
Quantum Random Oracle Model with Auxiliary Input

Minki Hhan?1, Keita Xagawa2, and Takashi Yamakawa2

1 Seoul National University, Seoul, Republic of Korea
hhan @snu.ac.kr

2 NTT Secure Platform Laboratories
3-9-11, Midori-cho Musashino-shi, Tokyo 180-8585 Japan

keita.xagawa.zv@hco.ntt.co.jp, takashi.yamakawa.ga@hco.ntt.co.jp

Abstract. The random oracle model (ROM) is an idealized model where hash functions
are modeled as random functions that are only accessible as oracles. Although the ROM has
been used for proving many cryptographic schemes, it has (at least) two problems. First, the
ROM does not capture quantum adversaries. Second, it does not capture non-uniform adver-
saries that perform preprocessings. To deal with these problems, Boneh et al. (Asiacrypt’11)
proposed using the quantum ROM (QROM) to argue post-quantum security, and Unruh
(CRYPTO’07) proposed the ROM with auxiliary input (ROM-AI) to argue security against
preprocessing attacks. However, to the best of our knowledge, no work has dealt with the
above two problems simultaneously.

In this paper, we consider a model that we call the QROM with (classical) auxiliary input
(QROM-AI) that deals with the above two problems simultaneously and study security
of cryptographic primitives in the model. That is, we give security bounds for one-way
functions, pseudorandom generators, (post-quantum) pseudorandom functions, and (post-
quantum) message authentication codes in the QROM-AI.

We also study security bounds in the presence of quantum auxiliary inputs. In other words,
we show a security bound for one-wayness of random permutations (instead of random
functions) in the presence of quantum auxiliary inputs. This resolves an open problem posed
by Nayebi et al. (QIC’15). In a context of complexity theory, this implies NP ∩ coNP 6⊆
BQP/qpoly relative to a random permutation oracle, which also answers an open problem
posed by Aaronson (ToC’05).

1 Introduction

1.1 Background

Random Oracle Model with Auxiliary Input. The random oracle model (ROM) introduced by
Bellare and Rogaway [BR93] is a remarkably useful tool for analyzing security of practical crypto-
graphic schemes. In the ROM, we model a hash function as a truly random function that is only
accessible as an oracle and assume that an adversary has no a priori knowledge about the function.
This means that the traditional definition of the ROM does not capture non-uniform adversaries
who perform heavy offline preprocessings to generate auxiliary information (also called advice) of
the random function. Indeed, a non-uniform attack is effective in some cases [Hel80, FN99, DTT10].
For example, Hellman [Hel80] showed that one can speed up an inversion of a permutation by using
the power of preprocessing. Bernstein and Lange [BL13] pointed out that non-uniform attacks are
a potential threat in the real world by exhibiting some examples of (unrealistic) non-uniform at-
tacks. To deal with such non-uniform attacks, Unruh [Unr07] introduced the random oracle model
with auxiliary input (ROM-AI) where an adversary can perform arbitrarily heavy preprocessing
to generate auxiliary information of the random function. He gave a generic tool for analyzing
security in the ROM-AI by introducing another model called the bit-fixing ROM and showed that
a random oracle is one-way and that RSA-OAEP [BR95] remains secure in the ROM-AI. Sub-
sequently, Dodis, Guo, and Katz [DGK17], and Coretti, Dodis, Guo, and Steinberger [CDGS18]
further studied the ROM-AI to show (tighter) security bounds for several natural applications
including one-way functions (OWFs), collision resistant hash functions (CRHFs), pseudorandom
generators (PRGs), pseudorandom functions (PRFs), message authentication codes (MACs), and
more.

? This work was done in part while the first author was conducting an internship program in NTT Secure
Platform Laboratories, Japan.

Quantum Random Oracle Model. The ROM has been strengthened in another direction called the
quantum ROM (QROM) [BDF+11], where an adversary can access the random oracle quantumly.
This is a natural model when considering post-quantum security since a random oracle is an
idealization of a hash function that can be quantumly evaluated by an adversary once quantum
computers are available. Since many proof techniques in the ROM cannot be directly translated
into ones in the QROM, many studies have given security proofs in the QROM for schemes that
are originally proven secure in the ROM (e.g., [Zha12b, Unr15, ES15, TU16, HRS16, CBH+18,
KLS18, SXY18, JZC+18, KYY18, AHU19, DFMS19, LZ19]).

Quantum Random Oracle Model with (Quantum) Auxiliary Input. Although both the ROM-AI
and QROM have been studied thoroughly, to the best of our knowledge, no work has considered
both these extensions simultaneously. In this work, we consider a mix of them and initiate the
study of the QROM with auxiliary input. In particular, we consider both the QROM with classical
auxiliary input (QROM-AI) and the QROM with quantum auxiliary input (QROM-QAI). Both
these models reasonably extend the QROM to capture adversaries with preprocessing in some
sense. The QROM-AI captures an adversary that performs a long classical preprocessing to prepare
classical auxiliary information that will be used in the future when quantum computers become
available. This model is reasonable in the current situation in which quantum computers are not
available yet and in a future situation in which quantum computers are available, but are far less
efficient than classical computers. On the other hand, the QROM-QAI would be more reasonable
in the situation where a highly efficient quantum computer is available at the time of preprocessing.
The motivation of this work is to study security of natural applications of random oracles in these
models.

The work most relevant to the above problem is that of Nayebi, Aaronson, Belovs, and Trevisan
[NABT15], which showed a lower bound for the number of queries to invert a random permutation
with classical auxiliary input. However, their result is not sufficient for our purpose in several
aspects. First, they only considered a random permutation whereas we consider a random function.
Since a hash function in the real world is not a permutation, we need to consider a random
function instead of a random permutation to derive implications in the real world. Second, they
only considered a lower bound for one-wayness whereas we are also interested in other applications
such as CRHFs, PRGs, PRFs, and MACs. Third, they did not consider the effect of salting, which
is a technique to use a random string that is chosen after the preprocessing as a public parameter.
Salting is widely deployed in the real world, and sufficiently long salt defeats non-uniform attacks in
the ROM-AI [DGK17, CDGS18]. Finally, they only considered settings where auxiliary inputs are
classical, and their result seems difficult to directly extend to the setting where auxiliary inputs are
quantum. Indeed, they left it extending their result to the quantum auxiliary input setting as an
open problem. Thus it remains unknown if we can obtain security bounds for the security of OWFs,
CRHFs, PRGs, PRFs, and MACs and if salting is effective in the QROM-AI and QROM-QAI.

1.2 Our Results

In this work, we initiate the study of the QROM-AI and the QROM-QAI, and give security bounds
for several cryptographic applications in the QROM-AI. However, we do not know if we can extend
them to ones in the QROM-QAI. Nonetheless, we make a step toward the goal by proving that
a random permutation (instead of a random function) is hard to invert even with a quantum
auxiliary input. This answers the open problem raised by Nayebi et al. [NABT15]. We describe
more details of our results below.

Security Bounds in QROM-AI. We prove security bounds for natural “salted” constructions of
OWFs, PRGs, PRFs, and MACs in the QROM-AI. A caveat of our results for PRFs and MACs is
that we only consider classical queries for PRF and MAC oracles whereas queries to the random
oracle can be quantum. To clarify this limitation, we denote them as pqPRFs and pqMACs. 3 On
the other hand, we denote quantum-accessible PRFs and MACs as qPRFs and qMACs. We note
that the attack models of pqPRFs and pqMACs make sense as post-quantum security models a
setting where honest parties are all classical and only adversaries are quantum.

Our results are summarized in Table 1. (An extended table that includes security bounds and
attacks in the ROM-AI can be found in Table 2 in Appendix E.) The notations used in the table are

3 “pq” stands for “post-quantum”.

2

Security bounds

in QROM-AI (Ours)

Best known attacks

in QROM-AI

OWFs
(
ST2

Kα
+ T2N

α2

)1/2
min

{
ST
Kα

,
(
S2T
K2α2

)1/3}
+ T2

α

PRGs
(
ST4

KN
+ T4

N

)1/6 (
ST
KN

)1/2
+ T2

N

pqPRFs
(
ST4

KN
+ T4

N

)1/4
+Qprf

(
ST2

KN

)1/6 (
ST
KN

)1/2
+ T2

N

pqMACs
(
ST4

KN
+ T4

N
+ 1

M

)1/3
min

{
ST
KN

,
(

S2T
K2N2

)1/3}
+ T2

N
+ 1

M

Table 1. Security bounds and best known attacks using an S-bit auxiliary input and T queries to the
random oracle for “salted” constructions of primitives in the QROM-AI. The first two primitives (unkeyed
primitives) are constructed from a random oracle O : [K] × [N] → [M] where [K] is the domain of the
salt, [N] is the domain of the input (or the seed for PRGs), [M] is the domain of the outputs, and we
let α := min(N,M). The latter two primitives (keyed primitives) are constructed from a random oracle
O : [K] × [N] × [L] → [M] where [K] is the domain of the salt, [N] is the domain of the key, [L] is the
domain of the inputs, and [M] is the domain of the outputs (or authenticators for MACs). Qprf denotes
the number of queries to the PRF oracle in the security bound for pqPRFs. We omit constant factors and
logarithmic terms for simplicity.

the same as those used in [DGK17]. The “Security bounds in QROM-AI” column indicates upper
bounds of advantages to break these primitives by an adversary that makes T quantum queries to
the random oracle and is given a classical auxiliary input of size at most S bits. The “Best known
attacks in QROM-AI” column indicates advantages that are achieved by the best known attacks.
(Appendix E briefly explains how we filled this column.) Though our bounds in the QROM-AI are
much less tight than those in the ROM-AI and far from matching the best known attacks, we can
derive some meaningful implications from them. For example, our bounds imply the computational
hardness of these primitives if the size of domain and ranges are sufficiently large4. Moreover, our
bounds imply that if we use a large enough salt, these primitives remain secure even if an adversary
prepares a very long auxiliary input. That is, if the size K of the domain of the salt is exponentially
larger than the auxiliary input size S, then terms that depend on S are negligible. This extends
similar results in the ROM-AI [DGK17, CDGS18] to the QROM-AI.

On Quantum Auxiliary Input. Unfortunately, we could not obtain any meaningful security bound
in the QROM-QAI where quantum auxiliary inputs are available. Nonetheless, we give a security
bound for a closely related problem: one-wayness of a random permutation (instead of a random
function) with quantum auxiliary input. That is, we show that the probability of inverting a random
function O : [K] × [N] → [N] such that O(a, ·) is a permutation over [N] for all a ∈ [K] with an

S-qubit quantum auxiliary input and T quantum queries is Õ

((
ST 2

KN + T 2

N

)1/3
)

. This answers the

open problem raised by Nayebi et al. [NABT15]. Before our work, such a result was known in the
setting where an auxiliary input is classical and K = 1 [NABT15], which gave a security bound

Õ(
√
ST 2/N). 5

Our result also has an implication in complexity theory. Specifically, it implies an oracle sep-
aration of NP ∩ coNP and BQP/qpoly which is the class of problems solvable by a polynomial-
size quantum algorithm with a polynomial-size quantum advice [NY04, Aar05]. That is, we have
NP ∩ coNP 6⊆ BQP/qpoly relative to a random permutation oracle. This affirmatively answers
the open problem left by Aaronson [Aar05], who showed the existence of an oracle relative to
which NP 6⊆ BQP/qpoly and left it open to show the existence of an oracle relative to which
NP ∩ coNP 6⊆ BQP/qpoly.

4 More precisely, if both S and T are polynomial in the security parameter and (appropriate parts of)
domains and ranges of the random oracle are exponentially large then our bounds become negligibly
small.

5 They claim that their security bound is Õ(ST 2/N). However, their definition of one-wayness is weaker
than ours, and if we use our definition, then the quadratic security loss naturally occurs. See Appendix D
for more detailed discussion.

3

1.3 Technical Overview

Our main tool is the compression technique developed by Genarro, Gertner, Katz, and Tre-
visan [GT00, GGKT05]. The basic idea behind the technique is a very simple information theoretic
argument: For sets M, C, if there exist an encoding algorithm E : M → C and a decoding algo-
rithm D : C →M such that D(E(m)) = m holds with high probability (over the uniformly random
choice of m), then the cardinality of C cannot be much smaller than that of M. More precisely,
if the decoding succeeds with probability δ, then we must have |C| ≥ δ|M|. This holds even if
the encoder and the decoder share a randomness of any length [DTT10]. We call this information
theoretical bound the compression lemma. In the following, we explain how to apply this to derive
security bounds in the QROM-AI. We omit salting for simplicity since similar methods still work
with salting.

OWFs in QROM-AI. Here, we explain how to obtain a security bound for OWFs in the QROM-
AI. First, we review the case of random permutations, which is shown by Nayebi et al. [NABT15]
because this is much simpler. Suppose that we have a random permutation f : [N]→ [N] and an
adversary A that succeeds in inverting f with high probability, say 2/3, for ε-fraction of x ∈ [N]
by using S-bit classical auxiliary information of f and T quantum queries to f . We want to give
an upper bound for ε.

The idea is to construct an encoder that compresses the truth table of the random oracle by
using the power of the adversary A and then invoke the compression lemma. Specifically, we choose
a random subset R ⊂ [N] by putting each element x ∈ [N] into R with a certain probability, which
will be used as the shared randomness between the encoder and the decoder. Then we define the
set G ⊂ R of good elements where we say that x ∈ R is good if A succeeds in inverting f(x) with
high probability and A’s total query magnitude on any x′ ∈ R \ {x} is “small” when it runs on
the input f(x). By appropriately setting parameters, we can show that G is “not too small” with
high probability. Then the encoder generates an encoding that consists of a “partial truth table”
of f on [N] \ G, the description of the set f(G) and the auxiliary input that is used by A. The
decoder recovers the whole truth table of f by inverting f on each element of f(G) by running A.
Here, we have to be careful about the fact that the decoder is not given the whole truth table of f
and cannot correctly simulate the oracle f for A. Thus, when the decoder tries to invert y ∈ f(G)
in f , it defines a function gy by

gy(x) :=

{
f(x) if x /∈ R
y if x ∈ R,

and uses gy instead of f . Though f and gy do not match on R \ {x}, by the definition of the good
elements, A’s query magnitude on R \ {x} is “small,” and thus A still succeeds in inverting y with
high probability with the oracle access to gy instead of f . Then the decoder can recover x = f−1(y)
by computing the output distribution of A and taking the value that is output with the highest
probability.6 By repeating this for every y ∈ f(G), the decoder can recover the whole truth table
of f . On the other hand, the encoding is smaller than the original truth table of f since it “forgets”
the truth table on the subset G that is “not too small.” By setting parameters appropriately, we
can derive the security bound.

For random functions instead of random permutations, the difference is that a preimage of y
may not be unique, and we have to bound the probability that an adversary finds any of them.
In that case, even if an adversary succeeds in inverting the random function with high probability,
there may not be any particular value that is output with constant probability. Thus the decoder
has to use a value that is output by the adversary with sub-constant probability for recovering the
truth table. This only gives a somewhat bad bound related to this probability, even if we resolve
other technical difficulties.

To deal with this problem, we include a randomness used in the measurement of the final state
of A as a part of the shared randomness between the encoder and decoder. With a fixed randomness
for the measurement, the decoder can deterministically simulate A7 and decide the value that is
supposed to be used for recovering the table. With this idea (among others), we extend the above
result to the case of random functions.
6 Since the compression lemma works for unbounded-time encoders and decoders, we can assume that the

decoder has an unbounded computational power to simulate quantum computations.
7 Since the decoder has unbounded computational power, it can control the randomness for measurements

in executions of the quantum algorithm A.

4

PRGs in QROM-AI. For obtaining security bounds for PRGs, we first consider (an average case
version of) Yao’s box problem [Yao90] similarly to the classical case [DTT10, DGK17]. In Yao’s
box problem, we consider a random oracle O : [N]→ {0, 1} and an adversary that tries to compute
O(x) for uniform x ∈ [N] by using an S-bit classical auxiliary input and T quantum queries to O
without querying x itself (i.e., A’s query magnitude on x is 0 in the quantum case). If we obtain
a proper bound for Yao’s box problem, then a bound for PRGs follows as discussed below. To
construct PRGs, we consider a random oracle O : [N]→ [M] and want to bound the advantage of
A to distinguish O(x) for x← [N] from a truly random string y ← [M] by using an S-bit classical
auxiliary input and T quantum queries to O.

First, we argue that A’s total query magnitude on x is “small.” This holds because if it is “not
small,” then we can use A to invert O with “non-small” probability by measuring one of its queries,
which contradicts the bound for the one-wayness of O. Then we can convert A to an algorithm
A′ whose query magnitude on x is 0 while only slightly degrading its distinguishing advantage.8

Now, A′ distinguishes O(x) from a random string without querying x at all. By Yao’s equivalence
of distinguishability and predictability [Yao82], there exists an algorithm B such that for some
i ∈ [logM], it predicts the i-th bit of O(x) given an advice stO of S-bit, x, and the first i−1 bits of
O(x) making T quantum queries to O without querying x to O. This is exactly an algorithm that
solves Yao’s box problem by also considering the first i− 1 bits of O(x) as a part of the auxiliary
input.9 Therefore we can apply the bound for Yao’s box problem to derive a security bound for
PRGs in the QROM-AI.

