on MFHE [4,9, 14, 15, 19] based on LWE problem, all of which
do not allow any interaction among associated parties before decryption protocol
is started. All their schemes assume a common random string (CRS) model,
which additionally requires a trusted party who distributes the CRS to every
party and can be viewed as an ideal version of multikey homomorphic encryption.
A CRS plays a role of linking all the parties’ ciphertexts under different keys to
do correct computation on them. Kim, Lee and Park introduce another scheme
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to get rid of a role of CRS, which is defined in [10] and also [16] implies the same
scheme. In their scheme, the parties share their public keys after key generation
step to relate their keys for their own sake like threshold fully homomorphic
encryption scheme [1], but keys are generated independently by each user. On
the other hand, each user generates key pair and encrypts its own message using
single key encryption then publishes together at once without any interaction
in the previous other schemes. Their scheme is for the fixed number of users so
that it might loose some dynamic property which lets users join and leave the
computation freely.

So far, there are at least two types of MFHE schemes: (1) non-interactive
MFHE which does not allow any interaction among parties before decryption
(note that the computation is done by a server), (2) interactive MFHE to share
public keys after key generation. We call a non-interactive scheme and an in-
teractive scheme to distinguish the two schemes in this paper. The interactive
scheme might loose a round efficiency for applying to multiparty computation
(MPC) since there is at least one interaction by default. On the other hand,
it is possible to remove CRS. The interactive schemes are defined in [3] and
[10,16] as designated multikey homomorphic encryption. However, regardless of
schemes, we can think of that the decryption procedure can be divided into two
cases. The first case is a single decryptor setting like in [17], where a trusted
decryptor exists and holds all parties’ secret keys so that no interaction among
users is required. Here, only the decryptor gets the output value using all the
secret keys. Then, each user just needs to keep its input privacy against one
another. The second one is a multi decryptor setting, where all users jointly
decrypt a common message with minimal interaction among them. Here, they
have to make sure that any information about the function value should not
be revealed until the joint decryption protocol is completed. Therefore, Kim,
Lee and Park define a new security notion for MFHE, which is called multikey
IND-CPA security, for the first time. This is a security for a multikey ciphertext
(associated with different keys) against one of users whose key is involved in
the ciphertext. It is a reasonable security since the ciphertext may leak some
information before decrypted with all relevant secret keys. However, it is not
sufficient for MFHE itself. All the existing MFHE schemes for multi decryptor
setting employ a decryption protocol called distributed decryption, which is also
widely used in threshold FHE [1,2]. More precisely, the distributed decryption
protocol consists of two steps:

– Partial Decryption: Each user decrypts a common ciphertext partially
with its own secret key. It outputs a partial decryption.

– Final Decryption: Given all users’ partial decryptions, it outputs the
plaintext(or evaluated plaintext).

In the protocol, the final decryption algorithm takes only partial decryptions
without any key. In other words, the partial decryption is not a ciphertext any
more. The final message is decrypted only adding all the partial decryptions.
Therefore, anyone who is not joining the protocol but can get all partial decryp-
tions from a transmission channel easily gets the evaluated message by running
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the final decryption algorithm for free. Indeed, this would cause a big problem in
industry. For example, there are three companies A, B and C, all of which want
to construct the best machine learning model using their clients’ information as
input. For clients’ privacy, each company encrypts each input data with its own
key. Then the three companies jointly compute a function to output the best
machine learning model via an MFHE scheme with multi decryptor. There is a
rival company D which does not join this computation, but also needs a good
machine learning model for the same type of data as A, B and C have. If A, B
and C use one of existing MFHE schemes, D can learn partial decryption shares
from a transmission channel and just run the public algorithm(final decryption)
to get the best machine learning model for free. If the above three companies
handle a private technique deserving patents, this can be a more critical issue.
As such, an MFHE scheme with the above decryption protocol is not secure in
a public channel. Up to our best knowledge, all the existing schemes have not
considered this situation since most of schemes are constructed for MPC hence
they can assume a private channel. In other words, MFHE schemes in public
channel have not been studied yet. In fact, it is worth consideration for MFHE
itself since “encryption” must protect a plaintext from at least a static adversary
in any public channel.

Likewise, an adversarial model and what should be protected from that
adversaries are different depending on the decryptor setting in MFHE. However,
the existing security definition of MFHE is somewhat ambiguous and not clear
enough. Most of previous schemes just check their correctness and apply the
IND-CPA security of their base single key homomorphic encryption scheme, even
they do not clearly mention which decryptor setting they assume. That is, no
particular security definition for MFHE itself has been fully discussed yet.

