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Abstract

We initiate a systematic study of pseudorandom functions (PRFs) that are computable by
simple matrix branching programs; we refer to these objects as “matrix PRFs”. Matrix PRFs are
attractive due to their simplicity, strong connections to complexity theory and group theory,
and recent applications in program obfuscation.

Our main results are:

• We present constructions of matrix PRFs based on the conjectured hardness of computa-
tional problems pertaining to matrix products.

• We show that any matrix PRF that is computable by a read-c, widthw branching program
can be broken in time poly(wc); this means that any matrix PRF based on constant-width
matrices must read each input bit ω(log(λ)) times. Along the way, we simplify the “tensor
switching lemmas” introduced in previous IO attacks.

• We show that a subclass of the candidate local-PRG proposed by Barak et al. [Eurocrypt
2018] can be broken using simple matrix algebra.

• We show that augmenting the CVW18 IO candidate with a matrix PRF provably im-
munizes the candidate against all known algebraic and statistical zeroizing attacks, as
captured by a new and simple adversarial model.

∗E-mail:chenyilei.ra@gmail.com. Research conducted while the author was at Boston University supported
by the NSF MACS project and NSF grant CNS-1422965.
†E-mail:hhan @snu.ac.kr. Research supported by Institute for Information & communication Technology Pro-

motion (IITP) grant funded by the Korea government (MSIT) (No. 2016-6-00598, The mathematical structure of func-
tional encryption and its analysis), and the ARO and DARPA under Contract No. W911NF-15-C-0227.
‡E-mail:vinodv@csail.mit.edu. Research supported in part by NSF Grants CNS-1350619 and CNS-1414119,

Alfred P. Sloan Research Fellowship, Microsoft Faculty Fellowship, the NEC Corporation and a Steven and Renee Finn
Career Development Chair from MIT. This work was also sponsored in part by the Defense Advanced Research Projects
Agency (DARPA) and the U.S. Army Research Office under contracts W911NF-15-C-0226 and W911NF-15-C-0236.
§E-mail:wee@di.ens.fr. Research supported by ERC Project aSCEND (H2020 639554).

1



Contents

1 Introduction 1
1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Applications to IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 5

3 Direct Attacks on Matrix PRFs 6
3.1 Rank attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Analysis for read-once branching programs . . . . . . . . . . . . . . . . . . . . 7
3.1.2 Analysis for matrix PRFs with multiple repetitions . . . . . . . . . . . . . . . 7

3.2 Implication of the rank attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.1 Efficient PRF based on the conjugacy problem . . . . . . . . . . . . . . . . . . 9
3.2.2 Cryptographic hash functions based on Cayley graphs . . . . . . . . . . . . . 10

4 PRFs from Hard Matrix Problems 11
4.1 The initial attempts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 The first formal assumption and construction . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Another assumption and a synthesizer-based PRF construction . . . . . . . . . . . . 13
4.4 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Matrix Attacks for the Candidate Block-Local PRG from BBKK18 14

6 Candidate Indistinguishability Obfuscation 15
6.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6.1.1 Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.1.2 Construction of subprograms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6.2 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2



1 Introduction

Pseudorandom functions (PRFs), defined by Goldreich, Goldwasser, and Micali [29], are keyed
functions that are indistinguishable from truly random functions given black-box access. In this
work we focus on pseudorandom functions that can be represented by simple matrix branching
programs; we refer to these objects as “matrix PRFs”. In the simplest setting, a matrix PRF takes a
key specified by ` pairs of w × w matrices {Mi,b}i∈[`],b∈{0,1} where

PRF({Mi,b}i∈[`],b∈{0,1} ,x ∈ {0, 1}
`) :=

∏̀
i=1

Mi,xi

Matrix PRFs are attractive due to their simplicity, strong connections to complexity theory and
group theory [12, 44, 1], and recent applications in program obfuscation [27, 11].

Existing constructions. First, we note that the Naor-Reingold PRF [37] (extended to matrices in
[34]) and the Banerjee-Peikert-Rosen PRF [7] may be viewed as matrix PRFs with post-processing,
corresponding to group exponentiation and entry-wise rounding respectively. However, the ap-
plications we have in mind do not allow such post-processing. Instead, we turn to a more general
definition of read-c matrix PRFs, where the key is specified by h := c · ` pairs of w × w matrices
{Mi,b}i∈[h],b∈{0,1} where

PRF({Mi,b}i∈[h],b∈{0,1} ,x) := uL ·
h∏
i=1

Mi,xi mod `
· uR (1)

Here, uL,uR correspond to fixed vectors independent of the key. This corresponds exactly to
PRFs computable by read-c matrix branching programs. By applying Barrington’s theorem on
the existing PRFs in NC1, such as the two PRFs we just mentioned [37, 7], we obtain read-poly(`)
matrix PRFs based on standard assumptions like DDH and LWE.

This work. In this work, we initiate a systematic study of matrix PRFs.

• From the constructive perspective, we investigate whether there are “simpler” construc-
tions of matrix PRF, or hardness assumptions over matrix products that can be used to build
matrix PRFs. Here “simpler” means the matrices Mi,b’s are drawn from some “natural”
distribution, for instance, independently at random from the same distribution. Note that
the constructions obtained by apply Barrington’s theorem [10] on PRFs in NC1 yield highly
correlated and structured distributions.

• From the attacker’s perspective, the use of matrices opens the gate for simple linear algebraic
attacks in breaking the hardness assumptions. We would like to understand what are the
characteristics that a matrix PRF could or could not have, by trying different linear algebraic
attacks. These characteristics include the distribution of the underlying matrices, as well as
the complexity of the underlying branching program.

• Finally, we revisit the application of matrix PRFs to program obfuscation as a mechanism for
immunizing against known attacks.

1



1.1 Our Contributions

Our contributions may be broadly classified into three categories, corresponding to the three lines
of questions mentioned above.

1.1.1 Attacks

We show that any matrix PRF that is computable by a read-c, width-w branching program can be
broken in time poly(wc); this means that any matrix PRF based on constant-width matrices must
read each input bit ω(log(λ)) times. Our attack and the analysis are inspired by previous zeroizing
attacks on obfuscation [23, 6, 18]; we also provide some simplification along the way. We note that
the case of c = 1 appears to be folklore.

The attack. The attack is remarkably simple: given oracle access to a function F : {0, 1}` → R,

1. pick any L := w2c distinct strings x1, . . . , xL ∈ {0, 1}`/2;

2. compute V ∈ RL×L whose (i, j)’th entry is F (xi‖xj);

3. output rank(V)

If F is a truly random function, then V has full rank w.h.p. On the other hand, if F is computable
by a read-c, width w branching program, then we show that F (xi‖xj) can be written in the form
〈ui,vj〉 for some fixed u1, . . . ,uL,v1, . . . ,vL ∈ Rw

2c−1
. This means that we can write

V =

← u1 →
...

