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Abstract

Clustering is a common technique for data analysis, which aims to partition data into sim-
ilar groups. When the data comes from different sources, it is highly desirable to maintain the
privacy of each database. In this work, we study a popular clustering algorithm (K-means)
and adapt it to the privacy-preserving context.
Specifically, to construct our privacy-preserving clustering algorithm, we first propose an ef-
ficient batched Euclidean squared distance computation protocol in the amortizing setting,
when one needs to compute the distance from the same point to other points. Furthermore, we
construct a customized garbled circuit for computing the minimum value among shared values.
We believe these new constructions may be of independent interest.
We implement and evaluate our protocols to demonstrate their practicality and show that
they are able to train datasets that are much larger and faster than in the previous work.
The numerical results also show that the proposed protocol achieve almost the same accuracy
compared to a K-means plain-text clustering algorithm.

1 Introduction

Advances in machine learning (ML) have enabled breakthroughs for solving numerous problems
across various domains, for example, recommendation services, spam filtering, web search engines,
fraud detection, stock market analysis and authentication technologies. Recently, cloud-based ma-
chine learning (ML) services provided by major technology companies such as Google, Microsoft,
and AWS are getting popular. These services allow modular ML algorithms to be updated and
improved via input from their customers. Training models for many such ML algorithms require
large-scale data. In practice, the data can be collected from different sources, each of which might
belong to a different entity. Internet companies regularly collect large amounts of information from
users’ online activities, search engines, and browsing behavior to train more accurate ML models.
For example, credit card fraud-detection engines are becoming more accurate by training on large-
scale data which combines transaction history, merchant data, and account holder information from
financial companies and payment networks. Health data (e.g. genomic, patients) can be used to
produce new diagnostic models. Since the data being classified or used for training is often sensitive
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and may come from different sources, it is imperative to design efficient methods to preserve privacy
of data owners.

While recent technologies enable more efficient storage and computation on big data, protecting
combined data from different sources remains a big challenge. Recently, privacy-preserving machine
learning via secure multiparty computation (MPC) has emerged as an active area of research that
allows different entities to train various models on their joint data without revealing any information
except the output. In this paper, we study privacy-preserving machine learning techniques for the
clustering problem that aims to group similar data together according to some distance measure.
Clustering is a popular unsupervised learning method and plays a key role in data management.

Indeed, our clustering setting has many practical applications due to the nature of MPC. For
instance, two important and popular applications that motivate our clustering problem are: (1)
Customer segmentation where companies can cooperate to cluster their customers into subgroups
based on features of the customers. Then, they can run some prediction algorithms for each
subgroup, or design dedicated marketing strategy effectively for each subgroup to maximize revenue;
(2) Hospitals can cluster their patients into subgroups, then predict behavior of each subgroup, and
design special medicine/treatment for each subgroup. In these examples, privacy is of utmost
importance.

To this end, we design new and efficient privacy-preserving clustering protocols for an arbitrary
partitioning of a dataset. Our major contributions can be summarized as follows:

• First, we introduce an efficient and secure squared Euclidean distance protocol in the sequen-
tial amortized setting.

• Second, we build a customized garbled circuit to compute binary secret sharing of the mini-
mum value among a list of secret shared values

• Furthermore, we present a scalable privacy-preserving clustering algorithm and design a mod-
ular approach for multi-party clustering.

• Finally, we implement and evaluate our clustering scheme to demonstrate its scalability. Our
scheme is five orders of magnitude faster than the state-of-the-art work [29].

2 Related Work

In this section, we will focus on existing work on privacy-preserving clustering. Earlier work
on privacy-preserving clustering has been proposed by Vaidya and Clifton [56] Jagannathan and
Wright [28], Jha, Kruger, and McDaniel [30] and Bunn and Ostrovsky [11], Jagannathan and
Wright [27]. The work of Vaidya and Clifton [56] addresses privacy-preserving k-means clustering
for vertically partitioned database (the database is distributed to different parties in a way that
each party holds a subset of the attributes owned by the entity) while the work of McDaniel, and
Jagannathan and Wright [30, 27] addresses horizontally partitioned database (each entity is owned
by a single participant). The schemes of Jagannathan and Wright [28] and Bunn and Ostrovsky [11]
work for arbitrary partitioned database. All of them except [11, 27] reveal intermediate candidate
cluster centers, thereby breaching privacy. These protocols can be made more secure but require
higher complexity. In [11], Bunn and Ostrovsky present a 2-party privacy-preserving k-means clus-
tering protocol that guarantees full privacy in the semi-honest security model. The protocol hides
the intermediate information by calculating the new cluster center using homomorphic encryption.
Therefore, the scheme [11] is expensive due to extensive use of homomorphic encryption (HE).
In [27], Jagannathan and Wright propose a simple communication-efficient clustering algorithm
(called ReCluster) and describe its distributed privacy-preserving version. The privacy-preserving
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ReCluster does not leak intermediate candidate cluster centers, but reveals the merging pattern
in which the adversary could potentially see which two local clusters will be merged in the next
iteration.