1.2 Our contribution

In this paper, we resolve the above problems as a main result. We revisit the
security of multikey homomorphic encryption scheme and construct a secure
decryption protocol based on an existing multikey homomorphic encryption
scheme [14] based on TFHE [6–8]. To do this, we define a possible static adversary
and semantic security for MFHE. Then we prove that a MFHE scheme with our
protocol is semantically secure. Our idea is that a partial decryption remains
a multikey ciphertext still encrypted under the other users’ keys even if it is
partially decrypted by a user. Therefore, it is still secure against an adversary
not holding any key.

As an additional result, we obtain a round optimal multiparty computation
protocol without CRS. To do this, we convert the non-interactive MFHE with
CRS to an interactive MFHE without CRS combining two MFHE schemes to
get a hybrid scheme. In the hybrid scheme, we use the original (leveled) MFHE
for an encryption of message, and we use the converted interactive scheme for
bootstrapping part (encryption of secret key). As a result, we construct a 2 round
multiparty computation without CRS via the hybrid scheme. We show that it
is possible to construct two round MPC protocol via MFHE without CRS, but
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with limited operation only in the first computation. Any MPC construction
from MFHE without CRS [3,10] has not been achieved two round even against
honest but curious adversaries. At least three rounds are required for even limited
operation. Therefore, we contribute the first construction of optimal round of
MPC from MFHE without CRS.

1.3 Organization

We review some important notions and pre-results in Section 2 and introduce
a possible adversary and define the semantic security of MFHE in Section 3.
In Section 4, we present our distributed decryption protocol and apply it to a
multikey TFHE scheme. As an application of MFHE, we first modify a multikey
TFHE to remove CRS, allowing interaction among parties, then combine the two
multikey TFHE schemes to construct a 2 round MPC without CRS in Section 5.

2 Preliminaries

Notation: We denote λ as the security parameter. We define vectors and matri-
ces in lowercase bold and uppercase bold, respectively. Dot product of two vectors
v,w is denoted by < v,w >. For a vector x, x[i] denotes the i-th component
scalar. We denote that B as the set {0, 1} and T as the real torus R/Z, the set
of real number modulo 1. We denote ZN [X] and TN [X] by Z[X]/(XN + 1) and
R[X]/(XN + 1) mod 1, respectively. BN [X] denotes the polynomials in ZN [X]
with binary coefficients. For a real α > 0, Dα denotes the Gaussian distribution
of standard deviation α. In this paper, we use the same notation with [7] for
better understanding.

2.1 TFHE scheme

We describe our base FHE scheme TFHE [7] and its multikey version [14]. The
multikey version of TFHE has smaller parameter and ciphertext size, leading to
better performance than previous GSW [13]-based multikey schemes [4,5,9,18,19].
The TFHE scheme [7] is working entirely on real torus T and TN [X] based on
TLWE problem and TRLWE problem which are torus variant of LWE problem
and RLWE problem respectively, where N is a power of two. It is easy to see that
(T,+, ·)(resp. (TN [X],+, ·)) is Z(resp. ZN [X]) module.

A TLWE (resp. TRLWE)sample is defined as (a, b) ∈ Tkn+1 (resp. TN [X]k+1)
for any k > 0, where a is chosen uniformly over Tkn(resp. TN [X]k) and b =<
a, s > +e. The vector s is a secret key which is chosen uniformly from Bkn(resp.
BN [X]k) and the error e is chosen from Gaussian distribution with standard
deviation α ∈ R > 0. Furthermore, we follow the [7]’s definition of trivial sample as
having a = 0 and noiseless sample as having the standard deviation α=0. Here, we
denote the message space toM⊆ T. A TLWE ciphertext of µ ∈M is constructed
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by adding a trivial noiseless TLWE message sample (0, . . . , µ) ∈ Tkn+1 to a non-
trivial TLWE sample. Therefore, the TLWE ciphertext of µ, say c, which we will
interpret as a TLWE sample (of µ) is (a, b) ∈ Tk+1, where b = < a, s > +e+ µ.
To decrypt it correctly, we use a linear function ϕs called phase, which results in
ϕs(c) = b− < a, s >= µ+ e and we round it to the nearest element in M. We
denote the error as Err(c), which is equal to ϕs(c)− µ. For a TRLWE encryption,
it follows the same way over TN [X] but a message µ is a polynomial of degree N
with coefficients ∈M.

From the above definition, we can define the decisional TLWE(resp. TRLWE)
problem which is parametrized by an error distribution on TN [X] and a function
ϕs.

- Decision Problem: distinguish the uniform distribution on Tkn+1 (resp. Tk+1
N )

from TLWE (resp.TRLWE) samples for a fixed TLWE (resp. TRLWE) secret s.

