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ABSTRACT
Biometric authentication is increasingly being used for large scale
human authentication and identification, creating the risk of leak-
ing the biometric secrets of millions of users in the case of database
compromise. Powerful “fuzzy” cryptographic techniques for bio-
metric template protection, such as secure sketches, could help in
principle, but go unused in practice. This is because they would
require new biometric matching algorithms with potentially much
diminished accuracy.

We introduce a new primitive called a multisketch that general-
izes secure sketches. Multisketches can work with existing biometric
matching algorithms to generate strong cryptographic keys from
biometric data reliably. Amultisketchworks on a biometric database
containing multiple biometrics — e.g., multiple fingerprints — of a
moderately large population of users (say, thousands). It conceals
the correspondence between users and their biometric templates,
preventing an attacker from learning the biometric data of a user
in the advent of a breach, but enabling derivation of user-specific
secret keys upon successful user authentication.

We design a multisketch over tenprints — fingerprints of ten fin-
gers — called TenSketch. We report on a prototype implementation
of TenSketch, showing its feasibility in practice. We explore several
possible attacks against TenSketch database and show, via simula-
tions with real tenprint datasets, that an attacker must perform a
large amount of computation to learn any meaningful information
from a stolen TenSketch database.
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1 INTRODUCTION
Human authentication to computers has traditionally relied mainly
on passwords. In recent years, the usability and security short-
comings of passwords have prompted a rise in the popularity of
biometric authentication. Biometrics, however, presents a big chal-
lenge: It is hard to store biometric data in databases securely.

The problem is that biometricmeasurements are noisy. Two scans
of the same physiological feature (finger, eye, etc.) almost always
differ due to changes in reading conditions. Also, biometric features
change subtly over time. Biometric matching in practice, therefore,
involves measuring the similarity between a template, an explicit,
registered set of biometric features, and a biometric measurement
taken during authentication. A conventionally presented password,
in contrast, is only accepted if it exactly matches a registered one.
Passwords can therefore be hashed to protect against capture in a
breach, but biometrics cannot.

To protect biometrics in a manner similar to hashing, researchers
have long explored various forms of fuzzy cryptography [27, 28, 40].
In [28], Dodis et al. present the notion of secure sketches and fuzzy
extractors, which attempt to extract high entropy keys reliably from
noisy sources of data such as biometrics, but fall short in practice
for two reasons. First, individual biometrics often have low effective
entropy; e.g., TouchID claims 1:50,000 false acceptance rate, which
implies at most 16 bits of entropy per finger, and maybe lower [34].
Second, a fuzzy extraction system must be custom-built for a partic-
ular distance metric. Doing so for the complicated distance metrics
associated with many biometrics in practice, e.g., fingerprints, and
achieving both rigorous security properties and good matching
accuracy, remains an open challenge [38, 51]. To the best of our
knowledge, despite almost two decades of research, nowhere is
fuzzy cryptography used to protect biometrics in practice.

Techniques such as secure function evaluation and secure multi-
party computation have been proposed for private queries against
a biometric database [31, 53, 64], but do not protect against a data-
base breach. Secure hardware, such as hardware security modules
(HSMs)1 and trusted execution environments (TEEs) can, in the-
ory, offer strong protection for biometrics: They permit templates
to be stored in a database in encrypted form and decrypted only
in hardware to perform matching. Recent attacks against Intel
SGX [42, 45, 59], however, highlight the fact that trusted hardware
is far from bulletproof, and other security approaches are needed.
Happily, the techniques we present in this paper are complementary
to and usable in concert with trusted hardware as well as secure
function evaluation.

1Mobile devices, for which biometric authentication is popular today, generally protect
templates using trusted hardware [4, 9].
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In this work, we introduce and formalize a new generalization of
secure sketches called multisketches. A conventional secure sketch
operates on individual biometric templates (e.g., a single finger-
print). In contrast, a multisketch operates on a batch of templates
belonging to multiple users. While in secure sketches biometric
data is concealed by performing lossy compression of a template, in
a multisketch system unmodified templates are used, and security
is achieved by concealing the correspondence between templates
and users.

We present a specific multisketch construction that can use off-
the-shelf biometric matching algorithms. Our multisketch construc-
tion thus realizes a long-elusive goal: Secure, practical derivation
of strong cryptographic keys from users’ biometric data.

Two notable requirements of multisketches are that they require
registration of multiple biometrics by individual users and that
they can only protect databases containing the biometrics of many
users. Because individual biometrics lack adequate usable entropy
to derive strong cryptographic keys, such use of multiple biometric
readings is unavoidable in any biometric fuzzy-extraction system.
Providing multiple biometrics for everyday authentication can be
cumbersome, but for high security (and infrequent) operations, such
as credential recovery or border crossing, they can be deployed.
Tenprints, in particular, are commonly enrolled today in border
control [6, 18], law enforcement [1], and social-service delivery
databases [3]. These databases often have millions of users, as in
India’s Aadhaar system, with its over one billion enrolled users [3].

Data compromise is a serious concern for such databases contain-
ing sensitive biometric data of millions of users. The pressing need
for protecting templates in such systems, and failure of existing
fuzzy cryptographic schemes to provide it, motivate our work.

Main idea. In our multisketch construction, as applied to a data-
base D, each user u registers with a set of n distinct biometric
templates w = w1 . . .wn . The goal is to be able to recover w from
D by providing new biometric readings w̃ = w̃1 . . . w̃n , as long as
most of w̃ matches with w.

To prevent an adversary that breaches D from learning w, our
construction conceals which templates are associated with which
user and randomly orders all templates of all users in D. This is
the pivotal idea in our construction. This randomization means
an adversary cannot easily pick out sets of associated templates,
but must attempt to reconstruct w via brute-force search over all
possible conjectured sets w′. Given enough users (say, thousands),
such search is computationally infeasible in practice.

To reconstruct her set of templates w, a user u presents a set
of fresh biometric readings w̃ = w̃1 . . . w̃n . An (off-the-shelf) bio-
metric matching algorithm is then used to match each w̃i to its
corresponding, most similar template w′i in D, yielding a conjec-
tured template setw′. Assuming that enoughmatches are successful
(even if some are erroneous), i.e., w∆w′ = |w ∪ w′ − w ∩ w′ | is
small, u can recover w.

A secure sketch — and thus our multisketch scheme — can easily
be converted into a fuzzy extractor, allowingw to be converted into
a strong cryptographic key κ that can then be used for authentica-
tion, signing, or any other purpose.

The performance of multisketch largely depends on that of
the underlying biometric matching algorithm. During recovery,

the matching algorithm might need to be applied to all templates
present in D to identify the closest matches. This can be expensive
for large D. However, the search process can easily be parallelized
by virtually any factor. For instance, a recent study shows how to
perform 9 million matches per second using a single graphics pro-
cessing unit (GPU) [19]. Similarly, matching accuracy can also be
enhanced by using more accurate (proprietary) biometric matching
algorithms. Being able to use any biometric matching algorithm as
per the need of the application is one of the key contributions of
multisketches. For scientific reproducibility, one of our key method-
ological choices for this paper and its proof-of-concept is to rely on
an open-source matching algorithm, standard fingerprint datasets,
and commodity hardware to measure matching accuracy and per-
formance. We elaborate on the performance and limitations of our
implementation of multisketch in Section 4.2.

The problem of correlations. If the templates in w are uncorre-
lated, i.e., an adversary cannot tell which sets of templates belong
to the same user with probability better than random guessing,
then the attacker must search all possible conjectured templates
w′. However, one major challenge in practice is that biometric tem-
plates from the same user might be correlated. As a simple example,
gender correlates significantly with the appearance of fingerprint
templates [49]. Conversely, it is not reasonable to expect that an
adversary can directly determine the joint probabilities of biometric
tuples, given the complexity of the distribution from which they are
drawn. Much of our work in this paper evaluates empirically how
effectively an adversary can correlate the fingerprint templates of
individual users in practice. We experimentally explore plausible
strategies for attacking our multisketch construction. Even with the
best attack, we show that TenSketch with N = 104 users provides
security equivalent to 70-bits in practice, assuming (pessimistically)
that the attacker already knows one of the user fingerprints.

Contribution. Our contributions are as follows.
• We introduce and formalize multisketches, a generalization of

secure sketches.
• We construct TenSketch, a multisketch for tenprints that works

with off-the-shelf biometric matching algorithms.
• We study correlations among users’ fingerprint templates and

analyze the security of TenSketch given classifiers that can iden-
tify these correlations.

• Finally, we report on the security and matching functionality of
TenSketch, demonstrating its practicality.

We will open-source our prototype implementation of TenSketch
with the final version of the draft.

2 OVERVIEW OF MULTISKETCH
In this section, we present a simple example to illustrate how mul-
tisketches may be used in the biometric database setting. This ex-
ample is a simplification. It does not reflect the detailed mechanics
of our full multisketch scheme (given in Section 4), but is meant to
convey the basic intuition. Consider a database with N = 3 users,
each with n = 5 fingerprints. Templates corresponding to these
fingerprints are shown conceptually in Figure 1.
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Figure 1: Conceptual diagram of multisketch scheme. Templates corre-
sponding to each finger position are stored in random order. During authen-
tication, presented finger images are matched to templates; corresponding
row indices — e.g., here (1, 2, 3, 3, 1) — are used to compose the user’s key.

