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Abstract—Dynamic and partial reconfiguration together with hardware
parallelism make FPGAs attractive as virtualized accelerators. However,
recently it has been shown that multi-tenant FPGAs are vulnerable to
remote side-channel attacks (SCA) from malicious users, allowing them
to extract secret keys without a logical connection to the victim core.
Typical mitigations against such attacks are hiding and masking schemes,
to increase attackers’ efforts in terms of side-channel measurements.
However, they require significant efforts and tailoring for a specific
algorithm, hardware implementation and mapping. In this paper, we
show a hiding countermeasure against voltage-based SCA that can be
integrated into any implementation, without requiring modifications or
tailoring to the protected module. We place a properly mapped Active
Fence of ring oscillators between victim and attacker circuit, enabled as
a feedback of an FPGA-based sensor, leading to reduced side-channel
leakage. Our experimental results based on a Lattice ECP5 FPGA and
an AES-128 module show that two orders of magnitude more traces
are needed for a successful key recovery, while no modifications to the
underlying cryptographic module are necessary.

I. INTRODUCTION

To further drive the computing efficiency in the coming years, it is
increasingly interesting to virtualize FPGA resources as accelerators
in SoCs or computing clouds. This promises higher computing
efficiency in various workloads from machine learning to database
applications. Currently, FPGAs are already being offered as a service
on Amazon [4] and Alibaba Cloud [3] platforms, while being used as
specific application accelerators in Microsoft Azure [30]. In addition,
FPGA SoCs from Xilinx and Intel tightly integrate FPGA logic with
standard ARM or x86 processor cores [27].

Particularly in cloud environments, virtualized FPGAs promise a
much more efficient utilization, by allowing multi-tenant access [14],
[10], [15], which also includes basic security considerations [35].
However, before widespread adoption of multi-tenant use becomes
feasible, there are still critical FPGA-specific security challenges to
be solved [18]. This is mainly due to some recently shown attacks that
exploit the underlying electrical level of systems integrating FPGA
logic [26], [34], [38], and are thus not easy to prevent [18]. These
seminal attacks show that the two classical types of implementation
attacks are also applicable in the virtualized FPGA scenario—with
the attacker residing within one part of the FPGA fabric:

(I) Fault attacks introduce glitches during a cryptographic opera-
tion, resulting in a faulty computation. A mathematical analysis of
the faulty outputs might reveal sensitive information such as secret
keys [8]. Indeed, recent work demonstrated creating successful faults
in neighboring FPGA-tenants by an artificially induced excessive
power consumption [17], [26]. Attempts to cause faults can often
be detected, i.e., by sensors or error detection [5].

(II) Power analysis side-channel attacks on the other hand measure
the power or voltage fluctuations of the device to extract sensitive
information [25]. Likewise, recent work showed successful side-
channel attacks by placing a voltage sensor within the same FPGA-

fabric without any logical connection, capturing fluctuations on the
Power Distribution Network (PDN) [33], [38]. However, due to
their passive and solely observing nature, such attacks cannot be
detected within the system. Instead, countermeasures against power
analysis attacks try to reduce the information that can be gained from
measurements to a minimum, categorized in two general groups of
hiding and masking countermeasures.

Masking schemes are implemented on the algorithmic level and fo-
cus on randomizing internal values to detach the power consumption
from the actual secret data being processed. Especially for non-linear
functions, this change comes with a large overhead. Furthermore,
implementing such countermeasures is challenging and closely tied
to the algorithm to be protected. Instead, hiding aims at reducing
the Signal to Noise Ratio (SNR) at the electrical level, i.e., either by
raising the noise floor using additional noise sources or by equalizing
the instantaneous power consumption. For the latter, many schemes
use some variant of dual-rail precharge logic for equalization [13].
Unfortunately, this barely works on ASICs due to manufacturing
tolerances and cannot be applied directly to FPGAs. Although some
recent work duplicated and inverted the whole circuit [36], the
very coarse grained access to FPGA resources hinders a straight-
forward implementation of such schemes [32]. In practice, hiding
and masking can be used side-by-side to increase the security level
significantly [32].