The TLWE (resp. TRLWE) problem is a generalization of LWE (resp. RLWE)
problem which is as hard as approximating the shortest vector problem.

2.2 TGSW and an external product

As we can see, TLWE and TRLWE samples have additive homomorphic property.
In order to have FHE scheme, [7] defined TGSW ciphertext which supports
external product with TLWE ciphertext to get a TLWE ciphertext encrypting
multiplication of messages. For TGSW samples in the ring mode, we use the
notation TRGSW which is working as TRLWE and also give the definition of a
TRGSW sample only. (for N = 1, we can think of TGSW sample).

For any positive integer Bg(≥ 2), `, k, a TRGSW sample is a matrix C =
Z + µ ·H ∈ TN [X](k+1)`×(k+1), where each row of Z is a TRLWE sample of zero
and H is a gadget matrix which is defined by

H :=



1/Bg . . . 0
...

. . .
...

1/B`g . . . 0
...

. . .
...

0 . . . 1/Bg
...

. . .
...

0 . . . 1/B`g


∈ TN [X](k+1)`×(k+1).

i.e. H = Ik+1 ⊗ g, where g = (1/Bg, . . . , 1/B
`
g). There is a decomposition algo-

rithm g−1(·), which outputs the `-dimensional vector in Z ∩ (−Bg/2, Bg/2],
satisfying < g−1(a),g >≈ a for a ∈ R. The message µ is in ZN [X]. We
denote TLWE(µ),TRLWE(µ), and TRGSW(µ) as a ciphertext of each proper
message µ of TLWE,TRLWE, and TRGSW, respectively. We also denote a triv-
ial TRGSW(1)(resp. TGSW(1)) as Zt + H, where each row of Zt is a trivial
TRLWE(resp. TLWE) sample. An external product between a TGSW ciphertext
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and a TLWE ciphertext, denoted as �, is defined as A � b = H−1(b) ·A, where
A is a TGSW sample of µA, b is a TLWE sample of µb and H−1(·) is the gadget
decomposition function DecH,β,ε of [7] with different notation. Then the output
of the product is a TLWE(µA · µb). We denote the error as Err(A), which is a
list of the (k + 1)` TLWE errors of each line of A. Then the error growth of the
external product between A and b is following:

‖Err(A � b)‖∞ ≤ (k+ 1)`Nβ ‖Err(A)‖∞ + ‖µA‖1 (1 + kN)ε+ ‖µA‖1 ‖Err(b)‖∞

2.3 Multikey version of TFHE

We only describe the leveled fully homomorphic mode of Chen, Chillotti and
Song’s scheme since we focus on decryption algorithm so that we refer [14] for
more detail. Their scheme assumes a common random string (CRS) among users
and the CRS is used for generating a public key and evaluation keys so we do
not care of it in detail here. Their scheme is non-interactive before decryption.

– MTFHE1 .Setup(1λ): It takes security parameter and outputs TLWE param-
eter params which consists of TLWE dimension n, key distribution χ, error
parameter α, and evaluation parameters evparam.

– MTFHE1 .KeyGen(params):

• Sample s = (s0, . . . , sn−1)← χ and set it as a TLWE secret key sk.
• construct a public key pk, evaluation keys evk from proper algorithms

in [14] with params and evparam.

– MTFHE1 .Enc(m, s): Sample a = (a0, a1, . . . , an−1) from Tn uniformly at
random. Then take a message bit m ∈ {0, 1} and construct a TLWE sample
(a, b) ∈ Tn+1, where b = 1

4m− < a, s > +e (mod 1), e is chosen from the
Gaussian distribution Dα. Returns a ciphertext ct = (a, b).

– MTFHE1 .Dec(ĉt, {skj}j∈[k]): Taking a (evaluated)ciphertext ĉt = (a1, . . . ,ak, b) ∈
Tkn+1 and a concatenation of secret key vectors (s1, . . . , sk, 1) ∈ Tkn+1 as

input and return the message bit m ∈ {0, 1}, which satisfies b +
∑k
j=1 <

aj , sj >≈ 1
4m (mod 1).

– MTFHE1 .Eval(ĉt1, ĉt2): It takes two ciphertexts ĉt1 ∈ Tk1n+1, ĉt2 ∈ Tk2n+1,
where k1, k2 are the number of parties who joined the previous evaluations
to construct ĉt1, ĉt2 ,respectively, and the set [k] is the indices of parties who
are associated either ĉt1 or ĉt2. (we only consider NAND gate here.)