A critical feature of our multisketch construction, shown in
Figure 1, is that templates for each finger position are ordered ran-
domly, and with no user identifiers. User 1’s templates, for example,
are scattered across different rows. Thus an adversary that breaches
the database has to determine which template corresponds to which
user. As we show via attack simulations, determining template as-
sociations is hard, and consequently, an attacker cannot feasibly
identify which fingerprints belong to a particular user. In contrast,
in an ordinary biometric database, templates are associated with
user identities. For example, all of a given user’s templates might
be in the same row. So an adversary that breaches the database can
immediately obtain sensitive biometric information of the users.

Given the database of our construction, users can derive keys
from their templates at the time they authenticate. Conceptually,
this process can be very simple: Each of the user’s fingers is matched
against all templates for the corresponding finger position (e.g.,
index finger). In an ideal setting, the closest match is the template
belonging to that user.

Given ideal matching of this kind, the indices of the matched
templates (which are random, of course) can be used to compose
a key for the user. In our simple example in Figure 1, the key of
one particular user is composed of the best matching row indices
(1, 2, 3, 3, 1) — one per finger position. In Section 4 we show how
to do this composition. We also show given a sufficiently large
database, our construction in Section 4 can produce high-entropy
keys from tenprints, that can be used for public-key authentication,
signing, decryption, etc.

Assuming that templates are independently distributed, i.e., have
uncorrelated features, an adversary that has breached the database
and tries to reconstruct any key faces a combinatorial explosion. In
our example, the adversary can start with a given template and try
to find its four (n − 1) associated ones. This requires searching a
space of size N (n−1). For large N this can be very large. For example,
if the database has N = 104 users and n = 5 as before, an attacker
would need to try 10,000 trillion (≈ 253) combinations.

In practice, however, the naïve approach that we’ve just illus-
trated runs into two main complications.

Errors. First, matching biometrics in practice isn’t ideal, and is sub-
ject to a range of errors resulting from the noisy nature of biometrics.

A finger may match against the wrong template (belonging to a dif-
ferent user) for its corresponding position. Thus, some form of error
correction is required to recover the key. As we explain in Section 4,
we accomplish this in our complete multisketch scheme using an
existing set distance secure sketch construction [29].

Correlations. The second problem is our simplistic security analy-
sis above that assumes templates are uncorrelated, i.e., the templates
of a given user are no more similar to one another than to those of
other users. In practice, this isn’t true; as just one example noted
above, fingerprint appearance correlates with gender [49].

It is hard to obtain a principled upper bound on these corre-
lations. However, for our construction, there is strong empirical
evidence that the correlations among the templates of a user are
relatively weak. In Section 6, we explore a variety of adversarial
classifier constructions based on deep neural networks (DNNs) to
classify pairs (and tuples) of fingerprint templates as belonging
to the same user or not. The performance of these DNNs — false
positive and false negative rates — is too poor to advantage an ad-
versary significantly, as we show in Section 7. (The adversary gains
a 9-bit advantage against a conservatively parameterized version
of our TenSketch construction.)

When our multisketch construction is made error-tolerant and
correlations are taken into account, we find that users can con-
struct keys with relatively high entropy using fingerprints alone
— achieving, e.g., 58-bit security in a version of TenSketch (which
can be significantly boosted via a standard key-derivation func-
tion [21]). Of course, it is also possible to add additional biometrics
(iris codes, voiceprint, etc.) to achieve stronger security and hedge
against better correlation techniques.

3 PRELIMINARIES
We begin our discussion with some preliminary discussion of the
notations and background on secure sketches.

Message spaces. We refer to the data in a biometric reading as
a message. We denote a message space using capital letters and
its members using lowercase letters. For example,W is a set of
messages, while w denotes an element inW . We denote a vector
or tuple using bold fonts; the ith entry in a tuple is denoted by
subscript i . For instance, a tuple of messages is denoted by w, and
the ith entry in that tuple by wi . We use wi ...j to denote a subset
of the tuple w, for 1 ≤ i ≤ j ≤ |w|.

We explore settings inwhich users authenticate utilizingmultiple
biometric readings. These readings may be multimodal, i.e., involve
different physiological feature types (e.g., fingerprint, iris scan,
hand geometry, etc.), or may involve multiple instances of the same
feature type (e.g., multiple fingerprints, two iriscodes, etc.). It is
helpful to view such instances as distinct physiological features; for
example, index fingers look different, in general, than thumbs, i.e.,
they are drawn from different distributions. Thus, we treat each
such reading as coming from a distinct spaceWi with probability
distribution pi . We denote a multi-template message-space byW ⊆
W1 × . . .Wn and a message tuple in this space by w = w1 . . .wn .
Let p(w) denote the joint probability of a message tuple w ∈W.



As noted above, different biometric attributes of a given per-
son are not in general mutually independent, i.e., unfortunately,
we cannot for simplicity assume p(w) =

∏
i pi (wi ). Moreover, we

assume that an adversary does not know p and cannot directly com-
pute joint probabilities. We instead consider the various estimation
approaches an adversary might adopt in trying to identify users’
tuples in the database D.

Biometric readings, as mentioned earlier, are always noisy; mul-
tiple reading of the same biometric template of a user produces
slightly different outputs. Let e be a noise function that model the
errors incorporated in the process of reading a biometric template.
Therefore w̃←$ e(w), denotes the reading w̃ obtained while reading
the templatew . As the biometric readings and biometric templates
are normally represented using similar message formats in practice,
we will use the word message to denote either of them.

Biometric matching. A biometric matching algorithm ℒ(w, w̃) is
an efficient algorithm that takes as input a template w and a bio-
metric reading w̃ and outputs a matching score θ ∈ [0, 1] denoting
how likely a biometric reading w̃ is indeed a reading of the tem-
platew . By setting a predetermined threshold τ , a score θ output by
algorithm ℒ can be converted into an accept (if θ ≥ τ ) or reject
(if θ < τ ) output.

The effectiveness of a matching algorithm is measured in prac-
tice by its false matching rate (FMR) and false non-matching rate
(FNMR). For a given τ , a matching algorithm’s FMR, denoted by α , is
defined as Pr [ℒ(w, w̃) = accept; w̃←$ e(w ′);w ′ , w ], where w
andw ′ are sampled randomly fromW . The FNMR, denoted by β , is
defined as Pr [ℒ(w, w̃) = reject; w̃←$ e(w) ], wherew is sampled
randomly fromW .

As noted before, multisketch can be extend to multi-modal bio-
metric templates. In that case, each message spaceWi can have
separate matching procedures ℒi . Multisketch only requires match-
ing algorithms {ℒi } with low FMR and FNMR rates, but requires
no assumptions on how the template similarity is measured.

Biometric matching algorithms can be extended to handle mes-
sage tuples. For example, two message tuples can be matched by
counting the number of message pairs among them that are ac-
cepted by the underlying matching algorithm ℒ. Let Lt denote the
matching algorithm defined over message tuples; on inputw and w̃,
it outputs accept if at least t pairs between w and w̃ are accepted
by ℒ, reject otherwise.
Secure sketches. Secure sketches (SS) [29] are primitives that
perform error correction on a message without leaking much in-
formation about the message. Secure sketches are defined for a
message spaceW with distance function d .

Definition 3.1. A (W , µ, µ ′,η, ε)-secure sketch is a pair of algo-
rithm sketch (SS) and recover (Rec), defined as follows.
• The algorithm SS (possibly randomized), on inputw ∈W out-

puts a public bit string v ∈ {0, 1}∗.
• The deterministic algorithm Rec, on input the string v and a

message w̃ , outputs w , should w and w̃ are similar, else the
output is indeterminate.

• Correctness. Correctness requires that for all messagesw and
w̃ such that d(w, w̃) ≤ η, (where η is a parameter to the con-
struction), Pr [Rec(v, w̃) = w ;v←$ SS(w) ] ≥ 1 − ε .

SS∆t (w):

κ ←$ K(1ℓ ); h← ∅
c ←$ Eκ (w)
for w̃ ∈

(w
t
)
do

h← h ∪ EH(w̃)(κ)
v ← (h, c)
return s

Rec∆t (w
′, v):

parse v as (h, c)
for (w̃, h) ∈

(w′
t
)
× h do

κ′ ← DH(w̃)(h)
if κ′ , ⊥ then

w← Dκ′ (c)
return w

return ⊥

Figure 2: Algorithms for sketch (SS) and recover (Rec) for secure sketch
for set-distances without using polynomial reconstruction (Reed-Solomon
decoding). It uses a symmetric key authenticated encryption scheme SKE =
(K, E, D) and a cryptographic hash function H : {0, 1}∗ 7→ {0, 1}ℓ .

• Security. For anymessage distribution overW withmin-entropy
µ, the secure sketch must ensure that average conditional min-
entropy ofW given SS(W ) is at least µ ′.

Secure sketch for set difference. A set difference is a standard
distance function over sets defined as follows: given two setsw and
w̃, set difference between them w∆w̃ = |w ∪ w̃ − w ∩ w̃|. Dodis
et al. [29] provide a secure sketch construction for sets of items,
where the distance function between them is the set difference. The
construction uses algebraic polynomial interpolation. We will use
this secure sketch internally to build multisketches. Though Dodis
et al. proved the construction to be secure in the single message
setting, the analysis did not simultaneously consider multiple mes-
sages. While we believe that their construction is secure even in
such a setting, we used a simpler construction whose security can
be argued easily in the random oracle model. We describe Dodis et
al. approach in Appendix A.