What is left is how to derive a security bound for Yao’s box problem.10 Basically, we follow the
classical counterpart that was shown by De et al. [DTT10], which is roughly described as follows.
First, we choose a random subset R ⊂ [N] by putting each element of x ∈ [N] into R with a
certain probability, which will be used as the shared randomness between the encoder and the
decoder. Then we define the set G of good elements where we say that x ∈ [N] is good if (A):
x ∈ R, and (B): for any query x′ made by A with input x, we have x′ /∈ R.11 Then we partition
G into two subsets G0 that consists of all x ∈ G such that A correctly guesses O(x) on input x,
and G1 := G \G0. By some analyses of probabilities, they showed that |G| is “not too small” and
|G0| − |G1| = Ω(ε|G|) with “non-small” probability where ε is A’s advantage (i.e., A returns the
correct answer with probability 1/2 + ε). Then they construct an encoder that outputs the partial
truth table of O on [N] \ G, the description of the set G0, and the auxiliary input used by A.
The decoder can recover the whole truth table of O by running A on each x ∈ G and negating
it if x ∈ G1.12 We note that the decoder never gets stuck in simulating the oracle since all of A’s
queries are outside R where the decoder knows the value of O. They showed that the encoding
size is much smaller than the whole truth table when |G0| − |G1| is “large”. (Note that the needed
number of bits to represent the set G0 is smaller when |G0| − |G1| is larger since the number of
possible choices of G0 and G1 is smaller when |G0| − |G1| is larger assuming |G0| > |G1|.) More
specifically, they showed that we can obtain a meaningful bound when |G| is “not too small” and
we have |G0| − |G1| = Ω(ε|G|), which occurs with “non-small” probability.

When generalizing this strategy to the quantum setting, there are several obstacles.

First, the condition (B) is not well-defined in the quantum setting. This can be easily adapted
by requiring that A’s query magnitudes on elements of R are “small” instead of requiring A to not
query any of them.

Second, the sets G0 and G1 are not well-defined in the quantum setting since we cannot assume
A is deterministic in the quantum setting. This can be resolved by including the randomness for
measurements in the shared randomness between the encoder and decoder similarly to the case of
OWFs.

Third, in the classical setting, for proving that |G| is “not too small” and we have |G0|− |G1| =
Ω(ε|G|) with “non-small” probability, we use the fact that the probability that x is good (i.e.,
Pr[x ∈ G]) is constant for all x ∈ [N]. In the classical setting, this can be assumed without loss of

8 In the actual proof, we rely on the semi-classical one-way to hiding theorem recently given by Ambainis,
Hamburg, and Unruh [AHU19].

9 More precisely, since an auxiliary input cannot depend on x, we consider the partial truth table of O
that gives the first i− 1 bits of O(x) for all x as a part of the auxiliary input.

10 Nayebi et al. [NABT15] also studied Yao’s box problem. However, they only considered the worst case,
so their result is not applicable for our purpose.

11 Recall that this is a review of the classical case, and thus this condition is well-defined.
12 Though the encoding does not contain the description of G, the decoder can recover it from R.

5

generality since we can force an adversary to not make the same queries twice. On the other hand,
this cannot be assumed in the quantum setting, and Pr[x ∈ G] may depend on x. Fortunately, we
can still show that if we choose parameters appropriately, then Pr[x ∈ G] are well-balanced, i.e.,
maximal and minimal values of Pr[x ∈ G] are very close. By using this, we can still prove that |G|
is “not too small” and we have |G0| − |G1| = Ω(ε|G|) with “non-small” probability though the
proof becomes more involved.

With these ideas, we obtain a security bound for Yao’s box problem in the quantum setting.

pqPRFs and pqMACs in QROM-AI. With ideas used for OWFs and PRGs as explained above,
the results for pqPRFs and pqMACs in the ROM-AI in [DGK17] can be naturally translated into
ones in the QROM-AI. Since the original bounds in [DGK17] only considered classical accesses to
PRF/MAC oracles, our results inherit this. One thing we have to care about here is that classical
PRF and MAC oracles are not unitary, and we cannot assume that measurements are deferred
to the end of the computation by the adversary. Thus for applying our technique of deterministic
simulation of quantum computations, we include randomness for all measurements that are possibly
done in the middle of the computation by the adversary in the shared randomness between the
encoder and decoder. We note that the size of shared randomness does not affect the limitation of
a compression, and this does not make our bounds worse.

Bound for Inverting Permutations with Quantum Advice. Next, we move on to discussing quantum
auxiliary inputs. Our strategy is to use the compression technique similarly to the case of the
classical auxiliary inputs. However, if we consider quantum auxiliary inputs, we first have to extend
the compression lemma to the setting where encodings are quantum. Fortunately, such an extension
is already known [Nay99, NS06], and both papers showed that the bound is almost the same as
the classical case.

Given this, one may think that security bounds in the QROM-AI are quite easy to extend to
ones in the QROM-QAI. However, this is not the case. Recall that decoders in these proofs run
an adversary A many times. On the other hand, we cannot reuse a quantum auxiliary input since
it may be broken in each running of A. Thus, an encoding has to contain as many copies of the
auxiliary input as the number of executions of A by the decoder, in which case the encoding is no
longer small. Indeed, Nayebi et al. [NABT15] mentioned that their result is difficult to extend to
the quantum auxiliary input setting for this reason.

We overcome this issue by using a general principle of quantum information, often called the
gentle measurement lemma [Win99, AR19], which states that if we can predict the outcome of a
measurement with probability almost 1, then the measurement barely damages the quantum state.
To apply the lemma, we amplify the success probability of an adversary A to almost 1 by running
it many times.13 Especially, if the correct solution of a problem in question is unique (as in the
inversion problem of a permutation), then A outputs a certain value with probability almost 1.
In this case, the quantum auxiliary input is not damaged much in each running of A due to the
gentle measurement lemma and can be reused many times in the decoding procedure. We note
that the decoder still needs a certain number of copies of the auxiliary input since it has to run the
adversary many times to amplify the success probability. However, the number of copies needed
is not too large since the adversary’s error probability decreases exponentially in the number of
repetitions. Thus, the encoding does not become too large, and we can obtain a meaningful bound.
This is how we obtain a security bound for inverting a random permutation with quantum advice.

We note that the above method crucially relies on the solution of the problem being unique.
Otherwise, even if an adversary’s success probability is almost 1, its output may still have high
entropy, in which case the gentle measurement lemma is not applicable. This is why we limit our
attention to random permutations instead of random functions.

1.4 Limitations and Open Problems

Though we made progress in understanding the power of non-uniform attacks in the quantum
setting, our results contain many limitations.

1. We do not have any result for CRHFs in the QROM-AI/QROM-QAI.

13 A similar idea was used by Aaronson [Aar05] to show limitations of quantum one-way communication
and algorithms with quantum advice.

6

2. Our results on PRFs and MACs in the QROM-AI are limited to pqMACs and pqPRFs where
oracles (except for the random oracle) are classical.

3. All security bounds shown in this paper are much less tight than the counterparts in the
classical setting, and far from matching the best known attacks. We note that known security
bounds of many primitives including OWFs, PRGs, PRFs, and MACs in the ROM-AI do not
match the best known attacks even in the classical setting [DGK17, CDGS18].

4. Our techniques cannot be used for analyzing schemes on the basis of computational assumptions
since it would be difficult to capture these assumptions with the compression technique. We note
that this limitation is overcome by using another technique called the pre-sampling technique
instead of a compression technique in the classical setting [Unr07, CDGS18].

5. We have no security bound in the QROM-QAI. A possible approach toward that is to extend
our result on one-wayness of a random permutation with quantum auxiliary input.

We leave the above limitations as open problems to be overcome.
Also, we are not aware of any non-trivial attack in the QROM-AI or QROM-QAI that out-

performs ones in the ROM-AI except for attacks that just ignore auxiliary inputs (e.g., Grover’s
algorithm [Gro96] and BHT [BHT97] algorithm). We leave it as an interesting open problem to
give a non-trivial attack that utilizes auxiliary inputs against any primitive in the QROM-AI or
QROM-QAI.

1.5 Related Work

Security Bounds against Non-Uniform Attacks in Other Models. Corrigan-Gibbs and Kogan [CK18]
studied non-uniform attacks in the generic group model (GGM), showed security bounds for several
problems including the discrete logarithm problem that matches the best known attack. Their
results are based on the compression technique. Coretti, Dodis, and Guo [CDG18] studied non-
uniform attacks in the random permutation model (RPM), ideal-cipher model (IPM), and GGM,
and showed security bounds for many applications in these models by developing a general tool
to analyze them. Their results are based on the pre-sampling technique. We note that both above
works only consider classical attacks.

Quantum-Accessible PRFs and MACs. Zhandry [Zha12a] gave the first constructions of qPRFs
from OWFs or learning with errors (LWE) assumption in the standard model as well as a separation
between pqPRFs and qPRFs.

Boneh and Zhandry [BZ13] formally defined qMACs and showed that qPRFs are sufficient to
construct them. A stronger and the best current security notion for qMACs was proposed by Garg,
Yuen, and Zhandry [GYZ17].

We note that these works focus on constructions in the standard model, whereas this work
focuses on hash-based constructions in the QROM-AI or QROM-QAI that are much more efficient.

Compression Technique in Quantum Setting. Besides Nayebi et al. [NABT15], Hosoyamada and
Yamakawa [HY18] also used the compression technique in the quantum setting to show a black-
box separation of CRHFs from one-way permutations. Their technique is incomparable with ours
as they showed bounds for inverting random permutations in the presence of a specific quantum
oracle that finds collisions whereas we show bounds for several applications of a random oracle in
the presence of any bounded-length auxiliary inputs.

2 Preliminaries

Notations. We say a function ε(n) is negligible if ε(n) < 1/|p(n)| for any polynomial p for
sufficiently large n. For a positive integer n, we write [n] = {1, . . . , n} to denote the set of positive

integers less than or equal to n. In tilde notations Õ(f(A,B, · · ·)) or Ω̃(f(A,B, · · ·)), we ignore
non-negative degree polylogarithmic factors with respect to all capital variables which appear in the
context.For example, we write (T 2/N)·logM = Õ(T 2/N). To denote the event that a probabilistic
or quantum algorithm A with input z outputs x, we write A(z)→ x.

Quantum algorithms have intrinsic randomness when they perform measurements. The prob-
ability that a quantum algorithm A outputs x on an input z is denoted by PrA[A(z) → x]. To
denote quantum objects such as quantum states or a quantum-accessible oracle, we use the ket
notation |·〉. For example, |φ〉 denotes a quantum state, while x is a classical string. For basics of
quantum computing, we refer readers to [NC00].

7

2.1 Oracle-Aided Quantum Algorithm

An oracle-aided quantum algorithm is a quantum algorithm that can perform quantum computa-
tions and can access oracles. In this paper, we consider three types of oracles: quantum-accessible
oracle, classical-accessible oracle, and semi-classical oracle [AHU19], which is explained in the next
subsection. A quantum-accessible oracle that computes a function f : X → Y applies a unitary
that transforms a query |x, y〉 to |x, y ⊕ f(x)〉, and returns the resulting state. A classical-accessible
oracle that computes a function f : X → Y , given a query |x, y〉, first measures the input register
|x〉, and then returns |x, y ⊕ f(x)〉. Note that a classical-accessible oracle is not unitary. We often
use A|f〉 to mean that A accesses a quantum-accessible oracle that computes f and Af to mean
that A accesses classical-accessible oracle that computes f . We allow an oracle-aided quantum
algorithm to make queries in parallel. Its query depth d is defined to be the number of oracle calls
counting parallel queries as one query.

2.2 Semi-Classical Oracle

In this section, we review semi-classical oracles introduced in [AHU19]. Here, we only define a
semi-classical oracle for the indicator function of a set S since we only need it in this paper. A
semi-classical oracle OSC

S for a set S ⊆ X is queried with two registers, an input register Q with
CX and an output register R with space C2. When queried with a value |x〉 in Q, the oracle returns
whether x ∈ S in the output register R. More formally, it performs a measurement with projectors
M0 and M1, where M0 :=

∑
x∈X\S |x〉 〈x| and M1 :=

∑
x∈S |x〉 〈x|, and initializes R to |0〉 or |1〉

corresponding to the measurement result.
In the execution of a quantum algorithm AOSC

S , Find denotes the event that OSC
S returns |1〉.

This event is well-defined, since OSC
S measures its outputs.

Punctured oracle. If H is an oracle with domain X and codomain Y , we define |H〉\S as an oracle
which, on input x, first queries OSC

S (x) and then queries H(x). The following lemma ([AHU19,
Lemma 1]) states that the outcome of A|H〉\S is independent of H(x) for all x ∈ S when Find does
not occur.

Lemma 1 (Punctured Oracle [AHU19, Lemma 1]). Let S ⊆ X be random. Let G,H : X →
Y be random functions satisfying G(x) = H(x) ∀x 6∈ S. Let z be a random bit string. (S,G,H, z
may have an arbitrary joint distribution.)

Let A be an oracle-aided quantum algorithm of query depth d (not necessarily unitary). Let E
be an arbitrary (classical) event. Then we have

Pr[E ∧ ¬Find : x← A|H〉\S(z)] = Pr[E ∧ ¬Find : x← A|G〉\S(z)].

We review the semi-classical oneway-to-hiding lemma (the SC-O2H lemma in short):

Lemma 2 (The SC-O2H lemma [AHU19, Theorem 1]). Let S ⊆ X be random. Let G,H : X →
Y be random functions satisfying ∀x 6∈ S [G(x) = H(x)]. Let z be a random bit string. (S,G,H, z
may have an arbitrary joint distribution.)

Let A be an oracle-aided quantum algorithm of query depth d (not necessarily unitary). Let

Pleft := Pr[b = 1 : b← A|H〉(z)],
Pright := Pr[b = 1 : b← A|G〉(z)],
Pfind := Pr[Find : A|G〉\S(z)] = Pr[Find : A|H〉\S(z)].

Then we have

|Pleft − Pright| ≤ 2
√

(d+ 1) · Pfind and |
√
Pleft −

√
Pright| ≤ 2

√
(d+ 1) · Pfind.

The lemma also holds with bound
√

(d+ 1) · Pfind for the following alternative definition of Pright:

Pright := Pr[b = 1 ∧ ¬Find : b← A|G〉\S(z)].

We often denote the above probability by Pr[¬Find : A|G〉\S(z)→ 1] for notational simplicity.

8

Lemma 3 (Search in semi-classical oracle [AHU19, Theorem 2 and Corollary 1]). Let
A be any oracle-aided quantum algorithm making at most q queries (depth d) to a semi-classical
oracle with domain X. Let S ⊆ X and z ∈ {0, 1}∗. (S, z may have an arbitrary joint distribution.)

Let B be an algorithm that on input z chooses i← {1, . . . , d}; runs AOSC
∅ (z) until (just before)

the i-th query; then measures all query input registers in the computational basis and outputs the
set T of measurement outcomes.

Then we have
Pr[Find : AO

SC
S (z)] ≤ 4d · Pr[S ∩ T 6= ∅ : T ← B(z)].

In particular, if S and z are independent, A makes at most q queries, and we let Pmax :=
maxx∈X Pr[x ∈ S], then we have

d · Pr[S ∩ T 6= ∅ : T ← B(z)] ≤ q · Pmax.

Remark 1. In the above lemmas, the input z is assumed to be a classical string. However, we can
obtain exactly the same bound even if z is a quantum state. This is because any quantum state can
be described by a classical string with an exponential blowup of the size, and the above lemmas
are only about query-complexities and the size of z does not matter.

3 Quantum ROM with Classical AI

In this section, we show security bounds for primitives in the QROM-AI.

3.1 Preparations

First, we prepare some lemmas and notations that are used in our proofs.

Compression Lemma The following lemma states that there exists an information-theoretic
lower bound for a compression algorithm.

Lemma 4 ([DTT10, Fact 8.1]). Let M,C,R be sets. Let E : M ×R→ C and D : C ×R→M
be deterministic algorithms. For δ ∈ [0, 1], if we have

Pr
r←R

[D(E(m, r), r) = m] ≥ δ

for all m ∈M , then we have |C| ≥ δ|M |, which can be rephrased as log |C| ≥ log |M | − log 1/δ.

We use the above lemma (which we call the compression lemma) to derive security bounds for
various primitives in the QROM-AI by constructing a pair of encoding and decoding algorithms
that compress the truth table of a random function by using the power of an adversary against
the primitive. Note that we encode a function into a classical bit string while we use a quantum
adversary.

Simulating Measurement Quantum algorithms are inherently randomized due to the intrinsic
randomness of measurements. However, if we do not care about the running-time, we can fix the
randomness in the measurement by classically simulating the execution of the algorithm.

More precisely, we can classically simulate an execution of any quantum algorithm A(z) with a
randomness r ∈ [0, 1]14 by first computing the final state, which is known to be possible in classical
exponential time, and then choosing a measurement result in accordance with the randomness r,
where we assume that A performs only one measurement at the end of its execution without loss
of generality. We denote this procedure by Simr(A(z)). If we consider many inputs z ∈ Z and
a corresponding random coin R = {rz} ∈ [0, 1]|Z|, we just denote Simrz (A(z)) by SimR(A(z))
for notational simplicity. We note that exactly the same procedure is possible for an oracle-aided
quantum algorithm A|f〉 that accesses a quantum oracle |f〉 that computes a function f if the
simulator knows the whole truth table of f since we can think of the combination of A and |f〉
as a single quantum algorithm. We also note that almost the same procedure is possible for an

14 In an actual simulation, the randomness should be approximated by a rational number up to a sufficient
precision. We just think of the randomness as a real number for simplicity.