Whereas previous work on countermeasures considers an external
attacker, there have been no results against an on-chip attacker. Note
that passive fences to enforce logical isolation (cf. [12], [28], [22],
[35]) are entirely ineffective against attacks on the electrical level. It
is also possible to check for potentially malicious design signatures,
such as voltage sensors, in user bitstreams before permitting the
upload to a multi-tenant FPGA [18]. However, this bitstream checking
methodology must be updated continuously to account for new ways
of sensor implementation. Instead, we propose an active fence on
the electrical level that adaptively equalizes the power consumption
that is visible to other tenants on the FPGA. Our solution uses Ring
Oscillators (ROs) as an artificial source of power consumption and
voltage fluctuations, whenever needed as indicated by an internal
in-fabric voltage sensor. By incorporating the capabilities of an
attacker to counteract the side-channel leakage on-the-fly, we achieve
some form of inherent symmetry between attacker and defender.
Furthermore, the countermeasure is independent of the algorithm to
be protected or its implementation.

Indeed, our results show that fencing the circuit to be protected
performs significantly better than placing the same amount of ROs
randomly. The number of required traces can be increased even
further when enabling the feedback by the internal sensor. This is
the first mitigation approach that is specifically tailored against on-
chip side-channel leakage in multi-tenant FPGAs.
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Fig. 1: Adversary model for a multi-tenant FPGA or FPGA with shared
SoC Logic, such as ASIC-logic CPUs. Based on the models previously
shown in [33], [38].

Overall our contributions can be summarized as:
• First mitigation method against on-chip voltage side-channel

leakage in multi-tenant FPGAs.
• The hiding strategy works without changes to the cryptographic

implementation and is independent of the implementation or
algorithm to be protected.

• Two to three orders of magnitude leakage reduction.
• The hiding strategy can be applied to various FPGA architectures

and devices from various vendors.
In the remaining paper, we first give some preliminary and back-

ground information in Section II. Furthermore, our methodology
is explained in Section III, followed by our experimental setup
in Section IV. Finally, we show our results in Section V and conclude
the paper in Section VI.

II. BACKGROUND AND RELATED WORK

A. Adversary Model

We follow the well-accepted adversary model that was previously
described in various works on electrical level threats in multi-tenant
FPGAs [17], [33], [26], [38], visualized in Figure 1. The adversary
in this model can program an arbitrary design in a partial region
of an FPGA, which is shared with at least one other victim user.
There are no logic or clock signal connections between the users
(i.e. tenants) of the FPGA. This isolation is ensured with empty
slices put as fences between the users, as suggested by previous
design practices for security in FPGAs [12], [28], [22]. Thus, the
remaining connections are through the power distribution network,
and all possible attack vectors are side channels. In this work, the
goals of the attacker are to impact the confidentiality [33], [38],
for which we present a mitigation method. Previous works also
considered attacks on integrity [26] or availability [17] in the same
model.

Affected systems can be SoCs or high performance computers
in the cloud, utilizing FPGAs as custom accelerators. The assumed
adversary uses FPGA logic to integrate a sensor to record side-
channel information on the electrical level, i.e. voltage fluctuations.
These voltage fluctuations can be analyzed to extract secret keys from
cryptographic circuits, implemented in another part of the FPGA
or SoC. In a possible real-world scenario, a victim user encrypts
plaintext messages using any cryptographic core in a part of the
FPGA, and sends out the encrypted ciphertext messages over a
public communication channel. The adversarial user which monitors
the public channel can then use the measured voltage fluctuations
together with the ciphertext to extract the secret encryption key, and
subsequently sensitive encrypted information.