• Extend ĉt1 and ĉt2 to make them the same dimensional vectors ĉt
′
1, ĉt

′
2

∈ Tkn+1 encrypted under the concatenated secret key ŝ = (s1, . . . , sk) ∈
Zkn. Rearrange ajs giving each index to each user and putting zero in
the empty slots, for j ∈ [k].

• Return an evaluated ciphertext ĉt
′

= (0, . . . ,0, 58 )− ĉt
′
1 − ĉt

′
2 (mod 1).

For the bootstrapping part with {evkj}j∈[k], we do not consider here, so we
refer the original paper. We call an evaluated ciphertext multikey ciphertext
in this paper. The dimension of a multikey ciphertext increases as a number
of homomorphic evaluation increases.
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2.4 Distributed decryption

A multikey homomorphic encryption scheme for multi decryptor setting includes
a decryption protocol in which all users jointly decrypt a common evaluated
message. The most round efficient distributed decryption [18] has been widely
adopted to recent schemes, which is following:

– PartDec(ĉt, ski) On inputs a multikey ciphertext ĉt under a sequence of k
users’ keys and the i -th secret key ski, outputs a partial decryption pi.

– FinDec(p1, . . . , pk) Given all parties’ partial decryptions {pi}i∈[k], outputs a
plaintext(or evaluated plaintext).

The decryption algorithm of MTFHE1 is defined for a single decryptor case. But,
they also suggest a distributed decryption protocol following the above for multi
decryptor case, hence it is not secure in a public channel.

3 Multikey fully homomorphic encryption security

Before we define the semantic security of MFHE, we observe possible static(passive)
adversaries first. The goal of MFHE for multi decryptor is to protect each user’s
individual message and the common evaluated message. Then we can see that
there are at least two types of static adversaries, one of which is an internal
adversary and the other is an external adversary. The internal adversary is one of
participants of computation but an external adversary is not. Both can just see
messages transmitted over any public channel but hope to learn any information
about each user’s message. However, the external adversary wants to learn the
evaluated message as well. Therefore, a MFHE with multi decryptor has to
consider a security for multikey ciphertext against both adversaries and partial
decryption against an external adversary. Thanks to the multikey IND-CPA
security [10], the multikey ciphertext is guaranteed to be secure against both
adversaries. Even if they only care of one of joint users, it is obvious that if a
multikey ciphertext is secure against one of secret key owners, it is secure against
one not holding any key. So we call it the internal security (of MFHE) in this
paper. Then we now define the external security (of MFHE).

For a probabilistic multikey fully homomorphic encryption algorithm, we
naturally extend the original indistinguishability under chosen plaintext attack
(IND-CPA) to any multikey FHE scheme by the following game between a PPT
static external adversary A and a challenger C. For any multikey FHE encryption
scheme Π = (KeyGen, Enc, Eval, Dec), any static external adversary A, and any
value λ for the security parameter, where Dec = (MFHE .PartDec,MFHE .FinDec)
is a distributed decryption protocol, MFHE security game is defined as:

1 A chooses a positive integer k and gives it to the challenger C.
2 C runs KeyGen(1λ) to generate k random key pairs {(ski, pki)}i∈[k] and k

evaluation keys {evki}i∈[k]. Then it publishes all the public keys {pki}i∈[k]
and {evki}i∈[k] to A and keeps all the secret keys {ski}i∈[k] in secret.
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3 The adversary A is given input 1λ and oracle access to Enc() with all public
keys and its chosen messages. Then it chooses an index j ∈ [k] and outputs a
pair of message vectors m0,m1 of the same length and a function f (here,
each component of a vector is viewed as each user’s message). The message
vectors are m0 = (0, 0, . . . , 0) ∈ {0, 1}k and m1 = (1, 0, . . . , 0) ∈ {0, 1}k
and a funtion f is defined as f : {0, 1}k → {0, 1} which outputs the first
component of input vector. Then it gives m0,m1 , f , and the index j to C.

4 C chooses a random bit b← {0, 1}, computes a multikey ciphertext which is
an encryption of f(mb) under k public keys, running Eval. Then it partially
decrypts the ciphertexts using {ski}i∈[k]\{j}. It sends the partial decryption
messages to A.

5 The adversary is free to perform any number of additional computations,
encryptions by given keys (free access to Enc,Eval). Finally, it outputs a guess
for the value of b′. If b′ = b, A wins.

We define that for any multikey homomorphic encryption scheme, if the advantage
of A is negligible, then the scheme achieves the external security. As a result, we
define semantic security for a MFHE.

