
An implementation of the Paillier crypto system
with threshold decryption without a trusted

dealer

Thijs Veugen1,2, Thomas Attema1,2, and Gabriele Spini1

1 TNO, Unit ICT, The Hague, The Netherlands
{thijs.veugen,thomas.attema,gabriele.spini}@tno.nl
2 CWI, Cryptology group, Amsterdam, The Netherlands

Abstract. We consider the problem of securely generating the keys of
the Paillier crypto system [11] with (t, n) threshold decryption, without
a trusted dealer. Nishide and Sakurai [10] describe a solution, secure in
the malicious model. We use their ideas to make a simpler solution for
the semi-honest model, and further introduce a few optimisations. We
implement the secure key generation protocol on a single computer, and
consider its performance.

Keywords: Paillier · threshold decryption · secure key generation.

1 Introduction

Using threshold decryption in a public key cryptosystem with n parties, a min-
imal number of parties is required to decrypt a ciphertext. It can exclude the
situation where a single party (holding the decryption key) is able to decrypt
all sensitive information. In [5] it was shown how to build generic secure multi-
party computation (MPC) protocols from additively homomorphic encryption
with threshold decryption, where multiple parties can compute with encrypted
sensitive inputs.

Although many cryptographic frameworks use additively homomorphic en-
cryption with threshold decryption, the set-up of the key material is often ne-
glected. This is either left to a trusted dealer, an external party assumed to
be trusted by all players, or is considered as a secure computation to be done
within any generic MPC framework, without specifying the computational steps.
A trusted dealer is not an ideal situation, since it re-introduces a similar security
risk that should be avoided by threshold decryption. Therefore, we only consider
the setting where the n parties together generate the key material in a secure
way.

In 2001, Boneh and Franklin described how to securely and efficiently gener-
ate RSA keys with two players [3]. Somewhat later, in 2010, Nishide and Sakurai
[10] were the first ones describing these steps in detail for the Paillier crypto sys-
tem. Their solution is secure in the malicious security model, but they did not

consider the performance of their method. We will describe and explain the dif-
ferent steps that are needed to securely generate the keys of Paillier with thresh-
old decryption, and analyse its performance. We consider a semi-honest model,
which leads to lower computational and communication complexity. While imple-
menting the key generation protocol, we found a few optimisations to reduce the
complexity, and slightly increase security. The authors are unaware of an earlier
implementation of generating Paillier keys with threshold decryption, without a
trusted dealer (and more than two players).

In addition, our implementation can be used to construct RSA-groups for
which only a sufficiently large set of players can reconstruct the order. Groups
of unknown order are in turn used to construct other cryptographic primitives
such as RSA-accumulators [2], and verifiable delay functions [14]. See Table 1
for an overview of our notation throughout the paper.

σ statistical security parameter κ bit size of RSA primes
n number of parties N Paillier modulus
ϕ(·) Euler’s totient function p, q large (RSA) primes
P large public prime g, θ part of the public key
p small prime λ private Paillier key
ν n factorial T subset of parties
t decryption threshold s secret
S upper bound on s c cipher text
PS set of polynomials `i integer Lagrange coefficients
f(x), g(x), h(x) polynomials B algorithm parameter

〈·〉t Shamir secret sharing 〈·〉Zt Secret sharing over the integers
with threshold t with threshold t

Table 1. Notation

1.1 Paillier with threshold decryption

In Paillier [11] the maximal plain text size N is the product of two large primes
p and q. The number g is an element of Z∗N2 with a nonzero multiple of N as
order, typically g = N + 1. The public key is (N, g), the private key λ is, for
example, Euler’s totient ϕ(N) = (p− 1)(q − 1).

To encrypt a message m ∈ ZN , a random number r ∈ ZN2 is generated. The
ciphertext c is computed as

c = gm · rN mod N2.