B. On-Chip Power Distribution Networks

PDNs are designed to deliver power from a main power source
through a Voltage Regulator Module (VRM) and board-level compo-

nents, down to the individual transistors inside the chip [19], [7]. A
stable supply voltage level (Vdd) inside the chip is required, since
it directly affects transistor delay τd ∝ 1/Vdd. This delay must
be below a required limit to meet physical timing constraints, s.t.
τd < τconstrs, or there may be timing violations that eventually
result in errors.

The chip-level PDN consists of metal wires, which also behave
as parasitic resistors (R) and inductors (L) [29], [19]. Workload
and data-dependent switching activity, toggling at fsw, results in a
changing electrical current flow in time I(t) ∝ fsw. Dependent on
the parasitic components, this affects the voltage level, separated into
a resistance-dependent part ∆Vdrop,R = I(t)R, and an inductive
part that depends on the amount of current change over time:
∆Vdrop,L = LdI(t)/dt. In modern technologies below 45nm, the
inductive voltage drop is higher than the resistive one [29], [37].
Thus, decoupling capacitors (C) (decaps) are added in the physical
layout design stages to reduce voltage drops during operation [29],
[7]. However, there is a certain level of noise that can be observed
as tempo-spatial variations across the entire PDN [19], [7], [16].

As a result, we can leverage this knowledge to either cause timing
violations or observe switching activity. Increasing fsw leads to a
high I(t), which reduces Vdd such that τd is elevated above the level
of τconstrs, causing timing violations [26]. On the other hand, long
paths that purposefully do not meet physical timing requirements
can be used to observe voltage dependent switching activity of other
modules inside the chip [39].

C. Electrical-Level Attacks

Side-channel attacks exploit unintentional information channels
to reveal sensitive internal data. For power analysis, an attacker
measures the power consumption of the device or its electromagnetic
emanation while it performs a cryptographic operation [25]. For
example, the captured power consumption might be linked to an
internal value that depends on a part of the secret key and the input.
Then, the attacker can perform a statistical evaluation (c.f., [25], [9],
[6]) to test which key hypothesis results in intermediate values that
indeed correspond to the observed power consumption. For example
for Correlation Power Analysis (CPA) [9], the correct key candidate
will show the highest correlation when the attack is successful.
Because the side-channel leakage is usually very small, many traces
have to be recorded and evaluated. Thus, side-channel resilience is
usually measured in the number of traces required for a successful
attack.

Such attacks are widely studied and typically require physical
access to the device to capture the power consumption, i.e., to connect
the probe of an oscilloscope or to place an EM probe in the near
vicinity of the device. Yet, recent work has shown remote attacks on
multi-tenant FPGAs that break with this assumption, i.e., without any
physical access to the device. Using the on-chip power distribution
network as source or carrier of side-channel information, user-
programmable FPGA primitives can be utilized in order to implement
an on-chip voltage sensor [39]. Indeed, they were proven to be very
effective at launching attacks on other parts of the chip [33], [38].

The underlying working principle was already introduced in the
previous section: A circuit’s activity will result in voltage fluctuations
across the PDN, independent of any logical connection. Given that
the propagation delay of a circuit depends on the supply voltage,
capturing the activity of a circuit becomes the task of measuring
the speed of the circuit. Figure 2 depicts two basic concepts to
measure voltage in FPGAs. The straight-forward solution is to count
the oscillations of a Ring Oscillator (RO), shown on the left side.
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Fig. 2: Two types of voltage side-channel sensors in an FPGA as shown
in [18]. Left: RO counter, right: tapped delay line.

However, implementing an RO on an FPGA usually results in a long
feedback path and thus, poor resolution. A more effective approach
is thus shown on the right, which measures how far a signal traveled
through a delay line, and for which the clock is used in this example.
This can be implemented very efficiently in FPGAs which results in
outperforming sensors [39].

Another class of implementation attacks are fault attacks to extract
sensitive information [8]. Many of such attacks are based on a
mathematical evaluation of the output of a correct and a faulty
computation. Although protecting against such attacks is not within
the scope of this work, we will later rely on circuits that were
previously considered to be an offensive tool: The excessive power
consumption of highly active elements such as ROs can be used to
successfully create computation errors in neighboring circuits residing
within the same FPGA fabric [26].