9

oracle-aided quantum algorithm A|f〉,g that accesses both a quantum oracle |f〉 and a classical
oracle g if the simulator knows the whole truth table of f and g with the following modification.
The difference from the case of a quantum oracle is that the oracle may not be unitary and we are
no longer able to assume that the algorithm performs a measurement once, and it may perform a
measurement in the middle of the computation. This can be dealt with by augmenting the amount
of randomness used by the simulator so that fresh randomness is available in the simulation of
each measurement.

Since the compression lemma (Lemma 4) holds even for an unbounded-time encoder and de-
coder that may share unbounded-size randomness, we can allow them to simulate a (oracle-aided)
quantum algorithm classically in the above way.

Notations. In this section, we consider a random oracle with the domain [K]× [N] (or [K]× [N]×
[L] for the case of pqPRFs and pqMACs) and the codomain [M]. We omit to state a distribution of a
random oracleO if that is uniformly chosen from the set of functions with the corresponding domain
and codomain. We use a and x (or k for the case of pqPRFs and pqMACs) to represent elements of
[K] and [N] respectively throughout the section, and often omit to state distributions when they
are uniform. For example, we write Pra,x[f(a, x) = y] instead of Pra←[K],x←[N][f(a, x) = y].

3.2 Function Inversion

The following theorem is the main result of this section.

Theorem 1. Let O ∈ Func([K]× [N], [M]) be a random oracle. Suppose that A is an oracle-aided
quantum algorithm that takes an S-bit classical advice stO (that may depend on O) as input, makes
at most T oracle queries, and satisfies

Pr
A,O,a,x

[
O(a, x) = O(a, x′) : A|O〉(stO, a,O(a, x))→ x′

]
= ε.

Then it holds that

ε2 = Õ

(
ST 2

K min(M,N)
+

T 2N

min(M,N)2

)
.

The main idea of the proof of this theorem is to compress the truth table of the random function
into a smaller encoding by using an algorithm that inverts the function. Then by applying Lemma 4,
we obtain a bound for the advantage to invert the function. Specifically, we encode a function into
an encoding that consists of a partial truth table and information to recover the remaining part of
the truth table similarly to [DGK17].

We also introduce another lemma, which can be seen as a variant of the above theorem. This
lemma is used for proving lower bounds for other problems in the next sections. In this lemma,
we give an upper bound for the probability that the event Find occurs when an adversary is
given a punctured oracle on the correct answer. (See Section 2.2 for the definitions of Find and
the punctured oracle.) This corresponds to [DGK17, Corollary 1], which gives a bound for the
probability that an adversary ever queries the correct answer to the oracle in the classical case.

Lemma 5. Let O ∈ Func([K] × [N], [M]) be a random oracle. Suppose that A is an oracle-aided
quantum algorithm that takes an S-bit classical advice stO (that may depend on O) as input, and
makes at most T oracle queries. Then it holds that

Pr
A,O,a,x

[
Find : A|O〉\{(a,x)}(stO, a,O(a, x))

]
= O

(
ST 2

KN
+
T 2 logN

N

)
.

Proof of Theorem 1. First, we consider an adversary A (which we call a biased adversary) that
breaks the one-wayness in a slightly stronger sense. Namely, we assume that we have

Pr
O,a,x

[
Pr
A

[A|O〉(stO, a,O(a, x))→ x′ ∧ O(a, x) = O(a, x′)] ≥ c]
]
≥ ε

for a fixed constant c. We will later show that we have

ε = Õ

(
ST 2

K min(M,N)
+

T 2N

min(M,N)2

)

10

in this setting. For the time being, we assume that the above statement is true and prove the
theorem. Suppose that there exists an algorithm A such that

Pr
A,O,a,x

[
O(a, x) = O(a, x′) : A|O〉(stO, a,O(a, x))→ x′

]
= ε′.

By an averaging argument, at least an (ε′/2)-fraction of (O, a, x) satisfies

Pr
A

[
O(a, x) = O(a, x′) : A|O〉(stO, a,O(a, x))→ x′

]
≥ ε′/2.

Applying the amplitude amplification [BHMT02] (see Lemma 10 in Appendix A), we obtain another
algorithm A′ that uses A, A−1 and O as sub-routines O(ε′−1/2) times and satisfies

Pr
A′

[
O(a, x) = O(a, x′) : A′|O〉(stO, a,O(a, x))→ x′

]
= Ω(1),

where we abuse the notation to use A and A−1 to mean the unitary part of A and its inverse,

respectively. By the bound for the biased adversary, we have ε′ = Õ
(

ST 2/ε′

Kmin(M,N) + T 2N/ε′

min(M,N)2

)
,

which implies

ε′2 = Õ

(
ST 2

K min(M,N)
+

T 2N

min(M,N)2

)
as desired.

Now it suffices to prove the bound for the biased adversary. For the sake of contradiction, we
assume that we have

ε = Ω̃(ST 2/K min(M,N) + T 2N/min(M,N)2). (1)

Note that it particularly implies CT 2 ≤ εKN for a sufficiently large C since the tilde notation
hides a non-negative degree polylogarithmic factor and T 2/KN = O(ST 2/K min(M,N)) holds.15

Here, to apply Lemma 2, we consider another adversary B that takes a list L of classical strings
as an additional input and works as follows:

B|f〉(stO, a, y, L): It runs A|f〉(stO, a, y). Then B outputs 1 if the answer z of the algorithm A
satisfies (a, z) ∈ L, and outputs 0 otherwise.

Note that the assumption on the biased adversary A can be rephrased as

Pr
O,a,x

[
Pr
B

[B|O〉(stO, a,O(a, x),O−1
a (O(a, x)))→ 1] ≥ c]

]
≥ ε

where Oa(x) := O(a, x) and O−1
a (y) := {(a, x) : O(a, x) = y}. Here, we state a claim about the

size of O−1
a (y) whose proof can be found in Appendix B.1.

Claim 1. Except for an (ε/4)-fraction of O ∈ Func([K]× [N], [M]), we have

|O−1
a (y)| = |{x : Oa(x) = y}| = Õ(N/min(N,M))

for all (a, y) ∈ [K]× [M].

By an averaging argument, at least an (ε/2)-fraction of f ∈ Func([K]× [N], [M]) satisfies

Pr
a,x

[
Pr
B

[B|f〉(stf , a, f(a, x), f−1
a (f(a, x)))→ 1] ≥ c]

]
≥ ε/2.

Combining this with Claim 1, at least an (ε/4)-fraction of Func([K]×[N], [M]), denoted by F , simul-

taneously satisfies PrB[B|f〉(stf , a, f(a, x), f−1
a (f(a, x)))→ 1] ≥ c and |f−1

a (y)| = Õ(N/min(N,M))

for all (a, y) ∈ [K] × [M]. We define β = Õ(N/min(M,N)) so that we have |f−1
a (y)| ≤ β for all

(a, y).
We fix an arbitrary function f ∈ F and write L to denote the set f−1

a (f(a, x)). We will describe
an encoder that compresses the truth table of f to generate an encoding that consists of a partial
truth table of f and other information to recover the remaining part of the truth table by using the

15 Looking ahead, this is used in the proof of Claim 2.

11

algorithm A. What is non-trivial is that the decoder has to simulate the algorithm A that makes
queries to f though it is given only a partial truth table of f as a part of the encoding. We will
show that this is actually possible by using the SC-O2H lemma (Lemma 2) below.

A public randomness r shared by the encoder and decoder (in Lemma 4) specifies R1 and R2

as explained below. A set R1 ⊂ [K]× [M] is chosen so that each (a, y) ∈ [K]× [M] is included in
R1 with probability d/T (T + 1) for a fixed constant d ≤ c2/1280. Let R(a,x) := R1 \ {(a, f(a, x))}.
For a set S ⊂ [K]× [M], we define Sa := {y ∈ [M] : (a, y) ∈ S} and f−1(S) := ∪a∈[K]f

−1
a (Sa).

We say that (a, x) ∈ I is good if both

(A) (a, f(a, x)) ∈ R1,

(B) Pr[Find : B|f〉\f
−1(R(a,x))(stf , a, f(a, x), L)] ≤ c2

16(T + 1)

hold. We denote the set of good elements by G. Note that if we have f(a, x) = f(a, x′), then we
have (a, x) ∈ G if and only if (a, x′) ∈ G.

Here, we state a claim that states that G is “not too small” with high probability whose proof
is given in Appendix B.1.

Claim 2. PrR1
[|G| ≥ δεKN/T 2] ≥ 0.8 for some constant δ > 0.

For y ∈ [M], we define a function gy : [K]× [N]→ [M] by

gy(z) =

{
f(z), if z ∈ ([K]× [N]) \ f−1(R1),

y, otherwise.

By the SC-O2H lemma (Lemma 2), for any (a, x) ∈ G, it holds that∣∣∣Pr
B

[B|f〉(stf , a, f(a, x), L)→ 1]− Pr
B

[B|gf(a,x)〉(stf , a, f(a, x), L)→ 1]
∣∣∣

≤ 2

√
(T + 1) · Pr[Find : B|f〉\f−1(R(a,x))(stf , a, f(a, x), L)] ≤ c/2,

where we used the condition (B) for deriving the last inequality. Since we have PrB[B|f〉(stf , a, f(a, x), L)→
1] ≥ c, we have

Pr
B

[B|gf(a,x)〉(stf , a, f(a, x), L)→ 1] ≥ c

2

for any (a, x) ∈ G. It is easy to see that this can be rephrased as

Pr
A

[A|gf(a,x)〉(stf , a, f(a, x))→ x′ ∧ f(a, x) = f(a, x′)] ≥ c/2.

The randomness R2, which is another random coin specified by r, is used for the simulation

SimR2

(
A|gf(a,x)〉(stf , a, f(a, x))

)
of A|gf(a,x)〉(stf , a, f(a, x)).16 It outputs x′ such that f(a, x) = f(a, x′) with probability at least
c/2 over the choice of R2. Then for at least a (c/4)-fraction of R2, the simulation of A with oracle
access to |gf(a,x)〉 instead of |f〉 outputs a correct preimage for at least a (c/4)-fraction of (a, x).
More precisely, for at least a (c/4)-fraction of R2, the following condition is satisfied:

(∗) There exists at least a (c/4)-fraction of good elements (a, x), which we denote by X, such that
we have

SimR2

(
A|gf(a,x)〉(stf , a, f(a, x))

)
→ x′ such that f(a, x) = f(a, x′)

for all (a, x) ∈ X.

16 Specifically, R2 consists of independent random coins r2(a, y) for each (a, y) ∈ [K] × [M] to simulate
A|gy〉(stf , a, y).

12

We again remark that (a, x) ∈ X and (a, x′) ∈ X are equivalent if f(a, x) = f(a, x′). We say
that (R1, R2) is good if the following three conditions all hold:

1) |G| ≥ δεKN/T 2, 2) the condition (∗), 3) |R1| = Θ(εKM/T 2).

By Claim 2, the first statement holds with probability at least 0.8 (over the choice of R1), and the
second holds with probability at least c/4 (over the choice ofR2 for any fixedR1) as discussed above,
and the last holds with probability 1−o(1) by the Chernoff bound. Therefore, the probability that
(R1, R2) is good is Ω(1). When (R1, R2) is good, we clearly have |X| = Ω(εKN/T 2) by definition.

Now we are ready to explicitly describe the encoder and decoder for f . Note that the decoder will
correctly recover f as long as (R1, R2) is good. The encoder induces R1, R2 from the given public
randomness. The encoder computes Xa := {x : (a, x) ∈ X}, Ya := {y : y = f(a, x) for x ∈ Xa},
Y := ∪a∈[K]{(a, y) : y ∈ Ya}, and Ra = R1 ∩ ({a} × [M]) for all a ∈ [K]. Then, |Y | ≥ |X|/β holds
by the definition of β.

For each a ∈ [K], the encoder computes a set Za ⊂ [N] as the set consisting of outputs
of simulations SimR2

(
A|gy〉(stf , a, y)

)
for all y ∈ Ya. We note that Za is well-defined since the

simulation is deterministic once R2 is fixed. Let Z := ∪a∈[K]{(a, z) : z ∈ Za}. Clearly, we have
|Za| = |Ya| and |Z| = |Y |. Now the function f ∈ F is encoded as follows, given the public
randomness R1, R2.

• The advice string stf : S bits.

• The description of Za with its size for each a ∈ [K]: logN + log
(
N
|Za|
)

bits.

• The description of Ya with its size for each a ∈ [K]: logM + log
(|Ra|
|Ya|
)

bits.

• The values of f on ([K]× [N]) \ Z: (KN − |Z|) logM bits.

The values are encoded in the lexicographic order of their inputs. The size of the third component
is derived by observing Ya ⊂ Ra. Given this encoding and random sets R1, R2, the decoder fills
the truth table of f as follows:

1. Reconstruct stf , Ya, Za, Y , and Z.
2. Fill the truth table of f on ([K]× [N]) \ Z.
3. Recover the set f−1(R1) ⊂ [K]× [N]: this is done by 1) including all elements of Z (which are

definitely in f−1(R1) since they are good) and 2) including all (a, x) /∈ Z such that f(a, x) ∈ R1,
which can be checked by using the partial truth table on ([K]× [N]) \ Z.

4. Recover the function values on Z. This step is done by simulating the algorithm A. More
precisely, for each (a, y) ∈ Ya, the decoder executes the simulation SimR2

(
A|gy〉(stf , a, y)

)
to

obtain an output z and set the value of f on (a, z) to be y. By the definition of Z, this simulation
correctly recovers the function values if the randomness (R1, R2) is good. Note that since the
decoder has already recovered f−1(R1), the decoder can simulate the function gy.

The decoder successfully recovers f as long as (R1, R2) is good, which happens with probability
Ω(1). The overall encoding size is

S +K logN +K logM +
∑
a∈[K]

(
log

(
N

|Za|

)
+ log

(
|Ra|
|Ya|

))
+ (KN − |Z|) logM

≥ log(εMKN) +O(1) = KN logM + log ε+O(1),

(2)

by the compression lemma (Lemma 4). Since we have log
(
a
b

)
≤ b log(ea/b), |Za| = |Ya|, and

|Z| = |Y |, we obtain∑
a∈[K]

log

(
N

|Ya|

)
+
∑
a∈[K]

log

(
|Ra|
|Ya|

)
− |Y | logM

≤
∑
a∈[K]

|Ya| log

(
eN

|Ya|

)
+
∑
a∈[K]

|Ya| log

(
e|Ra|
|Ya|

)
− |Y | logM

≤ |Y | log

(
eKN

|Y |

)
+ |Y | log

(
e|R1|
|Y |

)
− |Y | logM

= |Y | log

(
e2KN |R1|
M |Y |2

)
,

13

where the second inequality is obtained by using log-concavity (or Jensen’s inequality for log with
weights |Ya| and |Ra|.) Combining this bound with the inequality (2), we obtain

S +K log(MN) ≥ |Y | log

(
M |Y |2

e2KN |R1|

)
+ Õ(1), (3)

where we used (1) to remove the log ε term in the right-hand side. Using |X| = Ω(εKN/T 2),
|Y | ≥ |X|/β, and |R1| = Θ(εKM/T 2), we obtain |Y |2/|R1| = Ω(εKN2/MT 2β2). This implies
|Y |2/|R1| ≥ DεKN2/MT 2β2 for some constant D. If DεN/T 2β2 ≤ e3 holds, then we have ε ≤
(e3T 2N/D) · (β/N)2 = Õ(T 2N/min(M,N)2) since β/N = Õ(1/min(M,N)). Otherwise, we have
M |Y |2

e2KN |R1| ≥
M

e2KN ·
DεKN2

MT 2β2 ≥ e. Putting this bound and the bound |Y | ≥ |X|/β = Ω(εKN/T 2β)

into (3), we obtain

O (S +K log max(M,N)) ≥ |Y |+ Õ(1) = Ω

(
εKN

βT 2

)
,

which implies ε = Õ
(

ST 2

Kmin(M,N) + T 2

min(M,N)

)
. Combining the two cases, we obtain

ε = Õ

(
ST 2

K min(M,N)
+

T 2N

min(M,N)2

)
.

Proof sketch of Lemma 5. The proof is very similar to the proof of Theorem 1 except some parts.
The main differences are

1. the algorithm does not output an element in [N], and
2. we cannot apply the amplitude amplification since it uses a semi-classical oracle that is not

unitary.

The first problem is resolved by considering another algorithm B that outputs the query register
of the semi-classical oracle whenever Find occurs, and the second problem is circumvented by
amplifying the success probability just by a parallel repetition. We note that there are two technical
differences that make the proof easier: we choose the random coin R as a subset of [K]×[N] instead
of [K]× [M] and need not consider a counterpart of Claim 1. The detailed proof can be found in
Appendix B.2.

3.3 Pseudorandom Generators

In this section, we prove that a random function is a secure PRG even if we allow an adversary to
make quantum queries to the function and to obtain a classical advice string. Our result is stated
as follows.

Theorem 2. Let O ∈ Func([K]× [N], [M]) be a random oracle. Suppose that A is an oracle-aided
quantum algorithm that takes an S-bit classical advice stO (that may depend on O) as input, and
makes at most T oracle queries. Then it holds that∣∣∣∣ Pr

A,O,a,x

[
A|O〉(stO, a,O(a, x))→ 1

]∣∣∣∣− ∣∣∣∣ Pr
A,O,a,y

[
A|O〉(stO, a, y)→ 1

]∣∣∣∣
= Õ

(
6

√
ST 4

KN
+
T 4

N

)
,

where y is uniform in [M].