To decrypt, we use the property (N + 1)x = N · x + 1 (mod N2) for any
positive integer x, which is easily shown by means of binomial coefficients. Define
the function L(x) as (x− 1)/N , then

m = L(cλ mod N2) · λ−1 mod N,

where λ−1 is the multiplicative inverse of λ modulo N . The random factor rNλ

disappears modulo N2 because ϕ(N2) = Nλ.
To achieve threshold decryption with a trusted dealer [7], the dealer generates

a random β ∈ Z∗N , and a secret sharing 〈λ · β〉t over Zϕ(N2) of the private
key λ, multiplicatively blinded by β. This means that each player i receives
h(i) mod ϕ(N2), where h(x) is a t-degree polynomial with h(0) = λ · β. The
number θ = (λ · β) mod N is added to the public key (N, g). Then, given a
decryption set T of t+ 1 players, a ciphertext c can be decrypted as follows:

1. Each party of the decryption set T computes ci = ch(i) mod N2, and reveals
it.

2. The parties compute the Lagrange coefficients `i, i ∈ T (see Subsection 2.1
for the integer variant) such that h(0) =

∑
i∈T `ih(i) mod ϕ(N2), and com-

pute cλ·β =
∏
i∈T c

`i
i mod N2.

3. The parties compute m = L(cλ·β mod N2) · θ−1 mod N .

The (·)−1 in the last step denotes multiplicative inverse modulo N .
In order to eliminate the trusted dealer, we need an MPC protocol to securely

generate N and a secret sharing of λ · β. However, we cannot disclose ϕ(N2), so
we use secret-sharing over the integers (see Section 2).

1.2 Related work

Quite some related work has been done in the secure generation of RSA numbers.
In 1997 Boneh and Franklin [3] described a two-party protocol for RSA key
generation. They used a third ’helper’ party, which was overcome by Gilboa [8]
in 1999. In 2010, Damg̊ard and Mikkelsen [6] developed the first constant-round
solution in the malicious model.

In 2010, Nishide and Sakurai provided a solution for generating threshold
keys for Paillier in the malicious model [10]. Hazay et al. extended this to the
dishonest majority case [9], and implement their key generation protocol in a
two-party setting.

We closely follow the work of Nishide and Sakurai, and implement a semi-
honest version, thereby slightly improving their results (not only due to the
different security model), see Subsection 3.8 for the details. We first explain an
important building block, namely secret sharing over the integers [12], before we
describe the different computational steps of the secure key generation protocol.
We end with the performance results, and the conclusions.

2 Secret sharing over the integers

Shamir secret sharing is typically used to secretly share a number s in a finite
field. In our solution, we will construct a secret sharing of the private key λ, but
we cannot afford carry-overs during decryption (see Section 3). Therefore, we
need Shamir secret sharing over the integers [12]. Since the constant n! is often
used there, we define ν = n!.

To generate a Shamir secret sharing over the integers 〈s〉Zt , a random poly-
nomial f(x) of degree t is generated, with integer coefficients αi, 1 ≤ i ≤ t,
uniformly chosen from the interval [0, 2σν2S], where σ is the statistical security
parameter, and S is an upper bound on the secret s: 0 ≤ s < S [10]. The first co-
efficient α0 = f(0) equals νs, and each party i is given share f(i), 1 ≤ i ≤ n. The
extra factor ν in α0 is needed for security reasons. Although standard Shamir
secret sharing is information theoretically secure, its variant over the integers
provides σ bits statistical security (see Subsection 2.3).

2.1 Revealing a secret

Given the shares f(i), i ∈ T , for a subset T of parties, one can reconstruct the
secret s by Lagrange interpolation, as long as |T | > t:

1. Compute the integer coefficients `i, i ∈ T , such that

`i =

 ∏
j∈T,j 6=i

(−j)

 ·(ν∏
j∈T,j 6=i(i− j)

)
.

2. Compute ν · f(0) =
∑
i∈T `if(i), and divide ν · f(0) = ν2s by ν2.

The extra factor ν assures that each `i is an integer, which is necessary for
computing c`ii mod N2 later (see Section 3). To see that `i is integer, observe that(

ν∏
j∈T,j 6=i(i−j)

)
is the product of the binomial coefficient

(
n
i

)
, and the integers

i!∏
j∈T,j<i(i−j)

and (n−i)!∏
j∈T,j>i(i−j)

.

2.2 Computing with shared secrets

Given two polynomials f(x) and g(x), with secrets s1 = f(0) and s2 = g(0), a
secret sharing of the sum s1 + s2 is easily computed by adding the two polyno-
mials, which means that each player i, 1 ≤ i ≤ n, needs to locally add its shares
f(i) and g(i).