Definition 1. For a multikey homomorphic encryption scheme(KeyGen, Enc,
Eval, Dec), where Dec is run by a single decryptor, it is semantically secure if it
achieves the internal security. For a multikey homomorphic encryption scheme
for multi decryptor, where Dec is a protocol among users, it is semantically secure
if it achieves both internal and external security.

It is possible for a single decryptor who holds every associated secret keys to
decrypt a multikey ciphertext by itself. Therefore, achieving the only internal
security is enough for its semantic security.

4 Distributed decryption for only joint users

4.1 Distributed decryption protocol

We first formalize the distributed decryption protocol with general algorithms for
multikey homomorphic encryption scheme and then construct a specific protocol
applying TFHE scheme based on LWE problem. Such a protocol consists of
two steps: (1) each user first decrypts a common evaluated ciphertext partially
with its secret key and broadcast the partial information, (2) after gathering all
the partial decryption from all users, each user decrypts the correct evaluated
message finally with its secret key, independently. Let k be the number of users.

Definition 2. A distributed decryption for multikey homomorphic encryption
consists of two algorithms:

– MFHE .PartDec(ĉt, ski): It takes a common evaluated ciphertext ĉt and i-th
user’s secret key ski for i ∈ [k] on input. It returns partial decryptions pi,j
for j ∈ [k]. The user keeps pi,i secret and broadcasts pi,j for j ∈ [k]\{i}.
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– MFHE .FinDec({pj,i}j∈[k], ski): It takes all the partial decrypted messages pj,i
for j ∈ [k]\{i} which are given to the i-th user and its own partial decryption
message pi,i and its secret key ski on input. It outputs the correct evaluated
message.

Comparing to previous protocol, the number of partial decryption increases
linearly on k while the previous one is constant. However, it seems inevitable
for keeping privacy. If a scheme is interactive before decryption protocol, it is
easy to think of an encryption of a partial decrypted message with other users’
public keys since users share their public keys before the computation. Hence
the MFHE .PartDec might have another input pkj for j ∈ [k]\{i}. For a non-
interactive scheme, server can give all required inputs for distributed decryption
such as joint users’ public keys and evaluation keys for users’ own sake, however,
it would not be straightforward to agree on sharing keys among users. Therefore,
we introduce a naive protocol preserving the optimal round without having other
users’ information.

4.2 Specific protocol with multikey TFHE scheme

The multikey ciphertext of [14] scheme is ĉt = (a1, . . . ,ak, b) ∈ Tkn+1, which

satisfies b = 1
4m−

∑k
j=1 < aj , sj > +e (mod 1), where k is the number of joint

users, m ∈ {0, 1}. Then the distributed decryption protocol (of the i-th user) is
following:

– MTFHE1 .PartDec(ĉt, si):

• compute pi,i = b+ < ai, si >= 1
4m−

∑k
j 6=i < aj , sj > +e (mod 1)∈ T

• pi,i can be viewed as a one component of TLWE ciphertext of j-th user for

j ∈ [k]\{i}, i.e pi,i =< aj , sj > +mess+e, where mess = 1
4m−

∑k
t 6=i,j <

at, st > for t ∈ [k]\{i, j}. Then the user does external product between
a TLWE sample (aj , pi,i) and a trivial TGSW(1) which is denoted as Aj

with noise ej from Dα by the user i.

• The output of the external product is a TLWE ciphertext of the same
message mess, which is pi,j = (ai,j , bi,j) ∈ Tn+1 and is given to each user
j for j ∈ [k]\i.

– MTFHE1 .FinDec({pj,i}j∈[k], si):
• It parses pj,i into aj,i and bj,i and compute b′j,i = bj,i+ < ai, si > for

every j ∈ [k]\{i}.
• It computes

∑k
j 6=i b

′
j,i − (k − 2)pi,i = 1

4m+ ē.

• if the output is close to 1
4 the evaluate message 1, otherwise 0.

Note that for k = 2 (two users), b′j,i = bj,i+ < ai, si > itself gives the result for
i 6= j ∈ [2].
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Correctness of decryption Fix a user i for i ∈ [k]. Then the correctness for
the user follows:

k∑
j 6=i

b′j,i − (k − 2)pi,i

=

k∑
j 6=i

(
1

4
m−

∑
t 6=i,j

< at, st > +ẽj)− (k − 2)pi,i

= (k − 1)
1

4
m−

k∑
j 6=i

(

k∑
t6=i,j

< at, st > +ẽj)− (k − 2)(
1

4
m−

k∑
j 6=i

< aj , sj > +e)

=
1

4
m− (k − 2)

k∑
j 6=i

< aj , sj > +(k − 2)

k∑
j 6=i

< aj , sj > +

k∑
j 6=i

ẽj − (k − 2)e

=
1

4
m+ ē

If the magnitude of the error term ē is less than 1
8 , the decryption works

correctly.