Recently, the work of Jiawei Yuan and Yifan Tian [61] proposed a practical privacy-preserving
K-means clustering scheme that can be efficiently outsourced to cloud servers. They investigated
secure integration of MapReduce into their scheme, which makes their scheme extremely suitable for
cloud computing environment. However, this work reveals the intermediate closet clustering centers
to the server. Many recent works focus on clustering in the outsourcing setting (many parties and
a trusted/untrusted mediator) [49, 38, 53, 31], or differential privacy setting [54, 63, 55, 8, 52].
There are few recent works [19, 44, 59, 29] that consider privacy preserving K-means clustering
with full privacy guarantees. The solution of [19] only works for horizontally partitioned data.
The distributed K-means clustering of [44] is based on Shamir’s secret sharing scheme, thus their
scheme requires more than two non-colluding servers. Moreover, it is not clear how to compute the
distance metric in this work. The protocols [59, 29] are heavily based on homomorphic encryption
and do not scale for large datasets (e.g. more than 10,000 data entries). For example, the state-of-
the-art privacy preserving clustering scheme [29] requires almost 1.5 years to cluster a dataset of
thousand points. Unfortunately, the paper [59] does not provide running time of their scheme, we
only compare the performance of our protocol to that of [29] in Section 7.

Privacy-preserving hierarchical clustering is recently formally studied in [39]. It is well-known
that the algorithm for hierarchical clustering has a complexity of O(n2 log(n)), where n is the
number of data points. Today, the most commonly used clustering algorithm is K-means which is
greedy and has a complexity of O(n), although it has a disadvantage that we will discuss in Section
7.4.3. Thus, in this work, we focus on privacy-preserving solution for the K-means algorithm.

3 Preliminaries

3.1 Notation

In this work, the computational and statistical security parameters are denoted by κ, λ, respectively.
We use [·] notation to refer to a set. For example, [m] denotes the set {1, . . . ,m}. Vectors are
denoted by bold letters such as P. The i-th element of vector P is P[i]. Define JPK and JPK⊕ as the
arithmetic and the binary secret sharing of a secret value P, respectively. We denote secret sharing
PA, PA

⊕ and PB , PB
⊕ where Alice holds PA, PA

⊕ and Bob holds PB , PB
⊕ such that (PA+PB) = P

mod 2` or PA
⊕ ⊕PB

⊕ = P. Here, the operations + and ⊕ are addition and XOR on `-bit variables,
respectively.

3.2 Security Model and Computational Setting

There are two classical adversarial models. In the semi-honest (or honest-but-curious) model, the
adversary is assumed to follow the protocol, but attempts to obtain extra information from the
execution transcript. In the malicious model, the adversary may follow any arbitrary strategy. In
this work, we consider the semi-honest model.

We also consider two computational settings:

1. Amortized setting where parties need to evaluate the same function many times on different
inputs. For example, a crucial component of K-means clustering algorithm is Euclidean
distance computation, which needs to be run repeatedly many times. Indeed, this setting has
been formalized and utilized in many previous work such as garbled circuit [22, 58, 36].
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2. Sequential setting is similar to the amortized setting where the same function is evaluated
many times on different inputs. However, the inputs of the current function evaluation depends
on the output from the previous evaluation.

3.3 Secret Sharing

According to our privacy requirements, parties should only receive the result (e.g. cluster centers)
at the end of the protocol, but all of the values computed in the intermediate steps of the algorithm
should be unknown to either party. In our protocol, each computed intermediate value (e.g. a
candidate cluster centroid) is shared as two uniformly distributed random values, where each party
holds one of these two values such that their sum is the actual intermediate value. Throughout this
paper, we use two different sharing schemes: Additive sharing, and Boolean sharing.

To additively share JxK an `-bit value x, the first party chooses xA ← {0, 1}` uniformly at random
and sends xB = x − xA mod 2` to the second party. In this paper, we mostly use the additive
sharing, and denote it by J.K for short. For ease of composition we omit the modular operation in
the protocol descriptions. To reconstruct an additively shared value JxK, one party sends JxK to the
party, who reconstructs the secret x = xA + xB mod 2` locally. Arithmetic operations can now
be directly applied to these shares. Given two shared arithmetic values JxK and JyK, it is easy to
non-interactively add the shares by having parties compute Jx+ yK = JxK + JyK mod 2`.

Boolean sharing can be seen as additive sharing in the field Z2. The addition operation is
replaced by the XOR operation and multiplication is replaced by the AND operation.

3.4 Oblivious Transfer

Oblivious Transfer (OT) is a cryptographic primitive for various efficient secure computation pro-
tocols. In OT, a sender with two input strings (x0, x1) interacts with a receiver who has an input
choice bit b. An OT protocol allows the receiver to learn xb without learning anything about x1−b,
while the sender learns nothing about b. The ideal OT functionality is described in Appendix Figure
7.

One useful variant of OT is Correlated OT (COT) [26], in which the sender’s OT inputs x0, x1
are chosen randomly subject to x0 ⊕ x1 = ∆, where ∆ is chosen by the sender. In COT, it is
possible to let the protocol itself choose x0 randomly. By doing so, the bandwidth requirement
from sender to receiver is reduced by a half, thus the amortized communication cost for an COT is
κ+ `, where ` is bit-length of ∆. In our implementation, we require only this weaker OT variant.