← uL →


︸ ︷︷ ︸

L×w2c−1

 ↑ ↑
v1 · · · vL
↓ ↓


︸ ︷︷ ︸

w2c−1×L

which implies rank(V) ≤ w2c−1.
Next, we sketch how we can decompose F (xi‖xj) into 〈ui,vj〉. This was already shown in

[23, Section 4.2], but we believe our analysis is simpler and more intuitive. Consider a read-thrice
branching program of width w where

Mx‖y = uLM
1
xN

1
yM

2
xN

2
yM

3
xN

3
yuR

Suppose we can rewrite Mx‖y as

ûL · (M1
xN

1
y)⊗ (M2

xN
2
y)⊗ (M3

xN
3
y)) · ûR

= ûL · (M1
x ⊗M2

x ⊗M3
x)︸ ︷︷ ︸

1×w3

· (N1
y ⊗N2

y ⊗N3
y) · ûR︸ ︷︷ ︸

w3×1

for some suitable choices of ûL, ûR. Unfortunately, such a statement appears to be false. Nonethe-
less, we are able to prove a similar decomposition where we replace ûL · (M1

x ⊗M2
x ⊗M3

x) on the
left with

flat
( w2×w3︷ ︸︸ ︷
uLM

1
x ⊗M2

x ⊗M3
x

)︸ ︷︷ ︸
1×w5
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where flat “flattens” a n × m matrix into a 1 × nm row vector by concatenating the rows of the
input matrix.

1.1.2 Constructions

We show how to build matrix PRFs starting from elementary assumptions over matrix products.
Concretely, one of the assumptions is(

{Ai,b}i∈[k],b∈{0,1},
k∏
i=1

(Ai,0B),

k∏
i=1

(Ai,1B)

)
≈c
(
{Ai,b}i∈[k],b∈{0,1},B0,B1

)
(2)

where the matrices Ai,b, B, B0 and B1 are sampled uniformly random over some non-abelian
simple groups. From there a matrix PRF can be obtained via the Naor-Reingold paradigm [37].
We also provide another assumption over matrix products and a corresponding synthesizer-style
matrix PRF.

Both of the matrix PRFs mentioned above are based on elementary assumptions over matrix
products and are polynomial-time computable, but the evaluation results are products of super-
polynomially many matrices when taking inputs of polynomially many bits. In other words, they
cannot be written as polynomially long matrix branching programs. To this end, let us mention
that we also conjecture the simple subset product-based construction á la Eqn. (1), even without
the bookends, is a PRF when the matrices are sampled from a non-commutative simple group G,
and each input is repeated for at least λ times (i.e., c ∈ O(λ)). But we do not know how to base its
pseudorandomness from an elementary assumption.

1.1.3 Applications to IO

We show that augmenting the CVW18 GGH15-based IO candidate with a matrix PRF provably
immunizes the candidate against known algebraic and statistical zeroizing attacks, as captured by
a new and simple adversarial model.

Our IO candidate. Our IO candidate on a branching program for a function f : {0, 1}` → {0, 1}
samples random Gaussian matrices {Si,b}i∈[h],b∈{0,1}, a random vector ah over Zq and a random
matrix PRF PRFM : {0, 1}` → [0, 2τ ] where 2τ � q, and outputs

AJ , {Di,b}i∈[h],b∈{0,1}

The construction basically follows that in [18], with the matrix PRF embedded along the diagonal.
By padding the programs, we may assume that the input program and the matrix PRF share the
same input-to-index function $ : {0, 1}h → {0, 1}`. Then, we have

AJD$(x) mod q ≈

{
0 · S$(x)ah + PRFM(x) if f(x) = 1

(6= 0) · S$(x)ah + PRFM(x) if f(x) = 0

where ≈ captures an error term which is much smaller than 2τ . Functionality is straight-forward:
output 1 if ‖AJD$(x)‖ < 2τ and 0 otherwise.
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Our attack model. We introduce the input-consistent evaluation model on GGH15-based IO candi-
dates, where the adversary gets oracle access to

Or(x) := AJD$(x) mod q

instead of AJ , {Di,b}i∈[h],b∈{0,1}. Basically, all known attacks on GGH15-based IO candidates (in-
cluding the rank attack and statistical zeroizing attacks [18, 19] can be implemented in this model.
In fact, many of these attacks only make use of the low-norm quantities {Or(x) : f(x) = 1}, which
are also referred to as encodings of zeros, and hence the name zeroizing attacks.

Note that our model allow the adversary to perform arbitrary polynomial-time computation
on the output of Or(·), whereas the “weak multi-linear map model” in [11] only allows for alge-
braic computation of these quantities. The latter does not capture computing the norm of these
quantities, as was done in the recent statistical zeroizing attacks [19]. In fact, we even allow the
adversary access to {AJD$(x) mod q : f(x) = 0}, quantities which none of the existing attack
takes advantage of except the some attacks [21, 18] for a simple GGH15 obfuscation [31]. In fact,
the class of adversaries that only does such evaluations appears to capture all known attacks for
GGH15-based obfuscation.

We clarify that our attack model does not capture so-called mixed-input attacks, where the
adversary computes AJDx′ mod q for some x′ /∈ $({0, 1}`). As in prior works, we make sure that
such quantities do not have small norm, but pre-processing the branching program to reject all
x′ /∈ $({0, 1}`) (see 6.1.2 for details).

Analysis. We show that for our IO candidate, we can simulate oracle access toOr(·) given oracle
access to f(·) under the LWE assumption (which in particular implies the existence of matrix
PRFs). This basically says that our IO candidate achieves “virtual black-box security” in the input-
consistent evaluation model.

The proof strategy is quite simple: we hide the lower bits by using the embedded matrix
PRFs, and hide the higher bits using lattice-based PRFs [7, 14]. In more detail, observe that the
lower τ bits of of Or(·) are pseudorandom, thanks to pseudorandomness of PRFM(·). We can then
simulate the higher log q − τ bits exactly as in [18]:

• if f(x) = 1, then these bits are just 0.

• if f(x) = 0, then we can just rely on the pseudorandomness of existing LWE-based PRFs
[14, 7], which tells us that the higher log q − τ bits of S$(x)ah are pseudorandom.

Note that the idea of embedding a matrix PRF into an IO candidate already appeared in [27,
Section 1.3]; however, the use of matrix PRF for “noise flooding” the encodings of zeros and the
lower-order bits as in our analysis –while perfectly natural in hindsight– appears to be novel to
this work. In prior works [27, 11], the matrix PRF is merely used to rule out non-trivial algebraic
relations amongst the encodings of zeros, namely that there is no low-degree polynomial that
vanishes over a large number of pseudorandom values.

1.2 Discussion

Implications for IO. Our results demonstrate new connections between matrix PRFs and IO in
this work and shed new insights into existing IO constructions and candidates:
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• Many candidates for IO follow the template laid out in [26]: start out with a branching
program {Mi,b}i∈[h],b∈{0,1}, perform some pre-processing, and encode the latter using graded
encodings. To achieve security in the generic group model [9] or to defeat against the rank
attack [18], the pre-processing would add significant redundancy or blow up the length
of the underlying branching program. In particular, even if we start out with a read-once
branching program as considered in [31], the program we encode would be a read-` (e.g. for
so-called dual-input branching programs) or read-λ branching program. But, why read-`
or read-λ? Our results –both translating existing IO attacks to attacks on matrix PRFs, and
showing how to embed a matrix PRF to achieve resilience against existing attacks– suggest
that the blow-up is closely related to the complexity of computing matrix PRFs.

• A recent series of works demonstrated a close connection between building functional en-
cryption (and thus IO) to that of low-degree pseudorandom generators (PRG) over the inte-
gers [35, 5, 2], where the role of the PRGs is to flood any leakage from the error term during
FHE decryption [30]. Here, we show to exploit matrix PRFs –again over the integers– to flood
any leakage from the error term in the GGH15 encodings (but unlike the setting of PRGs, we
do not require the output of the PRFs to have polynomially bounded domain). Both these
lines of works point to understanding pseudorandomness over the integers as a crucial step
towards building IO.

• Our results suggest new avenues for attacks using input-inconsistent evaluations, namely
to carefully exploit the quantities {AJDx′ mod q : x′ /∈ $({0, 1}`)} instead of the input-
consistent evaluations.