Error growth estimation Note that e is Err(b) and also Err(pi,i). After the
external product, e becomes ẽj for each j ∈ [k]\{i} then we can say ẽj = e+eaddj .
We can estimate the magnitude of the growth eaddj from the external product
noise propagation formula. Finally,

ē =

k∑
j 6=i

ẽj − (k − 2)e = (k − 1)e+

k∑
j 6=i

eaddj − (k − 2)e = e+

k∑
j 6=i

eaddj ,

‖ē‖∞ ≤ ‖e‖∞+(k−1)maxj(
∥∥eaddj∥∥∞) = ‖e‖∞+2(k−1)`βmaxj(‖Err(Aj)‖∞)+2ε.

Therefore, the noise growth after partial decryption procedure is quite small since
Err(Aj) is the error of a fresh TGSW ciphertext Aj for j ∈ [k]\{i}.

Semantic security of MTFHE1 We prove the semantic security of the above
multikey homomorphic encryption scheme.

Theorem 3. MTFHE1 scheme with the distributed decryption protocol is seman-
tically secure assuming the hardness of the underlying TLWE problem.

The security against an internal adversary is trivial. Since the evaluated
multikey ciphertext is a TLWE ciphertext (a1, . . . ,ak, b), where b = 1

4m−
∑k
i=1 <

ai, si > +e which is semantically secure itself by TLWE assumption even if any
user partially decrypts it with its own secret key (i.e. b+ < ai, si > is also a
TLWE ciphertext for i ∈ [k]). We now prove the security of the above scheme
against external adversary.
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Proof. The security game defined in Section 3 follows: After the step 4, all
A has got is a multikey ciphertext ĉt = (a1, . . . ,ak, b), pi,j = (ai,j , bi,j) for

i ∈ [k]\{j}. What A may perform is to do
∑k
i6=j pi,j − (k − 2)(aj , b). The result

is (a′j ,
1
4m− < a′j , sj > +error), which is a TLWE ciphertext under sj . Then A

gives the result to a TLWE distinguisher D and A outputs whatever D outputs.
By the TLWE assumption, the advantage of D is negligible, so is A’s.

We note that the same technique can be applied to the recent MFHE schemes
for batched ciphertext [15] in which the external product would be replaced with
a tensor product.

5 Round optimal MPC protocol without a CRS via two
MFHE schemes

Multikey fully homomorphic encryption (MFHE) scheme is known as achiev-
ing a round efficient multi party compuation (MPC) [1,16,18]. Mukherjee and
Wichs [18] constructed a round optimal(2 round) MPC with CRS and Kim, Lee,
and Park [16] achieved a three round MPC without a CRS via interactive MFHE
scheme (against semi-malicious adversaries). There is a 2 round semi malicious
secure MPC protocol without CRS assuming the existence of two round oblivious
transfer (OT) [12]. Also, if there is a two round MPC protocol without CRS
via MFHE, and the ciphertexts and public keys are stored to reuse, it can be
done to get a correct output for one round assuming the adversaries are static.
Such scenario can be achieved in a hospital. For instance, authorized doctors
want to experiment using several patients’ data encrypted under individual keys.
Once their public keys and encrypted data are registered, doctors can do any
computation on them to get a result executing one round MPC via MFHE.
However, achieving the full security without CRS takes at least 4 rounds, which
is proved in [11].

Assuming CRS in any protocol for multi parties might be a quite strong
assumption and does not fit in real situation. Like Kim, Lee and Park’s scheme, it
seems that alternating a role of CRS can be achieved sharing public keys allowing
an interaction among parties as a trade off. We construct an optimal round(two
round) MPC protocol without CRS against honest-but curious adversaries, com-
bining non-interactive MFHE scheme with CRS and interactive MFHE scheme
without CRS. First, we convert MTFHE1 to an interactive version MTFHE2 then
construct a MPC protocol.

5.1 MTFHE2 scheme without common random string

We convert the non-interactive scheme for bootstrapping part of MTFHE1 to
have an interaction before decryption. In particular, we convert it into designated
multikey homomorphic encryption scheme as [10]. It means that all parties share
their public keys and relate keys to alter the role of common random string. In
MTFHE1, a common random string is the common random parameter a. Instead,
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each party generates its public key independently, then publishes it. It suffices
to show how multikey TRGSW ciphertexts (Section 3.2 of [14]) are correctly
constructed substituting the common random parameter a to ai for i ∈ [k], where
k is the fixed number of parties, since the common random parameter only has an
effect on those procedure. Other algorithms are compatible with our modification.
After showing that, we construct MTFHE2 with multi decryptor.