3.5 Garbled Circuit

Garbled Circuit (GC) is currently the most common generic technique for practical two-party secure
computation (2PC). GC was first introduced by Yao[60] and Goldreich et al. [21]. Briefly, the ideal
functionality GC is to take the parties’ inputs x and y respectively, and computes f on them without
revealing the secret parties’ inputs, which is formalized in Appendix Figure 8. In our protocol, we
use “less than” and “division” GC where inputs are secret shared amongs two parties (e.g. Alice
and Bob hold secret shares JxK and JyK). To evaluate a function f on shared values, GC first
reconstructs the shares, performs f on the top of obtained values, and then secret shares the result
f(x, y) to parties. We denote this garbled circuit by JzK← GC(JxK, JyK, f).
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3.6 Clustering Algorithm

There are several clustering algorithms that have their own pros and cons. Today, the most com-
monly used algorithm is K-means, which is greedy and computationally efficient. The K-means
algorithm consists of two following steps:

(1) Initialize cluster centroids: This step can be implemented using different methods. A very
common one is to pick random values for the centroids.

(2) Repeat until convergence (Lloyd’s Iteration):
(a) calculate the distance between each data point and all centroids, assign each data point

to the cluster that has the closest centroid.
(b) update the values of the centroids by computing the average of the values of the point

attributes that are part of the cluster.
A privacy-preserving K-means clustering is an application of secure computation that allows

parties, each holding a set of private data points, to cluster their their combined data sets without
revealing anything except for the cluster centers.

4 Our Building Blocks

In this section, we present the enhancements we made to improve secure two-party multiplication
and Euclidean distance in the sequential amortized setting, which are the core building blocks
in many practical applications. We also introduce a customized garbled circuit to compute the
minimum of shared values.

4.1 Secure Arithmetic Multiplication

Assume that Alice and Bob hold secret `-bit numbers x and y respectively, and they want to obtain
the arithmetic shared value of the product xy without revealing additional information beyond the
output. Secure arithmetic multiplication has been well studied for decades, and can be generated
based on either Homomorphic Encryption [18] or OT [20]. Demmler et al. [15] benchmarked the
generation of both OT-based and HE-based arithmetic multiplications, and show that with the
advantage of recent advances in OT extension, the OT-based protocol is always faster than the HE-
based one. Thus, this paper focuses on the OT-based protocol which works as follows: Alice and Bob
invoke ` instances of OT where Alice acts as an OT receiver and Bob acts as an OT sender. In the
ith OT instance, Bob inputs a pair (mi,0,mi,1) where mi,0 ← Z2` and mi,1 = (2iy+mi,0) mod 2`;

while Alice inputs x[i] as choice bit, where x[i] is the ith bit of a binary expression x =
∑`−1
i=0 2ix[i].

The ith OT enables Alice to obtain mi,x[i] = (2ix[i]y + mi,0) mod 2`. Finally, Alice can compute

the arithmetic shared value zA by summing up
∑`−1
i=0 mi,x[i] mod 2`. Similarly, Bob computes

the arithmetic shared value zB by summing up (−
∑`−1
i=0 mi,0) mod 2`. It is easy to see that

zB = xy − zA.

4.1.1 Revising Communication-Efficient Secure Multiplication Based on 1-out-of-N
OT

With recent improvement to 1-out-of-N OT, [16] proposed to replace 1-out-of-2 OT with 1-out-of-N
OT for secure multiplication. In this section, we explicitly revise their 1-out-of-N OT based secure
multiplication.
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At a high-level idea[16], instead of using binary representation of her secret input x, Alice used

an N-base representation, and rewrited x =
∑d`/ log(N)e−1
i=0 N ix[i]; next step is that Alice and Bob

invoke d`/ log(N)e instances of 1-out-of-N OT to obtain arithmetic shared value of each N ix[i]y,
where Alice has x and Bob has y. Concretely, in the ith OT where i ∈ d`/ log(N)e, Bob acts as
an OT sender with input sequence (mi,0, . . . ,mi,N−1) where mi,0 ← Z2` and mi,j = (N ijy −mi,0)
mod 2`; and Alice acts as an OT receiver with choice value x[i] ∈ [N ]. As output from the 1-
out-of-N OT, Alice obtains mi,x[i] = (N ix[i]y −mi,0) mod 2`. Similar to the original OT-based

secure multiplication, Alice computes the arithmetic shared value zA by setting
∑d`/ log(N)e−1
i=0 mi,x[i]

mod 2` and Bob set zB =
∑d`/ log(N)e−1
i=0 mi,0 mod 2`. The correctness of the protocol follows

directly from the fact that zA + zB =
∑d`/ log(N)e−1
i=0 (N ix[i]y) mod 2` = xy.

In Appendix A.1, we also discuss an improved communication factor with different choices of
N , and the usage of correlated OT for 1-out-of-N OT-based secure multiplication, which reduces

the bandwidth requirement by a factor of κ+(N−1)`
κ+N` in comparison with the original 1-out-of-2 OT-

based secure multiplication. In particular, Table 6 (in Appendix A.1) shows an 1.11− 1.51× lower
bandwidth requirement.