We note that our attacks also play a useful pedagogical role: explaining the core idea of existing
zeroizing attacks on IO in the much simpler context of breaking pseudorandomness of matrix
PRFs.

Additional related works. Let us remark that recently Boneh et al. [13] also look for (weak) PRFs
with simple structures, albeit with a different flavor of simplicity. Their candidates in fact use the
change of modulus, which is what we are trying to avoid.

2 Preliminaries

Notations and terminology. Let R,Z,N be the set of real numbers, integers and positive integers.
Denote Z/(qZ) by Zq. For n ∈ N, let [n] := {1, ..., n}. A vector in Rn (represented in column form
by default) is written as a bold lower-case letter, e.g. v. For a vector v, the ith component of v will
be denoted by vi. A matrix is written as a bold capital letter, e.g. A. The ith column vector of A is
denoted ai.

Subset products (of matrices) appear frequently in this article. For a given h ∈ N, a bit-string
v ∈ {0, 1}h, we use Xv to denote

∏
i∈[h]Xi,vi (it is implicit that {Xi,b}i∈[h],b∈{0,1} are well-defined).

The tensor product (Kronecker product) for matrices A ∈ R`×m, B ∈ Rn×p is defined as

A⊗B =

a1,1B, . . . , a1,mB
. . . , . . . , . . .
a`,1B, . . . , a`,mB

 ∈ R`n×mp. (3)
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For matrices A ∈ R`×m, B ∈ Rn×p, C ∈ Rm×u, D ∈ Rp×v,

(AC)⊗ (BD) = (A⊗B) · (C⊗D). (4)

Matrix rings/groups. Let Mn(R) denote a matrix ring, i.e., the ring of n× n matrices with coeffi-
cients in a ring R. When Mn(R) is called a matrix group, we consider matrix multiplication as the
group operation. By default we assume R is a commutative ring with unity. The rank of a matrix
M ∈Mn(R) refers to its R-rank.

Let GL(n,R) be the group of units in Mn(R), i.e., the group of invertible n × n matrices with
coefficients in R. Let SL(n, F ) be the group of n × n matrices with determinant 1 over a field F .
When q = pk is a prime power, let GL(n, q), SL(n, q) denote the corresponding matrix groups over
the finite field Fq.

Cryptographic notions. In cryptography, the security parameter (denoted as λ) is a variable that
is used to parameterize the computational complexity of the cryptographic algorithm or proto-
col, and the adversary’s probability of breaking security. An algorithm is “efficient” if it runs in
(probabilistic) polynomial time over λ.

When a variable v is drawn randomly from the set S we denote as v $← S or v ← U(S),
sometimes abbreviated as v when the context is clear. We use ≈s and ≈c as the abbreviations for
statistically close and computationally indistinguishable.

Definition 1 (Pseudorandom function [29]). A family of deterministic functionsF = {Fk : Dλ → Rλ}λ∈N
is pseudorandom if there exists a negligible function negl(·) for any probabilistic polynomial time
adversary Adv, such that∣∣∣∣ Pr

k,Adv
[AdvFk(·)(1λ) = 1]− Pr

O,Adv
[AdvO(·)(1λ) = 1]

∣∣∣∣ ≤ negl(λ),

where O(·) denotes a truly random function.

3 Direct Attacks on Matrix PRFs

In this section we stand from the attacker’s point of view to examine what are the basic character-
istics that a matrix PRF should (or should not) have. Let G = Mw(R), h = c · `. We consider read-c
matrix PRFs of the form:

F : {0, 1}` → R, x 7→ uL ·
h∏
i=1

Mi,xi mod `
· uR (5)

where uL,uR denote the left and right bookend vectors. The seed is given by

uL, {Mi,b ∈ G}i∈[h],b∈{0,1},uR.

6



3.1 Rank attack

We describe the rank attack which runs in time and space wO(c), where w is the dimension of
the M matrices, c is the number of repetitions of each input bits in the branching program steps.
The attack is originated from the zeroizing attack plus tensoring analysis in the obfuscation liter-
ature [23, 6, 18].

The main idea of the attack is to form a matrix from the evaluations on different inputs. We
argue that the rank of such a matrix is bounded by wO(c), whereas for a truly random function, the
matrix is full-rank with high probability.

Algorithm 3.1 (Rank attack). The algorithm proceeds as follows.

1. Let ρ > w2c−1. Divide the ` input bits into 2 intervals [`] = X | Y such that |X |, |Y| ≥ dlog ρe.

2. For 1 ≤ i, j ≤ ρ, evaluate the function F on ρ2 different inputs of the form u(i,j) = x(i) |
y(j) ∈ {0, 1}`. Let v(i,j) ∈ R be the evaluation result on u(i,j):

v(i,j) := F (u(i,j))

3. Output the rank of matrix V = (v(i,j)) ∈ Rρ×ρ.

3.1.1 Analysis for read-once branching programs

First we analyze the case where c = 1, i.e. the function is read-once. For a truly random function,
the R-rank of V is ρ with non-negligible probability.

However, for the function F in Eqn. (5), the R-rank of V is bounded by w, since

V =

v(1,1) ... v(1,ρ)

... ... ...

v(ρ,1) ... v(ρ,ρ)

 =

uL ·Mx(1)

...
uL ·Mx(ρ)


︸ ︷︷ ︸

:=X∈Rρ×w

·
(
My(1) · uR ... My(ρ) · uR

)︸ ︷︷ ︸
:=Y∈Rw×ρ

. (6)

Here we abuse the subset product notation at My(j) by assuming the index of the string y(j) starts
at the (|X |+ 1)th step, for j ∈ [ρ].

3.1.2 Analysis for matrix PRFs with multiple repetitions

The analysis for read-once width w branching programs simply uses the fact that Mx‖y can be
written as an inner product of two vectors of length w which depend only on x and y respectively.
Here, we show that for read-c width w branching programs, Mx‖y can be written as an inner
product of two vectors of length w2c−1. Note that this was already shown in [23, Section 4.2], but
we believe our analysis is simpler and more intuitive.

Flattening matrices. For a matrix A =
(
a1 | ... | am

)
∈ Rn×m, let flat(A) ∈ R1×nm denote the

row vector formed by concatenating the rows of A. As it turns out, we can write

aB1B2 . . .Bc = flat(aB1 ⊗B2 ⊗ · · · ⊗Bc)J (7)
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where J is a fixed matrix over {0, 1} independent of a,B1,B2, . . . ,Bc.1 The intuition for the iden-
tity is that each entry in the row vector aB1 · · ·Bc is a linear combination of terms, each a product
of entries in aB1, . . . ,Bc, which appears as an entry in aB1 ⊗ · · · ⊗Bc.

In addition, we also have the identity

flat(AB) = flat(A) · (In ⊗B) (8)

where n is the height of A.2

Decomposing read-many branching programs. Given a read-c branching program of width w,
we can write Mx‖y as

Mx‖y = uLM
1
xN

1
y · · ·Mc

xN
c
yuR

= flat
(
(uLM

1
xN

1
y)⊗ · · · ⊗ (Mc

xN
c
yuR)

)
· J via (7)

= flat
(
(uLM

1
x ⊗ · · · ⊗Mc

x)︸ ︷︷ ︸
wc−1×wc

· (N1
y ⊗ · · · ⊗Nc

yuR)︸ ︷︷ ︸
wc×wc−1

)
· J via mixed-product

= flat
(
(uLM

1
x ⊗ · · · ⊗Mc

x)
)︸ ︷︷ ︸

1×w2c−1

· (Iwc−1 ⊗N1
y ⊗ · · · ⊗Nc

yuR) · J︸ ︷︷ ︸
w2c−1×1

via (8)

That is, Mx‖y can be written as an inner product of two vectors of length w2c−1. Therefore, the
rank of V is at most w2c−1.