As usual, multiplication is a bit more involved. However, if the players locally
multiply their shares, they construct a secret-sharing of the product: 〈ν · s1 ·
s2〉Z2t = 〈s1〉Zt · 〈s2〉Zt . Besides from the extra factor ν, The main difference is that
the resulting polynomial f(x) · g(x) now has degree 2t, so we need at least 2t+ 1
players to reveal a secret. Therefore, multiplication can be securely performed
in case of honest majority (t < n/2).

2.3 Security

It is known that t+ 1 parties are able to retrieve s from 〈s〉Zt , but it is less clear
how much information on s is obtained by t (or fewer) parties. The following
theorem shows that secret sharing over the integers is statistically secure.

Theorem 1. Let PS be the set of polynomials f(x) of degree t with each coeffi-
cient being a non-negative integer, upper bounded by 2σν2S, and f(0) = 0. Let
s be a secret, 0 ≤ s < S. Let f(x) be a polynomial, uniformly random chosen
from PS. Let T be a subset of t parties, each party i having share ν · s+ f(i).

Then, given any secret s̃, 0 ≤ s̃ < S, the probability that polynomial f̃(x) −
ν · s̃ ∈ PS is lower bounded by 1− t21−σ, where f̃(x) is the t-degree polynomial
such that f̃(i) = f(i), i ∈ T , and f̃(0) = ν · s̃.

Proof. Let pT (x) be the polynomial
∏
i∈T (x− i) · ν∏

i∈T (−i)
. This is a polynomial

of degree t with integer coefficients, for which pT (i) = 0, i ∈ T , and pT (0) = ν.
Therefore, f̃(x) = f(x) + s̃ · pT (x) is the t-degree polynomial we are looking for.
To be sure that f̃(x) − ν · s̃ ∈ PS , we only need to show the right size of the
coefficients.

Consider the polynomial
∏n
i=1(x − i). It is easily shown by induction that

the absolute value of the coefficients of this polynomial are upper bounded by
n + 1 factorial. It follows that the absolute values of the coefficients of pT are
upper bounded by ν2. Finally, we have f̃(x)−ν · s̃ ∈ PS , when the coefficients of

f(x) are in the interval [ν2S, (2σ−1)ν2S]. This occurs with probability
(
2σ−2
2σ

)t
,

which is lower bounded by 1− t21−σ.

The lower bound 1− t21−σ is exponentially (in σ) close to one, concluding that
our secret sharing scheme is indeed statistically secure.

3 Distributed key generation

Inspired by the ideas of Nishide and Sakurai [10], our distributed key generation
protocol for Paillier consists of the following steps:

1. Jointly generate secret-sharings 〈p〉t and 〈q〉t of random numbers p and
q.

2. Compute 〈N〉2t = 〈p〉t · 〈q〉t, reveal the product N = p · q, and test for
small prime divisors. If the test fails, restart the protocol.

3. Test the biprimality of N . If the test fails, restart the protocol.
4. Securely compute 〈λ〉Zt , jointly generate a secret sharing 〈β〉Zt of a ran-

dom β ∈ Z∗N , and securely compute 〈ν · λ · β〉Z2t.
5. Securely compute and reveal θ = (ν2 · λ · β) mod N .

The details of the above steps, and of decryption, are described in the next
subsections. The public key is (N, g, θ), and the private key is (the secret-sharing
〈ν · λ · β〉Z2t of) ν · λ · β.

3.1 Generating random ’primes’

To generate a additive sharing of a random number q (and similarly of a random
number p), each party i does the following.

Generation of random number q. Let κ denote the minimum bit-length of
q =

∑
i qi. Party i generates a random number qi of κ bits.

Furthermore, the biprimality test requires q ≡ 3 (mod 4), which can be
achieved by letting party 1 choose q1, such that q1 ≡ 3 (mod 4), and the
other parties choose qi, such that qi ≡ 0 (mod 4).

Notice that the integer q is not uniformly distributed, but the κ least sig-
nificant bits are, and this way of generating N does not simplify factoring [3,
Lemma 1].

3.2 Securely computing N , and checking for small prime divisors

Once the ’primes’ p and q have been securely generated, we need to compute
their product N = p · q. For this purpose, the additive shares of p and q are
reshared to a Shamir secret sharing modulo a large prime P . To assure P > N ,
we choose a prime P of at least 2(κ+ log2 n) bits.