4.1.2 Secure Multiplication in the Sequential Amortized Setting

Consider a case where Alice holds a `-bit variable x and Bob sequentially has `-bit variables yt,∀t ∈
[T ]. They wish to compute secure multiplication many times to obtain the arithmetic shared value
of the product xyt,∀t ∈ [T ]. Instead of repeating the above protocol T times, we propose a simple
but efficient solution to compute the multiplication in the sequential amortized setting. By selecting
Alice as the OT receiver, we observe that her choice bits x[i] are fixed, where x[i] comes from the

expression x =
∑d`/ log(N)e−1
i=0 N ix[i]. Thus, we can reuse OT instances (i.e. reduce T× number of

OT instances used to compute T multiplications) in this setting.
We present a simple batched OT protocol, inspired from [26]. Assuming that Bob holds T

sequences (mt,1, . . . ,mt,N ),∀t ∈ [T ], while Alice has a choice value c ∈ [N ]. Alice wishes to receive
mt,c,∀t ∈ [T ], and nothing else. A simple solution is as follows: Alice, who acts as OT receiver
with input choice c, interacts with the OT sender Bob to perform a 1-out-of-N OT on random
strings. As output from the OT, Alice obtains kc while Bob receives (k1, k2, . . . , kN ). Whenever a
new tth sequence is known by Bob, he uses these (k1, . . . , kN ) as the encryption keys to encrypt this
sequence (mt,0, . . . ,mt,N ) respectively (i.e. et,i = Enc(ki,mt,i),∀t ∈ [T ] and sends the encrypted
results to Alice, who later decrypts the ciphertext et,c using the decrypted key kc and outputs mt,c.

The combination of our observation on fixed OT choices and batched OT protocol reduces the
bandwidth requirement by approximately half. For simplicity, assume that N = 2, performing T
multiplications requires `T number of 1-out-of-2 OT instances, which requires `T (κ+ `) sent bits.

With our batched OT technique, the bandwidth requirement is `(κ + `T ), an T (κ+`)
(κ+`T )× improve-

ment. For example, for doing T = 30 iterations, this solution shows a factor of 2.16× and 1.59×
improvement with ` = 32 bits and ` = 64 bits, respectively.

4.2 Secure Euclidean Squared Distance

Euclidean distance is the ”ordinary” straight-line distance between two points, which involves com-
puting the square root of the sum of the squares of the differences between two points in each di-
mension. In many algorithms (e.g. clustering, texture image retrieval, face-recognition, fingerprint-
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Parameters: T iterations, and two parties: the sender S and the receiver R
Functionality:
• Wait for arithmetic secret sharings JP1K, . . . , JPnK of n points Pi, i ∈ [n], from both parties.
• For each iteration t ∈ T :

– Wait for arithmetic secret sharings Jφt1K, . . . , JφtKK of K points φtk, k ∈ [K], from both
parties.

– For each k ∈ [K], give arithmetic secret sharings of the output FEDist(Pi,φtk) to both
parties, where FEDist(x, y) denotes Euclidean Squared Distance between two points x and y.

Figure 1: Secure Euclidean Squared Distance (SESD) functionality in the Sequential Amortized
Setting.

Parameters: Two parties: sender S and receiver R
Functionality:

• Wait for arithmetic secret sharings JX1K, . . . , JXKK of K numbers from both parties.
• Give binary secret sharings JCK⊕ of the vector C = (0, . . . , 1, . . . , 0) to both parties, where

the ‘1’ appears in the kth coordinate to indicate that the smallest number is Xk.

Figure 2: Secure Minimum of k Numbers, FKmin

matching), we only need to compute and compare the distances among the points. Therefore,
to improve the computation efficiency, the Euclidean distance can be replaced by the Euclidean
squared distance (ESD)1, which does not affect the output of the algorithms. We denote the ESD
between two points x and y by z ← FEDist(x, y).

Consider two points P and φ, each has d dimensions. Assume that both parties have arithmetic
secret shared value JPK and JφK. They want to compute the secure Euclidean squared distance by
which both parties obtain the arithmetic shared value of the output FEDist(P,φ). The Euclidean
squared distance between points P and φ is given as follows:

FEDist(JPK, JφK) = FEDist(P
A,PB ,φA,φB)

=

d∑
ρ=1

(PA[ρ] + PB [ρ]− φA[ρ]− φB [ρ])2

=

d∑
ρ=1

(PA[ρ]− φA[ρ])2 +

d∑
ρ=1

(PB [ρ]− φB [ρ])2

+ 2

d∑
ρ=1

(PA[ρ]− φA[ρ])(PB [ρ]− φB [ρ])
)

(1)

Observe that the terms (PA[ρ]−φA[ρ])2 and (PB [ρ]−φB [ρ])2 can be computed locally by Alice
and Bob, respectively. Since the mixed term (PA[ρ] − φA[ρ])(PB [ρ] − φB [ρ]) leaks information if
known in the clear by a party, it requires to compute this mixed term securely. Clearly, this mixed
term can be computed by a secure multiplication on input PA[ρ]− φA[ρ] held by Alice and input
PB [ρ]− φB [ρ] held by Bob.