In Figure 2 we show the simple sketch construction. It uses
a secure and robust symmetric key encryption scheme SKE =
(K, E,D) and a cryptographic hash function H. The hash function
H : {0, 1}∗ 7→ {0, 1}ℓ , where ℓ is the security parameter. Here K
is a key generation function that selects keys uniformly randomly
from {0, 1}ℓ ; E is an encryption function; and D is the decryption
function. Loosely speaking, we want the encryption scheme to be
robust, that is decryption with wrong key fails — outputs⊥— and to
be semantically secure — without the knowledge of the key, no one
can distinguish between encryption of a message from a random
bit-string. Our preferred choices for deployment are AES-HMAC in
CBC mode with 128-bit key (and PKCS7 padding) for encryption,
and SHA-256 as the hash function.

4 MAIN CONSTRUCTION
We begin this section with the definition of a multisketch, followed
by a concrete construction. As detailed in Section 3, a conventional
secure sketch operates on a single message — generally correspond-
ing to a single user’s secret, such as a biometric template. A mul-
tisketch, in contrast, operates on the messages of multiple users.
Below we define multisketch more formally.

Definition 4.1 (Multisketch). Amultisketch is a pair of algorithms
(MS,MRec), that are defined as follows.
• MS is a randomized procedure that takes as input a user iden-

tifier u, a message tuple w, and a state s (can be empty ∅).MS
updates the state and returns the updated state s′.



Accuracy(N ):
(s, a) ←$ Add(∅, N )
(u, w) ←$ a
w̃←$ e(w)
w′ ← MRec(u, w̃, s)
return w′ = w

UnTarGuess𝒜(N , b):
(s, a) ←$ Add(∅, N )
a′ ← {(u′′, w1. . .b )

�� (u′′, w) ∈ a}
(u, w′) ← 𝒜(s, a′)
w← a[u]
return w = w′

Add(s, N ):
s0 ← s; a← ()
for i = 1 to N do

u←$ 𝒰 ; w←$ W
ai ← (u, w)
si ←$ MS(u, w, si−1)

return (sN , a)

TarGuessℬ(N , b):
(s, a) ←$ Add(∅, N )
a′ ← {(u′′, w1. . .b )

�� (u′′, w) ∈ a}
(u, w) ←$ a
w′ ← ℬ(s, u, a′)
return w = w′

Figure 3: The accuracy (Accuracy) and security (TarGuess and
UnTarGuess) measures of multisketch. All of the algorithms are implic-
itly parameterized by message tuple space W and space of user ids 𝒰 .

• MRec, a deterministic procedure, similarly takes as input a user
idu, a message w̃, and a state s and outputs a messagew′, should
w̃ be similar to w′, that is Lt (w′, w̃) = accept.

It is characterized by two key metrics:
• Accuracy: The accuracy of a multisketch is defined as the abil-

ity to recover the originally registered message w of a user
given w̃←$ e(w). The accuracy is measured using the prob-
abilistic algorithm Accuracy shown in Figure 3. Observe the
accuracy depends on the number of users registered in the state
s. Therefore, we call a multisketch scheme (N ,δ )-accurate if
Pr [Accuracy(N ) = true ] ≥ 1− δ , where the probability is com-
puted over the random coins used by the algorithm Add and
the error function e . The algorithm Add takes as input an initial
state s, and a number N , generates N random user identifiers u
and their messages w, registers them sequentially in the state
si using MS, and returns the updated state sN along with the
list a of generated users and their messages.

• Security: The security of a multisketch is defined using the
guessing games UnTarGuess and TarGuess shown in Figure 3.
More detailed security discussion is given in Section 5.

4.1 Construction of TenSketch
We give a construction of multisketch for tenprints — i.e., tuples
of prints of all ten fingers of a user — that we call TenSketch. The
construction can easily be extended to include other biometrics,
such as iris scans or hand geometry.

The pseudocode of the procedures for sketching (MS) and recov-
ery (MRec) are given in Figure 4. TenSketch calls as subroutines
the set-distance secure sketch algorithms given in Figure 2. Mul-
tisketch uses a matching algorithm ℒ. We assume for simplicity a
single matching algorithm ℒ that works for all message spacesWi ,
although our algorithms can easily be adapted to distinct matching
algorithms ℒi for different message spaces.

The state s in TenSketch consists of two databases ℐ and ℱ ,
where ℐ is a key value store in which keys are user identifiersu ∈ 𝒰
and values are the sketches output by SS∆t . The other database ℱ
stores the fingerprint templates of users. It consists of n = 10
columns, one for each finger. Given a message tuple w and a user

MSℒt (u, w, s = (ℐ, ℱ )):

v ← SS∆t (w);
ℐ[u] ← v
N ← |ℱ |
for i = 1 to n do

j ←$ [1, N + 1]
if j < N + 1 then

ℱ [N + 1, i] ← ℱ [j, i]
ℱ [j, i] ← wi

s′ ← (ℐ, ℱ )
return s′

MRecℒt (u, w̃, s = (ℐ, ℱ )):
v ← ℐ[u]
for i = 1 to n do

xi ← FindMatchesℒ(ℱ, i, w̃i )

for wj ∈ (x1 × . . . × xn ) do
w′ ← Rec∆t (v, w

j )

if w′ , ⊥ then
return w′

return ⊥

Figure 4: Multisketch (MS) and recover (MRec) algorithms. The function
FindMatchesℒ(ℱ, wi ) finds at most l matches for message wi from the
database ℱ using ℒ.

id u, MS first computes the set-distance sketch v of w and stores it
at ℐ[u]. Then,MS inserts each message wi in the ith column in ℱ
at random locations.

During recovery, on input w̃ and a user id u, MRec searches the
database ℱ for potential matches using the algorithm FindMatchesℒ,
which calls ℒ as a subroutine. FindMatchesℒ returns at most l — a
parameter — best matches for each message w̃i . Then, for every
tuple of matches found,MRec tries to recover the original message
w using Rec∆t with the sketch value v stored at ℐ[u]. There can be
lt possible tuple combinations that have to be checked via Rec∆t .
Thus, while larger l increases accuracy, practical implementation
requires relatively small values (e.g., 2).

4.2 Prototyping TenSketch
We build a prototype of TenSketch to evaluate practical feasibility.
We use a tenprint dataset shared by NIST [2]. Below we give details
of the dataset and our implementation.

Data source. NIST released a tenprint dataset titled SD09 [2] in
2009. It contains full tenprints for 2, 700 individuals, two images per
finger, for a total of 54, 000 fingerprint impressions. This is one of
the largest datasets of tenprints released by NIST and widely used
by the biometric research community (e.g., [60]). It also contains
the gender of each subject and some meta-level information about
each fingerprint, such as finger position, NCIC class [43], etc.

Among the dataset subjects, 88.8% are male, and the remaining
are female (except two subjects with unspecified genders). Each
fingerprint is assigned one of the six classes defined by NCIC [43]:
arch (A), left-loop (L), right-loop (R), tented-arch (T), whorl (W), and
scar or mutilation (S). The majority (more than 93%) of fingerprints
are either of type W, L, or R.

Matching algorithm. TenSketch can operate with any matching
algorithm, and, in some cases, the algorithm can be changedwithout
needing to make any changes in the database. For our experiment,
we use Bozorth3 [41] as our matching algorithmℒ for matching fin-
gerprints. Bozorth3 was published by NIST with its NIST Biometric
Image Software (NBIS) package. It’s a widely embraced fingerprint
matching algorithm in research (see, e.g., [22, 44]).

Bozorth3 works on minutiae, distinguished points in a finger-
print, representing ridge, bifurcations, or endings. Each minutia is
represented as a tuple consisting of x , y, an angle θ , and a quality
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Figure 5: Performance of Bozorth3 for different numbers of minutiae
points.

value q. A fingerprint template is represented as a list of minutiae
— a format known as xyt format. We used the NIST mindtct algo-
rithm (part of the NBIS package [41]) to extract minutiae points
from each fingerprint image. Bozorth3 takes a pair of fingerprints
in xyt format, and outputs a matching score.

Fingerprints differ in their numbers of readable minutiae. While
more minutiae provide better matching accuracy, they might lead
to better correlation attacks (see Section 5). We therefore truncate
each fingerprint to have a maximum of r minutia points. For finger-
prints with more than r minutiae, we considered the r best-quality
minutiae (based on the quality value given bymindtct). Truncating
minutiae points can affect accuracy, which we investigate next.

In the SD09 dataset, 47% fingerprints have 200 or more minutiae
points. We tested the accuracy of Bozorth3 algorithm with different
values of r , and found the performance changes negligibly for con-
sidering r ≥ 160, as shown in Figure 5. We chose r = 200 as a limit
with sufficient slack in case more advanced matching algorithms
are proposed. Higher numbers of minutiae can also benefit the
attacker, and therefore our security analysis in Section 7 provides
a conservative estimate of an attacker’s advantage.

Implementation of TenSketch. We implemented TenSketch as
a Python 3.6 application. The database is instantiated with sqlite3
database. The fingerprint matching, as mentioned above, is done
using Bozorth3 [41]. For the cryptographic functions, we used the
Cryptography.io [8] library. We set t = 7. During recovery, for
each fingerprint, we find at most l = 2 best matches with Bozorth3
matching threshold as 10.

We use the data of randomly sampled 2, 500 SD09 subjects to
construct the database D of TenSketch. Of the two impressions
per finger in SD09, we pick the first set to store in the TenSketch
database as templates; we use the second set of fingerprints for
probing. TheMS procedure does not checkwhether a user is already
registered. In practice, it is important to have a supplementary
procedure to ensure against duplicate users or fingerprints, which
can undercut the correctness guarantees provided by TenSketch.