Secure computation of N

1. The parties generate Shamir secret sharings modulo P (with threshold
t) of their pi and qi, and distribute the shares.

2. The parties (locally) compute shares of p =
∑
i pi mod P , q =∑

i qi mod P , and 〈N〉2t = 〈p〉t · 〈q〉t.
3. At least 2t + 1 parties open their shares of N , and they reconstruct
N = (p · q) mod P .

As explained in the beginning of this section, the number N needs to be
checked for small prime divisors (up to some upper bound B), to speed up the
bi-primality test. Given that N is public, checking for prime divisor p is simply
computing N mod p. Each small prime test starts by checking for divisor p = 3,
up to the largest prime, smaller than B, until a divisor is found.

3.3 Biprimality test

Since the values of p and q should remain secret, we cannot use ordinary primal-
ity tests. Instead, we test whether N is a product of two primes, by verifying
gϕ(N)/4 = ±1 mod N for a random g with Jacobi symbol (gN) = 1 [3, 10].

Biprimality test

1. The parties agree on a random g ∈ Z∗N , such that its Jacobi symbol
(gN) = 1.

2. The first party computes v1 = g(N−p1−q1+1)/4 mod N , the other parties
compute vi = g(pi+qi)/4 mod N .

3. They check whether v1 ≡ ±v2v3 . . . vn (mod N).

The Jacobi symbol can be computed efficiently. The following theorem ex-
plains why a biprime N will succeed the test.

Theorem 2. Let integers p and q be 3 (mod 4), and N = p·q. Let g ∈ Z∗N , such
that the Jacobi symbol (gN) = 1. If N is biprime, then gϕ(N)/4 = ±1 mod N .

Proof. Because p and q are 3 (mod 4), the integers p−1
2 and q−1

2 are odd. Fur-

thermore, ϕ(N)/4 = p−1
2 ·

q−1
2 , so if p is a prime, gϕ(N)/4 = (gp)

q−1
2 = (gp) mod p,

and similarly gϕ(N)/4 = (gq) mod q, if q is a prime. If N is biprime then (gp)·(gq) =

(gN) = 1, so we have (gp) = (gq) = ±1, and therefore gϕ(N)/4 = ±1 mod N .

If N is not biprime, the test will fail with probability at least 1
2 [3], so the

test needs to be repeated a few times. Similar to Fermat’s primality test, with
exponential small probability, N has a specific form and sneaks through the
above test. An additional test, which we decided not to implement, is required
to repair this small flaw [3, Subsection 3.1].

How often do we need to construct an N before we find a biprime number?
The probability that a random integer x is prime, is roughly 1

log2 x
, so without

additional measures it will take κ2 tries on average! Fortunately, if we first check
for small divisors, this number quickly decreases. For example, if we check p and
q for prime divisors up to B = 8103, we need ’only’ 484 probes on average (with
κ = 512) [3].

3.4 Securely generating the private key

When the modulus N has been generated and checked, the parties need to
generate a secret-sharing 〈ν · λ · β〉Z2t (corresponding to a polynomial h(x)) over
the integers of λ · β, the decryption key multiplicatively hidden by a random
number β ∈ Z∗N . An additive sharing of λ is easily obtained, as λ = N−p−q+1.
If each party i generates a random βi ∈ ZN , we also have an additive sharing of
β =

∑
i βi.

Both β and λ need to be secret-shared over the integers to avoid carry-overs
modulo N in the exponent while computing the ci (see Subsection 3.6). Each
party i can generate sharings of λi and βi, and the secret sharing of λ · β is
then easily constructed by local computations. The absolute value of each share

h(i) will be upper bounded by (2σν2nt+1 t+1
n−1)2λβ, requiring only slightly more

bits than ϕ(N2) = λN , which is the share size in case of a trusted dealer (see
Subsection 1.1).

To be precise, we summarize the steps in more detail:

Private key shares generation

1. Given λi, each party i generates a random polynomial fλi with large
integer coefficients (see Section 2) and fλi (0) = νλi, and sends share
fλi (j) to party j, 1 ≤ j ≤ n.