In data mining applications (e.g. K-nearest Neighbor [32, 13]), parties need to jointly compute

1ESD is not a metric, as it does not satisfy the triangle inequality.
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the Euclidean distance between each fixed point Pi and many points φk which are (either sequen-
tially or non-sequentially) known by parties. For example, Step (2a) of the K-means clustering
algorithm (ref. 3.6) is to compute the distance between each data point and all centroids which are
updated in Step (2b). Therefore, the centroids are non-sequentially known by parties in the same
iteration but sequentially known between the iterations. We define the problem of Secure Euclidean
Squared Distance (SESD) as follows: Given secret shared value of n points Pi, i ∈ [n], each has
d dimensions, assume that parties must do T iterations, in the tth iteration they compute secure
Euclidean squared distance between each point Pi and all K points φtk, k ∈ [K]. We describe the
ideal functionality for SESD in Figure 1.

A direct solution [15, 11, 27, 29, 32] uses a secure multiplication to compute the mixed term
(PA

i [ρ] − φAtk[ρ])(PB
i [ρ] − φBtk[ρ]), ρ ∈ [d], for each Euclidean squared distance FEDist(Pi,φtk), i ∈

[n], k ∈ [K]. Let τ be a number of OT instances used to perform a secure multiplication. This
solution requires τdnKT instances of OTs to securely compute the SESD functionality described
in Figure 1.

We observe that the points Pi are fixed during all T iterations. We propose an optimized
solution to compute the mixed term in the amortized setting. We rewrite the mixed term as follow:

(PA
i [ρ]− φAtk[ρ])(PB

i [ρ]− φBtk[ρ])

= PA
i [ρ]

(
PB
i [ρ]− φBtk[ρ]

)
−PB

i [ρ]φAtk[ρ] + φAtk[ρ]φBtk[ρ]
(2)

The first and second terms can be computed using the batched secure multiplication in the
amortized sequential setting (as described in Section 4.1.2), where PA

i [ρ] and PB
i [ρ] are fixed. We

also observe that in each tth iteration, parties perform K secure multiplications PA
i [ρ]

(
PB
i [ρ] +

φBtk[ρ]
)
, ∀k ∈ [K] with the same value PA

i . Similar to technique of [40], Bob who acts as OT sender
concatenates the OT strings (e.g. m1,0|| . . . ||mK,0) before encrypting and sending them to Alice.

The same trick is applied to compute the second term PB
i [ρ]φAtk[ρ]. In conclusion, computing the

first and second terms of Eq. (2) requires only 2τdn instances of OTs for all T iterations. We use a
secure multiplication to compute the third term φAtk[ρ]φBtk[ρ] of Eq. (2), which takes O(τdKT ) OT
invocations for all T iterations. In Appendix A.2, we present the detail of our SESD construction
in Figure 6 and its theorem statement.

Cost. Our solution for the SESD functionality (Figure 1) requires (2n+KT )τd number of OT
instances, which is nKT

2n+KT× improvement compared to the previous works. For example, evaluating
K-means algorithm on 2D synthetic dataset S1 [17] which contains n = 5, 000 tuples and K = 15
Gaussian clusters, our solution shows a factor of 215× improvement for doing T = 30 iterations.

4.3 Minimum of k Numbers

Recall that a fundamental building block of many algorithms (e.g. K-means clustering [11], face-
recognition [51], fingerprint-matching [10, 25], K-nearest Neighbor [32, 13]) is to compute the Eu-
clidean squared distance between two points in the database and then determine the minimum value
among these distances. Concretely, Step (2a) of the K-means clustering algorithm (ref. Section
3.6) needs to find a closest centroid to each data point. It is needed to hide the closest centroid.
Unlike other secure ML problems (e.g. K-nearest Neighbor) that can output the secret share of
the centroid/center, secure K-means clustering requires to output the secret share of the cluster’s
index indicating the closest one. We consider the problem that takes the arithmetic secret sharings
JX1K, . . . , JXKK of K numbers, and returns binary secret sharings of the vector C = (0, . . . , 1, . . . , 0)
(called index vector), where the ‘1’ appears in the kth coordinate to indicate that the smallest num-
ber is Xk. We denote this problem by JCK⊕ ← FKmin(JX1K, . . . , JXKK).
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Figure 3: Illustration of the main idea behind our FKmin protocol.

In most previous work [11, 29], FKmin is implemented using generic secure computation (e.g.
FHE, GC). Using FHE is still computationally expensive while the GC-based FKmin requires K − 1
“less than” and K − 1 “multiplexer” circuits to find the minimum value among K input numbers,
and K “equality” circuits to determine the kth coordinate indicating the smallest numbers. We
build a customized garbled circuit to implement FKmin, which requires only K−1 “less than” garbled
circuits and 4(K−1) instances of OT extension. Note that the cost of “multiplexer” garbled circuit
is O(κ · `) due to the need of garbling `-bit strings [57], while the cost of OT instances is O(κ+ `).