Comparison with [23, 6]. We briefly mention that the previous analysis in [23, 6] works by iter-
ating applying the identity

flat(A ·X ·B) = flat(X) · (A> ⊗B)

c times along with the mixed-product property to switch the order of the matrix product. (The
papers refer to “vectorization” vec, which is the column analogue of flat.) Our analysis is one-shot
and avoids this iterative approach, and also avoids keeping track of matrix transposes.

1Here’s a concrete example:

(
a1 a2

)(b1
b2

)
= flat

((
a1 a2

)
⊗
(
b1
b2

))
︸ ︷︷ ︸

=
(
a1b2 a2b1 a1b2 a2b2

)


1
0
0
1


2Here’s a concrete example:

flat
((a1

a2

)(
b1 b2

))
=
(
a1b1 a1b2 a2b1 a2b2

)
=
(
a1 a2

)(b1 b2
b1 b2

)
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Open Problem. Can we prove the following generalization of the rank attack? Let g be a polyno-
mial of total degree at most d in the variables x1, . . . , xn, y1, . . . , yn over Fq (or even Z), which com-
putes a function {0, 1}n×{0, 1}n → Fq. Now, pick some arbitraryX1, . . . , XL, Y1, . . . , YL ∈ {0, 1}n,
and consider the matrix

V := (g(Xi, Yj)) ∈ FL×Lq

Conjecture:
rank(V) ≤ max{L, nO(d)}

If the conjecture is true, then we obtain an attack that works not only for matrix products, but
basically any low-degree polynomial.

Here’s a potential approach to prove the conjecture (based on the analysis of the rank at-
tack). Write g as a sum of monomials gk. We can write V as a sum of matrices Vk where
Vk := (gk(Xi, Yj)). Each Vk can be written as a product of two matrices, which allows us to
bound the rank of Vk. Then, use the fact that rank(V) ≤

∑
k rank(Vk). A related question is, can

we use this approach to distinguish g from random low-degree polynomials? A related challenge
appears here in [1].

3.2 Implication of the rank attack

We briefly discuss the implication of the rank attack to two relevant proposals (or paradigms)
of constructing efficient PRFs [12] and cryptographic hash functions [44, 43]. Both proposals use
the group operations over a sequence of group elements as the evaluation functions. The rank
attack implies when the underlying group G admits an efficiently computable homomorphism
to a matrix group Mn(R), and when each input bit chooses a constant number of steps in the
evaluation, then the resulting function is not a PRF (resp. the resulting hash function cannot be
used as a random oracle).

Let us remark that our attack does not refute any explicit claims in those two proposals. It
mainly serves as a sanity check for the future proposals of instantiating PRFs (resp. hash func-
tions) following those two paradigms. Let us also remark that the rank attack is preventable by
adding an one-way extraction function at the end of the evaluation. But when the PRF (resp.
hash function) is used inside other applications, an extraction function that is compatible with the
application may not be easy to construct. As an example, when the matrix PRFs are used in safe-
guarding the branching-program obfuscator like [26, 27], it is not clear how to apply an extraction
function that is compatible with the obfuscator.

3.2.1 Efficient PRF based on the conjugacy problem

In the conference on mathematics of cryptography at UCI, 2015, Boneh proposed a simple con-
struction of PRF based on the hardness of conjugacy problem, and suggested to look for suitable
non-abelian groups for which the conjugacy problem is hard [12]. If such a group is found, it
might lead to a PRF that is as efficient as AES. However, even without worrying about efficiency,
it is not clear how to find a group where the decisional conjugacy problem is hard.

Here is a brief explanation of the conjugacy problem and the PRF construction [12]. Let K be a

non-abelian group, G be a subset of K, H be a subgroup of K. Given g $← G, z = h ◦ g ◦h−1 where

h
$← H , the search conjugacy problem asks to find h.

9



The PRF construction relies on the following decision version of the conjugacy problem. Let m

be a polynomial. For h $← H , g1, g2, ..., gm
$← Gm. The decisional problem asks to distinguish

g1, h ◦ g1 ◦ h−1, ..., gm, h ◦ gm ◦ h−1

from 2m random elements in G.
Let the input be x ∈ {0, 1}`, the key be k = g, {hi,b}i∈[`],b∈{0,1}. Then the following construction

is a PRF assuming the decisional conjugacy problem is hard.

Fk(x) := h`,x` ◦ h`−1,x`−1
◦ ... ◦ h1,x1 ◦ g ◦ h−11,x1

◦ ... ◦ h−1`,x`
The proof follows the augmented cascade technique of [15].

Note that F only has 2` − 1 steps, with each index in the input repeating for at most 2 times.
So if G admits an efficient homomorphism to a matrix group, then the rank attack applies.

Finally, let us remark that there are candidate group for which the search conjugacy problem
is plausibly hard, e.g. the braid group [33]. But the decisional conjugacy problem over the braid
group is broken exactly using a representation as a matrix group [22].

3.2.2 Cryptographic hash functions based on Cayley graphs

We first recall the hard problems on Cayley graphs and their applications in building crypto-
graphic hash functions [41]. Let G be a finite non-abelian group, and S = {s0, ..., sm} be a small
generation set. The Cayley graph with respect to (G, S) is defined as follows: each element v ∈ G
defines a vertex; there is an edge between two vertices vi and vj if vi = vj ◦ s for some s ∈ S. The
factorization problem asks to express an element of the group G as a “short” product of elements
from S. For certain groups and generation sets, the factorization problem is conjectured to be
hard.

In 1991, Zémor [44] introduced a cryptographic hash function based on a Cayley graph with

respect to the group G = SL(2,Fp) and the set S =

{
s0 =

(
1, 1
0, 1

)
, s1 =

(
1, 0
1, 1

)}
. Let the input

of the hash function be x ∈ {0, 1}`. The evaluation of the hash function is simply

H(x) :=
∏̀
i=1

sxi .

The collision resistance of this function is based on the hardness of the factorization problem.
The factorization problem with respect to the original proposal of Zémor was solved by [43].

Then alternative proposals of the group G and generation set S have since then been given (see
the survey of [41]). Most of the groups in these proposals are still matrix groups.

We observe that since H is read-once, if the underlying group G is a matrix group, then the
rank attack is able to distinguish the hash function from a random oracle.

Finally, let us clarify that the original authors of the Cayley hash function proposals do not
claim to achieve the random-oracle like properties, and most of the analyses of the Cayley graph-
based hash function focus on its collision resistance (which is directly related to the factorization
problem). Still, many applications of cryptographic hash functions require random-oracle like
properties (e.g. in the Fiat-Shamir transformation), so we think it is worth to point out that the
Cayley graph-based hash function does not achieve those strong properties when instantiated
with matrix groups.
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4 PRFs from Hard Matrix Problems

In this section, we propose plausibly hard problems related to matrix products, from which we can
build a matrix PRF using the Naor-Reingold paradigm. We start from a few simple problems and
explain how these problems can be solved efficiently. Then we generalize the attack methodology.
Finally, we conclude with the final assumptions which survive our cryptanalytic attempts.