Computational performance. The computational performance
of our implementation is shown in Figure 6. The median time taken
among 100 runs for each of the core functions are reported. The
experiment is done on a single thread of Xeon 5 processor with

Procedure Time (s)
Avg Var

SS∆t 0.13 0.01
Rec∆t 0.14 0.01
MS 0.13 0.02
MRec 176.67 59.34
MRec (parallelized) 59.12 9.23

Figure 6: Performance of prototype implementation of TenSketch on an
Intel Xeon 5 machine. Other parameters are N = 2500, t = 7, and l = 2. The
numbers are the average across 100 trials. The cause of the high standard
deviation is from Bozorth3, as it takes different amounts of time for different
probe fingerprints. The last row shows the performance when we parallelize
the recovery procedure across 10 virtual cores of Xeon 5 machine using
Python multiprocessing library.

46 GB RAM. Among all four procedures, the recovery procedure
MRec consumes the maximum amount of physical memory, but
that is still less than 256 MB.MRec is also relatively slow — takes
about three minutes on a single thread of a Xeon 5 processor —
compared to traditional login procedures during authentication.
The MRec procedure tries to find the best matches of each fin-
gerprint scan against all the fingerprint templates stored in the
database using Bozorth3 one-to-many matching algorithm. This is
the most expensive part of the computation. The performance can
be greatly improved via parallelization and faster implementation
of Bozorth3 using graphics processing units (GPUs) (c.f., [19]). We
tried a naive parallelization using Python Multiprocessing and run-
ning the matching of ten fingers in ten (virtual) cores. The average
time for MRec becomes in this case about a minute, but essentially
arbitrary parallelization is possible. The variance of the time taken
by Bozorth3 one-to-many algorithm matching is reflected in the
time taken byMRec.

The storage overhead of TenSketch is nearly 2x compared to tra-
ditional biometric databases: The database has to store the original
fingerprints, as well as the set-distance sketch output by Rec∆t . If
the goal of the TenSketch is only to recover a high entropy key, say
128-bit, then instead of storing the encryption of the whole tenprint,
one can store the encryption of the 128-bit key. Each fingerprint
tuple is represented as 600 integers (x , y, and θ ; we ignore quality
values). In our implementation of TenSketch, 64 KB of space is
required per user (whereas a plaintext tenprints takes 24 KB).

Accuracy. We compute the accuracy of TenSketch according to
the Accuracy function defined in Figure 3. As discussed before, we
instantiate a TenSketch database with 2, 500 randomly sampled
users from SD09 dataset. We used the first impression as a template
which is stored in the database, and the second impression in SD09
as a probe. To compute the false non-matching rate (FNMR), we
sample 1, 000 users randomly who are registered with our TenS-
ketch, and then try to recover the users using the probe impression
given in SD09 for those users.

We found the FNMR rate was quite high: 11%, 9%, and 8% for
l = 1, 2, and 3, respectively. The higher value of l will require more
combination of messages to check duringMRec and adds significant
computational overhead. We, therefore, decided on l = 2.

The high FNMR rate of TenSketch is due to low accuracy of Bo-
zorth3 algorithm for many-to-one matching — finding a matching



fingerprint in a list. Though Bozorth3 has relatively low equal-error-
rate for one-to-one matching (4%), in general, 67% of the correct
template pairs are not assigned the highest matching score. FNMR
rate (with l = 2) is worse for the little and the ring fingers (20%-
25%), while around 7% for all the remaining fingers. Use of error
correction in TenSketch helps improve accuracy. Therefore, we
observed the FNMR rate of TenSketch can be reduced to 4% if we
choose to have more error tolerance (t = 6).

For computing the false matching rate (FMR), we performed two
experiments. First with fingerprints chosen from the one stored in
the database, and the second one using unregistered tenprints. To
simulate the first setting, we randomly pick 1, 000 tenprints from
the database, and use that to recover any meaningful information
from the database (i.e., a valid tenprint from the database). In the
second setting, we use the hold-out 200 users from SD09 and tried
to apply MRec with those template tuples. In either of the settings,
MRec failed to recover any valid tuple, meaning FMR of MRec is
zero for a database size of 2, 500 users.

We can use a matching threshold to ignore low-value matches,
and thereby further reduce the FMR. However, in our experiments
with Bozorth3 and SD09 dataset, we found the threshold on the
matching score does no affect the false matching rate. It is very
unlikely that t fingers of a user will be matched to t fingers of
an imposter. If a different matching algorithm is used, instead of
Bozorth3, that has higher FMR for TenSketch, FMR can be adjusted
by varying the matching threshold.

Improving performance and accuracy. As shown above, the
computational and matching performance of TenSketch heavily
depends on the underlying matching algorithm, which is in this
case Bozorth3. Here we give analytical estimates of TenSketch
performance for alternative matching algorithms.

Accelerating fingerprint matching using GPUs is an active topic
of research (c.f. [19, 35]). Cappelli et al. [19] demonstrate finger-
print matching rates of 9 million matches per second with a single
NVIDIA Tesla C2075 GPU. For a database with a million users, us-
ing the Cappelli et al.’s algorithm on, e.g., an 4-GPU server, MRec
would take less than half a second to complete. For systems like
Aadhaar [3], with more than a billion users, the databases (ℐ,ℱ)
can be partitioned into clusters of a million users each. (TenSketch
with a million users is sufficient to provide 110 bits of security.
See Section 5 for details.)

The FNMR rate can also be reduced by having a better finger-
print matching algorithm. Cappelli et al.’s algorithm [19] has an
FNMR of 1.25% with FMR of 0%. It is unclear, however, how the
matching accuracy varies across different fingers. (We could not
obtain their code for testing.) We therefore report on experiments
with another proprietary matching algorithm, Verifinger, from Neu-
rotechnology [10]. Verifinger works well over mated fingerprints,
but not with inked fingerprint. SD09 contains only inked finger-
prints. Therefore, to measure the efficacy of our multisketch scheme
with Verifinger, we used a mated fingerprint dataset [25], which we
refer to as theWVU dataset. (More details of WVU dataset are given
in Appendix C.) TenSketch with Verifinger as matching algorithm
achieves perfect accuracy for l = 2 and t = 7 on the WVU dataset.

We used Bozorth3, because it is open-source. However, changing
the matching algorithm in a multisketch system is easy — a key

benefit of multisketches over prior template protection techniques.
Moreover, in multisketches swapping in a new matching algorithm
requires no database changes, provided that the stored biometrics
are compatible with the new matching algorithm.

5 SECURITY OF TENSKETCH
The main concern with large biometric databases is the scale of
impact of compromise, which could in some cases impact millions or
billions of users. We design multisketches that decouples biometric
information from individual identities to prevent an attacker form
learning any meaningful information after stealing the biometric
database. In this section, we formalize the threat model we consider
for TenSketch and analyze its security.

Threat model. We consider smash-and-grab attacks, where the
adversary ephemerally compromises the server and grabs the sketch
databases (ℐ,ℱ). Such smash-and-grab attacks are the most preva-
lent form of credential compromise, e.g., passwords. The adversary
aims to learn the tenprint of some user. We assume the adversary
knows the matching algorithm ℒ and the multisketch MSℒt and
MRecℒt procedures. Additionally, the attacker might also know at
most b fingerprints of some users, where b is a parameter of the
security definition.

We don’t consider stronger adversaries, e.g., a persistent passive
adversary that can observe user registrations. Such an adversary
can indeed learn users’ biometrics trivially: It observes database
changes as users register or authenticate — either action revealing
their tenprints. Similar to persistent attackers, an attacker with
access to multiple snapshots of the database at different times can
identify newly added templates, resulting in a narrowed search
space. We do observe, though, that even against these stronger
adversaries, a multisketch system provides meaningful protection:
Users whose templates are not observed by an adversary remain
protected as long as there are sufficiently many uncompromised
users.

We note that fingerprint matching times can vary for different
fingerprints. Thus an attacker who can observe the authentication
timings of a user might be able to prune the set of candidate finger-
prints for that user. Such timing-based side channels, however, can
be mitigated by normalizing the matching times for all users.

We also assume that every user is present at most once in the
database and the fingerprint template database ℱ does not contain
any duplicates. The first assumption can be enforced at registration
time by ensuring an individual user does not register more than
once. Such is enforced in large scale biometric database systems [3].
The second assumption is normally true for biometrics because the
representation of biometric templates are large and it is extremely
unlikely that templates of two different individuals are the same.
(The entropy of the biometric recognition system, however, is not
much (about 16-bits [7]) due to error in readers and unavailability
of better matching algorithms.)

Attack models. The threat model as described is very similar to
the one used for password databases. Following the precedence from
passwords [17], we model two different types of attacks against
TenSketch: targeted and untargeted. In the targeted setting, the
attacker seeks to learn the tenprint w of a particular user u. In



the untargeted setting, the attacker tries to find the tenprint of
any user in the database. We specify security games TarGuess and
UnTarGuess respectively for these adversaries in Figure 3; adver-
sarial success is the probability that the relevant security game
outputs true.

Note that for any attackerℬ for TarGuess, we can find an attacker
𝒜 for UnTarGuess that queries ℬ with each user in ℐ , and outputs
any result from ℬ other than ⊥. Thus:

Pr
[
UnTarGuess𝒜 = true

]
≥ Pr

[
TarGuessℬ = true

]
.