Figure 3 illustrates the main idea behind our FKmin protocol. Our protocol can be described in
a recursive way as follows. Assume we have secret shared index vector JC0K⊕ as the output of

FKmin(JX1K, . . . , JX[K/2]K), we also store the shared value of minimum value Xk of X1, . . . , X[K/2].
Similarly, we have JC1K⊕, JXk′K← FKmin(JX[K/2]+1K, . . . , JXKK), where Xk′ is minimum value among

X[K/2]+1, . . . , XK . We observe that index vector C is equal to the concatenation of bC0 and b̄C1,
where b = 1 indicates that the minimum value is Xk, and vice versa. Thus, the parties first evaluate
a “less than” garbled circuit on the inputs Xk and Xk′ . We modify the “less than” garbled circuit
to output 2-bit binary shares (JbK⊕Jb̄K⊕). The next step is to efficiently compute the binary secret
sharing of bC0.

We rewrite bC0 = (bA ⊕ bB)(CA
0 ⊕CB

0 ), and invoke 2 OT instances to output its binary shared
values. Concretely, Alice acts as OT sender with a pair input (m0⊕ bACA

0 ,m0⊕ (bA⊕1)CA
0 ) where

m0 is chosen randomly, while Bob acts as OT receiver with a choice bit bB . As output from OT,
Bob obtains mbB = m0 ⊕ (bA ⊕ bB)CA

0 . Similarly, Alice acts OT receiver with a choice bit bA

and obtains m′bA = m′0 ⊕ (bA ⊕ bB)CB
0 while Bob acts as OT sender and knows m′0. Alice sets

zA = m0 ⊕ m′bA , Bob sets zB = m′0 ⊕ mbB . It is easy to see that zA and zB are binary secret

sharing of (bA ⊕ bB)(CA
0 ⊕CB

0 ).
Recall that we need to store the minimum value of Xk and Xk′ for further computation. This

minimum value is equal to bXk+ b̄Xk′ . To compute shared value of bXk = (bA⊕bB)(XA
k +XB

k ), we
again need 2 OT instances, each has a choice bit bB or bA. However, since the same OT choice bits
are used in this minimum computation and in computing the index vector C above, thus parties
can reuse the OT by concatenating the OT sender’s messages. As a result, determining minimum
is almost free in terms of computational cost.

Compared to generic GC, this solution adds dlog(K)e rounds, but K is usually small (e.g. K = 3
or K = 15). Bunn and Ostrovsky [11] proposed a protocol to find a bit output indicating smallest of
two numbers by running the secure scalar products many times. With various optimizations to GC
over the years, a GC-based minimum protocol is faster than that of [11]. Our protocol is similar to
that of Jäschke and Armknecht [29]. However, the protocol [29] requires K−1 “multiplexer” circuits
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to obtain the minimum value of two numbers, which is mostly free in our protocol. Moreover, [29]
uses FHE to compute the shares of index vector C while our protocol costs only four OT instances.

5 K-Mean Clustering Framework

In this section, we present our secure K-means clustering protocol and show how to put all building
blocks (described in Section 4) together. Recall that the K-means clustering algorithm consists of
two steps: Cluster centroids initialization, and Lloyd’s iteration.

5.1 Cluster Initialization

This step can be done using different strategies. A very common one is to pick random values for
the of all K groups. This approach can be easily implemented in the privacy-preserving setting
by letting one party choose random centroid values, and secret share these values to other party.
Another method is to use the values of K different data points as being the centroids, which is
also simply implemented in this setting. We now propose another approach specified for privacy-
preserving K-means clustering as follows. Each party locally runs the plain-text K-means clustering
algorithm to group his/her data point into [k/2] groups. Parties secret share local centroid of each
group to each other.

In clustering applications, it is often necessary to normalize input data before running clustering.
If the database is horizontally partitioned, each party can locally normalize their data before running
our K-means scheme. If vertically partitioned, the party also can locally normalize their data, and
do a second normalization based on agreed global parameters.

5.2 Lloyd’s Iteration

Lloyd’s iteration can be divided into four steps:
(1) Calculate the distance between each data point and cluster centers using the Euclidean squared

distance
(2) Assign each data point to the closest cluster center
(3) Recalculate the new cluster center by taking the average of the points assigned to that cluster.
(4) Repeat steps 1, 2 and 3 iteratively either a given number of times, or until clusters can no

longer change.
We notice that the data points are fixed during the training while the cluster centers can be

changed between two iterations. Thus, our SESD protocol can be directly applied to Step (1) of
Lloyd’s iteration.

5.2.1 Approximation of Euclidean Distance

In Machine Learning, Euclidean distance (norm-2) is the most common distance measure used
in K-means clustering. However, its main drawback is the high computational cost due to the
multiplication operator. Thus, Manhattan metric (norm-1) and Chessboard metric (norm-∞) are
often considered as alternatives. The Manhattan distance between two points x and y is the sum
of the absolute differences of their coordinates (e.g.