D. Side-Channel Attack Countermeasures

There is ongoing research to explore potential countermeasures
against such attacks, following the two directions of masking or
hiding: Masking schemes are implemented on the algorithmic level
and separate internal values into multiple shares [23]. Only the
combination of all shares will again reveal the correct secret value.
Ideally, the operations are performed individually on each share.
Since this is not possible for non-linear functions, ensuring the
correctness of the computation requires a large algorithmic overhead.
Furthermore, such a protection has to be developed individually
for each algorithm to be protected and its actual implementation is
challenging as well. Masking techniques can be attacked with higher
order attacks, i.e., using higher statistical moments [31]. However,
for such attacks, the noise is amplified exponentially with increasing
order, resulting in an increased number of required traces.

On the other hand, hiding aims at reducing the SNR at the electrical
level. One option is to increase the noise level through additional
sources of noise. Especially on FPGAs, implementing generic noise
generators has been studied using shift registers, BRAM write col-
lision, or short-term short circuits [20]. Correlated noise generation
was suggested to hide leakage from an FPGA AES implementation
in [24]. Likewise, [20] proposes clock randomization to temporally
spread the side-channel information. Another variant of hiding re-
duces the strength of the signal by equalizing the instantaneous power
consumption. In the past, hiding was often implemented using a
variant of dual-rail precharge logic [13]. While in theory, this results
in a balanced power consumption, perfectly balanced computation
paths are hard to achieve in practice due to manufacturing process
variations. This problem is amplified on standard FPGAs as the
physical realization of elements is unknown. Some recent work
proposed duplicating and inverting a cryptographic circuit [36]. Yet,
this is still difficult to achieve on FPGAs, since on-chip resources can
only be used very coarse grained [32]. More lightweight and feasible
approaches achieve power equalization on FPGAs to some limited
extent using ROs. However, previous approaches were not designed

with side-channel attacks in mind and are thus not evaluated in a
security context so far [21].

Summarizing the existing solutions, they are often specific to a
particular cryptographic algorithm and require significant changes
to its implementation. Our active fence aims to overcome this
disadvantage but can also be applied in addition to any of the
more sophisticated, specific countermeasures, to further increase
protection against side-channel attacks. In Section II we explained
how the knowledge of on-chip power delivery is used to measure
and cause voltage fluctuations in digital logic, reproducible with
user-programmable FPGA primitives. On-chip power analysis side-
channel attacks are based on the fact that a cryptographic module
injects voltage fluctuations into the power grid, depending on its data-
dependent activity. These fluctuations travel very quickly through the
on-chip power grid [7], [16], and reach other parts of the chip. The
effect they have on path delays can then be observed by an attacker
using the delay-line sensors described in Section II.

The same underlying mechanisms can be used to add additional
voltage fluctuations into the system, to change what can be observed
at the side of the adversary. Our proposed methods try to reduce
the overall usable SNR in the voltage fluctuations traveling from
the cryptographic victim module to the adversarial sensor by putting
active fences between the modules. We base these active fences on
ROs, as controlled primitives, that can be enabled and disabled.
During the time they are enabled, they have a high switching
activity fsw that leads to a high current I(t). Thus, with only small
area use they can efficiently inject a high voltage drop into the
power grid to equalize the outgoing voltage fluctuations (i.e., the
information leakage) from the cryptographic module. Just like other
countermeasures from the hiding-category, we evaluate these active
fences to either increase the noise, or reduce the signal. Overall, this
is evaluated based on the number of traces required for a successful
CPA attack.

In Figure 3, we present a general overview of the proposed method.
The active fence is placed as a RO region around a design, that is
critical to security of an application, to prevent side-channel leakage
to partitions of other users. Various strategies of placing and activating
the ROs within the fence region are feasible. ROs can be activated
randomly or by using a Time-to-Digital Converter (TDC) sensor for
controlled activation. We will discuss those strategies in the following
subsections and show experimental results for some combinations.