We can come to another inequality by constructing an adversary
ℬ which, when challenged on a user u, queries 𝒜. If 𝒜 outputs a
tenprint for a user u ′ and u = u ′, ℬ outputs that. Therefore, ℬ wins
with probability equal to 𝒜 when u = u ′, else it fails. Therefore,

Pr
[
TarGuessℬ = true

]
≥

1
N
· Pr

[
UnTarGuess𝒜 = true

]
.

Consequently, it suffices for us to explore TarGuess only, which
will also provide an upper bound on the success probability of
UnTarGuess game.

The ideal setting for TenSketch would be if the different tem-
plates of different fingers of a user were completely independent.
However, this is not true in practice. Therefore, we first analytically
compute the attacker’s advantage assuming complete independence
between different fingers. Next, we will give an empirical result
about the advantage of an attacker lifting the assumption.

Mutually independent messages. The messages are said to be
independent if the attacker is not able to find other fingerprints of
a user from the database given one or more of their fingerprints
with probability better than random guessing.

In this setting, to find the w associated with a user u, the at-
tacker’s best guess is to brute-force try all possible subset of size
t of ℱ . Note the attacker only need to be able to guess t finger-
prints of the user correctly, because remaining fingerprints can be
recovered via Rec∆t algorithm.

In the TarGuess setting, the attacker might know some b < t
of the target user’s fingerprints. Let N = |ℐ |. Then the number of
possibilities for the remaining part of the message tuple that the
attacker has to compute is

(n−b
t−b

)
· N t−b . The total number of valid

solutions is
(n−b
t−b

)
— any combination t − b messages from n − b

fingerprints. Therefore, if all the message tuples are equally likely,
the attacker has to make on expectation N (t−b) queries to Rec∆t .
This is equivalent of (t − b) · logN bits of security.

To get a sense of how large this value is for a realistic size biomet-
rics database, let assumeN = 104 (ten-prints for ten thousand users)
and t = 7 (at least 7 fingers has to match for Rec∆t to successfully
recover the tenprint of the user). Assuming the attacker already
know b = 1 fingerprint of the target user u, then the security in bits
is (7 − 1) · log2(104) ≈ 79.7-bits. With N = 106 users, the security
can be 119.6 bits.

Security without independence assumption. Previous secu-
rity analysis assumes independence of the fingerprints, however, in
many situations, particularly for tenprints, this assumption might
not hold true. If that is the case, the attacker might be able to
avoid checking every message tuples with Rec∆t and improve it’s
performance significantly.

While the attacker could take advantage of the correlation among
fingerprints in many ways, the most obvious and easy to use strat-
egy would be to build a classifier that classifies a tenprint as belong-
ing to a single user, or not. In Section 6 we will show how to build
such classifier that exploits the similarities between fingerprints
belonging to an individual. We call such classifiers adversarial clas-
sifiers. In Section 7, we show how to use adversarial classifiers to
attack TenSketch.

6 ADVERSARIAL CLASSIFIERS
In this section, we show how to build adversarial classifiers, that
can identify a tuple of fingerprints belonging to a single user or
not. We use SD09 dataset for training our adversarial classifiers.
We randomly partition the dataset into two groups of size 2500 and
200 users as training and test sets, respectively. In SD09 dataset,
each user contains two sets of tenprints — 20 fingerprints in total.

Due to the low volume of available training data and the curse
of dimensionality, building a classifier that can classify a tuple of
size n = 7 could be difficult. Therefore, we build classifiers for
various tuple sizes, starting with a pair classifier that classifies only
template pairs. We then go on to explore ways to build higher-order
classifiers.

All of the experimental results are performed on a server with
128 GB of memory, two Intel Xeon E7 CPUs (12 core each), and
four Nvidia Titan Xp GPUs (each with 12 GB of memory). We
describe the DNN models in Python using Keras library [24] with
Tensorflow [13] as the backend.

Notation. Let 𝒞i , for 2 ≤ i ≤ t , be the classifier that takes as input
a tuple of fingerprint templates of size i and outputs a score in [0, 1].
Therefore, 𝒞i (w1, . . . ,wi ) denotes the likelihood (according to the
classifier) that the message tuple w1 . . .wi belongs to a single user.
Each fingerprint template (wj ) comprises of 200 minutiae points
and each minutiae point has x , y, an angle θ , and a quality value q.
2 As such, each template has 600 integer values (800 when using
quality values). Utilizing quality values during the training process
has a significant effect on the accuracy as well as the true and the
false positive rates. If the quality value of the minutiae points are
used, we denote the corresponding classifier as 𝒞qi .

6.1 Pair Classifier
A pair classifier outputs the probability that two given fingerprint
templates belong to the same person. We explored various DNN
architectures to construct a pair classifier. In particular, we tried a
single DNN architecture and a split Siamese architecture.

Dataset. The datasets for training and testing are created by taking
all possible pairs of tenprints for each person — 45 pairs for each
tenprint, 90 pairs for each person. These intra-person pairs are
labeled as “1” (belonging to the same person). We generate inter-
person fingerprint pairs by selecting randomly two fingers from
two different users in SD09. To have an unbiased classification, we
have generated the same number of inter-person fingerprints as
that of intra-person. This is done separately for training (2500 users)

2For TenSketchwe do not need to store quality values explicitly. Nevertheless, we used
them for constructing the adversarial classifiers to get a more conservative estimate of
attacker’s advantage.
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Figure 7: Accuracy and loss on train and test datasets for 𝒞2.

and testing (the remaining 200 users). Therefore, the training and
testing sets contain in total 450, 000 and 36, 000 pairs of fingerprint
templates. The feature set (x , y, θ , and q) is normalized to have
zero mean and unit standard deviation, and all pairs within each
training and testing set are permuted so that the training algorithm
converges faster and to a more accurate model.

Single DNN architecture. We explored several DNN architecture.
In order to train the DNNmodels, we have used mini-batch gradient
descent (with a batch size of 1024). Two optimization methods have
been used: Root Mean Square (RMSProp) and Adam. The best results
are achieved using Adam optimization algorithm with the learning
rate of γ = 10−6.

The DNN models are trained until the test accuracy is saturated
and/or the model starts to overfit to the training data. Figure 7
shows accuracy and the value of the loss function for the training
and test datasets over 100 epochs. In order to avoid overfitting to
the training data, L2 regularization is used with the regularization
parameter of λ = 0.001 for all hidden layers. The best performing
architecture is a 5-layer DNN model consisting of

FC320
ReLu 7→ FC640

ReLu 7→ FC1280
ReLu 7→ FC640

ReLu 7→ FC320
ReLu ,

where FCnReLu denotes a Fully Connected layer with ReLu activation
function and n output neurons. The input of a fully-connected
layer is multiplied by the weight matrix and the resulting vector is
passed to a non-linear function. One of the most popular non-linear
functions is Rectifier Linear Unit, ReLu(x) = max(x , 0). The output
of the last layer of DNN is then passed to the Sigmoid function,
σ (x) = (1 + e−x )−1, which represents the probability that the input
belongs to the class “1”. The values of the weights in the FC layer is
learned using Back Propagation Algorithm.

The best performing 𝒞2 achieves 65% accuracy. If the quality
values are available in the template the accuracy goes up to 70%.
In both the settings, the false negative rates (FNR) are high, more
than 25%. The false positive rates (FPR) are also high: 38% and
32% respectively for with and without quality values. Nevertheless,
this classifiers show that different fingerprints of users are indeed
correlated.

Siamese Architectures. In addition to standard deep neural net-
work architectures, we explore a special class of DNNs, called

Di st ance 
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Figure 8: High-level diagram of 𝒞2 based on the Siamese architecture.

Siamese Networks [56, 58]. In Siamese networks, two input fea-
ture sets are passed to two sister networks with identical parame-
ters (weights). We give a high-level diagram of the setup in Figure 8.
More details on the training Siamese network is given inAppendix E.

Despite Siamese being useful for facial recognition, we found
Siamese networks perform poorly compared to single DNNs. The
accuracy of the best performing Siamese network with the quality
values is only 66%, and without quality values it is 62%.

The DNN model outperforms the Siamese network consistently.
We therefore choose the DNNmodel as 𝒞2 and use for the attacks de-
scribed in Section 7. Next, we elaborate on how one can generalize
the pair classifier to obtain higher-order classifiers.

6.2 Higher-Order Classifiers
The ultimate goal of an attacker is to identifying a certain number
(e.g., 7) of fingerprint templates that belong to the same person.
There are two main strategies that an attacker can pursue: (1) she
can leverage the pair classifier as an oracle and perform multiple
calls to it, or (2) she can train more complex DNNs that accept
multiple templates as input. In what follows, we discuss these two
strategies in more detail and compare their performances.

𝒞2-based higher-order classifiers. Using a pair classifier an at-
tacker can build a higher-order classifier 𝒞i by checking all possible(i
2
)
pairs of templates in the template tuple via 𝒞2. The attacker

accepts the i templates if the all pairs are accepted by 𝒞2. We call
such classifiers extrapolating classifiers, denote by 𝒞i (and 𝒞

q
i when

quality values are available). In Figure 9 (left two figures), we show
the ROC curve of this approach for different values of 2 ≤ i ≤ 7
with and without the quality values. When the quality values are
available, extrapolating classifiers are effective. 𝒞q7 obtains < 30%
FPR at 1% FNR. Without the quality values the extrapolating clas-
sifier performs poorly and not very useful for classification. This
is important as we remove quality values from the templates for
TenSketch.