2. The parties compute a secret sharing over the integers of λ: 〈λ〉Zt =∑
i〈λi〉Zt , by locally adding the shares.

3. The parties repeat both steps for the βi, creating a secret-sharing 〈β〉Zt .
4. The parties compute 〈ν · λ · β〉Z2t = 〈λ〉Zt · 〈β〉Zt , by locally multiplying

their shares.

The shares of 〈ν · λ · β〉Z2t are used for computing ci = ch(i) mod N2 during
decryption (see Subsection 3.6).

3.5 Revealing the public key

Once secret sharing 〈ν ·λ ·β〉Z2t has been generated, the parties need to compute
and reveal θ = (ν2 · λ · β) mod N . This can be easily done as follows:

Public key disclosure. Each party i reduces its share of 〈ν ·λ·β〉Z2t modulo N ,
transforming the secret sharing over the integers to a Shamir secret sharing
〈ν2 · λ · β〉2t, and then the parties reveal the secret θ from 2t+ 1 shares by
standard Lagrange interpolation over ZN .

As discussed in the beginning of this section, this method avoids the less
efficient adding of N ·R, as suggested in [10].

In the unlikely case that θ is not invertible, we constructed a β that is not
coprime with N (so we found a factor of N), and we need to redo our protocol
from scratch.

3.6 Decryption

Once the keys have been securely generated, a ciphertext c can be decrypted as
follows:

1. Each party of the decryption set T computes ci = ch(i) mod N2, and reveals
it.

2. The parties compute the coefficients `i, i ∈ T (see Subsection 2.1) such that
νh(0) =

∑
i∈T `ih(i), and compute cνh(0) =

∏
i∈T c

`i
i mod N2.

3. The parties compute m = L(cνh(0)) · θ−1 mod N .

The (·)−1 in the last step denotes multiplicative inverse modulo N . One could
use vector addition chains [4] to speed up step 2. Alternatively, each party i can
compute ci = c`ih(i) mod N2.

Since h is a polynomial of degree 2t, it takes at least 2t+1 parties to perform
a decryption. However, this threshold can be lowered to t by resharing the h(i)
[1].

3.7 Security

We give an informal intuition on the security of our key generation protocol. By
revealing θ, we might leak information on the decryption key. In fact, θ is (more
or less) the remainder of the decryption key after division by N . Intuitively, this

doesn’t help decrypting, since cN = rN
2

mod N2, so the random factor doesn’t
disappear. The decryption key λ ·β has size N2, so the quotient has roughly size
N .

Nishide and Sakurai [10, Appendix A] formally prove the security of their
construction of θ. Our design is at least as secure, since we use Shamir secret-
sharing modulo N , and only reveal the modular remainders. Even if t parties
collude, θ does not leak information on λ, because for any λ ∈ Z∗N , a β ∈ Z∗N
can be found such that their product is θ · ν−2 modulo N .

3.8 Optimising efficiency

While implementing the distributed key generation protocol, we decided to
slightly modify the approach of Nishide and Sakurai for efficiency reasons. Apart
from the most important choice to take a semi-honest security model instead of
a malicious model, we describe the main differences.

To reduce the number of iterations in the biprimality test, one should first
check N for small prime divisors. Nishide and Sakurai decided to perform this
check before securely computing the product N , so using the secret-sharings of
p and q. To check whether q is divisible by p, the idea is to generate a random
secret sharing 〈r〉t over Zp, compute 〈r · q〉2t = 〈r〉t · 〈q〉t, reveal (r · q) mod p,
and check whether it is zero (see Appendix for the protocol).

The advantage is that each time one of the factors turned out not to be prime,
one only needs to regenerate a secret-sharing of p, or q, and it’s not necessary
to securely multiply two large numbers: N = p · q. However, it also introduces
quite some overhead:

– The small prime test is probabilistic (r mod p might be zero), which means
that it requires quite some iterations to be sure of the outcome.

– For performing the small prime test, (secret-sharings of) random numbers
modulo a small prime need to be generated. In order to generate a uniformly
distributed random number, which doesn’t consist of a sequence of uniformly
random bits, this generation needs to be repeated a couple of times (until
r < p).

– A lot of Shamir secret-sharings (modulo a small prime) need to be generated,
which requires more random number generations, and additional communi-
cation.

During implementation, it turned out to be more efficient to check for small
prime divisors after securely computing N . The main advantage is that N is
public, so it can be directly checked for small prime divisors. This outweighed
the fact that more different N needed to be computed securely.