III. METHODOLOGY

A. Placing Ring Oscillators

To equalize the voltage fluctuations from the cryptographic module,
various choices to place ROs are possible. For external power
analysis, an arbitrary placement of ROs may be sufficient. However,
due to the strong tempo-spatial dependency of on-chip voltage
fluctuations [7], [16], it is important how the ROs are placed, and
in which order they get activated. This plays an important role in
suppressing the side-channel leakage an adversary can observe.

Additionally, we should consider reducing the impact this coun-
termeasure has on all benign users of the multi-tenant FPGA, i.e.
ideally it should be placed outside of the user-assigned reconfigurable
regions. With all these considerations, our choices can be broken
down to two basic options:

1) Constrain ROs to a region between attacker and victim in which
the place-and-route toolchain places them heuristically.

2) Map the ROs precisely into a densely packed uniform array
between attacker and victim, to activate them in a specific
spatial order.
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Fig. 3: Overview of the active fence as a protective countermeasure
between a design, which is used in a security-related application, and
other users on a multi-tenant FPGA. A specific amount of ROs is
activated dependent on the value of a sensor or a Pseudo-Random Number
Generator (PRNG).

When placing the RO array heuristically into the constrained
region, activation happens at arbitrary locations within that region.
For the second option, the ROs are activated row-by-row or column-
by-column, depending on the layout of the entire system.

In Figure 4 we show a simplified example of the entire design when
allowing the place-and-route toolchain placing ROs heuristically.
Depending on the input value, we activate a larger or smaller amount
of ROs in the active fence region to mitigate side-channel leakage
from the victim partition at the bottom of the figures into the attacker
region at the top. Figure 5 outlines the principle of a constrained row-
by-row RO placement and activation.

B. Activation Strategies

In addition to the placement layout of the ROs regarding victim
and adversarial blocks, it is also important to decide on an activation
strategy. Generally, we intend to lower the supply voltage when acti-
vating a larger amount of ROs and raise the voltage when activating
a smaller amount. The exact amount is technology dependent and
can be experimentally evaluated, such that enabling all ROs can
sufficiently out-balance the worst-case voltage fluctuations emitted
from the cryptographic module. It must be decided how these ROs
will be activated at runtime — both spatially and temporally. An
activation strategy can fulfill one or both goals of either canceling
out the fluctuations caused by the cryptographic module, or to add
overall more noise to the system.

In our experiments we consider two strategies as depicted also in
Figure 3:

1) Random activation patterns, where the amount of activated ROs
is based on a PRNG output, implemented as a Linear Feedback
Shift Register (LFSR).

2) Activating an amount of ROs depending on the value of a
voltage-fluctuation sensor, similar to the sensor used by the
attacker, however at the victim side.

A random activation fulfills the objective of increasing the noise in
the system, increasing the amount of required traces for a successful
attack. When activating according to a sensor value, we aim to flatten

(a) One third of ROs activated (b) Two thirds of ROs activated
Fig. 4: RO activation pattern when letting the toolchain decide the
placement heuristically

(a) One third of ROs activated (b) Two thirds of ROs activated
Fig. 5: RO activation pattern when fixing RO placement as a row-by-row
grid

the voltage fluctuations caused by the cryptographic module, thus
reducing the leakage to the attacker as well. In our experiments,
we find a sensor-based activation to be slightly more successful in
weakening the attack.

IV. IMPLEMENTATION AND EXPERIMENTAL SETUP

Our experimental setup is based on the open-source FPGA de-
velopment board Radiona ULX3S [1] in a version that integrates a
Lattice ECP5 12F FPGA with 12K LUT elements with various other
components such as an Espressif ESP32 IoT microcontroller module.
Although Xilinx and Intel FPGAs are used more widely, we choose to
initially develop our design on a Lattice device, which has great open-
source support [2] that will be useful in future research. Nevertheless,
our proposed methodology is assumed to be easily adaptable to other
FPGAs and platforms.