– mTRGSW .Setup(1λ): It outputs evparam = (N,ψ, α,g, `), whereN is TRLWE
dimension, ψ is a key distribution over ZN [X], α is an error parameter, and
g and ` are TRGSW parameter.

– mTRGSW .KeyGen(evparam): Sample a secret z ← ψ and set a vector z =
(z, 1). Sample an error vector e ← D`

α over TN [X] and a random vector
a ← TN [X]`. Set the public key as P ← pk = [a,b] ∈ TN [X]`×2, where
b = −a · z + e (mod 1). It returns (z, pk).

– mTRGSW .Enc(µ, z, {pkj}j∈[k], i): It takes a plaintext µ ∈ ZN [X], a secret
z, and all involved parties’ public keys, (it is run by a party i) it returns a

multikey ciphertext Ĉi ∈ TN [X]`(k+1)×(k+1). And the procedure is following:
(1) Sample c0 ← TN [X]` and ec ← D`

α uniformly at random. Set Ci =
[c0,i|c1,i], where c1,i = −zi · c0,i + ec + µg (mod 1).

(2) Sample a randomness rj ← ψ and an error matrix Ej ← D`×2
α for j ∈ [k].

Output Dj = [d0,j |d1,j ] = rjPj + Ej + [µ · g|0] (mod 1)∈ TN [X]`×2 for
j ∈ [k]. And for j ∈ [k]\{i}, set D̄j = [d̄0,j |d̄1,j ] = rj · Pi + Ēj , where
Ēj ← D`×2

α uniformly at random.
(3) Sample f0 ← TN [X]`, ef ← D`

α uniformly at random. Set a ciphertext
F = [f0|f1] ∈ TN [X]`×2 where f1 = −zi · f0 + ef (mod 1).

Ĉi :=



d0,1 · · · d̄0,1 + f0 · · · 0 f1 + d1,1 + d̄1,1

...
. . .

...
. . .

...
...

0 · · · d0,i · · · 0 d1,i

...
. . .

...
. . .

...
...

0 · · · d̄0,k + f0 · · · d0,k f1 + d1,k + d̄1,k

0 · · · c0,i · · · 0 c1,i


∈ TN [X]`(k+1)×(k+1)

Note that the (j, j)-th component of Ĉi is d0,j for j ∈ [k]. The elements
other than the diagonal, the i-th column and k + 1 th column are zero
vectors.

– mTRGSW .Dec({skj}j∈[k], Ĉ): Given all the involved secret keys {skj} and a

multikey ciphertext Ĉ, it returns a message µ.

Correctness Then we check the correctness i.e. Ĉiẑ ≈ µHẑ (mod 1), where ẑ
is a concatenation of each party’s secret vector (z1, . . . , zk, 1). The correctness is
done with the following equation:

– zi · c0 + c1+ = Cizi ≈ µ · g (mod 1).
– zi · d̄0,j + d̄1,j = D̄jzi ≈ 0 (mod 1).
– zi · f0 + f1 = Fzi ≈ 0 (mod 1).
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– zj · d0,j + d1,j = Djzj ≈ µzjg (mod 1).

Theorem 4. The above MFHE scheme mTRGSW with a single decryptor is
semantically secure by the underlying TRLWE assumption.

Proof. For a single key ciphertext, the two distributions {(Pi,Ci,Di = [d0,i|d1,i])}
and {(Pu,Cu,Du), Pu,Cu,Du ← TN [X]`×2 uniformly at random } are com-
putationally indistinguishable by the underlying TRLWE problem. Therefor the
single key ciphertext for i-th party is semantically secure. Then we consider the
internal security for the other information related with other keys. For the j-th
user holding zj and j ∈ [k]\{i}, what she can do is zj · d0,j + f1 + d1,j + d̄1,j .
Then the result is µizj · g + f1d̄1,j , which looks totally uniform random element
for her. The reason follows:
(ai, d̄0,j = rj · ai + ē0,j) is computationally indistinguishable with (ai,u) by the
underlying TRLWE problem, where u← TN [X]` uniformly at random, since rj is
a secret chosen by the i-th user. This implies that d̄0,j + f0 looks also uniformly
random. Thanks to this, f0 is not revealed at all so that f1 itself is considered as
a uniform element. Then it makes f1 + d̄1,j looks uniformly random. As a result,
no internal adversary can distinguish if the given multikey ciphertext encrypts 0
or 1. In other words, the mTRGSW scheme achieves the internal security so that
it is semantically secure by the underlying TRLWE assumption.