For proving Theorem 2, we need the following lemma, which can be seen as a security bound
for a quantum average case version of Yao’s box problem [Yao90]. We note that the classical
average case version was proven in [DTT10, Lemma 8.4] and quantum worst-case version was
proven in [NABT15, Theorem 1], neither of which suffices for our purpose.

14

Lemma 6. Let F ⊂ Func([N], {0, 1}) be a set of functions. Suppose that A is an oracle-aided
quantum algorithm that takes an S-bit classical advice stf (that may depend on f ∈ F) as input,
makes at most T oracle queries, has query magnitudes 0 on its second input (i.e. x) for all queries,
and satisfies

Pr
A,x

[A|f〉(stf , x)→ f(x)] ≥ 1

2
+ ε

for all f ∈ F . Then there is a pair of an encoder and decoder for the truth tables of functions in F
with recovery probability Ω(ε5/T 2) and encoding length at most S+N −Ω(ε6N/T 2). In particular,
this implies ε6 = O(ST 2/N) for F = Func([N], {0, 1}).

This lemma can be proven similarly to its classical counterpart in [DTT10, Lemma 8.4] except
for some technical issues as discussed in Section 1.3. The proof of this lemma can be found in
Appendix B.3. Now, we are ready to prove Theorem 2.

Proof of Theorem 2. We first sketch the outline of the proof by the following diagram:

p0 := Pr
A,O,a,x

[A|O〉(stO, a,O(a, x))→ 1]

O2H+Lemma 5
≈ p1 := Pr

A,O,a,x
[¬Find : A|O〉\{(a,x)}(stO, a,O(a, x))→ 1]

Lemma 6
≈ p2 := Pr

A,O,a,x
[¬Find : A|O〉\{(a,x)}(stO, a, y)→ 1]

O2H+Lemma 5
≈ p3 := Pr

A,O,a,x
[A|O〉(stO, a, y)→ 1].

We assume that M is a power of 2 for simplicity.

Step 1. |p0 − p1| = Õ

(
4

√
ST 4

KN + T 4

N

)
This is simply proven by using the SC-O2H lemma. More precisely, by Lemma 2,

|p0 − p1| ≤
√

(T + 1) Pr
A,O,a,x

[
Find : A|O〉\{(a,x)}(stO, a,O(a, x))

]
holds, which is bounded by Õ

(
4

√
ST 4

KN + T 4

N

)
by Lemma 5.

Step 2. |p2 − p3| = Õ

(
4

√
ST 4

KN + T 4

N

)
This is exactly the same as Step 1.

Step 3. |p1 − p2| = Õ

(
6

√
ST 2

KN

)
First, we consider an oracle-aided quantum algorithm B that uses A as a sub-routine as follows.

B|O〉(stO, a, x, y): It runs A|O〉\{(a,x)}(stO, a, y). If the event Find occurs w.r.t. the running of A, B
immediately halts and returns 0. Otherwise, B returns what A outputs.

We note that B can simulate the oracle |O〉 \ {(a, x)} for A since it knows the punctured point
(a, x). Moreover, B’s query magnitude on (a, x) is 0 since before making a query to O, it performs
a partial measurement to check if the query is equal to (a, x) and immediately aborts if so by the
definition of the punctured oracle. By the construction of B, it is easy to see that

p1 = Pr
B,O,a,x

[B|O〉(stO, a, x,O(a, x))→ 1],

p2 = Pr
B,O,a,x

[B|O〉(stO, a, x, y)→ 1].

Let |p1 − p2| = ε. By Yao’s equivalence of pseudorandomness to unpredictability [Yao82], there
exists an i ∈ [logM], an oracle-aided quantum algorithm C whose query magnitude at (a, x) is 0,
and an advice string s̃tO that have at most S + 1 bits such that

Pr
C,O,a,x

[C|O〉(s̃tO, a, x,O1(a, x), · · · ,Oi−1(a, x))→ Oi(a, x)] ≥ 1

2
+

ε

logM
,

15

where Oi(a, x) denotes the i-th bit of O(a, x).
If we define TO as a partial truth table of O that specifies the first i − 1 bits of O(a, x) for

all (a, x) ∈ [K] × [N], then there is another algorithm D (that just runs C once) whose query
magnitude on (a, x) is 0 that satisfies

Pr
D,O,a,x

[D|O〉(s̃tO, TO, a, x)→ Oi(a, x)] ≥ 1

2
+

ε

logM
.

Then at least an (ε/ logM)-fraction of O satisfies

Pr
D,a,x

[D|O〉(s̃tO, TO, a, x)→ Oi(a, x)] ≥ 1

2
+

ε

2 logM
.

By Lemma 6, there exists a pair of an encoder and decoder for this fraction of functions with the
success probability Ω(ε5/T 2 log5M) and encoding size

KN +KN · (logM − 1) + S +O(1)−Ω
(

ε5KN

T 2 log6M

)
.

By Lemma 4, it holds that

KN logM + S +O(1)−Ω
(

ε6KN

T 2 log6M

)
≥ log

(
εMKN

logM

)
+ log(ε5/T 2 log5M)

or O
(
S + log

(
T 2 log6M

ε6

))
≥ Ω

(
ε6KN

T 2 log6M

)
, which implies ε = Õ

(
6

√
ST 2

KN

)
as desired.17

Overall, we obtain |p0 − p3| = Õ

(
6

√
ST 4

KN + T 4

N

)
.

3.4 Post-Quantum Pseudorandom Functions

The main theorem of this subsection is that random oracles are secure pqPRFs in the QROM-AI,
which is formally stated as follows.

Theorem 3. Let O ∈ Func([K] × [N] × [L], {0, 1}) be a random oracle. Suppose that A is an
oracle-aided quantum algorithm that takes an S-bit classical advice stO (that may depend on O) as
input, and makes at most T (quantum) queries to the oracle O and at most Q classical queries to
the other oracle. Then it holds that∣∣∣∣ Pr
A,O,a,k

[
A|O〉,O(a,k,·)(stO, a)→ 1

]
− Pr
A,O,a,F

[
A|O〉,F (stO, a)→ 1

]∣∣∣∣
= Õ

(
4

√
ST 4

KN
+
T 4

N
+Q

6

√
ST 2

KN

)
,

where F is uniform in Func([L], {0, 1}).

Although Theorem 3 is similar to Theorem 2, we require the following lemma, which is a function
variant of Lemma 6. The classical counterpart of this lemma is implicitly proven in [DGK17,
Theorem 7] for a similar purpose. To show this lemma, we should note that the simulations for
the decoder are deterministic, and thus the encoder knows all required queries to the second oracle
for the decoder’s simulation in advance. Except this, the proof is essentially the same as that of
Lemma 6. We defer the proof of this lemma to Appendix B.4

Lemma 7. Let O ∈ Func([K]×[N]×[L], {0, 1}) be a random oracle. For any oracle-aided quantum
algorithm A with a set of S-bit classical advice {stO}O that makes at most T oracle queries to the
oracle O satisfying

Pr
A,O,a,k

[A|O〉,O(a,k,·)(stO, a, k)→ (m, t) ∧ t = O(a, k,m)] ≥ 1

2
+ ε,

where A has the query magnitude 0 for {(a, k, ·)} to its first oracle and never queries m to its
second oracle, we have

ε6 = O(ST 2/KN).
17 More concretely, ε6 > CST 2 log6M(1 + logKN)/KN for sufficiently large C implies contradiction.

16

Proof of Theorem 3. The outline of the proof is as follows.

p0 := Pr
A,O,a,k

[
A|O〉,O(a,k,·)(stO, a)→ 1

]
O2H+Lemma 5

≈ p1 := Pr
A,O,a,k

[
¬Find : A|O〉\{(a,k,·)},O(a,k,·)(stO, a)→ 1

]
Lemma 7
≈ p2 := Pr

A,O,a,F

[
¬Find : A|O〉\{(a,k,·)},F (stO, a)→ 1

]
O2H+Lemma 5

≈ p3 := Pr
A,O,a,F

[
A|O〉,F (stO, a)→ 1

]
where {(a, k, ·)} denotes the set {(a, k,m)}m∈[L].

Step 1. |p0 − p1| = Õ

(
4

√
ST 4

KN + T 4

N

)
This is proved by using the semi-classical O2H lemma.18 More precisely, by Lemma 2,

|p0 − p1| ≤
√

(T + 1) Pr
A,O,a,k

[
Find : A|O〉\{(a,k,·),O(a,k,·)(stO, a)

]
holds. If we define O′ : [K] × [N] → [M]L by O′(a, k) := {O(a, k,m)}m∈[L] and apply Lemma 5
for the oracle O′, then we obtain

Pr
A,O,a,k

[
Find : A|O〉\{(a,k,·)},O(a,k,·)(stO, a)

]
≤ O

(
2

√
ST 4

KN
+
T 4 logN

N

)
.

This implies |p0 − p1| = Õ

(
4

√
ST 4

KN + T 4

N

)
.

Step 2. |p2 − p3| = Õ

(
4

√
ST 4

KN + T 4

N

)
This step is essentially the same as Step 1.

Step 3. |p1 − p2| = O

(
Q 6

√
ST 2

KN

)
We consider an oracle-aided quantum algorithm B that utilizes A as follows.

B|O〉,G(stO, a, k): It runs A|O〉\{(a,k,·)},G(stO, a). If the event Find occurs w.r.t. the running of A,
B immediately halts and returns 0. Otherwise, B returns what A outputs.

Since k is given as input to B, B can simulate the oracle |O〉 \ {(a, k, ·)} for A. Note that B’s query
magnitude on (a, k, ·) is 0 since before making a query to O, it performs a partial measurement to
check if the query is included in (a, k, ·), and immediately aborts if so. We can easily see that

p1 = Pr
B,O,a,k

[B|O〉,O(a,k,·)(stO, a, k)→ 1],

p2 = Pr
B,O,a,F

[B|O〉,F (stO, a, k)→ 1].

Let |p1 − p2| = ε. We will directly give a bound for ε. By Yao’s equivalence of pseudorandomness
to unpredictability [Yao82], there exist i ∈ [Q], an oracle-aided quantum algorithm C whose query
magnitude at (a, k, ·) is 0, and advice strings {s̃tO} that have at most S + 1 bits such that

Pr
C,O,a,k

[C|O〉,O(a,k,·)(s̃tO, a, k)→ (m, t) ∧ t = O(a, k,m)] ≥ 1

2
+
ε

Q
,

where C does not query m to its second oracle. By Lemma 7, we obtain ε/Q = O(6
√
ST 2/KN) as

desired.

18 Though Lemma 2 does not consider an additional oracle, we can apply it simply by considering a slightly
modified algorithm that works similarly to A except that it is given the truth table of O(a, k, ·) as input
instead of as an oracle.

17

3.5 Post-Quantum MACs

The main theorem of this subsection is that random oracles are secure pqMACs in the QROM-AI,
which is formally stated as follows.

Theorem 4. Let O ∈ Func([K]× [N]× [L], [M]) be a random oracle. Suppose that A is an oracle-
aided quantum algorithm that takes an S-bit classical advice stO (that may depend on O) as input,
and makes at most T oracle queries to the oracle O. Then it holds that

Pr
A,O,a,k

[
A|O〉,O(a,k,·)(stO, a)→ (m, t) ∧ O(a, k,m) = t

]
= Õ

(
3

√
ST 4

KN
+
T 4

N
+

1

M

)

where A never queries m to its second oracle.

Proof of Theorem 4. We first consider another algorithm A′ such that

A′|f〉,g(stO, a) It runs A|f〉,g(stO, a). For the output z = (m, t) of A, it queries m to the second
oracle g. If t = g(m) then outputs 1, and 0 otherwise.

Then it holds that

Pr
[
A|f〉,O(a,k,·)(stO, a)→ (m, t) ∧ O(a, k,m) = t

]
= Pr

[
A′|f〉,O(a,k,·)(stO, a)→ 1

]
for any function f . Applying Lemma 2, we obtain√

Pr
A′,O,a,k

[
A′|O〉,O(a,k,·)(stO, a)→ 1

]
≤
√

Pr
A′,O,a,k

[
¬Find : A′|O〉\{(a,k,·)},O(a,k,·)(stO, a)→ 1

]
+
√

(T + 1) Pr
A′,O,a,k

[
Find : A′|O〉\{(a,k,·)},O(a,k,·)(stO, a)

]
where {(a, k, ·)} denotes the set {(a, k,m)}m∈[L]. We will bound two terms of the right-hand side in
order. First, we define O′ : [K]× [N]→ [M]L by O′(a, k) := {O(a, k,m)}m∈[L] and apply Lemma 5
for the oracle O′ to obtain

Pr
A′,O,a,k

[
Find : A′|O〉\{(a,k,·)},O(a,k,·)(stO, a)

]
≤ O

(
2

√
ST 2

KN
+
T 2 logN

N

)
.

This can be used to bound the second term. Next, we consider another algorithm B that proceeds
as follows.

B|f〉,g(st, a, k): It runs A′|f〉\{(a,k,·)},g(stO, a). If the event Find occurs w.r.t. the running of A′, B
immediately halts and returns 0. Otherwise, B returns what A′ outputs.

Note that the query magnitude on {(a, k, ·)} is 0 for algorithm B. Then the first term is equal to

Pr
B,O,a,k

[
B|O〉,O(a,k,·)(stO, a, k)→ 1

]
=: ε.

Moreover, the total query magnitude of B on (a, k,m) is 0 for all m ∈ [L]. By applying averaging
argument twice, there are a set of functions F ⊂ Func([K] × [N] × [L], [M]) with size at least
ε/2 ·MKNL and a set I of (a, k) ∈ [K]× [N] with size |I| ≥ ε/4 ·KN such that for all f ∈ F and
(a, k) ∈ I it holds that

Pr
B

[
B|f〉,f(a,k,·)(stf , a, k)→ 1

]
≥ ε/4.

Fix f ∈ F . We choose a random set R1 ⊂ [K] × [N] such that each (a, k) is included in R1 with
probability cε/T (T + 1) for a constant c ≤ 1/5120. We say (a, k) ∈ I is good if

(A) (a, k) ∈ R1 and (B) Pr[Find : B|f〉\(R1\{(a,k)})×[L],f(a,k,·)(stf , a, k)] ≤ 160cε

T + 1

hold simultaneously. We denote a set of good elements by G.

18

Claim 3. PrR1
[|G| ≥ δε2KN/T 2] ≥ 0.8 for some constant δ > 0.

The proof is deferred to Appendix B.5. Then, for good (a, k), it holds that

Pr
B

[
B|g〉\R1,f(a,k,·)(stf , a, k)→ 1

]
≥ ε/16

by Lemma 2, where g(a, k,m) is defined by g(a, k,m) := f(a, k,m) for (a, k,m) /∈ R1 × [L], and
g(a, k,m) := 0 otherwise. Note that this is equal to

Pr
[
A′|g〉\R1,O(a,k,·)(stO, a)→ 1

]
= Pr

[
A|g〉\R1,O(a,k,·)(stO, a)→ (m, t) ∧ O(a, k,m) = t

]
since (|g〉 \R1) \ {(a, k, ·)} is equivalent to |g〉 \R1.

Now fix the simulation coin R2 for

SimR2

(
A|g〉\R1,O(a,k,·)(stO, a)

)
.

Note that this randomness includes coins for intermediate measurements as well. Then, with the
probability at least ε/32 over the choice of R2 it holds that at least (ε/32)-fraction of the simulations
for good elements outputs the correct answer. We say a random coin is good if |R1| = Θ(εKN/T 2)
and the above argument holds simultaneously, and we say (a, k) is very good (for a good random
coin) if the simulation of B with input (a, k) outputs a correct answer. For a good coin and the set
of very good elements V , it holds that |V | = Ω(ε3KN/T 2). At least (ε/100)-fraction of random
coins is good.

We encode f using the algorithm A. As in Theorem 3, the simulation of a quantum algorithm
with random coin is deterministic, and the encoder knows the required queries for the simulation
a priori. An encoding consists of the following components:

• Advice with size S.
• Values of f on ([K]× [N] \R1)× [L].

• Position of V in R1: log
(|R1|
|V |
)
.

• For all (a, k) ∈ V , the required query answers for the simulation.
• All other information of f on R1× [L], except the queried values and the answer of algorithm.

The decoding procedure can be done as in Theorem 3, by noting that the condition (B) can be
checked by computing

Pr[Find : B|g〉\R1×[L],f(a,k,·)(stf , a, k)]

by using g instead of f , by Lemma 1 and the fact that B has the query magnitude 0 on {(a, k, ·)}.
The overall encoding size is S +KNL logM − |V | logM + log

(|R1|
|V |
)

since the values not encoded

are only the answers of simulation. By Lemma 4 and log(
(
a
b

)
) ≤ b log(ea/b), we obtain

O(S) ≥ |V | log

(
M |V |
e|R1|

)
,

or

O(S) ≥ ε3KN

T 2
log
(
ε2M

)
,

which implies

ε3 = O

(
ST 2

KN
+

1

M

)
.

Combining all, we obtain the desired results.

4 Random Permutation with Quantum AI

In this section, we give a security bound for inverting random permutations with quantum auxiliary
input.

19

4.1 Preparations

First, we prepare some lemmas that are needed for proving our results.

Quantum Compression Lemma Nayak [Nay99] generalized the seminal result of Holevo [Hol73]
to relate the number of qubits that is needed to transmit n-bit classical information and the success
probability of it.

Theorem 5. [Nay99, NS06, adapted] Suppose that Alice holds an n-bit string x and wants to con-
vey it to Bob via a (noiseless) quantum channel. If, for any x, the probability that Bob successfully
recovers x is p ∈ (0, 1], then the number of qubits m transmitted by Alice is at least n− log 1/p.