Figure 6 shows the overview block diagram of the setup. The
Lattice ECP5 on the left side contains three modules. In the bottom
part, a hardware AES module is integrated, which is connected to the
outside to receive plaintexts, encrypt them, and send the ciphertext
back to the connected workstation PC. This module resembles the
victim user, out of two users of the system. For the connection, we
use a simple UART module on the FPGA, connected to a USB-to-
UART Bridge on the Radiona ULX3S Board. In the top part of the
ECP5, the adversary user implements his logic, based on a delay-line
sensor, specifically tailored to the ECP5 primitives, as we describe in
Subsection IV-B. Between the two users, we implement the different
variants of our active fence, as described in Section III. Both the
AES module and the active fence to protect it are clocked from the
same on-chip Phase Locked Loop (PLL) clock generator, whereas
the adversary uses another PLL. On the board level, both attacker
and victim PLLs are connected to the same onboard 25 MHz clock
generator.

In Figure 7 we show how the design is mapped onto the ECP5
FPGA as seen in the Floorplan View of the Lattice Diamond design
software. To make our results comparable, we fix the placement of the
AES module as well as the attacker TDC sensor. This experimental
setup follows roughly what has been presented in [33] and [38],
except for the added active fences.

A. AES implementation

In this paper we use industry’s standard symmetric encryption
scheme AES in its 128-bit variant to evaluate the performance of
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Fig. 7: The complete layout of the design on the ECP5 FPGA as seen in
the Lattice Diamond Floorplan Viewer

our protection against side-channel analysis. However, note that our
proposed active fence is independent of the exact algorithm or
implementation to be protected. To keep comparability, we use an
AES module that follows the same design principle as explained
in [33], using a 32-bit datapath. In each clock cycle, four of the 16
state bytes are processed in parallel, as visualized in Figure 8. One
round thus takes four clock cycles and one additional clock cycle
to perform the key schedule sharing the Sboxes (not depicted). The
module is operated at a clock speed of 12.5 MHz from the same
clock generator as the active fence.

B. Sensor Implementation in Lattice ECP5

Previous publications have mostly used Xilinx FPGAs [33], [38],
[34], but it was also reported that the attack was successful on a
Lattice iCE40, without providing any further details on the sensor
construction [18]. We implement TDC sensors as explained in [18]
for both offensive and defensive design parts on the Lattice ECP5,
using the available carry-chain primitives.

Carry-chains on the ECP5 are instantiated through CCU2C prim-
itives, each of which represents a 2-bit carry element with carry-
in, carry-out and two bits of summation signals. Connecting the
carry-in of one CCU2C element to the carry-out of another element
automatically enforces an adjacent placement of the two elements.

We route the sensor clock signal through an initial delay carry-
chain into the main chain, which is eventually sampled into registers
at the falling sensor clock edge. A specific location is set for the
first elements of the initial and the main carry-chain respectively,
which fixes the placement of the entire sensor due to the described
adjacent placement of CCU2C elements. Although the initial delay
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Fig. 8: Schematic of the used AES encryption core design as shown
in [33]

Fig. 9: Partial sensor carry-chain on the ECP5 as displayed in the
Floorplan View of the Lattice Diamond design software; Each block
contains a 2-bit carry element and the connection between those elements
enforces adjacent placement as a fast carry chain on the ECP5

length varies depending on the sensor clock, we fix the output carry-
chain at a length of 62. When the supply voltage is high, the sensor
clock signal propagates into the delay line further than at low voltage
until the falling edge causes the sensor registers to capture the state
of the line. We count the number of set bits in the main delay line
as the sensor output, which gives us a 6-bit sensor value.