Now, we construct an interactive MFHE scheme MTFHE2 from MTFHE1 and
mTRGSW scheme.

– MTFHE2 .Setup(1λ) → (params): It runs MTFHE1 .Setup(1λ) and we now
specify the evparam is included in params. evparam← mTRGSW .Setup(1λ).

– MTFHE2 .KeyGen(params) → (z, pk, sk) : It runs MTFHE1 .KeyGen(params)
to get sk and runs mTRGSW .KeyGen(evparam) to get (z, pk)

– MTFHE2 .Enc(pk1, . . . , pkk, ski, z, µ): It runs MTFHE1 .Enc(µ, ski) to get a

ciphertext ct and runs mTRGSW(ski[t], z, pk1, . . . , pkk, i) to get Ĉi,t for t ∈ [n].
Set {Ci,t}t∈[n] as evki. It outputs ct and evk

– MTFHE2 .Dec(ĉt, sk1, . . . , skk) : It runs MTFHE1 .Dec(ĉt, sk1, . . . , skk) and
outputs the message µ.

– MTFHE2 .Eval(ĉt1, ĉt2, {evkj}j∈[k]) : It runs MTFHE1 .Eval(ĉt1, ĉt2) and boot-
strapping algorithm of [14] with {evkj}j∈[k] then outputs the evaluated ci-

phertext ĉt
′
.

Note that the decryption protocol is done by MTFHE1 .PartDec and MTFHE1 .FinDec
having an interaction with other parties defined in Section 4. We do not cover how
bootstrapping procedure works with evkj since it is exactly the same procedure
as the original paper [14]. We have already checked the correctness of mTRGSW
ciphertext so that all other algorithms work correctly. This modification allows
to get rid of the assumption of the common random parameter (CRS) among
all users. However, the number of users should be fixed before the computation,
which might be a negative point for some computation.
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5.2 2 round MPC without a CRS via MTFHE2

We give an optimal round MPC protocol without CRS below. It is not necessary
to use our distributed decryption protocol in a MPC protocol for the last step
since traditional MPC only cares of input security. Applying what decryption
protocol depends on a purpose of a computation.

Let f : {0, 1}k → {0, 1} be the function to compute.

Setup. Run params← MTFHE2 .Setup(1λ). Make sure that all the parties have
params.

Input: For i ∈ [k], each party Ui holds input mi ∈ {0, 1}, and wants to compute
f(m1, · · · ,mk).

Round I. Each party Ui executes the following steps:
– Generates its public key pki and secret keys by running MTFHE2 .KeyGen(params).
– Encrypts a message mi running MTFHE1 .Enc to get a TLWE sample

cti = (ai, bi).
– Broadcasts the public key pki, cti.

Round II. Once receiving public keys {pkk}k 6=i, each party Ui for i ∈ [k]
executes evaluation procedure with the following steps:
– Runs mTRGSW,Enc(ski[t], z, pk1, . . . , pkk, i) to get evki.
– Extends {ctj}j∈[k] to get {ĉtj}j∈[k].
• If the protocol is run for the first time, each party runs MTFHE1 .Eval(ĉtj1, ĉtj2)

to get an evaluted ciphertext for j1, j2 ∈ [k].
• else, runs MTFHE2 .Eval(ĉtj1, ĉtj2, {evkj}j∈[k]) to get an evaluted

ciphertext for j1, j2 ∈ [k].
– Runs MTFHE2 .PartDec(ĉt, ski) to get a partial decryption pi,j for j ∈ [k].
– broadcasts evki, pi,j .

Output: On receiving all the values {pj,i}j∈[k], each party Ui runs the final
decryption algorithm to obtain the function value f(m1, · · · ,mk):

y ← MTFHE2 .FinDec({pj,i}j∈[k], ski),

and output y = f(m1, · · · ,mk).

The above protocol is limited to run a function which has a depth which guarantees
that the decryption never fails only for the first time. In fact, very limited
operation is possible (for instance, gate (NOT gate only) for TFHE, addition
for BFV scheme). After that, from the second time, all parties can run the
protocol with arbitrary function without predefined depth since the parties
share bootstrapping key{evkj}j∈[k] in the second round. Therefore, once the keys
{pkj}j∈[k], {evkj}j∈[k] are published, the protocol does not generate keys for the
same number of parties and the parties reuse the keys.

Security This 2 round MPC protocol is secure against honest but curious
adversaries. Honest but curious adversary is a legitimate party in a communication
protocol who does not deviate from the defined protocol but will attempt to
learn all possible information from legitimately received messages. Then we can
see that the security is guaranteed by the semantic security of MTFHE2.
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