Note that the above statement is very similar to the compression argument in the classical
setting. Using this Theorem 5, we can obtain the following quantum compression lemma.

Lemma 8 (Quantum compression lemma). Let M,R be a set. Let E be a procedure that takes
(x, r) ∈M ×R and outputs a m-qubit quantum state and D a procedure that takes a quantum state
along with string r ∈ R. If we have

Pr
r

[D(E(x, r), r) = x] ≥ p

for all x ∈M , then it holds that m ≥ log |M | − 2 log 1/p+ 1.

Proof. By the standard averaging argument, there exist an r0 ∈ R and set M ′ ⊂ M with |M ′| ≥
p|M | such that Pr[D(E(x, r0), r0) = x] ≥ p for all x ∈ M ′. We then apply Theorem 5 on D′(·) =
D(·, r0) and E′(·) = E(·, r0) and any set M ′′ ⊂ M ′ with power-of-two size and |M ′′| ≥ |M |/2, we
obtain the desired result as follows:

m ≥ log |M ′′| − log 1/p ≥ log(p/2 · |M |)− log 1/p = log |M | − 2 log 1/p+ 1

Rewinding Quantum Advice Here, we describe a way to reuse a quantum advice for quantum
algorithms when the outputs of the algorithms are fixed values with very high probability. We note
that a similar idea has been used in several works [Aar05, AR19].

Specifically, Aaronson [Aar05] implicitly proved the following lemma by using the gentle mea-
surement lemma [Win99], whose proof can be found in Appendix C.1

Lemma 9 (Implicit in [Aar05]). Let ρ be any (mixed) quantum state, n be any positive integer,
and for i ∈ [n], let Ai be a unitary quantum algorithm (i.e., Ai is unitary except for the final
measurement) such that Pr[Ai(ρ) = xi] > 1 − 1

9n4 for some classical string xi. Then there exists
an algorithm B such that Pr[B(ρ) = {xi}i∈[n]] > 2/3.

4.2 Bound for Inverting Random Permutations

Theorem 6. Let O ∈ Func([K] × [N], [N]) be a random permutation with salt (i.e., O(a, ·) is a
random permutation). Suppose that A is an oracle-aided quantum algorithm that takes an S-bit
quantum advice |stO〉 (that may depend on O) as input, makes at most T oracle queries, and
satisfies

Pr
A,O,a,x

[
A|O〉(|stO〉, a,O(a, x))→ x

]
= ε,

Then it holds that ε3 = Õ
(
ST 2

KN + T 2

N

)
.

Remark 2. In the above, we assumed the advice |stO〉 is a pure state. This does not lose generality
since any S-qubit mixed state can be realized as half of a 2S-qubit pure state by purification.

Proof of Theorem 6. By an averaging argument, there exists a set of functions F that is an ε/2-
fraction of random oracles such that

Pr
A,a,x

[A|f〉(|stf 〉, a, f(a, x))→ x] ≥ ε/2

20

for all f ∈ F . Fix f ∈ F . Again, by an averaging argument, there are at least ε/4 ·KN elements
(a, x) satisfying

Pr
A

[A|f〉(|stf 〉, a, f(a, x))→ x] ≥ ε/4.

We denote the set of such (a, x) by I and call it semi-good.
Now we consider an algorithm B that is an “amplified version” of A that satisfies

Pr
B

[B|f〉(|s̃tf 〉, a, f(a, x))→ x] ≥ 3/4

for all (a, x) ∈ I. More precisely, B runs Θ(1/ε) copies of A in parallel except measurements, checks
the correctness of outputs of A (before measurements) by querying them to f , and then outputs
x if any of them is the correct answer x and ⊥ otherwise. The number and depth of queries of B
are T ′ = Θ(T/ε) and D′ = T + 1, respectively, and the quantum advice |s̃tf 〉 is Θ(S/ε)-qubit.

Then a random set R ⊂ [K]× [N] is chosen that will serve as a random public coin for encoding,
so that (a, x) ∈ R with probability p = d/T ′(T+2) (independently for each (a, x)) for some constant
d (d < 1/46080 suffices). Here, we may assume that p|I| ≥ C for a sufficiently large constant C
(C ≥ 16 ln 10 suffices) since otherwise we have ε2KN/T 2 = O(1) in which case the statement of
Theorem 6 trivially holds.19

We say that (a, x) ∈ I is good if both

(A) (a, x) ∈ R, (B) Pr
B

[Find : B|f〉\(R\{(a,x)})(|s̃tf 〉 , a, f(a, x))] ≤ 1

576(T + 2)

hold. A set of good elements is denoted by G.
Then the following claim can be proven similarly to Claim 2. The proof can be found in

Appendix C.2.

Claim 4. PrR[|G| ≥ δε2KN/T 2] > 0.8 for some constant δ.

We say that R is good if |G| ≥ δε2KN/T 2. We now fix a good R. For y ∈ [N], we define a
function gy : [K]× [N]→ [N] by

gy(a, z) =

{
f(a, z) if (a, z) /∈ R,

y otherwise.

We note that gy agrees with f on R\{(a, x)} where (a, x) is any preimage of y in f (i.e., f(a, x) = y).
Here, we consider an algorithm C that works similarly to B except that it takes x as an additional
input and returns 1 if B’s output is x and 0 otherwise. By Lemma 2 and Remark 1, for any
(a, x) ∈ G, we have∣∣∣Pr

C
[C|gf(a,x)〉(|s̃tf 〉, a, x, f(a, x))→ 1]− Pr

C
[C|f〉(|s̃tf 〉, a, x, f(a, x))→ 1]

∣∣∣
≤ 2
√

(T + 2) Pr
C

[Find : C|f〉\(R\{(a,x)})(|s̃tf 〉 , a, x, f(a, x))]

which is clearly equivalent to∣∣∣Pr
B

[B|gf(a,x)〉(|s̃tf 〉, a, f(a, x))→ x]− Pr
B

[B|f〉(|s̃tf 〉, a, f(a, x))→ x]
∣∣∣

≤ 2
√

(T + 2) Pr
B

[Find : B|f〉\(R\{(a,x)})(|s̃tf 〉 , a, f(a, x))] ≤ 1

12
.

Thus we have

Pr
B

[B|gf(a,x)〉(|s̃tf 〉, a, f(a, x))→ x] ≥ 3

4
− 1

12
=

2

3
.

Note that the algorithm B outputs one particular answer x or ⊥, so we can amplify the success
probability by running O(log(KN)) copies of B in parallel and taking an output of any execution

of B that is not ⊥ as its final output if any (before the measurement). We call this algorithm B̃,
which satisfies

Pr
B̃

[B̃|gf(a,x)〉(|stf 〉, a, f(a, x))→ x] ≥ 1− 1

9(KN)4
,

where |stf 〉 is O(S log(KN)/ε) qubits.
Now we are ready to encode the function f for good R. Let Ra := R ∩ ({a} × [N]) and

Ga = G ∩ ({a} × [N]). The encoding of f includes the following information:

19 Looking ahead, this is used in the proof of Claim 4.

21

• The advice string |stf 〉: O(S log(KN)/ε) qubits.

• The set f(Ra) for each a ∈ [K]:
∑
a log

(
N
|Ra|
)

bits.

• The values of f on ({a} × [N]) \Ra for each a ∈ [K]:
∑
a log(N − |Ra|)! bits.

• The cardinality of Ga for each a ∈ [K]: K logN bits.

• The set f(Ga) for each a ∈ [K]:
∑
a log

(|Ra|
|Ga|
)

bits.

• The values of f on Ra \Ga :
∑
a log(|Ra| − |Ga|)! bits.

The decoding procedure initializes an empty table to store the values of f and then fills the
table as follows:

1. Recover |stf 〉, Ga, and G.

2. Fill the values of f on inputs in ([K]× [N]) \R. This can be done since the decoder knows R
as a shared random string.

3. Fill the table of f for G by the following procedures. For each (a, y) ∈ f(Ga), let x ∈ [N] be
the inversion of y at a, i.e., y = f(a, x) (which is unknown to the decoder so far). Note that the
function gy can be evaluated by the decoder since it only needs values of f on ([K]× [N]) \R
which is already recovered. As discussed above, we have

Pr
B̃

[B̃|gf(a,x)〉(|stf 〉, a, f(a, x))→ x] ≥ 1− 1

9(KN)4
.

Then the decoder uses the procedure in Lemma 9 to recover x for all (a, y) ∈ f(G). Noting that
|f(G)| ≤ KN , by Lemma 9, the decoder succeeds in correctly recovering x for all (a, y) ∈ f(G)
with probability at least 2/3. We note that the set G is also recovered at this point.

4. The decoder fills the values of f on inputs in R \ G by using the partial truth table and the
description of G that is recovered in the previous step.

The decoding procedure succeeds with a constant probability (over the choice of R and the
randomness of measurements) since a constant fraction of R is good and the decoding succeeds
with a constant probability for good R.

The overall encoding size except the size of advice string and the size of Ga is

∑
a∈[K]

(
log

(
N

|Ra|

)
+ log(N − |Ra|)! + log

(
|Ra|
|Ga|

)
+ log(|Ra| − |Ga|)!

)

=
∑
a∈[K]

log

(
N !

(N − |Ra|)!|Ra|!
· (N − |Ra|)! ·

|Ra|!
(|Ra| − |Ga|)!|Ga|!

· (|Ra| − |Ga|)!
)

= K logN !−
∑
a∈[K]

log |Ga|!

≤ K logN !−
∑
a∈[K]

|Ga| log(|Ga|/e) ≤ K logN !− |G| log

(
|G|
eK

)
,

where we used the fact that n! ≥ (n/e)n and x log x is convex in the last two inequalities. Then by
Lemma 8, we obtain the inequality

O

(
S log(KN)

ε
+K logN

)
≥ |G| log

(
|G|
eK

)
+Θ(1).

Then we have either |G|/eK < 2, which implies ε2 = O(T 2/N), or

O

(
S log(KN)

ε
+K logN

)
≥ |G| ≥ δε2KN/T 2.

Combining them, we obtain ε3 = Õ
(
ST 2

KN + T 2

N

)
.

22

4.3 Implication in Complexity Theory

Here, we discuss an implication of the result of the previous section in complexity theory. We
denote by BQP/qpoly the class of languages that can be decided in quantum polynomial time with
a polynomial-size quantum advice.20 Then the following theorem follows from Theorem 6.

Theorem 7. NP∩ coNP 6⊆ BQP/qpoly relative to a random permutation oracle with probability 1.

Proof of Theorem 7. We follow the proof strategy of Bennett, Bernstein, Brassard, and Vazirani
[BBBV97] who showed NP∩coNP 6⊆ BQP relative to a random permutation oracle with probability
1. Let O : {0, 1}∗ → {0, 1}∗ be a function that defines a permutation over {0, 1}n when restricted
to {0, 1}n for any n. (We denote the set of such functions by Perm.) We denote the restriction of O
to {0, 1}n by On, and for any fixed choice of O−n := {On′}n′∈N\{n}, we denote the subset of Perm

that consists of functions whose values on {0, 1}n′ match On′ for all n′ ∈ N \ {n} by Perm[O−n].
Relative to O, we consider a language LO = {(y, z) : ∃x s.t. O(x) = y ∧ x ≤ z} where ≤ means

the inequality in lexicographical order, and we denote LO ∩ ({0, 1}n)2 by LOn . Then it is clear that
we have LO ∈ NPO ∩ coNPO for any O ∈ Perm since x can be used as a witness for both YES
and NO instances. What is left is to prove LO /∈ BQPO/qpoly with probability 1 over the choice
of O ← Perm.

Let M be an oracle-aided quantum polynomial-time machine that takes poly(n)-qubit quantum
advice when its input length is 2n bits. Then we first show that for all sufficiently large n and any
fixed O−n = {On′}n′∈N\{n}, we have

(∗) Pr
O←Perm[O−n]

[∃ |st〉 ∈ H⊗poly(n), M |O〉(|st〉 , ·) decides LOn] < 1/2

where H⊗poly(n) denotes the set of all poly(n)-qubit quantum states and we say that M |O〉(|st〉 , ·)
decides LOn if PrM [M |O〉(|st〉 , (y, z)) = LO(y, z)] > 2/3 for all (y, z) ∈ ({0, 1}n)2 where we define

LO(y, z) =

{
1 if (y, z) ∈ LO,

0 otherwise.

For the sake of contradiction, suppose that the above claim is false. Without loss of generality,
we can assume that there exists a fixed choice of O−n and poly(n)-qubit quantum state |stO〉 (that
may depend on O) such that MO(|stO〉 , ·) decides LOn with error probability exp(−Ω(n)) for at
least (1/2)-fraction of O ∈ Perm[O−n] by considering an O(n) number of repetition (and giving
O(n) copies of |stO〉 to M as input). Then by using a binary search, we can construct an algorithm
BO that makes poly(n) queries such that Prx,B[BO(|stO〉 ,O(x)) = x] = 1− poly(n) · exp(−Ω(n))
for at least (1/2)-fraction of O ∈ Perm[O−n]. This clearly contradicts Theorem 6 with T = poly(n),
S = poly(n), K = 1 and N = 2n.

Since values of a random permutation on {0, 1}n and those on {0, 1}n′ are independent for
n 6= n′, by using the inequality (∗) for each n ∈ N, we can conclude that for any polynomial-time
quantum machine M , we have

Pr
O←Perm

[∀n ∈ N,∃ |stn〉 ∈ H⊗poly(n), M |O〉(|stn〉 , ·) decides LOn] = 0.

Finally, since the number of all machines is countable and the union of countable number of
probability 0 events has probability 0, we have

Pr
O←Perm

[∃M,∀n ∈ N,∃ |stn〉 ∈ H⊗poly(n), M |O〉(|stn〉 , ·) decides LOn] = 0.

This means that LO /∈ BQPO/qpoly with probability 1.

Acknowledgment

We thank anonymous reviewers of Asiacrypt 2019 and Andreas Hülsing for their helpful com-
ments. Minki Hhan was partially supported by the Institute for Information & Communications
Technology Promotion (IITP) Grant through the Korean Government (MSIT), (Development of
lattice-based post-quantum public-key cryptographic schemes), under Grant 2017-0-00616 and by
the Samsung Research Funding Center of Samsung Electronics under Project SRFC-TB1403-52.

20 This class was originally introduced by Nishimura and Yamakami [NY04] with the name BQP/∗Qpoly,
and renamed to BQP/qpoly by Aaronson [Aar05]. See these papers for the detailed definition.

23

References

Aar05. S. Aaronson. Limitations of quantum advice and one-way communication. Theory of Computing,
1(1):1–28, 2005.

AHU19. A. Ambainis, M. Hamburg, and D. Unruh. Quantum security proofs using semi-classical oracles.
In CRYPTO 2019, Part II, pages 269–295. 2019.

AR19. S. Aaronson and G. Rothblum. Gentle measurement of quantum states and differential privacy. In
STOC 2019, pages 322–333. 2019.

BBBV97. C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weaknesses of quantum
computing. SIAM journal on Computing, 26(5):1510–1523, 1997.

BDF+11. D. Boneh, Ö. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner, and M. Zhandry. Random
oracles in a quantum world. In ASIACRYPT 2011, pages 41–69. 2011.

BHMT02. G. Brassard, P. Hoyer, M. Mosca, and A. Tapp. Quantum amplitude amplification and estima-
tion. Quantum Computation and Quantum Information, 305:53–74, 2002.

BHT97. G. Brassard, P. Høyer, and A. Tapp. Quantum cryptanalysis of hash and claw-free functions.
SIGACT News, 28(2):14–19, 1997.

BL13. D. J. Bernstein and T. Lange. Non-uniform cracks in the concrete: The power of free precomputa-
tion. In ASIACRYPT 2013, Part II, pages 321–340, 2013.

BR93. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In ACM CCS ’93, pages 62–73. 1993.

BR95. M. Bellare and P. Rogaway. Optimal asymmetric encryption. In EUROCRYPT ’94. 1995.

BZ13. D. Boneh and M. Zhandry. Quantum-secure message authentication codes. In EUROCRYPT 2013,
pages 592–608. 2013.

CBH+18. Jan Czajkowski, Leon Groot Bruinderink, A. Hülsing, Christian Schaffner, and D. Unruh. Post-
quantum security of the sponge construction. In PQCrypto 2018, pages 185–204. 2018.

CDG18. S. Coretti, Y. Dodis, and S. Guo. Non-uniform bounds in the random-permutation, ideal-cipher,
and generic-group models. InCRYPTO 2018, Part I, pages 693–721. 2018.

CDGS18. S. Coretti, Y. Dodis, S. Guo, and J. P. Steinberger. Random oracles and non-uniformity. In
EUROCRYPT 2018, Part I, pages 227–258. 2018.

CK18. H. Corrigan-Gibbs and D. Kogan. The discrete-logarithm problem with preprocessing. In EURO-
CRYPT 2018, Part II, pages 415–447. 2018.

DFMS19. J. Don, S. Fehr, C. Majenz, and C. Schaffner. Security of the Fiat-Shamir transformation in
the quantum random-oracle model. In CRYPTO 2019, Part II, pp 356-383. 2019.

DGK17. Y. Dodis, S. Guo, and Jonathan Katz. Fixing cracks in the concrete: Random oracles with
auxiliary input, revisited. In EUROCRYPT 2017, Part II, pages 473–495. 2017.

DTT10. A. De, L. Trevisan, and M. Tulsiani. Time space tradeoffs for attacks against one-way functions
and PRGs. In CRYPTO 2010, pages 649–665. 2010.