4.1 The initial attempts

First Take and the Determinant Attack. Our first assumption sets G to be the group GL(n, p)
where we think of n as being the security parameter. Let m be an arbitrarily polynomially large
integer. The assumption says that the following two distributions are computationally indistin-
guishable:

(A1, ...,Am, (A1B)k, ..., (AmB)k) ≈c (A1, ...,Am,U1, ...,Um) (9)

where all the matrices are chosen uniformly at random from GL(n, p).
Let us explain the choice of k. When k = 1, the assumption is trivially broken since we can just

compute B on the LHS. When k is a constant, we are still able to break the assumption using a
linear algebraic technique detailed in Section 3. So we set k to be as large as the security parameter.

Unfortunately, even with a large k the assumption is broken, since on the LHS we have

det((A2B)k) · det(A1)
k = det((A1B)k) · det(A2)

k

In general, any group homomorphism from G to an Abelian group H allows us to carry out this
attack.

Second Take and the Order Attack. The easy fix for this is to take the group to be SL(n, p),
the group of n-by-n matrices with determinant 1. It is known that for several choices of n and p,
SL(n, p) is simple, namely, it has no normal subgroups. Consequently, it admits no non-trivial
group homomorphisms to any Abelian group.

Fact 1 (see, e.g., [32]). The following are true about the special linear group SL(n, p).

1. The projective special linear group PSL(n, p) defined as the quotient SL(n, p)/Z(SL(n, p)) is
simple for any n and p, except when n = 2 and p = 2, 3. Here, Z(G) denotes the center of
group G, the set of elements in G that commute with any other element of G.

2. For n and p where gcd(n, p − 1) = 1, the center of SL(n, p) is trivial. Namely, Z(SL(n, p)) =
{In}.

3. As a consequence of (1) and (2) above, for n ≥ 3 and p such that gcd(n, p− 1) = 1, SL(n, p) is
simple.

In particular, we will pick p = 2 and n ≥ 3 to be a large number.
However, we notice that there is a way to break the assumption simply using the group order.

Fact 2 (see, e.g., [32]). The order of SL(n, p) is easily computable. It is

r := |SL(n, p)| = pn(n−1)/2 · (pn − 1) · (pn−1 − 1) · . . . · (p2 − 1)
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Therefore, when k is relatively prime to r, we can compute A1B from (A1B)k as follows: let
s = k−1 mod r and compute

(
(A1B)k

)s
= A1B. Consequently, the similar assumption for group

SL(n, p) is also broken easily.
One may hope that the assumption holds for certain subgroup of G ⊂ GL(n, p). To rule out

the order attack, however, we should choose either 1) to hide the order of group G or 2) fix the
order of group to have many divisors, but neither is a nontrivial. We instead seek another way as
follows.

Summary. From the first two attempts we rule out some choices of the group and parameters.
Here is a quick summary.

• k has to be as large as the security parameter λ to avoid the rank attack.

• The determinant attack can be generalized to the case when there is an (efficiently com-
putable) homomorphism f from G to an abelian group H , since it crucially relies on the fact
that f((A2B)k) · f(A1)

k = f((A1B)k) · f(A2)
k for f = det. To rule out this class of attacks,

we fix G to be non-abelian simple group.

• The order attack heavily relies on the fact that one can cancel out A1 in the left-end of the
product. We thus use multiple A’s to avoid this canceling with non-abelian group.

4.2 The first formal assumption and construction

Let G be a non-commutative simple group where the group elements can be efficiently represented
by matrices (for example, the alternating group An for a polynomially large n ≥ 5). Let k be as
large as the security parameter λ. Our assumption is(

{Ai,b}i∈[k],b∈{0,1},
k∏
i=1

(Ai,0B),

k∏
i=1

(Ai,1B)

)
≈c
(
{Ai,b}i∈[k],b∈{0,1},B0,B1

)
(10)

where the matrices {Ai,b}i∈[k],b∈{0,1}, B, B0 and B1 are chosen from U(G).

The PRF Construction. The family of pseudorandom functions is defined iteratively as follows.

Construction 4.1. The construction is parameterized by matrices A1,0,A1,1, . . . ,Ak,0,Ak,1 sam-
pled uniformly random from G.

PRF(i)(x1x2 . . . xi) =
k∏
j=1

(Aj,xi · PRF(i−1)(x1x2 . . . xi−1))

PRF(0)(ε) = I

where ε is the empty string and I is the identity matrix.

The proof follows a Naor-Reingold style argument and proceeds by showing, inductively, that
PRF(i−1)(x1x2 . . . xi−1) is pseudorandom. If we now denote this matrix by B,(

PRF(i)(x1x2 . . . 0),PRF(i)(x1x2 . . . 1)

)
=

( k∏
j=1

(Aj,0 ·B),
k∏
j=1

(Aj,1 ·B)

)
which, by Assumption 10, is pseudorandom.
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4.3 Another assumption and a synthesizer-based PRF construction

In the second assumption, we still choose G as a non-commutative simple group where the group
elements can be efficiently represented by matrices. Let m1,m2 be arbitrarily polynomially large
integers, k = O(λ). Let {Ai,1, ...,Ai,k ← U(Gk)}i∈[m1], {Bj,1, ...,Bj,k ← U(Gk)}j∈[m2]. Our as-
sumption is ( k∏

v=1

(Ai,vBj,v)

)
i∈[m1],j∈[m2]

≈c
(
Ui,j ← U(G)

)
i∈[m1],j∈[m2]

(11)

The synthesizer-based PRF construction. To assist the construction of a synthesizer-based ma-
trix PRF from Assumption (11), let us first define the lists of indices used in the induction.

Let k = O(λ), v = dlog ke. Let ` ∈ poly(λ) be the input length of the PRF. Let ε denote the
empty string. Let || be the symbol of list concatenation. For any list S of length t, let SL denote
the sublist of the bt/2e items from the left, let SR denote the sublist of the t− bt/2e items from the
right.

Define the initial index list as Sε := {i1, i2, ..., i`}. Define the “counter” list as C := {a1, ..., av}.
Let r ∈ {0, 1}∗ ∪ ε, iteratively define Sr0 and Sr1 as:

if Sr is defined and |Sr| ≥ 4v, Sr0 := SLr ||C, Sr1 := SRr ||C
if Sr is defined and |Sr| < 4v, ⊥.

Let d ∈ Z be the depth of the induction, i.e., any defined list Sr has |r| ≤ d. We have 2d ≥ ` ≥(
4−1
3−1

)d
= 1.5d. Since ` ∈ poly(λ), we have 2d ∈ poly(λ).

Construction 4.2. The PRF is keyed by 24v·2d ∈ poly(λ) random matrices {Ai,Sr ← U(G)}i∈{0,1}4v ,r∈{0,1}d .
The evaluation formula PRF(x) := PRFSε(x1x2 . . . x`) is defined inductively as

if |Sr| ≥ 4v PRFSr(x1x2 . . . xt) =

k∏
j=1

(
PRFSr0(x1x2 . . . xbt/2ej̃) · PRFSr1(xbt/2e+1 . . . xtj̃)

)
if |Sr| < 4v PRFSr(x1x2 . . . xt) = Ax1x2...xt,Sr .

where j̃ denotes the bit-decomposition of j.

4.4 Open problems

Open problem 1: Matrix PRF with polynomially many steps. In both of our PRF constructions,
the numbers of steps in the final branching program (i.e., the number of matrices in each product)
are super-polynomial. In Construction 4.1 it takes roughly O(k`) steps; in Construction 4.2 it
takes roughly O(kd) steps. Although those PRFs are efficiently computable (the key is to reuse
intermediate products), the numbers of steps are enormous. Is there a way to obtain a matrix PRF
with polynomial number of steps from inductive assumptions?