∑d
i=1 |xi − yi|). The Chessboard distance

between two points is the greatest of their absolute differences along any coordinate dimension
(i.e. max

i∈[d]
|xi − yi|). We denote the Manhattan and Chessboard distance between x and y by

z ← FMDist(x, y), z ← FCDist(x, y), respectively.
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Parameters:
• Number of clusters K; number of data points n′, n; dimension d
• Ideal FEDist,FKmin primitives defined in Figure 1 and Figure 2, respectively.
• Garbled circuit z ← GC(x, y, f) described in Section 3.5, which takes x and y as inputs, and computes
z = f(x, y).

Input of Alice: {P1,P2, . . . ,Pn′} ⊆ Fdp

Input of Bob: {Pn′+1,P2, . . . ,Pn} ⊆ Fdp

Protocol:

I. Initialization:

(a) Alice locally runs the plain-text K-means clustering algorithm to group her dataset into dK/2e
cluster centers {φ1, . . . ,φdK/2e}. She secret shares {Jφ1K, . . . , JφdK/2eK} and {JP1K, . . . , JPn′K}
to Bob.

(b) Bob locally runs the plain-text K-means clustering algorithm to group his dataset into
K − dK/2e cluster centers {φdK/2e+1, . . . ,φK}. He secret shares {JφdK/2e+1K, . . . , JφKK} and
{JPn′+1K, . . . , JPnK} to Alice.

II. Lloyd’s Step: Repeat the following until the stopping criterion.

(a) For i ∈ [n], k ∈ [K], Alice and Bob jointly compute secret sharing of the Euclidean squared
distance:

JXikK = FEDist(JPiK, JφkK)

(b) For i ∈ [n], Alice and Bob jointly compute secret sharing of the nearest cluster:

JCiK⊕ = FKmin(JXi,1K, . . . , JXi,KK)

Parties forms K × n matrix C such that the ith column of C is the vector JCiK⊕. Let JMkK⊕
denote the kth row of C.

(c) For k ∈ [K], Alice and Bob jointly calculate secret sharing JϕkK of the new cluster centers as
follows:

• Computing secret sharing of the numerator JMK =
∑n
i=1(MA

k [i]⊕MB
k [i])(PA

i + PB
i )

• Computing secret sharing of the denominator JDK =
∑n
i=1(MA

k [i]⊕MB
k [i])

• Invoking a division garbled circuit JϕkK← GC(JMK, JDK, M
D

).

and then, parties also compute secret sharing of Euclidean squared distance: JekK =
FEDist(JϕkK, JφkK)

(d) Alice and Bob jointly check the stopping criterion: If GC(JeK, ε,min (e, ε)) = 1, where JeK =∑K
k=1 JekK, then stop the criterion, parties reveal ϕk. Otherwise, replacing JφkK = JϕkK

Figure 4: Our Privacy-preserving K-Means Clustering Framework.

We implement secure Manhattan and Chessboard distance, and report their runtime in Section
7.3. We calculate the absolute differences of two values, and find the greatest of these differences
using a garbled circuit.
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5.2.2 Assigning Data Point to Clusters

From Step (1), parties have arithmetic secret shared value JXikK of the distance from each point
Pi, i ∈ [n], to the cluster center φk, k ∈ [K]. For each data point Pi, we find its nearest cluster
by invoking our FKmin protocol (as described in Section 4.3). The index vector output JCiK⊕ ←
FKmin(JXi1K, . . . , JXiKK) indicates which cluster center this data point is assigned to.

5.2.3 Updating Cluster Centers

We form a matrix C of size n×K, where each row is index vector Ci obtained from Step (2). Let
Mk, k ∈ [K], be the row of the matrix transposition of C (see Figure 9 in Appendix B) . It is easy
to see that the ith element of Mk is set to be 1 if and only if the data point Pi is assigned to the
cluster k. Therefore, we can calculate the new centroid by taking the mean:

ϕk =

∑n
i=1 Mk[i]Pi∑n
i=1 Mk[i]

=

∑n
i=1(MA

k [i]⊕MB
k [i])(PA

i + PB
i )∑n

i=1(MA
k [i]⊕MB

k [i])
(3)

To compute the secret sharing of the updated cluster ϕk, parties first compute the numerator
and denominator and then calculate the reminder using a division garbled circuit. Similar trick used
in determining minimum of two shared numbers in Section 4.3, the numerator can be implemented
using 4n OT invocations. Since the same bits MA

k [i] and MB
k [i] are used in both numerator

and denominator computation, we can reuse the OT instances to computing the denominator.
Therefore, updating the centroid ϕk requires 4n OT instances and one division garbled circuit.

5.2.4 Checking the Stopping Criterion

After obtaining the secret sharing JekK of the Euclidean squared distance between the new clus-
ter centroid ϕk and φk, parties locally sum up these shares and invoke a ‘min’ garbled circuit
GC(

∑K
k=1 JekK, ε,min) = 1 to check the stopping criterion.

5.3 Main Construction

We describe the main construction of K-means clustering protocol in Figure 4. It closely follows
and formalizes these above steps presented in sections 5.1 and 5.2. Note that the input/output of
each Lloyd’s steps are secret shares of corresponding variables.