ES15. E. Eaton and F. Song. Making existential-unforgeable signatures strongly unforgeable in the quan-
tum random-oracle model. In TQC 2015, pages 147–162, 2015. See also https://eprint.iacr.org/

2015/878.

FN99. A. Fiat and M. Naor. Rigorous time/space trade-offs for inverting functions. SIAM J. Comput.,
29(3):790–803, 1999.

GGKT05. R. Gennaro, Y. Gertner, J. Katz, and L. Trevisan. Bounds on the efficiency of generic crypto-
graphic constructions. SIAM J. Comput., 35(1):217–246, 2005.

Gro96. L. K. Grover. A fast quantum mechanical algorithm for database search. In STOC ’96, pages
212–219. 1996.

GT00. R. Gennaro and L. Trevisan. Lower bounds on the efficiency of generic cryptographic constructions.
In FOCS 2000, pages 305–313. 2000.

GYZ17. S. Garg, H. Yuen, and M. Zhandry. New security notions and feasibility results for authentication
of quantum data. In CRYPTO 2017, Part II, pages 342–371. 2017.

Hel80. Martin E. Hellman. A cryptanalytic time-memory trade-off. IEEE Trans. Information Theory,
26(4):401–406, 1980.

Hol73. A. S. Holevo. Bounds for the quantity of information transmitted by a quantum communication
channel. Problemy Peredachi Informatsii, 9(3):3–11, 1973.

HY18. A. Hosoyamada and T. Yamakawa. Finding collisions in a quantum world: quantum black-box
separation of collision-resistance and one-wayness. Cryptology ePrint Archive, Report 2018/1066,
2018.

HRS16. A. Hülsing, J. Rijneveld, and F. Song. Mitigating multi-target attacks in hash-based signatures.
In PKC 2016, Part I, pages 387–416. 2016.

JZC+18. H. Jiang, Z. Zhang, L. Chen, H. Wang, and Z. Ma. IND-CCA-secure key encapsulation mechanism
in the quantum random oracle model, revisited. In CRYPTO 2018, Part III, pages 96–125. 2018.

KLS18. E. Kiltz, V. Lyubashevsky, and C. Schaffner. A concrete treatment of Fiat-Shamir signatures in
the quantum random-oracle model. In EUROCRYPT 2018, Part III, pages 552–586. 2018.

24

https://eprint.iacr.org/2015/878
https://eprint.iacr.org/2015/878

KYY18. S. Katsumata, S. Yamada, and T. Yamakawa. Tighter security proofs for GPV-IBE in the
quantum random oracle model. In ASIACRYPT 2018, Part II, pages 253–282. 2018.

LZ19. Q. Liu and M. Zhandry. Revisiting post-quantum Fiat-Shamir. In CRYPTO 2019, Part II, pages
326-355. 2019.

NABT15. A. Nayebi, S. Aaronson, A. Belovs, and L. Trevisan. Quantum lower bound for inverting a
permutation with advice. Quantum Information & Computation, 15(11-12):901–913, 2015.

Nay99. A. Nayak. Optimal lower bounds for quantum automata and random access codes. In FOCS ’99,
pages 369–376. 1999.

NC00. M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Number 2.
Cambridge University Press, 2000.

NS06. A. Nayak and J. Salzman. Limits on the ability of quantum states to convey classical messages.
Journal of the ACM, 53(1):184–206, 2006.

NY04. H. Nishimura and T. Yamakami. Polynomial time quantum computation with advice. Information
Processing Letters, 90(4):195–204, 2004.

SXY18. T. Saito, K. Xagawa, and T. Yamakawa. Tightly-secure key-encapsulation mechanism in the
quantum random oracle model. In EUROCRYPT 2018, Part III, pages 520–551. 2018.

TU16. E. E. Targhi and D. Unruh. Post-quantum security of the Fujisaki-Okamoto and OAEP transforms.
In TCC 2016-B, Part II, pages 192–216. 2016.

Unr07. D. Unruh. Random oracles and auxiliary input. In CRYPTO 2007, pages 205–223. 2007.
Unr15. D. Unruh. Non-interactive zero-knowledge proofs in the quantum random oracle model. In EU-

ROCRYPT 2015, Part II, pages 755–784. 2015.
Win99. A. Winter. Coding theorem and strong converse for quantum channels. IEEE Trans. Information

Theory, 45(7):2481–2485, 1999.
Yao82. A. C.-C. Yao. Theory and applications of trapdoor functions. In FOCS ’82, pages 80–91. 1982.
Yao90. A. C.-C. Yao. Coherent functions and program checkers. In STOC ’90, pages 84–94. 1990.
Zha12a. M. Zhandry. How to construct quantum random functions. In FOCS 2012, pages 679–687. 2012.
Zha12b. M. Zhandry. Secure identity-based encryption in the quantum random oracle model. In

CRYPTO 2012, pages 758–775. 2012.

A Amplitude Amplification

Here, we review a lemma called amplitude amplification [BHMT02] that is used in some parts of
our proofs.

Lemma 10. Let f : X → {0, 1} be an arbitrary function. Let A be a unitary quantum algorithm
(i.e., A is unitary except for the final measurement) that returns x ∈ X such that f(x) = 1 with
probability ε. Then there exists a quantum algorithm B that uses A, A−1, and f as sub-routines
O(ε−1/2) times and returns x ∈ X such that f(x) = 1 with probability Ω(1) where we abuse the
notation to use A to mean the unitary corresponding to the algorithm A and A−1 to mean its
inverse.

B Omitted Proofs in Section 3

B.1 Proofs for OWFs in QROM-AI

Here, we give proofs of claims that are omitted in the proof of the security bound for OWFs in the
QROM-AI (Theorem 1).

Proof of Claim 1

Proof of Claim 1. Since the expectation value of |{x : Oa(x) = y}| is N/M , by the Chernoff bound,
we have

Pr
O

[|{x : Oa(x) = y}| ≥ (1 + δ)N/M] ≤ exp(−δ2N/(2 + δ)M) ≤ exp(−δN/2M)

for any (a, y) and for any δ ≥ 2. Now we choose δ = max(2, 2M log(4KM/ε)/N) so that

exp(−δN/2M) ≤ exp(− log(4KM/ε)) =
ε

4KM
.

Thus, the probability that there exists (a, y) such that the desired bound does not hold is at
most ε/4 by union bound, over the choice of O. In this case, the bound of |{x : Oa(x) = y}| is

O(N/M + log(4KM/ε)) = Õ(N/M + 1) = Õ(N/min(N,M)).21

21 Note that we assumed a lower bound of ε.

25

Proof of Claim 2

Proof of Claim 2. Let H be a subset of I that consists of all elements satisfying (A). Since for
each (a, x) ∈ I the probability that (a, f(a, x)) ∈ R1 is p = d/T (T + 1), E[|H|] = p|I| holds. By
the Chernoff bound

Pr
R1

[|H| ≥ p|I|/2] ≥ 1− exp(−p|I|/8) ≥ 1− exp(−C/16) ≥ 0.9

holds for a sufficiently large C (C ≥ 16 log 10 suffices). Let

pFind := Pr
R1,B

[Find : B|f〉\f
−1(Ra,x)(stf , a, f(a, x), L)].

By Lemma 3 we have

pFind ≤ 4D · Pr[f−1(Ra,x) ∩M 6= ∅ : M ← C(z)],

where D is the query depth of B and C is an algorithm that works as follows:

C(z) Chooses i ← {1, · · · , D}; runs BOSC
∅ (z) until (just before) the i-the query; then measures

all query input registers in the computational basis and outputs the set M of measurement
outcomes.

Then we have

4D · Pr[f−1(R1) ∩M 6= ∅ : M ← C(z)] ≤ 4T · p =
4d

T + 1

by the latter part of Lemma 3. Since we have R(a,x) ⊆ R1, we clearly have

Pr[f−1(Ra,x) ∩M 6= ∅ : M ← C(z)] ≤ Pr[f−1(R1) ∩M 6= ∅ : M ← C(z)],

which implies

pFind ≤
4d

T + 1
.

Then the Markov inequality implies

Pr
R1

[
pFind ≥

c2

16(T + 1)

]
≤ 64d

c2
.

Let J be a subset of I that consists of all elements satisfying (A) but not (B). Note that two events
(A) and (B) are independent since (A) only depends on if f(a, x) ∈ R1 and (B) only depends on
if the other points (i.e. that are in [K]× [M] \ {f(a, x)}) are in R1. Therefore, for any (a, x) ∈ I,
we have

Pr
R1

[(a, x) ∈ J] ≤ 64d/c2 · p = 64d2/c2T (T + 1).

Thus, by the Markov inequality,

Pr
R1

[
|J | ≤ 640d2|I|

c2T (T + 1)

]
≥ 0.9

holds. Overall, with probability at least 0.8, it holds that

|G| = |H| − |J | ≥ d|I|
2T (T + 1)

− 640d2|I|
c2T (T + 1)

= Ω

(
εKN

T 2

)
for appropriate choice of d and C as desired.

B.2 Proof of Lemma 5

Here, we give a proof of Lemma 5, which is a variant of Theorem 1 and is used in the proof of
security bounds for PRGs, pqPRFs, and pqMACs in the QROM-AI (Theorem 2, Theorem 3, and
Theorem 4).

Proof of Lemma 5. Consider an algorithm B that works as follows:

26

B|f〉\{(a,x)}(stO, a,O(a, x)): It runs A|f〉\{(a,x)}(stO, a,O(a, x)). If the event Find occurs w.r.t. the
running of A, then this means that the query register of A collapsed to (a, x). In this case, B
immediately halts and returns x. If Find never occurs, B returns ⊥.

It is clear that B outputs x if and only if the event Find occurs. Thus, it suffices to bound

Pr
B,O,a,x

[
B|O〉\{(a,x)}(stO, a,O(a, x))→ x

]
.

To do so, we first consider an adversary B (which we call a biased adversary) B that satisfies

Pr
O,a,x

[
Pr
B

[
B|O〉\{(a,x)}(stO, a,O(a, x))→ x

]
≥ 2/3

]
≥ ε,

and give a bound for such an adversary. More precisely, for a query depth D of the biased algorithm
B, we will show that

ε = O

(
STD

KN
+
TD logN

N

)
holds. For the time being, we assume that the above bound is correct, and show the statement of
the lemma.

Suppose that there is an adversary B′ satisfying

Pr
B′,O,a,x

[
B′|O〉\{(a,x)}(stO, a,O(a, x))→ x

]
≥ ε′.

Then by applying averaging argument, there exists at least (ε′/2)-fraction of (O, a, x) that satisfies

Pr
B′

[
B′|O〉\{(a,x)}(stO, a,O(a, x))→ x

]
≥ ε′/2.

We then consider an algorithm B̃ that works as follows:

B̃|O〉\{(a,x)}(stO, a,O(a, x)) It runs B′|O〉\{(a,x)}(stO, a,O(a, x)) r times independently. For each

output z of B′, B̃ queries z to its semi-classical oracle O \ {(a, x)} and checks whether the
event Find occurs. If Find ever occurs, then it can find the solution x, and outputs x. Otherwise
it outputs ⊥.

Note that the probability that B̃ outputs x is at least (1−ε′/2)r ≥ 2/3 for an appropriately chosen

r = Θ(1/ε′). In particular, the number and depth of queries by the algorithm B̃ are Θ(T/ε′) and
T + 1, respectively, and we have

Pr
O,a,x

[
Pr
B̃

[
B̃|O〉\{(a,x)}(stO, a,O(a, x))→ x

]
≥ 2/3

]
≥ ε′/2.

By the assumed bound for the biased adversary, we have ε′/2 = O
(
STD
ε′KN + TD logN

ε′N

)
, or equiva-

lently

ε′2 = O

(
STD

KN
+
TD logN

N

)
= O

(
ST 2

KN
+
T 2 logN

N

)
as desired.

We then turn to prove the bound for the biased adversary. Suppose that ε ≥ C(STD/KN +
TD logN/N) for a sufficiently large constant C for the sake of contradiction, which particularly
implies CTD ≤ εKN .22 To apply the semi-classical oracle O2H, we consider another algorithm C
that works as follows:

C|f〉(st, a, x, y): It runs B|f〉\{(a,x)}(st, a, y). C outputs 1 if B outputs x, and outputs 0 otherwise.

Then it holds that

Pr
B

[
B|O〉\{(a,x)}(st, a,O(a, x))→ x

]
= Pr
C

[
C|O〉(st, a, x,O(a, x))→ 1

]
.

22 This will be used in the proof of Claim 5.

27

By applying the averaging argument, there exists a set F ⊂ Func([K]× [N], [M]) with size at
least ε/2 ·MKN that satisfies

Pr
a,x

[
Pr
C

[
C|f〉(stf , a, x, f(a, x))→ 1

]
≥ 2/3

]
≥ ε/2

for all f ∈ F . Fix f ∈ F . Then there exists a set I ⊂ [K]× [N] with size |I| ≥ ε/2 ·KN such that
for all (a, x) ∈ I

Pr
C

[
C|f〉(stf , a, x, f(a, x))→ 1

]
≥ 2/3

holds. Now we choose a random set R ⊂ [K] × [N], which will serve as a random public coin for
encoding, such that (a, x) ∈ R with probability p = b/T (D+ 1) for some constant b to be specified
later. We say that (a, x) ∈ I is good (for R) if the following two conditions simultaneously hold for
some constant c (80b < c < 1/36 suffices).

(A) (a, x) ∈ R (B) Pr
C

[Find : C|f〉\(R\{(a,x)})(stf , a, x, f(a, x))] ≤ c

D + 1

We denote the set of all good elements by G = G(R).

Claim 5. PrR[|G(R)| ≥ δεKN/TD] ≥ 0.8 for some constant δ > 0.

The proof can be found in the end of this section. For fixed R and (a, x) ∈ G, let y = f(a, x)
and we consider another function gy that is defined by

gy(z) =

{
f(z), if z ∈ ([K]× [N]) \R,
y, if z ∈ R.

Then by Lemma 2 and the condition (B), it holds that∣∣∣Pr
C

[
C|gy〉\R(stf , a, x, f(a, x))→ 1

]
− Pr
C

[
C|f〉(stf , a, x, f(a, x))→ 1

]∣∣∣
≤
√

(D + 1) Pr
C

[Find : C|f〉\(R\{(a,x)})(stf , a, x, f(a, x))] ≤
√
c.

This gives

Pr
C

[
C|gy〉\R(stf , a, x, f(a, x))→ 1

]
> 1/2

for any (a, x) ∈ G, which implies

Pr
B

[
B|gy〉\R(stf , a, f(a, x))→ x

]
> 1/2,

since the twice-punctured semi-classical oracle (|gy〉\R)\{(a, x)} is essentially the same as |gy〉\R
since (a, x) ∈ R.

Let Va := {(a, f(a, x)) : (a, x) ∈ G ∩ {a} × [N]} and V = ∪a∈[K]Va. Note that |V | = |G| since
there is no good (a, x) and (a, x′) such that f(a, x) = f(a, x′) due to the definition of I. Also note
that |Va| ≤ N .

Now we are ready to encode the function f . We encode the function f only if |V | = Ω(εKN/T 2),
which holds with probability at least 0.8 over the choice of R, and declare a failure otherwise. The
encoding of f includes the following information:

• The advice string stf : S bits.

• The description of Va with its size for each a ∈ [K]: logN + log
(
M
|Va|
)

bits.

• The values of f(a, x) for (a, x) ∈ ([K] × [N]) \ R in lexicographical order of (a, x): (KN −
|R|) logM bits.

• The values of f(a, x) for (a, x) ∈ R \G: (|R| − |G|) logM bits.

The decoding procedure initializes an empty table to store the values of f and then fills the table
as follows:

1. Recover stf , Va and V .
2. Fill the values of f on ([K]× [N])\R. This can be done since the decoder knows ([K]× [N])\R

and f(([K]× [N]) \R).

28

3. Fill the table of f for G by the following procedure. For each (a, y) ∈ Va, let x ∈ [N] be the
inversion of y at a, i.e. y = f(a, x) (which is unknown to the decoder so far). Note that the
function gy that is defined by

gy(z) =

{
f(z), if z ∈ ([K]× [N]) \R,
y, if z ∈ R.

can be evaluated by the decoder. The output of

B|gy〉\R(stf , a, y)

is x with probability larger than 1/2. Thus, the decoder can determine x by deterministically
simulating this algorithm, i.e., by computing the output distribution. Then the decoder fills
the table as f(a, x) := y.

4. The decoder fills the values of f on R\G using the partial truth table included in the encoding.

Note that the decoding procedure always succeeds whenever the encoding procedure does not
declare a failure. Since |G| = |V | =

∑
a∈[K] |Va|, the length of the encoding is

S +K logN +
∑
a∈[K]

log

(
M

|Va|

)
+ (KN − |G|) logM

≤ S +K logN +KN logM −
∑
a

|Va| log

(
|Va|
e

)
≤ S +K logN +KN logM − |V | log

(
|V |
eK

)
,

where the first inequality is proven using
(
A
B

)
≤
(
eA
B

)B
and the last inequality is due to the

concavity of the function f(y) = − log(y/e). Then by Lemma 4, we obtain

S +K logN +KN logM − |V | log

(
|V |
eK

)
≥ log 0.4ε+KN logM

or, since |V | = Ω(εKN/TD),

S +K logN ≥ EεKN/TD log

(
|V |
eK

)
+ Õ(1)

for some constant E. This inequality implies either |V |/2eK ≤ 1 or ε = O
(
STD
KN + TD logN

N

)
.