Let us remark that we do not know any attacks on the simple subset product-based matrix
PRF when the matrices are sampled from a non-commutative simple group G, and each input is
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repeated for at least λ times. More precisely, sample {Mi+j·`,b ← U(G)}i∈[`],j∈{0,...,λ−1},b∈{0,1} as
the key. Define

F : {0, 1}` → G, x 7→
λ−1∏
j=0

(∏̀
i=1

Mi+j·`,xi

)
(12)

We conjecture that F is a PRF, but we do not know how to base its pseudorandomness on a simple
assumption.

Open problem 2: Universal matrix PRF. Any PRF in NC1 gives rise a matrix PRF, with a possibly
different order of products and different distributions in the matrices. Is there a canonical order
and a canonical matrix distribution such that the security of any NC1 PRF can be reduced to one
construction? This would possibly give us a universal matrix PRF.

5 Matrix Attacks for the Candidate Block-Local PRG from BBKK18

A pseudorandom generator f : {0, 1}bn → {0, 1}m is called `-block-local if the input can be sep-
arated into n blocks, each of size b bits, such that every output bit of f depends on at most `
blocks. When roughly m ≥ Ω̃(n`/2)3, there is a generic attack on `-block-local PRGs [8]. Specific to
3-block-local PRGs, no generic attack is known for m < n1.5.

In [8], the authors propose a simple candidate `-block-local PRG from group theory, where m
can be as large as n`/2−ε. Let us recall their candidate, with ` = 3 for the simplicity of description.
Let G be a finite group that does not have any abelian quotient group. Choose 3m random indices{
ij,k

$← [n]
}
j∈[m],k∈[3]

. The 3-block-local-PRG f is mapping from Gn to Gm as

fj(x1, ..., xn) = xj,1 ◦ xj,2 ◦ xj,3.

In particular, the authors mentioned that G can be a non-commutative simple group.
We show that when G admits an efficiently computable homomorphism to a matrix group

Mw(R) (e.g. when G is an alternating groups Aw with w ≥ 5), then there is an attack that rules out
certain choices of combinations of indices in f . In particular, we show that when G is chosen as
the alternating group, then a non-negligible fraction of the candidates (where the randomness is
taken over the choices of the indices) are not PRGs.

The attack uses the fact that for any two matrices A,B ∈ Rw×w, χ(AB) = χ(BA), where
χ denotes the characteristic polynomial. For simplicity let us assume the group G is super-
polynomially large (e.g. G = Aw where w = O(λ)). The distinguisher trys to find four output bits
whose indices are of the pattern

(a, b, c), (d, e, f), (b, c, d), (e, f, a) (13)

where the same letter denote the same index.
Then for these four output group elements represented by matrices M1, M2, M3, M4, we

always have χ(M1M2) = χ(M3M4) in the real case. In the random case, since we assume G is
super-polynomially large, the characteristic polynomials are unlikely to be equal.

3More precisely, m = Ω(2`b)(n+ 2`b)d`/2e for the size of each block b.
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Now we bound the probability for the existence of Pattern (13) if the indices are chosen ran-
domly. The total number N of different layouts of the indices is:

N = n3m

The total number M of different layouts of the indices such that Pattern (13) occurs can be
lower bounded by fixing Pattern (13) over 4 output bits, and choose the rest arbitrarily. I.e.

M ≥ n3(m−4)

So M/N ≥ n−12, which means as long as m ≥ 4, a non-negligible fraction of all the candidate
3-block-local-PRGs can be attacked when instantiated with G as a matrix group.

The attack can be generalized to smaller G, and larger `. On the positive side, the attack also
seem to be avoidable by not choosing the indices that form Pattern (13).

6 Candidate Indistinguishability Obfuscation

In this section we give a candidate construction of indistinguishability obfuscation O, following
[18, 27, 11].

Preliminaries. A branching program Γ is a set

Γ =
{
uP
L ∈ {0, 1}1×w,

{
Pi,b ∈ {0, 1}w×w

}
i∈[h],b∈{0,1} ,uR, $ : {0, 1}` → {0, 1}h

}
where w is called width of branching program and $ an input-to-index function. We write

Γ(x′) :=

{
uLPx′uR if x′ ∈ {0, 1}h

uLPx′ if x′ ∈ {0, 1}<h

We say that a branching program Γ computes a function f : {0, 1}` → {0, 1} if

∀x ∈ {0, 1}` : Γ($(x)) = 0⇐⇒ f(x) = 1

We particularly consider a simple input-to-index function $ : {0, 1}` → {0, 1}h that outputs h/`
copies of x, i.e. $(x) = x|x| · · · |x. We denote c := h/` and call this branching program c-input-
repeating. We define an index-to-input function ι : [h] → [`] so that ι : x 7→ (x mod `) + 1. For
a string x ∈ {0, 1}∗, we denote the length of x by |x|. We say x′ ∈ $({0, 1}`) input-consistent or
simply consistent.

Lattice Basics. We briefly describe the basic facts in the lattice problems and trapdoor functions.
For more detailed discussion and review we refer [18] to readers. What we need for the construc-
tion is, roughly speaking, that there is an algorithm, given matrices A and B and a trapdoor τA,
to sample a (random) matrix D whose entries follow the discrete Gaussian distribution with small
variance such that AD = B mod q. We denote this random small-norm Gaussian D by A−1(B)
following [18]. Readers who are not interested in the details may skip the detailed definitions and
lemmas described here, since they are only used for technical details such as set parameters, etc.

15



We denote the discrete Gaussian distribution over Zn with parameter σ byDZn,σ. Given matrix
A ∈ Zn×mq , the kernel lattice of A is denoted by

Λ⊥(A) := {c ∈ Zm : A · c = 0n mod q}.

Given y ∈ Znq and σ > 0, we use A−1(y, σ) to denote the distribution of a vector d sampled from
DZm,σ conditioned on Ad = y mod q. We sometimes omit σ when the context is clear.

Definition 2 (Decisional learning with errors (LWE) [42]). For n,m ∈ N and modulus q ≥ 2,
distributions for secret vector, public matrices, and error vectors θ, πχ ⊂ Zq. An LWE sample
w.r.t. these parameters is obtained by sampling s ← θn, A ← πn×m, e ← χm and outputting
(A, sTA + eT mod q).

We say that an algorithm solves LWEn,m,q,θ,π,χ if it distinguishes the LWE sample from a ran-
dom sample distributed as πn×m×U(Z1×m

q ) with probability bigger than 1/2 plus non-negligible.

Lemma 6.1 (Standard form [42, 38, 16, 39]). For n ∈ N and for any m = poly(n), q ≤ 2poly(n). Let
θ = π = U(Zq) and χ = DZ,σ where σ ≥ 2

√
n. If there exist an efficient (possibly quantum) algorithm

that solves LWEn,m,q,θ,π,χ, then there exists an efficient (possibly quantum) algorithm for approximating
SIVP and GapSVP in `2 norm, in the worst case, within Õ(nq/σ) factors.

Lemma 6.2 (LWE with small public matrices [14]). If n,m, q, σ are chosen as Lemma 6.1, then LWEn′,m,q,U(Zq),DZ,σ ,DZ,σ
is as hard as LWEn,m,q,θ,π,χ for n′ ≥ 2n log q.

Lemma 6.3 ([3, 4, 36, 28]). There is a p.p.t. algorithms TrapSamp(1n, 1m, q) that, given modulus q ≥ 2
and dimension m,n such that m ≥ 2n log q, outputs A ≈s U(Zn×mq ) with a trapdoor τ. Further, if
σ ≥ 2

√
n log q, there is a p.p.t. algorithm that, given (A, τ) ← TrapSam(1n, 1m, q) and y ∈ Znq , outputs

a sample from A−1(y, σ). Further, it holds that

{A,x,y : y← U(Znq ),x← A−1(y, σ)} ≈s {A,x,y : x← DZm,σ,y = Ax}.