In Figure 9, we show 16 bits of a TDC delay line on the
ECP5, as seen in the Floorplan View of the Lattice Diamond design
software. For our experiments we sample at 100 MHz on the attacker
side sensor, whereas the TDC sensor on the Active Fence part
was restricted to 50 MHz to account for a realistic scenario. We
assume that in general the attacker is able to sample the side-channel
information at a higher rate compared to the clock speed of the
attacked module. Thus, the attacked AES module is driven at 12.5
MHz clock speed, giving the attacker 8 samples per AES clock. As
shown in the next section, the amount of traces required to attack an
unprotected design is rather small.

C. Active Fence Implementation

In Section III, we explained the general principle of an active
fence as a hiding countermeasure. The implementation on the Lattice
ECP5 FPGA is based on single Look-Up Table (LUT) ROs, which
are instantiated using the ND2 primitive. A ND2 element represents
a two-input NAND-gate to realize a RO with an enable signal. To
prevent any synthesis optimizations from removing the RO array, we
combine all RO signals with an XOR operation into a single signal,
which is mapped to an open pin on the FPGA.

The ROs are placed according to one of the placement strategies
described in Section III and a certain amount is activated depending
on a value x. We use a total amount of 21× 32 = 672 ROs, where
for each increase in x an additional amount of 21 ROs is activated.
This total amount of ROs is chosen to correspond roughly to the
amount of slices occupied by the AES module for the fence to be
able to generate voltage fluctuations in the range of the cryptographic
implementation itself. Furthermore, a row of 21 adjacent ROs is
required to spatially cover the AES module when using a row-by-
row RO layout. 32 corresponds to the maximum fluctuation range in



Fig. 10: Baseline results for CPA on AES without any countermeasure.
The correlation for the correct key is marked red and the attack is
successful after about 1800 traces.

the TDC sensor we observed in our experiments. Thus, a value of
x = 20 activates a total amount of 420 ROs.

Overall, the overhead of the active fence in terms of area is about
the same as the area occupied by the AES module. Analyzing the
required additional power consumption by the design with active
fence as reported by the Lattice Diamond Power Calculator is 178
µW . This corresponds to slightly more than half of the additional
power consumption reported for the AES module, which is 320 µW .
However, the tool does most likely not account for the dynamic power
consumption of the ROs adequately and thus further measurements
would be required.

In Subsection III-B we explained different activation methods. We
can choose x either as a PRNG output or a TDC sensor value. For the
sensor-based activation, we scale the sensor value into the range of 0
to 32 by subtracting the observed minimum in the first encryptions.
To randomly activate the RO grid, we simply use x directly as the
output of a PRNG module from OpenCores [11].

V. RESULTS

Our results are based on performing a CPA on an AES encryption
module in different scenarios using the voltage traces collected
through the attacker TDC sensor. For each scenario, we deploy
variations of our active fence implementation or omit any protection
for the baseline experiment. The success of any defensive method
is evaluated as the increase in traces required for the attacker to
successfully recover the first secret key byte of the last AES round
key. For CPA we use a Hamming distance model and compute
bitwise correlation as described in [33]. After selecting the best
correlating bit, we plot the key hypothesis correlations over the
number of evaluated traces with the correct key marked red to show
the minimum traces required for a successful attack.

A. Baseline, without mitigation

Initially, we synthesize a design without any countermeasures, to
compare the efficiency of our active fence countermeasure against. In
Figure 10, the result of a CPA on the unprotected AES is shown as
described previously. We see that the attacker is able to successfully
distinguish the correct key byte hypothesis after about 1800 traces.
Comparing these results to those reported before in [33], [38], [18],
we need a similar amount of traces as Schellenberg et al.

B. Area-restricted ROs, randomly enabled

For a first experiment, we naively let the design tool place ROs
into a constrained area between victim and attacker partitions and
randomly activate different amounts of them. The amount of activated
ROs is determined by the output of an LFSR-based PRNG. Figure 11

Fig. 11: Results for CPA on AES with an arbitrarily placed active fence,
activated based on a PRNG output. The correlation for the correct key is
marked red and the attack is successful after about 80k traces.