Combining them, we obtain

ε = O

(
STD

KN
+
TD logN

N

)
,

which concludes the proof.

Proof of Claim 5

Proof of Claim 5. The proof is essentially the same as the proof of Claim 2. Let H be the inter-
section of I and R. Then, since we have E[|H|] = p|I|, by the Chernoff bound,

Pr
R

[|H| ≥ p|I|/2] ≥ 1− exp(−p|I|/8) ≥ 1− exp(−C/16) ≥ 0.9

holds for a sufficiently large C. We can show

Pr
R,C

[Find : C|f〉\(R\{(a,x)})(stf , a, x, f(a, x))] ≤ 4b/(D + 1)

by Lemma 3 and a similar argument to the proof of Claim 2. Then Markov’s inequality implies

Pr
R

[
Pr
C

[Find : C|f〉\(R\{(a,x)})(stf , a, x, f(a, x))] ≥ c

D + 1

]
≤ 4b

c
.

29

Let J be a subset of I that consists of all elements satisfying (A) but not (B). Since two events
are independent and (a, x) not satisfying (B) implies

Pr
C

[Find : C|f〉\(R\{(a,x)})(stf , a, f(a, x))] ≥ c

D + 1
,

the probability that (a, x) ∈ J is at most 4b/c · p = 4b2/cT (D+ 1) for any (a, x) ∈ I. Thus, by the
Markov inequality

Pr
R

[
|J | ≤ 40b2|I|

cT (D + 1)

]
≥ 0.9

holds. Overall, with probability at least 0.8, it holds that

|G| = |H| − |J | ≥ b|I|
2T (D + 1)

− 40b2|I|
cT (D + 1)

= Ω

(
εKN

TD

)
for the appropriate choice of b, c and C as desired.

B.3 Proofs for Yao’s Box Problem

Here, we give a proof of the security bound for Yao’s box problem (Lemma 6) that is used in the
proof of the security bound for PRGs in the QROM-AI (Theorem 2).

Proof of Lemma 6. Fix f ∈ F . Choose a random set R1 ⊂ [N] where x ∈ [N] is included in R1

with probability δε3/T (T + 1) for some fixed constant δ ≤ 1/65536. Now we say that an element
x ∈ [N] is good if the following two conditions hold:

(A) x ∈ R1,

(B) Pr
A

[Find : A|f〉\(R1\{x})(stO, x)] = Pr
A

[Find : A|f〉\R1(stO, x)] ≤ 16δε2

T + 1
.

The equality in (B) holds because A has the query magnitude 0 on x.

Claim 6. PrR1 [x is good] ≥ δε3/T (T + 1) · (1− ε/4) for all x ∈ [N].

We defer the proof to the end of this section. We denote a set of good elements by G = G(R1).
We say that R1 is good if

(C) |G(R1)|/ E
R1

[|G|] ≥ ε/8 and (D) Pr
A,x∈G

[Af (stf , x) = f(x)] ≥ 1

2
+ ε/16

hold simultaneously.

Claim 7. Ω(ε4/T 2)-fraction of R1 is good.

We defer the proof of this claim since it is quite technical and relies a slightly complex analyses
of probabilities. Fix a good R1. Let g be a function defined by

g(z) =

{
f(z) for z ∈ [N] \R1

0 otherwise

which agrees with f on [N] \R1. Then, by the semi-classical O2H lemma (Lemma 2),∣∣∣∣ Pr
A,x∈G

[A|f〉(stf , x)→ f(x)]− Pr
A,x∈G

[A|g〉(stf , x)→ f(x)]

∣∣∣∣
is bounded by

2
√
T · Pr
A,x∈G

[Find : A|f〉\R1(stf , x)] ≤ 2ε
√

16δ ≤ ε

32

because x is good and thus satisfies the condition (B). Overall, it holds that

Pr
A,x∈G

[A|g〉(stf , x)→ f(x)] ≥ 1

2
+

ε

32
.

30

Now we consider the simulation of this algorithm with a random coin R2 = (rx)x∈[N] as the
measurement randomness. Then, for at least (ε/32)-fraction of R2, it holds that

Pr
x∈G

[SimR2(A|g〉(stf , x))→ f(x)] ≥ 1

2
+

ε

64
.

We say that (R1, R2) is good if R1 is good and (R1, R2) satisfies the above inequality. Note that
the simulation is a deterministic algorithm for a fixed R2. Let G0 be the set of good elements (a, x)
such that the simulation with coin R2 outputs the correct answer, and G1 = G \ G0. For good
R = (R1, R2), which is at least Ω(ε4/T 2) · (ε/32) = Ω(ε5/T 2)-fraction, it holds that

(C ′) |G(R1)| ≥ Ω(ε4N/T 2) and (D′) |G0| − |G1| = Ω(ε|G|).

Now we are ready to describe our encoding and decoding procedures, which only work well for
good R. Our encoding consists of the following components:

– Advice string stf with size S,

– Values of f on [N] \R1 with size N − |R1|, in lexicographic order,

– Values of f on R1 \G with size |R1| − |G|, in lexicographic order, and

– The position of G0 in G, taking |G| · H(1/2 + Ω(ε)) bits (by the condition (D′)), which is at
most |G|(1−O(ε2)) bits.23

The overall encoding size is at most S +N −Ω(ε2|G|) = S +N −Ω(ε6N/T 2). Then, our decoder
reconstructs the table for f by the following procedure.

1. Recover advice string stf .

2. Fill the values of f on [N] \ R1 by using the partial truth table of f on [N] \ R1 included in
the encoding and the public randomness R1.

3. Recover the set G and fill the values of f on G as follows. Note that the decoder can evaluate
the oracle g defined by

g(z) =

{
f(z) for z ∈ [N] \R1

0 otherwise

by using information that is already recovered. For each x ∈ R1, the decoder checks if

(B) Pr
A

[Find : A|g〉\R1(stO, x)]
Lemma 1

= Pr
A

[Find : A|f〉\R1(stO, x)] ≤ 16δε2

T + 1

holds for each x ∈ R1. If this condition holds, then the decoder decides x ∈ G. Note that the
condition (B) can be checked by using g instead of f since they agree on [N] \ R1. Then the
decoder recovers sets G0 and G1 by using the position of G0 included in the encoding and
simulates

SimR2
(A|g〉(stf , x))

for every x ∈ G. Then, for x ∈ G0, the decoder fills f(x) as the result of the simulation, and
for x ∈ G1, the decoder fills f(x) by flipping the result.

4. Fill the values of f on R1 \G in lexicographic order.

The success probability of recovering f isΩ(ε5/T 2), which is the probability that R is good. This
concludes the first part of the proof of the lemma. For the last statement, by applying Lemma 4,
we obtain

S +N −Ω(ε6N/T 2) ≥ N + log(CT 2/ε5)

for some constant C. If ε6 > max(1, C)·ST 2/N holds, then we have CT 2/ε5 < N and ε6N/T 2 > S,
which contradicts the above inequality. Thus, ε6 = O(ST 2/N) holds as we desired.

23 Here H stands for the information entropy, H(p) = −p log p− (1− p) log(1− p).

31

Proof of Claim 6

Proof of Claim 6. Fix x ∈ [N]. Note that two events (A) and (B) are independent since (A) only
depends on whether x ∈ R1 and (B) only depends on if the other points are in R1. The probability
that (A) holds is exactly δε3/T (T + 1). For (B), by Lemma 3,

E
R1

[
Pr
A

[Find : Af\R1(stO, x)]
]
≤ 4δε3

T + 1

holds. By the Markov’s inequality, we have

Pr
R1

[
Pr
A

[Find : Af\R1(stO, x)] ≥ 16δε2

T + 1

]
≤ 4δε

16δ
=
ε

4
.

Overall, the probability that x is good is at least δε3/T (T + 1) · (1− ε/4) as desired.

Proof of Claim 7

Proof of Claim 7. Let p := δε3/T (T + 1) and recall that PrR1 [x ∈ G] ≥ p(1− ε/4) holds for all x.
Thus, we have E[|G|] ≥ pN(1− ε/4) and E[|G|] ≤ E[|R1|] = pN . Let R be the probabilistic space
of R1 and µ be the uniform probabilistic measure on R. Then we have

E
R1

[|G| Pr
A,x∈G

[Af (stf , x) = f(x)]]

=

∫
R
|G(R1)| · Pr

A,x∈G
[Af (stf , x) = f(x)]dµ

=

∫
R

∑
x∈G

Pr
A

[Af (stf , x) = f(x)]dµ

=

∫
R

∑
x∈[N]

δG(x) · Pr
A

[Af (st, x) = f(x)]dµ

=
∑
x∈[N]

∫
R
δG(x) · Pr

A
[Af (stf , x) = f(x)]dµ

=
∑
x∈[N]

Pr
R1

[x ∈ G] · Pr
A

[Af (stf , x) = f(x)]

≥
∑
x∈[N]

p(1− ε/4) · Pr
A

[Af (stf , x) = f(x)]

= pN(1− ε/4) Pr
A,x

[Af (stf , x) = f(x)]

where δG denotes the indicator function for G. From this, we have

E
R1

[
|G(R1)|

pN(1− ε/4)
· Pr
A,x∈G

[Af (stf , x) = f(x)]

]
≥ 1

2
+ ε/2,

which implies

E
R1

[
|G(R1)|
E[|G|]

· Pr
A,x∈G

[Af (stf , x) = f(x)]

]
≥
(

1

2
+ ε/2

)
· (1− ε/4) ≥ 1

2
+ ε/4

since pN ≥ E[|G|].
Now we consider another probabilistic measure ν(R) = |G(R)|

E[|G|] · µ(R). If we consider ν instead

of µ, we obtain

E
ν

[Pr
A,x∈G

[Af (stf , x) = f(x)]] ≥ 1

2
+ ε/4.

We say R1 is very bad if it does not satisfy (C), i.e. |G(R1)| ≤ ε/8 · E[|G|], and denote the set of
all very bad elements by B. Then it holds that

ν(B) =

∫
B

1dν =

∫
B

|G(R1)|/E[|G|]dµ ≤
∫
B

ε/8 · dµ ≤
∫
R
ε/8 · dµ = ε/8

32

which implies ∫
¬B

Pr
A,x∈G

[Af (stf , x) = f(x)]dν ≥ 1

2
+ ε/8.

Note that this implies

E
ν:R1∈¬B

[Pr
A,x∈G

[Af (stf , x) = f(x)]] ≥ 1

2
+ ε/8

since

E
ν:R1∈¬B

[Pr
A,x∈G

[Af (stf , x) = f(x)]]

=

∫
¬B

Pr
A,x∈G

[Af (stf , x) = f(x)]dν/ν(¬B)

≥
∫
¬B

Pr
A,x∈G

[Af (stf , x) = f(x)]dν.

By the standard averaging argument, at least (ε/8)-fraction of not very bad R1 (with respect
to ν), denoted by S, satisfies

Pr
A,x∈G

[Af (stf , x) = f(x)] ≥ 1

2
+ ε/16.

Note that S is a set of good elements and we have

ν(S) ≥ ε/8 · ν(¬B) ≥ ε/8− ε2/64 ≥ ε/16.

Since |G| ≤ N , we have |G(R1)|/E[|G|] = O(T 2/ε3). Thus, it holds that

µ(S) =

∫
S
E[|G|]/|G(R1)|dν

=

∫
S

Ω(ε3/T 2)dν = Ω(ε3/T 2)ν(S) = Ω(ε4/T 2).

Thus, at least Ω(ε4/T 2)-fraction of R1 satisfies (C) and (D) simultaneously.

B.4 Proofs for Function Variant of Yao’s Box Problem

Proof of Lemma 7 There exists at least (ε/2)-fraction of O, denoted by F , that satisfies

Pr
A,a,k

[A|O〉,O(a,k,·)(stO, a, k)→ (m, t) ∧ t = O(a, k,m)] ≥ 1

2
+
ε

2
.

We will construct the encoding and decoding algorithms for F . Fix f ∈ F . We define another
algorithm B that utilizes A as follows:

B|f〉,g(st, a, k) B runs A|f〉,g(st, a, k). For the output z = (m, t) of A, B checks if t = g(m) by
querying m to its second oracle. If so B outputs 1, and 0 otherwise.

From the definition, the probability that B outputs 1 is equal to the probability A outputs a correct
answer. We choose a random set R1 ⊂ [K] × [N] where each (a, k) ∈ [K] × [N] is included in R1

with probability p = δε3/T (T + 1) for some fixed constant δ ≤ 1/65536. We also choose a random
coin R2 for simulating measurements. We say that an element (a, k) ∈ [K]× [N] is good if

(A) (a, k) ∈ R1, (B) Pr
B

[Find : B|f〉\R1,f(a,k,·)(stf , a, k)] ≤ 16δε2

T + 1

holds for some constant c.

Claim 8. PrR1 [(a, k) is good] ≥ δε3/T 2 · (1− ε/4) holds for all (a, k) ∈ [K]× [N].

We defer the proof to the end of this section. The set of all good elements is denoted by
G = G(R1). We say R1 is good if

(C)
|G(R1)|
E[|G|]

≥ ε

8
, (D) Pr

B,(a,k)∈G
[B|f〉,f(a,k,·)(stf , a, k)→ 1] ≥ 1

2
+

ε

16

hold simultaneously.

33

Claim 9. Ω(ε4/T 2)-fraction of R1 is good.

We defer the proof of this claim. Fix a good R1. Define g : [K]× [N]× [L]→ [M] ∪ {0} by

g(z,m) =

{
f(z,m) for z ∈ [K]× [N] \R1

0 otherwise.

Then, by Lemma 2,∣∣∣∣ Pr
B,(a,k)∈G

[B|f〉,f(a,k,·)(stf , a, k)→ 1]− Pr
B,(a,k)∈G

[B|g〉,f(a,k,·)(stf , a, k)→ 1]

∣∣∣∣
is bounded by

2
√

(T + 1) · Pr
B,x∈G

[Find : B|f〉,f(a,k,·)(stf , a, k)] ≤ 2ε
√

16δ ≤ ε

32
.

because (a, k) is good and thus satisfies (B). This implies

Pr
B,(a,k)∈G

[B|g〉,f(a,k,·)(stf , a, k)→ 1] ≥ 1

2
+

ε

32
.

Note that this is equivalent to

Pr
A,(a,k)∈G

[A|g〉,f(a,k,·)(stf , a, k)→ (m, t) ∧ t = f(a, k,m)] ≥ 1

2
+

ε

32
.

Now we consider the simulation of the algorithm A with a random coin R2 as the measurement
randomness. Then, for at least (ε/32)-fraction of R2, it holds that

Pr
(a,k)∈G

[SimR2
(A|g〉,f(a,k,·)(stf , a, k))→ (m, t) ∧ t = f(a, k,m)] ≥ 1

2
+

ε

64
.

We say (R1, R2) is good if R1 is good and (R1, R2) satisfies the above inequality. Let G0 be a set
of good elements (a, k) such that the simulation with the coin R2 outputs the correct answer, and
G1 = G \G0. For good R = (R1, R2), which is at least Ω(ε5/T 2)-fraction, it holds that

(C ′) |G(R1, R2)| = Ω(ε3N/T 2) and (D′) |G0| − |G1| = Ω(ε|G|).

Now we are ready to describe our encoding and decoding procedures, which only work well for
good (R1, R2). Note that a quantum algorithm with given coins can be simulated deterministically,
so the encoder can simulate the algorithmA with public coins a priori. This implies that the encoder
can determine the required queries to the second oracle in the decoder’s simulation. Our encoding
consists of the following components.

• Advice string stf with size S,
• Values of f on ([K]× [N] \R1)× [L] with size (KN − |R1|)L, in lexicographic order,
• For all (a, k) ∈ G, the required queries answers for the simulation

SimR2
(A|g〉,f(a,k,·)(stf , a, k)),

• All other information of function f on R1 × [L], except the queried values and the answer of
simulations, and

• The position of G0 in G, taking |G| · H(1/2 + Ω(ε)) bits (by the condition (D′)), which is at
most |G|(1−O(ε2)).

The decoder recovers the table for f as in Lemma 6, except that it recovers some function values
on G × [L] as the answer of simulations; in Lemma 6, the decoder recovers all function values
on G. Note that the decoder can determine the set G since the condition (B) can be checked
by the function g instead of f , which can be computed by the decoder’s partial function table
f([K]× [N] \R1).

Since the encoding includes all function values except the answers of simulation, which has the
size |G|, the overall encoding size is at most S +KNL−Ω(ε2|G|) = S +KNL−Ω(ε6KN/T 2).

The overall success probability of recovering f is Ω(ε5/T 2). By Lemma 4, we obtain the in-
equality

S +KNL−Ω(ε5KN/T 2) ≥ KNL+ log(T 2/ε5),

which implies ε6 = Ω(ST 2/KN).

34

Proof of Claim 8

Proof of Claim 8. Fix (a, k) ∈ [K] × [N]. Note that two events (A) and (B) are independent
since (A) only depends on if (a, k) ∈ R1 and (B) only depends on if other points are in R1. The
probability that (A) holds is exactly δε3/T (T + 1). For (B), by Lemma 3,

E
R1

[
Pr
B

[Find : B|f〉\R1,f(a,k,·)(stf , a, k)]
]
≤ 4δε3

T + 1

holds. By Markov’s inequality, we have

Pr
R1

[
Pr
B

[B|f〉\R1,f(a,k,·)(stf , a, k)] ≥ 16δε2

T + 1

]
≤ 4δε

16δ
=
ε

4
.

Overall, the probability that x is good is at least δε3/T (T + 1) · (1− ε/4).