6.1 Construction

Input. The obfuscation algorithm takes as input a c-input-repeating branching program Γ =
{uL ∈ {0, 1}1×w, {Pi,b ∈ {0, 1}w×w}i∈[h],b∈{0,1} ,uR} computing a function f : {0, 1}` → {0, 1}.

We modify Γ to a new functionally equivalent branching program Γ′ so that it satisfies Γ′(x′) 6=
0 for all x′ /∈ $({0, 1}h) (as well as x′ ∈ {0, 1}<h). This can be done by padding an input-
consistency check program in the right-bottom diagonal of P, which only slightly increases w
and the bound of entries. Concretely we follow Construction 6.1.2. For brevity, we just assume
that the input program is of the form

Γ = {uL ∈ {0, 1, · · · , T}1×w,
{
Pi,b ∈ {0, 1, · · · , T}w×w

}
i∈[h],b∈{0,1} ,uR}

and assume that it satisfies the condition above without loss of generality. In particular, |Γ($(x))| ≤
T in this construction.
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Obfuscation Procedure.

• Set parameters n,m, q, τ, ν, B ∈ N and σ ∈ R+ as in Parameter 6.1.1. Let d := wn + 5τ + 3`
be a dimension of pre-encoding.

• Sample a matrix PRF {uM
L ∈ {0, 1}1×5τ , {Mi,b ∈ {0, 1}5τ×5τ}i∈[h],b∈{0,1},uM

R ∈ Z5τ×1} with
input length ` and c-repetition whose range is [0, 2τ − 1]. Concretely, we follow Construc-
tion 6.1.2. By padding the programs, we may assume that the input program and the matrix
PRF share the same input-to-index function $ : {0, 1}h → {0, 1}`.

• Sample
{
Si,b ← Dn×n

Z,σ

}
i∈[h],b∈{0,1}

and ah ← U(Zn×1q ), and compute pre-encodings as fol-

lows:

J :=
(
uL ⊗ 11×n||uM

L

)
, L :=

(
uR ⊗ ah

uM
R

)
,

Ŝi,b :=

(
Pi,b ⊗ Si,b

Mi,b

)
for i ∈ [h]

For brevity we write S(x′) := 11×n · Sx′ · ah. In particular, for all x′ ∈ {0, 1}h,

J · Ŝx′ · L
= Γ(x′) · S(x′) + uM

L ·Mx′ · uM
R

=

{
PRFM(x) if x′ = $(x) and f(x) = 1

(6= 0) · S(x′) + uM
L Mx′u

M
R otherwise

Note that Γ(x′) is a scalar, thus ⊗ is just a multiplication.

• Sample error matrices Ei,b from DZ,σ with the corresponding dimension and computes

AJ = J ·A0 ∈ Z1×m

Di,b ← A−1i−1

(
Ŝi,b ·Ai + Ei,b

)
∈ Zm×m, i = 1, 2, · · · , h− 1

Dh,b ← A−1h−1

(
Ŝh,b · L + Eh,b

)
∈ Zm×1

Output. The obfuscation algorithms outputs {AJ , {Di,b}i∈[h],b∈{0,1}} as an obfuscated program.

Evaluation. For input x ∈ {0, 1}`, returns 1 if |AJ ·D$(x) mod q| < B, and 0 otherwise.

Correctness. For x ∈ {0, 1}≤h with length h′,

AJ ·Dx′ = J · Ŝx′ ·Ah′ + J ·
h′∑
j=1

(j−1∏
i=1

Ŝi,xi

)
·Ej,xj ·

h′∏
k=j+1

Dk,xk

 mod q (14)
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where Ah := L. Note that all entries following the discrete Gaussian distribution is bounded by√
mσ with overwhelming probability. The latter term, GGH15 errors, can be bounded, with all

but negligible probability, as follows:∥∥∥∥∥∥J ·
h′∑
j=1

(j−1∏
i=1

Ŝi,xi

)
·Ej,xj ·

h′∏
k=j+1

Dk,xk

∥∥∥∥∥∥
∞

≤ (2wd) · h′ · (m
√
mσ · wT )h

′

In particular, for x′ = $(x) and f(x) = 1, the first term is PRFM(x), which is bounded by 2τ − 1.
We set B ≥ 2τ + (2wd) · h · (m

√
mσ · wT )h so that for every x satisfying f(x) = 1 the obfuscation

outputs correctly.
We also note that, if we set q > B · ω(poly(λ)),

Γ(x′) = 0⇐⇒ x′ = $(x) ∧ f(x) = 1

holds for any x′ ∈ {0, 1}≤h since we pad the input-consistency check program at the beginning.
This implies that the random matrix A′h the (partial) evaluation AJ · Dx′ is not canceled. That
is, the probability that the evaluation of obfuscation outputs 1 is negligible for an incomplete,
inconsistent input x′ or an input x′ = $(x) satisfying f(x) = 0.

6.1.1 Parameters.

Our parameter settings follow [18, 11], which matches to the current existing safety mechanisms.
Let λ be a security parameter of construction and λLWE = poly(λ) a security parameter of underly-
ing LWE problem. Let d := wn+5τ be a dimension of pre-encodings. For trapdoor functionalities,
m = Ω(d log q) and σ = Ω(

√
z log q) by Lemma 6.3. Set n = Ω(λLWE log q) and σ = Ω(

√
λLWE) for

the security of LWE as in Lemma 6.1 and 6.2. Set q ≤ (σ/λLWE) · 2λ
1−ε
LWE for an ε ∈ (0, 1). Also for the

security proof in our model, we set 2τ ≥ (2wd) ·h · (m
√
mσ ·wT )h ·ω(poly(λ)). On the other hand,

we set B ≥ 2τ + (2wd) · h · (m
√
mσ · wT )h and q ≥ B · ω(poly(λ)) for the correctness.4

6.1.2 Construction of subprograms.

Input-consistency Check Program. We describe a read-once branching program for checking
whether x′ ∈ $({0, 1}`); this plays the role of so-called “bundling scalars” or “bundling matrices”
in prior constructions. For i ∈ [h] and b ∈ {0, 1}, compute Ci,b ∈ Z3`×3` as the diag(C

(1)
i,b , · · · ,C

(`)
i,b )

where

C
(k)
i,b =


I3×3 if ι(i) 6= k

diag(1, 0, 1) if ι(i) = k and i ≤ (c− 1)`

diag(0, 1, 1) if ι(i) = k and i > (c− 1)`

Let uC
L = B ·11×3` and uC

R = (1, 1,−1)T ⊗1`×1, where T is an integer satisfying ‖P(x′)‖∞ < T for
all x′ ∈ {0, 1}≤h.

Then {uC
L , {Ci,b}i∈[h]b∈{0,1},uC

R} is an input-consistency check program, and further C(x′) +

P(x′) 6= 0 for all x′ /∈ $({0, 1}`) and x′ ∈ {0, 1}<h. That is, we concretely consider

Γ′ =

{
u′L = (uL‖uC

L ),
{
P′i,b = diag(Pi,b,Ci,b)

}
i∈[h],b∈{0,1} ,u

′
R =

(
uR
uC
R

)}
.

4Note that by adjusting λLWE appropriately large, all constraint can be satisfied as in [11, Section 4.3]
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In particular, this giveswnew = w+3` and the bound of entry T = 2w. Also we note that Γ′($(x)) =
Γ($(x)), thus this is bounded by T.