We also optimised the final step of revealing public key θ. Given secret-
sharing 〈ν · λ · β〉Z2t over the integers, one needs to reveal θ = (ν2 · λ · β) mod N .
Nishide and Sakurai decided to first add a (secret) random multiple R of N , and
then reveal the sum and reduce it modulo N . Our approach is to first transform
the secret-sharing 〈ν · λ · β〉Z2t to a Shamir secret-sharing 〈ν2 · λ · β〉2t (over Z∗N),
by locally reducing the shares modulo N , and then revealing the shared secret
θ. This not only avoids generating a secret-sharing over the integers of a large
random number R, and computing with it, but also improves security, as we do
no longer reveal ν2 ·λ·β+R ·N , but only its modular reduction (ν2 ·λ·β) mod N .

4 Performance

We implemented the secure key generation protocol on a single computer (one
core, one thread) with n = 3 players (without actual communication), and
threshold t = 1. The computer has a 2.4 GHz CPU and 8GB RAM, of which
220MB was actually used. The protocol was implemented in Python, using the
Secrets library for generating randomness, Sympy for computing Jacobi symbols,
and Gmpy2 for modular arithmetic [13]. Since the execution time is a random
process, we run the entire protocol 1097 times, and plotted its performance in
histograms.

4.1 Parameters

The key size parameter κ = 1024 is the bit length of the additive shares pi, qi
(1 ≤ i ≤ n) of the primes p and q, so the bit length of the generated RSA-
modulus N is roughly 2(κ + log2 n). We chose σ = 40 as statistical security
parameter for secret-sharing over the integers. The generated products N were
biprime with probability at least 1 − 2−100, which required on average 1692
iterations of the biprimality test, as depicted in Figure 1.

4.2 Good choice of B

The key generation algorithm contains two primality tests. Firstly, the small
prime test determines whether the resulting modulus N is divisible by primes

Fig. 1. Number of biprimality tests

smaller than upper bound B. Secondly, if the small prime tests succeed (i.e. N
is not divisible by primes smaller than B) the biprime test determines whether
N is the product of two primes.

To theoretically optimize the performance, we should minimize these costs
over B, but in practice this optimization depends on the implementation, the
communication network, and the hard- and software used. Boneh and Franklin
came to B = 8103 [3], although their aim was an N of only 1024 bits. Using
experimental results, we chose B = 20, 000 for our setting. There are 2261 primes
between 3 and 20, 000. Figure 2 shows the total time spent on both types of prime
tests for this choice.

The number of biprime tests over the 1097 runs is shown in Figure 1, and the
number of failed small prime tests in Figure 3 (the number of succeeded small
prime tests equals the number of biprime tests). On average 130, 137 times a
small prime divisor of N was found.

4.3 Execution time and communication complexity

The average execution time was 66 seconds for the entire key distribution pro-
tocol, which is reasonable for most applications that require only one key gen-
eration phase. Figure 4 depicts the distribution of the run times.

Although we did not actually implement communication, we can determine
the communication complexity of the key generation protocol, which is domi-
nated by the generation of a suitable N . Each time a fresh N has to be generated,
the parties need to generate Shamir secret sharings of new p and q. On aver-
age, this occurs 1692 times due to a failed biprimality test, and 130, 137 times
due to a failed small prime test. The field size of the Shamir secret sharings is

Fig. 2. Execution times of primality tests

Fig. 3. Number of failed small prime tests

Fig. 4. Run times

2(κ+log2 n) bits. Therefore, the total communication complexity is linear in the
number of players n, with roughly (1962 + 130, 137) · 2048 = 270, 538, 752 bits,
or 32.3 MB per player (for κ = 1024).

5 Conclusion

We described a way of securely generating the keys of Paillier with threshold
decryption. The solution is secure in the semi-honest model, and requires no
trusted dealer. Because of the use of secret sharing over the integers, the solution
is statistically secure. As long as not more than t players collude, the security
is guaranteed. We need 2t+ 1 decryption shares while decrypting a cipher text,
but this can set to t by resharing once.

We closely followed the ideas of [10] and [3], and further optimised its effi-
ciency. Although secure key generation takes considerable more effort without
a trusted dealer, the effort for decrypting is comparable to the setting with a
trusted dealer.