Fig. 12: Results for CPA on AES with an active fence, that is placed
row-by-row and activated based on a PRNG output. The correlation for
the correct key is marked red and the attack is successful after about
120k traces.

shows the result of a CPA on AES in this scenario. We see that the
amount of traces required for a successful attack increases from 1800
to 80k. In general, that makes this approach already a valid defense
mechanism, but we show in further experiments, that we are able to
improve the defense by specific placement and activation.

C. RO-array, randomly enabled

The hiding effect becomes much stronger, when placing ROs in a
specific manner, to prevent the attacker from profiting from placement
convenience. As described in Section III and Section IV, we place
ROs in a row-by-row scheme between AES module and attacker
sensor. Again using a PRNG output to determine the amount of
activated ROs, we show in Figure 12 how CPA performs in this
scenario.

The correlation with the correct key byte is now much lower in
absolute value. A successful attack is possible after 120k traces,
where the absolute correlation with the correct key is larger than
the correlations with the incorrect keys. In our last experiment, we
show how the attack success can be decreased more reliably with a
sensor-based active fence.

D. RO-array, sensor-based enabled

Lastly, we determine the amount of ROs to be activated using the
output value of a TDC sensor, clocked at half the speed of the sensor
used by the attacker. The goal of this activation strategy is to directly
mitigate the voltage fluctuations caused by the AES encryption. In
Figure 13, we show the results of a CPA on the AES module in this
setup. As in the previous experiment, the absolute correlation value
decreases significantly. Additionally, the attack is only successful
after about 300k traces, which corresponds to two magnitudes of



Fig. 13: Results for CPA on AES with a sensor-based active fence, that
is placed row-by-row. The correlation for the correct key is marked red
and the attack is successful after about 300k traces.

additional traces being required when compared to attacks on the
unprotected module. Further improvements to the sensor feedback
will most certainly lead to an even better leakage mitigation in future
works.

E. Discussion

We developed a first approach for an on-chip hiding countermea-
sure against side-channel attacks on multi-tenant FPGAs. In this
scenario, the limitations of the attackers are known, whereas an
external attacker can employ any expensive measurement equipment.
The evaluation of different placement and activation strategies shows
that the general approach of active fences between different designs
on a multi-tenant FPGA is feasible. However, to significantly improve
the hiding effect further investigation of the spatial dependencies and
improvements of the defensive sensor are certainly required.

Currently, we employ a clocked sensor, similar to the attacker
sensor to mitigate fluctuations caused by an AES module. A better
approach would be an entirely combinational circuit to enable an
almost instantaneous reaction of the active fence.

The benefit of the presented method lies mostly within its general-
ity and simplicity as leakage can be prevented independently of the
underlying cryptographic module, implementation, and mapping.

VI. CONCLUSION

In this paper, we could show how a specifically placed and
activated active fence made out of ring oscillators can effectively
reduce the on-chip side-channel leakage by two orders of magnitude.
Additionally, the approach is simple to deploy and independent of the
cryptographic module that should be protected. In future works, the
specific implementation may be improved, for example through more
advanced on-chip sensors which can react to voltage fluctuations
instantaneously. Moreover, the connection between placement of
the fence elements and success of the countermeasure should be
investigated further.

Hiding schemes like what we propose in this work are known to
be unable to prevent side-channel attacks entirely. Instead, they make
the attacks harder to mount, i.e., a higher number of measurements is
required. Therefore, masked implementations can benefit more from
additionally integrated hiding countermeasures.

Hence, examining the effect of our developed on-chip hiding
technique on higher-order side-channel attacks when the underlying
cryptographic module is a masked implementation is among our
future plans. Our method is also orthogonal to the approach of
checking bitstreams for malicious signatures before uploading them
to a multi-tenant FPGA which has been proposed previously as a
countermeasure to security threats in multi-tenant FPGAs.
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