Standalone higher-order classifiers. The second strategy is to
build higher-order classifiers by training more complex DNNs that
take multiple templates as input. This strategy turns out to be more
effective and leads to higher accuracy than extrapolating classifiers.
The process of creating training and test sets are an extension of
the process we elaborated for 𝒞2 in Section 6.1. We leverage the
same architecture as for 𝒞2 to generalize 𝒞i by scaling the width of
each layer linearly with respect to i .
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Figure 9: Illustrating the effect of the number of fingerprint templates and the quality values on the performance of higher-order classifiers. The left two
figures show the ROC curve for with and without the quality values for extrapolating classifier 𝒞i . The rightmost figure shows the performance of learned
higher-order classifier 𝒞i .

Classifier # Param. Acc (%) FPR (%) FNR (%) Classifier # Param. Acc (%) FPR (%) FNR (%) # Tr. Smp. # Te. Smp.

𝒞2 2.4M 62 43 30 𝒞q2 2.6M 69 36 25 450.0K 36.0K
𝒞3 5.5M 74 25 24 𝒞q3 5.8M 81 18 19 1.2M 96.0K
𝒞4 9.7M 81 14 22 𝒞q4 10.2M 86 10 16 2.1M 168.0K
𝒞5 15.2M 84 7 24 𝒞q5 16.0M 90 4 15 2.5M 201.6K
𝒞6 21.9M 84 4 25 𝒞q6 23.1M 89 1 18 2.1M 168.0K
𝒞7 29.8M 86 3 23 𝒞q7 31.4M 92 2 12 1.2M 96.0K

Figure 10: Complexity and performance of 𝒞qi and 𝒞i classifiers. “# Tr. Smp.” and “# Te. Smp.” represent the number of training and test samples, respectively
(same number for both 𝒞qi and 𝒞i ). “# Pram.” represents the number of trainable parameters in DNN.

The performance of different 𝒞i is given in Figure 10. Notably,
the accuracy increases with the size of the tuples. But, note the
false negative rate remains more or less unchanged.

Effect of quality values. Having access to the quality values
consistently increase the accuracy. We, therefore, remove quality
values before storing templates in ℱ . Fortunately, Bozorth3 uses
the quality values only to order the minutiae points. Therefore, in
our prototype implementation, we decide to remove quality values
and store ordered minutiae points only. As some other matching
algorithm might take advantage of the quality values, we conser-
vatively consider the classifiers with quality values for evaluating
attacks using adversarial classifiers.

7 SECURITY EVALUATION USING
ADVERSARIAL CLASSIFIERS

Using the adversarial classifiers described in Section 6, an attacker
can expedite the recovery of a valid fingerprint tuple. In this sec-
tion, we will explore a few different attack strategies and their
performance by simulating them on SD09 dataset.

One limitation of our attack simulation is that it uses the same
data used for training the classifiers to instantiate TenSketch data-
base. This was unavoidable due to the lack of availability of a larger
tenprint dataset. However, we emphasize that as shown in Section 6,
the training and testing accuracy of the classifiers are very similar,
we anticipate the simulation results will hold for larger datasets
too. Moreover, the simulation with the training data benefits the
attackers and provides a conservative bound of security.

Recall, we want to determine the complexity of the computation
work an attacker has to do to win the TarGuess game (See Figure 3.)
The attacker’s goal here is to find a valid tenprint of a user u given
b = 1 of the user’s fingerprints. The attacker only needs to find a
message tuple where at least t fingerprints are correct — belongs to
the user u. Using such a tuple and Rec∆t , the attacker can recover
all the fingerprint templates of the user.

We will assign a cost of cc and cs as the cost of calling the
classifier and the cost of calling the Rec∆t procedure on a fingerprint
tuple. Every other computation, conservatively, is assumed to be
free for the attacker. In general, cc will be much smaller than cs
(but not negligible). For ease of reporting the results, we will often
assume cs ≫ cc .

If there were no correlation between fingerprints the optimal
strategy of an attacker would be to apply Rec∆t on all possible
message tuple of size t . Therefore, the cost of such naive attack
will be C =

(n−b
t−b

)
· N t−b · cs/

(n−b
t−b

)
= N t−b · cs . (The attacker only

have to find one of
(n−b
t−b

)
many valid tuples.) For a TenSketch with

N = 2, 500 users and t = 7, this will result in 6× log 2500 = 67.7-bits
of security (assuming applying Rec∆t is of unit cost). We define the
advantage of an classifier-based attack algorithm as log(C/CML),
where CML is the cost of the attack using adversarial classifiers.
The advantage of an attack represents the loss in number of bits of
security due to correlation among fingerprints of a user as captured
by the adversarial classifiers. Below, we will report on both the cost
and the advantage of each attack.

There aremany differentways an attacker can leverage classifiers
to identify t-tuples. In Appendix F we consider in detail the strategy



of combining different classifiers, and show that using 𝒞7 alone
incurs the lowest computational overhead. Our first three strategies
below use 𝒞7. The last strategy we consider identifies t-tuples using
different 𝒞 ′i s incrementally.

1. Pruning improbable candidates. An obvious strategy to find
a correct message tuple of size t would be to prune out improbable
tuples using the classifier 𝒞t , and thereby, to reduce the number
of tuples to check using Rec∆t . However, this strategy requires the
attacker to apply the classifier on all possible

(n−b
t−b

)
·N t−b message

tuples. This number can be very large, posing a serious engineering
challenge for the attacker. Moreover, as shown in Section 6, the clas-
sifier will have some non-zero false positive rate, say ν . Therefore,
the total cost of this attack will be Ĉ =

(n−b
t−b

)
· N t−b (cc + cs · ν ) ≥(n−b

t−b
)
· N t−b · cs · ν = C · ν . The advantage of this attack is at

most − logν . As per our experiment in Section 6.2, without the
quality values ν = 0.1 at true positive rate of 90%, which trans-
lates to 3.3-bits of security loss. With the quality values, ν = 0.05
(See Figure 9), and the security loss would be 4.3 bits.

The true positive rate of the classifier dictates the attacker’s
chance of winning the game should she be able to finish going
over all the message tuple combinations. However, the attacker
can forego higher accuracy at the cost of faster retrieval. As we
show in Figure 9, reducing the true positive rate does not result in
a sufficiently low false positive rates, and will not be effective.

2. Ordering message tuples based on the classifier. An at-
tacker can try to order the tuples using the classifier outputs (confi-
dence values), and check using Rec∆t in decreasing order of their
confidence values. To generate high confidence — according to
the classifiers — message tuples, the attacker can use hill-climbing
approach as described below, or an approach similar to generating
passwords from a Markov model [47]. However, for any of these
approaches to succeed, the correct message tuple must be assigned
high confidence by the classifier.

To verify that, we experimented to find the average rank of a
correct tuple in a list of randomly sampled tuples. We pick a random
user u, and pick t fingerprints of the user u randomly, containing
b known fingerprints. We also pick 104 fingerprint tuples from
ℱ each containing the b known fingerprints and rest randomly
sampled. We found the rank of the correct tuple w is at a = 12% of
the length of the list, on an average. That means even if the attacker
manages to order all the fingerprint tuples, she has to go through
on an average 12% of the list before encountering a valid message
tuple.

Assuming, if an attacker first prune the database of the improba-
ble candidate tuples (very low classifier’s outputs), and then sort
the list based on the output of 𝒞7, will have to apply Rec∆t onC ·ν ·a
many fingerprint tuples. This translates to − log2(0.05×0.12) = 7.4-
bits of security loss due to correlation among fingerprints.

3. Finding high confidence message tuples. To avoid comput-
ing all possible message combinations as before, the attacker can
try to find message tuples for which the classifier assigns high con-
fidence value. This can be done efficiently by using an approach
similar to hill-climbing used in optimization techniques. The at-
tacker starts with a random fingerprint tuple of size t (that includes

Global input: s = (ℐ, ℱ ), t
HillClimb(u, w):
s← ℐ[u]; w̃←$ ℱ
if w , ∅ then w̃1. . . |w| ← w
Y ← {w̃} /* Done tuples */
xmax ←∞ ; x ← 0
while xmax ≥ x do

x ← 𝒞t (w̃); X ← ∅
for i ∈ { |w | + 1, . . . , n }

X ← X ∪ {w← w̃;wi ← w
��w ∈ ℱi }

X ← X \ Y ; Y ← Y ∪ X
w̃← argmax{𝒞t (w)

��w ∈ X }
xmax ← 𝒞t (w̃)

return w̃

Figure 11: Hill-climbing algorithm to find high confidence fingerprint
tuple for attacking TenSketch. The algorithm also takesw, which is b known
fingerprints of the user.

b known fingerprints) and replaces the unknown fingerprints one
at a time in such a way that improves the output of the classifier 𝒞t .
The replacement procedure stops at a tuple w if no other replace-
ment is possible that yields higher score than w. The attacker tests
w with Rec∆t for correctness. If it fails, it restarts with another
random tuple and continues. The algorithm is given in Figure 11.

We simulated this attack, but even with 1012 iterations (restarts),
the algorithm failed to find a correct t-tuple. On a closer look at
the classifier outputs, we found that the correct tuple never obtains
the highest classifier’s confidence among its neighboring tuples
— tuples that differ by only one fingerprint; which is the major
reason for the failure of this attack. Therefore, hill-climbing is not
an effective way for the attacker to take advantage of the adversarial
classifiers.