Proof of Claim 9

Proof of Claim 9. The proof is essentially the same as the proof of Claim 7, so we omit most
detailed computations here. Let p := δε3/T (T + 1) and recall that Pr[x ∈ G] ≥ p(1 − ε/4) for all
x, E[|G|] ≥ pN(1 − ε/4) and E[|G|] ≤ pN. Let R be the probabilistic space of R1 and µ be the
uniform probabilistic measure on R. Then we have

E
R1

[|G| Pr
B,(a,k)∈G

[B|f〉,f(a,k,·)(stf , a, k)→ 1]

≥ pN(1− ε/4) · Pr
B,a,k

[B|f〉,f(a,k,·)(stf , a, k)→ 1].

From this, we obtain

E
R1

[
|G(R1, R2)|

E[|G|]
· Pr
B,(a,k)∈G

[B|f〉,f(a,k,·)(stf , a, k)→ 1]

]
≥ 1

2
+ ε/4. (4)

If we define another probabilistic measure ν(R1) = |G(R1)|
E[|G|] · µ(R1), then we obtain

E
ν(R1)

[Pr
B,(a,k)∈G

[B|f〉,f(a,k,·)(stf , a, k)→ 1]] ≥ 1

2
+ ε/4.

We say R1 is very bad if it does not satisfy (C), and we denote the set of all very bad elements by
B. Then it holds that ν(B) ≤ ε/8, which implies

E
ν:(R1)∈¬B

[Pr
B,(a,k)∈G

[B|f〉,f(a,k,·)(stf , a, k)→ 1]] ≥ 1

2
+ ε/8.

By standard averaging argument, for at least (ε/8)-fraction (with respect to ν) of not very bad
R1, denoted by S, we have

Pr
B,(a,k)∈G

[B|f〉,f(a,k,·)(stf , a, k)→ 1] ≥ 1

2
+ ε/16.

Note that S is a set of good elements and we have

ν(S) ≥ ε/8 · ν(¬B) ≥ ε/8− ε2/64 ≥ ε/16.

This implies

µ(S) = Ω(ε4/T 2).

as desired.

35

B.5 Proof of Claim 3

Proof of Claim 3. The proof is essentially the same as the proof of Claim 5. Recall that p =
cε/T (T + 1). Let H be the intersection of I and R1. Then, since E[|H|] = p|I|, by the Chernoff
bound

Pr
R

[|H| ≥ p|I|/2] ≥ 1− exp(−p|I|/8) ≥ 1− exp(−C/16) ≥ 0.9

holds for C ≥ 16 log 10. Also,

Pr
R1,B

[Find : B|f〉\(R1\{(a,k)})×[L],f(a,k,·)(stf , a, k)] ≤ 4cε/(T + 1)

holds by Lemma 3 and the similar argument to Claim 2. Markov’s inequality implies

Pr
R1

[
Pr
B

[Find : B|f〉\(R1\{(a,k)})×[L],f(a,k,·)(stf , a, k)] ≥ 160c

T + 1

]
≤ 1

40
.

Let J be a subset of I whose elements satisfy (A) but not (B). Since two events are independent
and (a, x) not satisfying (B) implies

Pr
B

[Find : B|f〉\(R1\{(a,k)})×[L],f(a,k,·)(stf , a, k)] ≥ 160c

T + 1
,

the probability that (a, k) ∈ J is at most p/40 = cε/40T (T + 1) for any (a, k) ∈ I. Thus, by
Markov’s inequality

Pr
R1

[
|J | ≤ cε|I|

4T (T + 1)

]
≥ 0.9

holds. Overall, with probability at least 0.8, it holds that

|G| = |H| − |J | ≥ c|I|
2T (T + 1)

− c|I|
4T (T + 1)

= Ω

(
εKN

T 2

)
.

C Omitted Proofs in Section 4

C.1 Proof of Lemma 9

Before proving Lemma 9, we introduce the gentle measurement lemma [Win99, Aar05] and an
auxiliary lemma shown by Aaronson and Rothblum [AR19].

Lemma 11 ([Aar05, Lemma 2.2]). Suppose a 2-outcome measurement of a (mixed) quantum
state ρ yields outcome 1 with probability at least 1 − ε. Then we can recover a state ρ′ such that
tr(ρ, ρ′) ≤

√
ε after the measurement where tr(ρ, ρ′) denotes the trace distance between ρ and ρ′.

Lemma 12 ([AR19, Corollary 16]). Let ρ be a mixed state and let S1, . . . , Sm be quantum
operations. Suppose that for all i, we have

tr(Si(ρ), ρ) ≤ εi.
Then

tr(Sm(Sm−1(· · · (S1(ρ))), ρ) ≤ ε1 + · · ·+ εm.

Then we prove Lemma 9.

Proof of Lemma 9. B works as follows: Set ρ0 = ρ. For each i = 1, 2, · · · , n, B applies the unitary
Ai to ρi−1, measure the output register to obtain x′i, “recovers” the state before the measurement
by using Lemma 11, applies the inverse unitary A′i, and lets ρi be the resulting state.

Then we analyze the B’s success probability. Let Si be the quantum operator that corre-
sponds to the i-th loop in the execution of B. By Lemma 11 (where we consider a projective
measurement (M0 = I − |xi〉 〈xi| ,M1 = |xi〉 〈xi|)), we have tr(Si(ρ), ρ) ≤ 1

3n2 . Then we have

tr(ρi, ρ) = tr(Si(Si−1(...S1(ρ))), ρ) ≤ i
3n2 ≤ 1

3n by Lemma 12. Therefore we have

Pr[x′i 6= xi] ≤ tr(ρi, ρ) ≤ 1

3n
.

By union bound, we obtain

Pr[x′i = xi for all i ∈ [n]] ≥ 2

3
.

36

C.2 Proof of Claim 4

Proof of Claim 4. This can be proven similarly to the proof of Claim 2. Let H be the intersection
of I and R. Then, since E[|H|] = p|I|, by Chernoff’s bound, we have

Pr
R

[|H| ≥ p|I|/2] ≥ 1− exp(−p|I|/8) ≥ 1− exp(−C/16) ≥ 0.9

where we used C ≥ 16 ln 10. Let

pFind := Pr
R,B

[Find : B|f〉\(R\{a,x})(|s̃tf 〉 , a, f(a, x))].

By Lemma 3 and Remark 1, we have

pFind ≤ 4D′ · Pr
R,C

[(R \ {a, x}) ∩M 6= ∅ : M ← C(|s̃tf 〉 , a, f(a, x))],

where D′ = T + 1 is the query depth of B and C is an algorithm that works as follows:

C(|s̃tf 〉 , a, f(a, x)) Chooses i ← {1, · · · , D′}; runs BOSC
∅ (|s̃tf 〉 , a, f(a, x)) until (just before) the i-

the query; then measures all query input registers in the computational basis and outputs the
set M of measurement outcomes.

This is bounded by

4D′ · Pr[R ∩M 6= ∅ : M ← C(|s̃tf 〉 , a, f(a, x))] ≤ 4T ′ · p =
4d

T + 2

by the latter part of Lemma 3 and Remark 1. Markov’s inequality implies

Pr
R

[
Pr
B

[Find : B|f〉\(R\{(a,x)})(|s̃tf 〉 , a, f(a, x), L)] ≥ 1

576(T + 2)

]
≤ 2304d.

Let J be a subset of I whose elements satisfy (A) but not (B). Note that two events (A) and (B)
are independent since (A) only depends on if f(a, x) ∈ R and (B) depends on the other points
(i.e., in [K]× [N] \ {(a, x)}) being included in R. Since (a, x) ∈ I not satisfying (B) implies

Pr
B

[Find : B|f〉\(R\{(a,x)})(|s̃tf 〉 , a, f(a, x))] ≥ 1

576(T + 2)
,

the probability that (a, x) ∈ J is at most 2304d · p = 2304d2/T ′(T + 2) for any (a, x) ∈ I. Thus by
Markov’s inequality

Pr
R

[
|J | ≤ 23040d2|I|

T ′(T + 2)

]
≥ 0.9

holds. Overall, with probability at least 0.8, it holds that

|G| = |H| − |J | ≥ d|I|
2T ′(T + 2)

− 23040d2|I|
T ′(T + 2)

= Ω

(
ε2KN

T 2

)
as desired where we used d ≤ 1/46080, |I| ≥ εKN/4, and T ′ = Θ(T/ε).

D On Definition of Inversion Advantage in [NABT15]

Here, we discuss the difference between definitions of the inversion advantage of random permuta-
tions in this paper and in [NABT15].

For a random permutation O : [N] → [N], Nayebi et al. [NABT15] defined the inversion
advantage of A with advice stO as

Pr
O,x

[Pr
A

[A|O〉(stO, f(x))→ x] > 2/3].

However, this definition is problematic in a cryptographic sense. For example, suppose that we
have

Pr
A

[A|O〉(stO, f(x))→ x] = 1/2

37

for all O and x ∈ [N]. In a cryptographic sense, this should be considered to be a fatal attack
against the one-wayness. However, its advantage is 0 according to their definition.

To capture such an adversary, we define the inversion advantage as

Pr
O,A,x

[A|O〉(stO, f(x))→ x]

where the salting is omitted. By this definition, the advantage of the above described A is 1/2,
and the problem is resolved.

We note that we can convert an adversary A that has a large advantage in our definition into
A′ that has a large advantage in their definition by the amplitude amplification (Lemma 10 in
Appendix A) as follows. Suppose that A is an adversary that makes at most T queries and has an
advantage ε in our definition, i.e., we have

Pr
O,A,x

[A|O〉(stO, f(x))→ x] ≥ ε.

Then by averaging argument, we have

Pr
O,x

[Pr
A

[A|O〉(stO, f(x))→ x] ≥ ε/2] ≥ ε/2.

Then by the amplitude amplification, there exists an algorithm A′ that runs A (and its inverse)
O(ε−1/2) times and satisfies

Pr
O,x

[Pr
A′

[A′|O〉(stO, f(x))→ x] ≥ 2/3] ≥ ε/2.

By using the above conversion, we can translate Nayebi et al.’s bound into a bound with
our definition. From the above argument, if the number of queries by A is T , then the number of

queries by A′ is T ′ = O(Tε−1/2). By their result, we have ε = Õ(ST
′2

N), which implies ε2 = Õ(ST
2

N).
Therefore, there occurs a quadratic loss if we translate their bound into one in our setting.

E Extended Comparison Table

Table 2 compares our bounds in the QROM-AI with the previously shown bounds in the ROM-AI.
The “Security bounds in ROM-AI” and “Best known attacks in ROM-AI” columns are taken from
[DGK17] and [CDGS18], and the “Security bounds in QROM-AI” and “Best known attacks in
QROM-AI” columns are taken from Table 1.

Here, we briefly explain how we derive “Best known attacks in QROM-AI”. Basically, the best
known attacks we are aware of are to just apply quantum attacks without auxiliary inputs (i.e.,
Grover’s algorithm [Gro96] for OWFs, PRGs, (pq/q)PRFs, and (pq/q)MACs, BHT algorithm
[BHT97] for CRHFs, and Boneh-Zhandry’s attack [BZ13] for qMACs) or best known classical at-
tacks that make use of auxiliary inputs (i.e., Hellman’s attack [Hel80] for OWFs and (pq/q)MACs,
De et al.’s attack [DTT10] for PRGs and (pq/q)PRFs, and the trivial attack for CRHFs). Though
quantum attacks possibly exist that utilize classical auxiliary inputs that achieve better bounds
than classical ones, we are not aware of such an algorithm for these primitives. One can find a
discussion on why we cannot directly combine the Grover’s algorithm and known classical attacks
that utilize auxiliary inputs in [NABT15].

38

S
ec

u
ri

ty
b

o
u
n
d
s

in
R

O
M

-A
I

S
ec

u
ri

ty
b

o
u
n
d
s

in
Q

R
O

M
-A

I
(O

u
rs

)

B
es

t
k
n
ow

n
a
tt

a
ck

s

in
R

O
M

-A
I

B
es

t
k
n
ow

n
a
tt

a
ck

s

in
Q

R
O

M
-A

I

O
W

F
s

S
T

K
α

+
T α

(ST
2

K
α

+
T

2
N

α
2

) 1/2
m

in

{ S
T

K
α
,(S

2
T

K
2
α
2

) 1/3
} +

T α
m

in

{ S
T

K
α
,(S

2
T

K
2
α
2

) 1/3
} +

T
2

α

C
R

H
F

s
S K

+
T

2

M
u
n
k
n
ow

n
S K

+
T

2

M
S K

+
T

3

M

P
R

G
s

(ST KN
) 1/2

+
T N

(ST
4

K
N

+
T

4

N

) 1/6
(ST KN

) 1/2
+

T N

(ST KN
) 1/2

+
T

2

N

c/
p

q
P

R
F

s

((S
(T

+
Q

p
rf
)

K
N

) 1/2
+

T N

) (S
T

4

K
N

+
T

4

N

) 1/4
+
Q

p
rf

(ST
2

K
N

) 1/6
(ST KN

) 1/2
+

T N

(ST KN
) 1/2

+
T

2

N

c/
p

q
M

A
C

s
S
(T

+
Q

m
a
c
)

K
N

+
T N

+
1 M

(ST
4

K
N

+
T

4

N
+

1 M

) 1/3
m

in

{ S
T

K
N
,(S

2
T

K
2
N

2

) 1/3
} +

T N
+

1 M
m

in

{ S
T

K
N
,(S

2
T

K
2
N

2

) 1/3
} +

T
2

N
+

1 M

q
P

R
F

s
N

/
A

u
n
k
n
ow

n
N

/
A

(ST KN
) 1/2

+
T

2

N

q
M

A
C

s
N

/
A

u
n
k
n
ow

n
N

/
A

m
in

{ S
T

K
N
,(S

2
T

K
2
N

2

) 1/3
} +

T
2

N
+

Q
m
a
c

M

T
a
b
le

2
.

S
ec

u
ri

ty
b

o
u
n
d
s

a
n
d

b
es

t
k
n
ow

n
a
tt

a
ck

s
u
si

n
g

a
n
S

-b
it

cl
a
ss

ic
a
l

a
u
x
il
ia

ry
in

p
u
t

a
n
d
T

cl
a
ss

ic
a
l/

q
u
a
n
tu

m
q
u
er

ie
s

fo
r

“
sa

lt
ed

”
co

n
st

ru
ct

io
n
s

o
f

p
ri

m
it

iv
es

in
th

e
R

O
M

-A
I

a
n
d

Q
R

O
M

-A
I.

T
h
e

fi
rs

t
th

re
e

p
ri

m
it

iv
es

(u
n
k
ey

ed
p
ri

m
it

iv
es

)
a
re

co
n
st

ru
ct

ed
fr

o
m

a
ra

n
d
o
m

o
ra

cl
e
O

:
[K

]
×

[N
]
→

[M
]

w
h
er

e
[K

]
is

th
e

d
o
m

a
in

o
f

th
e

sa
lt

,
[N

]
is

th
e

d
o
m

a
in

o
f

th
e

in
p
u
t

(o
r

th
e

se
ed

fo
r

P
R

G
s)

,
[M

]
is

th
e

d
o
m

a
in

o
f

th
e

o
u
tp

u
ts

,
a
n
d

w
e

le
t
α

:=
m

in
(N
,M

).
T

h
e

la
tt

er
fo

u
r

p
ri

m
it

iv
es

(k
ey

ed
p
ri

m
it

iv
es

)
a
re

co
n
st

ru
ct

ed
fr

o
m

a
ra

n
d
o
m

o
ra

cl
e
O

:
[K

]×
[N

]×
[L

]
→

[M
]

w
h
er

e
[K

]
is

th
e

d
o
m

a
in

o
f

th
e

sa
lt

,
[N

]
is

th
e

d
o
m

a
in

o
f

th
e

k
ey

,
[L

]
is

th
e

d
o
m

a
in

o
f

th
e

in
p
u
ts

,
a
n
d

[M
]

is
th

e
d
o
m

a
in

o
f

th
e

o
u
tp

u
ts

(o
r

a
u
th

en
ti

ca
to

rs
fo

r
M

A
C

s)
.
Q

p
rf

d
en

o
te

s
th

e
n
u
m

b
er

o
f

q
u
er

ie
s

to
th

e
P

R
F

o
ra

cl
e

a
n
d
Q

m
a
c

d
en

o
te

s
th

e
n
u
m

b
er

o
f

q
u
er

ie
s

to
th

e
M

A
C

o
ra

cl
e.

In
th

e
“
c/

p
q
P

R
F

s”
a
n
d

“
c/

p
q
M

A
C

s”
ro

w
s,

th
e

b
o
u
n
d
s

a
n
d

a
tt

a
ck

s
in

th
e

R
O

M
-A

I
re

fe
r

to
th

em
in

th
e

fu
ll
y

cl
a
ss

ic
a
l

se
tt

in
g

w
h
er

ea
s

th
o
se

in
th

e
Q

R
O

M
-A

I
re

fe
r

to
th

em
in

th
e

p
o
st

-q
u
a
n
tu

m
se

tt
in

g
w

h
er

e
o
n
ly

th
e

ra
n
d
o
m

o
ra

cl
e

is
q
u
a
n
tu

m
ly

a
cc

es
si

b
le

.
W

e
o
m

it
co

n
st

a
n
t

fa
ct

o
rs

a
n
d

lo
g
a
ri

th
m

ic
te

rm
s

fo
r

si
m

p
li
ci

ty
.

39

	Quantum Random Oracle Model with Auxiliary Input