Remark 6.4. Usual construction of branching programs have a property that uL · P′x ∈ {0, 1}1×w
for all x′ ∈ {0, 1}<h and |P(x′)| ≤ w, thus we can set T := 2w; or set T = wh safely. In our
parameter setting, we used T = 2w.

Matrix PRFs. For concreteness we provide the construction of matrix PRFs used in the obfusca-
tion given in [27, Section 4.2]. By Barrington’s theorem [10], we know that there exist matrix PRFs
that output a random binary value. WLOG, we assume that it is c-input-repetition branching pro-
gram. We write this as {u(j)

L , {M(j)
i,b }i∈[h],b∈{0,1},u

(j)
R }j∈[τ ] that are independent to each others. Note

that all entries are binary. We concatenate them as

uM
L = (u

(1)
L ‖ · · · ‖u

(τ)
L ), Mi,b = diag(M

(1)
i,b , · · · ,M

(τ)
i,b ), vM

R =


v
(1)
R

2 · v(2)
R

· · ·
2τ−1 · v(τ)

R


then PRFM : x 7→ uM

L ·M$(x) · uM
R ∈ [0, 2τ − 1] is a pseudorandom function, which is the desired

construction. Note that the width of this program is 5τ.

6.2 Security

Security model. We note that almost all known attacks including the recently reported statis-
tical zeroizing attack [19], rank attack and subtraction attack [18] only exploit the evaluations of
x′ ∈ $({0, 1}`). While some attacks called mixed-input attack are considered in the literature
(e.g. [26]), however, there is only one actual attack [17] in such class for GGH15-based obfusca-
tion so far, which only exploits several input-consistent evaluations as well in the first phase to
extract the information to run mixed-input attack. Some attack that indeed use the mixed-inputs
for other multilinear maps [25, 24], but the first step either uses the valid inputs [40] or decodes
the multilinear map using known weakness of the NTRU problem [20].

From this motivation, we consider a restricted class of adversary which can gets oracle access
to an input-consistent evaluation oracle

Or : x 7→ AJD$(x) mod q, ∀x ∈ {0, 1}`

In our model that we call input-consistent evaluation model the purpose of adversary is to obtain
any meaningful information of the implementation of Γ beyond the input-output behavior. More
concretely, we say that the obfuscation procedure is VBB-secure in the input-consistent evaluation
model if any p.p.t. adversary cannot distinguish the oracle Or from the following oracle

Fr(x) =

{
U([0, 2τ − 1]) if f(x) = 0

U(Zq) otherwise
(15)

with non-negligible probability, i.e. Or(·) ≈c Fr(·).

Theorem 6.5. The obfuscation construction O is VBB-secure in the input-consistent evaluation models.
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The main strategy is to hide the lower bits by embedded matrix PRFs, and hide the higher bits
using lattice-based PRFs [7, 14] stated as follows.

Lemma 6.6 ([18, Lemma 7.4]). Let h, n, q, b ∈ N and σ, σ∗ ∈ R s.t. n = Ω(λ log q), σ = Ω(
√
λ log q),

b ≥ h · (
√
nσ)h, σ∗ > ω(poly(λ)) · b, q ≥ σ∗ω(poly(λ)). Define a function family F = {fa : {0, 1}h →

Znq }, for which the key generation algorithm samples a ← U(Znq ) as the private key,
{
Si,b ← Dn×n

Z,σ

}
as

the public parameters. The evaluation algorithm takes input x′ ∈ {0, 1}h and computes

fa(x′) =

(
h∏
i=1

Si,xi

)
· a + ex′ = Sx′ · a + ex′(modq)

where ex′ ← Dn
Z,σ∗ is freshly sampled for every x′ ∈ {0, 1}h. Then, for d = poly(λ), the distribution of

evaluations {fa(x′1), · · · , fa(x′d)} over the choice of a and errors is computationally indistinguishable from
d independent uniform random vectors from Znq , assuming the hardness of LWEn,poly,q,U(Zq),DZ,σ ,DZ,σ .

The proof of the main theorem is as follows.

Proof of Theorem 6.5. We will show that the sequence of d = poly(λ) queries to Or are indistin-
guishable to the corresponding queries to Fr as follows.

{Or(·)} = {x 7→ Γ($(x)) · S($(x)) + PRFM($(x)) + (GGH15 errors)}k∈[d]
≈c {x 7→ Γ($(x)) · S($(x)) + U([0, 2τ − 1]) + (GGH15 errors)}k∈[d]
≈s
{
x 7→ Γ($(x)) · (S($(x)) + e$(x)) + U([0, 2τ − 1])

}
k∈[d]

≈s {x 7→ Γ($(x)) · U(Zq) + U([0, 2τ − 1])}k∈[d]
≈s {Fr(·)}

Here, we are using noise-flooding applied to Γ($(x))e$(x)+ (GGH15 errors). More precisely, to
invoke Lemma 6.6, it should hold that 2τ ≥ h · (

√
nσ)h · ω(poly(λ)) and 2τ ≥ (2wd) · h · (m

√
mσ ·

wT )h · ω(poly(λ)) to neglect GGH15 errors.

Remark 6.7 (weakening PRF requirements). We note that we only use the matrix PRF for noise-
flooding, and therefore it suffices to relax pseudorandomness of F : {0, 1}` → [0, 2τ − 1] to the
following: for any efficiently computable B-bounded function g : {0, 1}` → [B,−B] where B �
2τ , we have

{x 7→ F (x)} ≈c {x 7→ F (x) + g(x)}

where + is computed over Z. A similar relaxation has been considered in the context of weaker
pseudorandom generators for building IO [5]. For this notion, one could potentially have candi-
dates where each Mi,b is drawn uniformly at random from a Gaussian distribution but where vM

R

is the same as in Section 6.1.2.

6.3 Comparison

In this section we compare our model to the previous security model in [11].
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First, we briefly review the security model in [11]. This model gives a stronger oracle to the
adversary that allows the adversary to query a polynomial (or circuit) rather than an input x. More
precisely, the adversary chooses a circuit C described by

{
β
(k)
i,b

}
i∈[h],b∈{0,1},k∈K

and queries

T = AJ

∑
k∈K

h∏
i=1

(β
(k)
i,0 Di,0 + β

(k)
1,1Di,1) mod q

to a zero-testing oracle, and learns the value T only if it is sufficiently small compared to q. We
index the zerotesting values obtained by the adversary by u, thus Tu is the adversary’s u-th suc-
cessful zerotesting value. The purpose of adversary is to find any non-trivial algebraic relation
between Tu’s and pre-encodings Ŝ.5 Despite the generality of oracle inputs, the statistical zeroiz-
ing attacks in [19] do not fall into this class; the adversary using the statistical zeroizing attacks is
to check if an inequality holds.

On the other hand, our model gives an input-consistent oracle to adversary which is much
weaker. Instead, the purpose of adversary is to find any information beyond input-output behav-
ior of the program. That is, we do not restrict the goal of adversary to computing a nontrivial
algebraic relations. This freedom allows us to capture almost all existing attacks.

An interesting question is to design a model that embrace both models, and construct a secure
obfuscation procedure in such model. A candidate model is to allow the adversary to access
both oracles described above. Note that [11, Lemma 8] states that the set of adversary’s successful
zerotest is essentially a set of polynomially-many linear sum of input-consistent evaluations. With
this lemma in mind, an obfuscation procedure satisfying the corresponding lemma as well as the
VBB security in the input-consistent evaluation model may satisfy a meaningful security in this
model.
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