4. Generate message tuples incrementally. Finally, we con-
sider generating a t-size message tuple incrementally beginning
with b known fingerprints. The attacker uses the classifier 𝒞i to find
a i-tuple including the b knownmessages that have high confidence
and move on to find a (i + 1)-tuple using 𝒞i+1, (i + 2)-tuple using
𝒞i+2, and so on. The algorithm is given in Figure 12.

For each classifier 𝒞i , we also specify a threshold τi and consider
the tuples with higher confidence values than τi . These thresholds
are computed in such a way that ensures 𝒞i has a true positive
rate of 90%. We fix the true positive rates instead of false positive
rate, as failing to consider the correct tuple for further processing
immediately fails the attacker.

Now we want to compute the number of times the attacker has
to query Rec∆t in this attack. Following the algorithm in Figure 12,
we can see, when the size of a partially constructed message tuple
w, such that |w| = j − 1 and j ≥ 2, the size of Tj is |Tj | = N · δj ,
where N = |ℱj | and δj is as defined below.

δj = Pr
[
𝒞j (w1, . . . ,wj ) > τj | 𝒞j−1(w1, . . . ,wj−1) > τj−1

]
,

for j > 2; for j = 2, we define δ2 = Pr [ 𝒞2(w1,w2) > τ2 ]. Therefore,
total number of t-tuples generated by the algorithm is

t∏
j=b+1

|Tj | = N t−b ·

t∏
j=b+1

δj .



Global input: s = (ℐ, ℱ ), t, (τ1, . . . , τt )
GenTupIncr(u, w):
s← ℐ[u]; w̃← ⊥
if w , ∅ then X ← {w}; else X ← ℱ1
while X , ∅ do

w← X .pop()
j ← |w | + 1
if j >= t then

w̃← Rec∆t (s, w)
if w̃ , ⊥ then break

else
Tj ←

{
v ∈ ℱj

��𝒞j (w1, . . . , wj−1, v) > τj
}

X ← X ∪
{
w ∪ {v }

��v ∈ Tj }
return w̃

Figure 12:Algorithm for generatingmessage tuples of size t incrementally.
ℱi is the database containing fingerprint template of the i th finger of each
user, and t is the minimum number of fingers required to recover the whole
tenprint set.

The cost of this attack will be

N t−b ·

t∏
j=b+1

δj · (cs + 2 · cc ) ≈ C ·
t∏

j=b+1
δj .

We computed δj ’s for 2 ≤ j ≤ t empirically from the SD09 data
and the classifiers 𝒞j and 𝒞qj . We found the

∏t
j=b+1 δj ≥ 2−9 with

quality values, and 2−8 without quality values. Therefore overall
loss in security via this attack is at most 9 bits.

Discussion. We explored possible attack strategies using generic
classifiers across all fingers. We show that an attacker can at most
reduce the security by 9 bits by exploiting the fingerprint corre-
lations. Final security of TenSketch with t = 7 and N = 2, 500
registered users in bit-strength is 58-bits, assuming the attacker
knows one of the fingerprints of the user.

We claim this is a conservative estimate, as we did not count
for the computational cost associated with applying the classifier.
Moreover, the loss in security can be further reduced by increasing
the hashing cost of H used by SS∆t and Rec∆t , and thus increasing cs .

The classifiers that we built is generic in a sense that they do
not consider positions of fingers. The classification accuracy might
improve if one tries to build finger-specific classifiers. Training
such classifiers however would require access to a large amount of
biometric training data.

8 RELATEDWORK
Biometric authentication is increasingly being used during bor-
der crossing [6], to provide essential government services (such
as Aadhaar [3]), and for criminal investigation [5]. In addition to
traditional fingerprints and iris scans [26, 36], other physiological
attributes, such as ear [14] and hand geometry [55], palmprints [30],
heartbeat [54], and body temperature are potential to be used as
biometrics. For a detailed discussion on different potential “what
you are” biometrics, refer to [37]. Multisketches can be used to
protect a combination of different biometric attributes.

Biometric attributes are, however, noisy and change (slightly)
every time they are recorded. Therefore, unlike passwords, there is

no effective way of storing biometric templates securely. A number
of research works have looked into protecting biometric templates
using different techniques [39]. One of the most popular attempts
to protect biometrics is using secure sketches and fuzzy extractors,
which was first introduced by Dodis et al. [29]. Secure sketches can
be used to recover a fingerprint provided during enrollment using
a helper string (which is generated during enrollment) and a small
variant of the original fingerprint. Fuzzy extractors, similar to secure
sketches, allow extracting reliable random bits from noisy biometric
data. Though such cryptographic techniques were seminal, they
require redesigning biometric matching algorithms, often at the cost
of accuracy. Prior research has looked into designing such matching
algorithms (or distance functions) for fingerprints [52], iris [36,
63], and face [57]. However, such custom matching algorithms
invariably degrade the matching performance and make it unusable
in practice [32]. Therefore, to date fingerprints are not protected
beyond encrypting them at rest and decrypting during matching.
In mobile devices, often dedicated hardware is used to protect the
fingerprint. See [38, 51] for a detailed discussion on the gap between
theory and practice in this research area.

We propose a new template protection technique, what we call
multisketch. A Multisketch system works with any matching algo-
rithm and therefore removes the decades long problem that pre-
vented template protection algorithms from being used in practice.
The main drawback of multisketch, however, is that it requires mul-
tiple biometric features — which can be from different modalities
— to be recorded for each individual and a large (e.g., thousands)
number of users to provide meaningful security. Both of these re-
quirements are met in current large-scale biometric databases used
in practice [3, 11].

Our multisketch construction is conceptually similar to the set-
distance secure sketch construction of Juels and Sudan [39], which
conceals valid set elements using fake “chaff” ones. In our construc-
tion, however, the real set elements of other users are the “chaff.”
Additionally, Jules et al. [39] assume exact matching between a
conjectured and valid set of elements during decoding, while we
introduce the idea of approximate matching via biometric matching
algorithms. Approximate matching passphrases were also proposed
by Bard [15] by allowing a user to log in with small typographical
mistakes. Bard proposed using a fixed dictionary of words care-
fully constructed so that no two words in the dictionary are closer
than edit distance two; the user has to pick a passphrase consisting
of words from this dictionary. Multisketch works without such a
constraint and a dictionary.

Last but not least, we emphasize that securemulti-party computa-
tion (sMPC) and secure function evaluation (SFE) protocols [16, 23,
62] are complementary to multisketches, not alternatives. Templates
and proffered biometrics in a multisketch system could, for instance,
be (k,n)-secret-shared among n distinct servers and matching is
performed using MPC. In this case, an attacker would need to com-
promise at least k servers in order to obtain the underlying database
and start to attack the multisketch system.

Unfortunately, though, such use of MPC would be prohibitively
expensive. Existing literature thus instead treats the different and
simpler task of using SFE for privacy-preserving queries, i.e., so that
when a user makes a biometric matching query, no information
about the query is revealed to the server, and no information about



the database is revealed to the client — unless a successful match
occurs. SCiFI [53] accomplishes this goal for face recognition, but
requires 0.3 second per matching operation — or more than three
days for a database with one million users. The harder task of
MPC-based fingerprint matching would clearly not scale to large
databases. In contrast, multisketches provide strong protection
against biometric database breaches with a practical computational
cost.

9 CONCLUSION
Biometric template protection is a long-elusive goal for decades. As
large-scale biometric databases are being built across the globe and
are being adopted more widely as a mode of authentication, such
databases would be a lucrative target for attackers. Breaches of
such databases will compromise the biometric identities of millions,
and even billions of users.

We introduce a new cryptographic primitive, called multisketch,
to protect large scale biometric databases. Multisketch works with
multiple biometrics, even with different modalities, and can oper-
ate with any underlying biometric matching algorithm — a key
difference with prior template protection techniques. To protect
the stored templates from a breach of the database, multisketch
removes the association between the identity of the user and their
biometrics, and stores them in random order. Only when a user
provides a set of biometrics that is nearly as correct as the originally
given ones, the templates of the user can be recovered. Multisketch
can be used for verification, as well as for generating high entropy
keys.

We detail the design a multisketch for tenprints, which we call
TenSketch. We prototype TenSketch using tenprint dataset released
by NIST. Using Bozorth3 matching algorithm, we show the feasibil-
ity of TenSketch for real-world deployment. The computational and
matching performance can be improved by using different, more
advanced matching algorithms, and by updating (if necessary) the
template information stored in the database. This changes can be
done with the least overhead. Such biometric agility is one of the
key benefits of a multisketch system.

We explore the correlation between different fingerprints of a
user using advanced machine learning techniques. We build classi-
fiers to identify fingerprints from the same user. Using the classifier
we propose possible attacks and simulate their efficacies. We finally
show that even in a conservative setting, the attacker’s benefit is
marginal, and TenSketch provides equivalent of at least 58-bits
of security from a database of 2, 500 individuals. Database with
more users would be more secure for TenSketch. Synthetic finger-
prints [20] can be used to improve security, though more investiga-
tion is required to understand how easy it is to distinguish synthetic
fingerprints from the real ones.

Multisketch built on multi-modal biometrics are expected to be
more secure. Though, more investigation on the correlation among
fingerprints and other biometrics of different modalities will help
better estimate security of multisketch in practice. Also, building
techniques to de-correlate fingerprints will improve the security of
multisketches.
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A SECURE SKETCHES FOR SET DIFFERENCE
FROM [29]

For our multisketch construction, we use the secure sketch con-
struction for set-distance from [29]. We give a new (slightly less
efficient) construction for set-distance using authenticated encryp-
tion scheme (see Section 3). Here we give the original set-distance
construction given in [29] for reference purpose.