Acknowledgements

The research activities that have led to this paper were funded by the Shared
Research Program Cyber Security: a research collaboration between TNO, ABN
AMRO, Rabobank, ING and Achmea.

References

1. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC. pp. 1–10 (1988)

2. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with ap-
plications to IOPs and stateless blockchains. Cryptology ePrint Archive, Report
2018/1188 (2018)

3. Boneh, D., Franklin, M.K.: Efficient generation of shared RSA keys. In: CRYPTO.
pp. 425–439 (1997)

4. Bos, J.: Practical Privacy. Ph.D. thesis, Eindhoven University of Technology (1992)

5. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty computation from threshold
homomorphic encryption. In: Eurocrypt, International Conference on the Theory
and Application of Cryptographic Techniques. Lecture Notes on Computer Science,
vol. 2045, pp. 280–299. Springer (2001)

6. Damg̊ard, I., Mikkelsen, G.L.: Efficient, robust and constant-round distributed
RSA key generation. In: Theory of Cryptography, 7th Theory of Cryp-
tography Conference, TCC 2010, Zurich, Switzerland, February 9-11, 2010.
Proceedings. pp. 183–200 (2010). https://doi.org/10.1007/978-3-642-11799-2 12,
https://doi.org/10.1007/978-3-642-11799-2 12

7. Fouque, P., Poupard, G., Stern, J.: Sharing decryption in the context of vot-
ing or lotteries. In: Frankel, Y. (ed.) Financial Cryptography, 4th International
Conference, FC 2000 Anguilla, British West Indies, February 20-24, 2000, Pro-
ceedings. Lecture Notes in Computer Science, vol. 1962, pp. 90–104. Springer
(2000). https://doi.org/10.1007/3-540-45472-1 7, https://doi.org/10.1007/3-540-
45472-1 7

8. Gilboa, N.: Two party RSA key generation. In: Advances in Cryptology
- CRYPTO ’99, 19th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 15-19, 1999, Proceedings. pp. 116–129
(1999). https://doi.org/10.1007/3-540-48405-1 8, https://doi.org/10.1007/3-540-
48405-1 8

9. Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T.: Efficient RSA key gener-
ation and threshold paillier in the two-party setting. In: Topics in Cryp-
tology - CT-RSA 2012 - The Cryptographers’ Track at the RSA Con-
ference 2012, San Francisco, CA, USA, February 27 - March 2, 2012.
Proceedings. pp. 313–331 (2012). https://doi.org/10.1007/978-3-642-27954-6 20,
https://doi.org/10.1007/978-3-642-27954-6 20

10. Nishide, T., Sakurai, K.: Distributed Paillier cryptosystem without trusted
dealer. In: Information Security Applications - 11th International Workshop
WISA. pp. 44–60 (August 2010). https://doi.org/10.1007/978-3-642-17955-6 4,
https://doi.org/10.1007/978-3-642-17955-6 4

11. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Eurocrypt. pp. 223–238. Springer (1999)

12. Rabin, T.: A simplified approach to threshold and proactive rsa. In: CRYPTO. pp.
89–104 (1998)

13. Spini, G., Attema, T.: Implementation source code.
https://github.com/TNO/Distributed-Paillier-Cryptosystem (2019)

14. Wesolowski, B.: Efficient verifiable delay functions. In: Eurocrypt. Lecture Notes
in Computer Science (2019)

Appendix

Checking for small prime divisors of secret-shared values

In order to reduce the number of iterations of the biprimality test, we need
to check q for small divisors, for example all primes up to B = 8103 [3]. The
following protocol checks whether small prime p is a divisor of q:

1. Each party generates a random number ri ∈ Zp, so they additively share
r =

∑
i ri.

2. Each party i generates Shamir secret sharings modulo p (with threshold t)
for both qi and ri.

3. They (locally) compute a Shamir secret sharing modulo p for r · q.
4. They open at least 2t+1 shares to reconstruct (rq) mod p, and check whether

it is zero.

If (rq) mod p = 0, it might be the case that p is a divisor of r, so we have to
repeat the protocol a few times to be sufficiently sure (reusing the shares of q).

Nishide and Sakurai [10] propose a similar protocol, but it uses secret-sharing
over the integers to ensure robustness. Since we deploy a semi-honest model, the
above, more efficient, protocol could be used.