Letw and w̃ be two sets of size n. We also assume that there is a
one-to-one mapping between the set elements and Z2k , where 2

k

is the size of the universe from where the set elements are chosen.
Set-distance is defined as d(w, w̃) = w∆w̃ = |w ∪ w̃ −w ∩ w̃ |. The
sketching function SS∆t takes as input a set w and outputs a bit-
string s (a.k.a, the sketch of w). The recovery function Rec∆t on
input s and a new set w̃ , outputsw if at least t out of n points match
betweenw and w̃ ; that is to say |w̃∆w | ≤ 2(n − t). The algorithms
for sketch and recover are shown in Figure 13.

According to the security analysis in [29], the conditional min-
entropy of the message distributions (uniform messages over Zn

2k
)
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SS∆t (w = {x1, . . . , xn }):

s ← () ; t ′ ← 2(n − t )
for j = 1, 2, . . . , t ′ do

sj ←
∑

S⊆Zn
|S |=j

( ∏
i∈S

xi

)
return s

Rec∆t (s, w
′ = {x ′1, . . . , x

′
n }):

t ′ ← 2(n − t )
fh (z) ← zn +

∑t ′
i=1 siz

t ′−i

S ← {
(
x ′i , fh (x

′
i )
)
| i ∈ Zn }

Find a (n − t ′ − 1)-degree polynomial fl
that agrees with at least t points in S
using [n, n − t ′, t ′ + 1] Reed-Solomon
decoding [33, 61].
return the roots of fh − fl .

Figure 13: Algorithms for sketch (SS) and recover (Rec) for secure sketch
for set-distances. (From [29].)

given the sketch values is nk − 2(n − t)k = (2t − n)k . In our con-
struction, we used t = 7, n = 10, and therefore, the conditional
min-entropy will be at least 4k bits.

B DIAGRAMMATIC VIEW OF MULTISKETCH
OPERATIONS

A user registers with a user id u and a vector of biometric templates
w = w1 . . .wn . Multisketch uses two databases ℐ and ℱ , where
ℐ contains user id u and the corresponding helper data v , and ℱ
contains the random permutation of the templates registered so
far. Highlighted are the entries corresponding to a user u4 with
templates w4 = w41 . . .w4n .

User

MS

MRec

u1 v1
u2 v2
u3 v3
u4 v4

ℐ

w21 w12 w43 w3n
w41 w32 w33 . . . w2n
w11 w42 w23 w1n
w31 w22 w13 w4n

ℱ

GetUser FindMatches

Recover

u,w
register u,v w

u, w̃
login u

w̃

v w′

w or ⊥

Figure 14: Diagram of multisketch as a part of an authentication service.

C WVU DATA
One of the fingerprint dataset we used for evaluating the accuracy
of TenSketch is a subset of the dataset collected through ManTech
Innovations Fingerprint Study Phase I [25]. The fingerprints were
collected at West Virginia University and released at GMU. We call
this dataset WVU dataset. The database contains fingerprints of 500
people acquired using 7 optical sensors like CrossMatch Guardian,
I3 digID mini, CrossMatch Seek II as well as ink-based Tenprint
cards. Among the participants, most of the participant were in the
age group 20-33, accounting for 60.6% percent of people. Among
the ethnicity, Caucasians accounted for 57.2%.

Also, there were nearly equal number of male (51%) and female
(48%) participants. The users provided the two sets of fingerprints in
the sequence of rolled individual fingers on the right and left hands,
left slap, right slap, and thumb slap for the live sensor. In order to

Attribute # cls Base Acc. ML Acc. Classifier

Gender 2 88.8% 88.8% MLP
Class 6 31.9% 60.3% RF
Position 10 10.0% 28.2% MLP, RF
NCIC class 18 56.9% 57.4% MLP
Scan Type 2 92.3% 93.6% MLP, RF
FS 2 50.0% 58.9% MLP

Figure 15: Performance of machine learning classifiers (MLP: multilayer
perceptron; RF: random forest, and LR: Logistic Regression) in predicting
different attributes of fingerprints. The base accuracy (probability of the
most probable class) and the accuracy of the best performing classifier
averaged across 5-fold cross-validation is presented in the third and fourth
column. The last column notes the best performing classifier. In case the
performance of multiple classifiers are similar, we note all of them. Attribute
FS denotes whether the fingerprint is from the file (template) or the one
used for searching.

carry out the experiments of this paper, for every subject we used
the fingerprint images of the ten fingers acquired using the I3 digID
Mini sensor. Every subject provided two sets of fingerprints each
of: rolled fingers on right and left hands, left slap, right slap, and
thumb slap. This data has been used in multiple prior work [48, 50].

D INFERENCE FROM FINGERPRINT
TEMPLATES.

We explore what information can be learned from the fingerprints
in xyt format (list of minutiae points). The template might reveal
some non-trivial information about the finger, such as which finger
it is, what is the NCIC class type, or the gender of the user, etc. This
information might lead to improved guessing strategy. For example,
an attacker can split the database of the fingerprint templates based
on the type of the finger.

We tried random forest [46] and multi-layer perceptron [12] to
determine each of the attributes: gender, class, finger position, NCIC
class type, scan type, and first or second scan (FS). We report the
result of our classifier in Figure 15. Notably, finger position and the
class of the fingerprint can be retrieved with significant accuracy
from the fingerprints (in xyt format).

E TRAINING ADVERSARIAL CLASSIFIERS
USING SIAMESE ARCHITECTURE

To construct adversarial classifiers, we tried both deep neural net-
work (DNN) and Siamese networks. In standard DNNs, the order
of input features does not carry any information. Therefore, both
fingerprint templates are concatenated and passed directly to a
DNN model. However, in Siamese networks [56, 58], we can en-
force the knowledge that the model is receiving two separate sets
of features and the goal is to infer some information (identifying if
they are from the same person, in our case) about these two sets.
Siamese architectures are first shown in [56, 58] to be useful for
face recognition and verification.

In Siamese networks, two input feature sets are passed to two sis-
ter networks with identical parameters (weights). (See Figure 8 for
a high-level diagram of the setup.) The job of two sister networks is
to transform the input features into an encoded vector of ne values,
v0 and v1. The two vectors are merged using a specific function, e.g.,



absolute value, and passed to a fully connected layer (with single
output neuron) that outputs the probability. Two distance functions,
i.e., absolute value |v0 − v1 | and the square of differences (v0 − v1)2
have been used in our experiments. Absolute distance function
provided superior performance with ne = 64. We have explored
multiple Siamese architectures with various hyperparameters.

The best performing Siamese based classifier underperforms
single DNN models. The accuracy with and without the quality
values is 66% and 62% respectively.

F GENERALIZED “STITCHING” ATTACK
USING CLASSIFIERS

The trained classifiers {𝒞i } can be used to determine if a message
tuple of size i belongs to a single user. An attacker can use a com-
bination of 𝒞i ’s to find a t-tuple of fingerprints belonging to the
same user. For example, the attacker, given b = 1 fingerprint w1,
can use 𝒞4 to find all 4-tuples S1 likely belonging to the same user
and containing w1. For each tuple w1...4 ∈ S1, the attacker then
uses 𝒞4 again to find remaining three fingerprints, by finding all
4-tuples which include, say, w4. Let call the second set, S2. Finally,
the attacker can apply MRec on the tuples in S2, to find a valid
7-tuple. The cost of this attack is C = N 3 ·cc + |S1 | ·N 3 ·cc + |S2 | ·cs .
Let the false positive rate (FPR) of 𝒞4 be ν4, then |S1 | = N 3 · ν4, and
|S2 | = |S1 | · N 3 · ν4 = N 6 · ν24 . Therefore, C ≈ N 6 · ν24 · cs = 𝒪(N 6).

More generally, an attacker can use a sequence of 𝒞i ’s to stitch a
t-tuple. We can find all possible such classifier combinations using
the following equation.

t∑
i=2
(i − 1) · xi = (t − b) ,where xi ∈ {0, 1, . . . , t}.

Each solution of {xi }’s in the above equation is a valid classifier
combination, where xi denotes the number of times the classifier 𝒞i
is used in the sequence. In the previous example, 𝒞4 is used twice,
therefore x4 = 2 and all other xi = 0. If we assume the classifiers’
performances are independent, the effective FPR of the stitched
classifier would be Πt

i=2ν
xi
i , where νi is the FPR of classifier 𝒞i .

Therefore, for any combination of classifiers, the total number of
t-tuples that need to be checked throughMRec is N t−b ·Πt

i=2ν
xi
i =

𝒪(N t−b ). A stitched classifier with a long combination of classifiers
— high value of

∑
xi — might have lower FPR, for example, x2 = 6.

However, a long combination of classifiers will also degrade the true
positive rate of the stitched classifier; the attacker might not find
the correct tuple at the end due to one of the classifiers misclassified
it. We therefore adjust the classifiers to have a true positive rate
(TPR) of 0.9 or more.

We empirically compute the FPR of the stitched classifiers for
all possible combinations. There are only 11 possible solutions to
the above equation for b = 1 and t = 7. We found x7 = 1 has the
least FPR, 0.1, and x2 = 6 has the second lowest FPR. In Section 7
we give different attacks using 𝒞7 and 𝒞2 and show their efficacy.
Overall, we show that no the attacker gets any better than 3.3-bits
of advantage via different combinations of classifiers.
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