Theorem 1. The protocol in Figure 4 securely computes the K-means clustering in semi-honest
setting, given the ideal Oblivious Transfer (OT), Euclidean Squared Distance (SESD), and Garbled
Circuit (GC) primitives defined Figure 7, Figure 1, and Section 3.5, respectively.

Proof. We exhibit a simulator Sim for simulating a corrupt party Alice. The simulator for Bob
should be the same.

Sim simulates the view of corrupt Alice, which consists of her input/output and received mes-
sages. Sim proceeds as follows. It calls FEDist simulator SimFEDist

(JPiK, JφkK),∀i ∈ [n], k ∈ [K], and
then simulates step (II.b) by calling SimFK

min
(JXi,1K, . . . , JXi,KK),∀i ∈ [n], and appends its output to

the general view. For step (II.c), Sim first computes the numerator/denominator using OT, runs
simulator GC, and appends its output to the view. We now argue the indistinguishability of the
produced transcript from the real execution. For this, we formally show the simulation by proceed-
ing the sequence of hybrid transcripts T0, . . . , T4, where T0 is real view of C, and T4 is the output
of Sim.
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Hybrid 1. Let T1 be the same as T0, except the FEDist execution is replaced with running the
simulator SimFEDist

(JPiK, JφkK), ∀i ∈ [n], k ∈ [K]. Because SimFEDist
is guaranteed to produce

output indistinguishable from real, T0 and T1 are indistinguishable.

Hybrid 2. Let T2 be the same as T1, except the FKmin execution is replaced with running the sim-
ulator ∀i ∈ [n], SimFK

min
(JXi,1K, . . . , JXi,KK). FKmin takes the secret share value of the Euclidean

squared distance between point Pi and cluster φk, which does not reveal any information
(e.g. the distance). Moreover, the output of SimFK

min
is indistinguishable from real execution,

thus T2 and T1 are indistinguishable.

Hybrid 3. Let T3 be the same as T2, except the execution step (II.b) is replaced as follows.

• Numerator: one can view the numerator computation as a scalar product of two vectors
Mk and Pi, which is implemented using OT. As long as the OT used is secure, so is this
computation.

• Denominator: computing secret sharing of the denominator is indeed a scalar product
between Mk and a vector of one. Thus, the simulation is same as above.

• Division: the properties of the GC allow to replace the division’s outputs with random.

In summary, T3 and T2 are indistinguishable.

Hybrid 4. Let T4 be the same as T3, except the GC execution is replaced with running the
simulator SimGC(JeK, ε,min (e, ε). Because pseudorandomness guarantees of the underlying
simulator, T4 and T3 are indistinguishable.

6 Multi-party Clustering

In this section, we extend our two-party clustering scheme to support a set of users U0, . . . , Um who
want to train a clustering model on their joint data. We consider two following models:

1. Server-aided model: Given a set of users with private datasets, server-aided model allows the
clients to outsource the computation to two untrusted but non-colluding servers.

2. Multi-party computation: users jointly train the model on their joint data without requiring
a trusted/untrusted additional party.

6.1 Server-aided Model

The server-aided setting has been formalized, utilized in various previous work [33], and in privacy-
preserving machine learning model [41, 42]. Given a semi-honest adversary A who can corrupt any
subset of the users and at most one of the two untrusted servers, the security definition of this
model requires that such an adversary only learns the data of the corrupted users and the final
model, but nothing else about the remaining honest non-corrupted users’ data. It is easy to see
that our K-means clustering scheme (described in Section 5) can be directly applied to this model
where users can secret share their inputs among the two untrusted servers. This distribution step
can be done in a setup phase. Therefore, the advantage of this model is that it does not require
the users to be involved throughout the protocol computation.
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6.2 Multi-party Computation Model

The data stream model has attracted attention in machine learning and data analysis, and is
used to analyze very large datasets. Popular clustering data stream algorithms are CURE [24],
BIRCH [64], and STREAM [23] which achieves a constant factor approximation algorithm for
the k-Median problem. A clustering data stream is a divide-and-conquer algorithm that divides
the whole data into small pieces, and clusters each one of them using K-means, then clusters the
resulting centers. Inspired by this technique, we propose a secure clustering scheme in multi-party
setting. This model provides a weaker security guarantee where we assume that we know user U0

who does not collude with other users.
A solution is to perform a secure two-party computation where each user plays the role of one

party in our privacy-preserving clustering scheme (ref. Section 5). Concretely, two users U0 and
Ui, i 6= 0, perform 2-party secure K-means clustering. As a result, users receive the shared value of
the cluster centroids (denote them as φU0

k and φUi

k ). Next step is that user Ui sends these obtained

shared values φUi

k to user Ui+1 in the clear (this captures the property that users Ui, i 6= 0, are not
colluding with U0, therefore, cannot reconstruct the intermediate cluster centroids). Users U0 and
Ui+1 now can use the values φU0

k and φUi

k as the initial centroids for training model on their data.

7 Experimental Results

We implement a privacy-preserving clustering system based on our proposed protocols and report
the experimental results in this section. We also compare the performance of our scheme with the
state-of-the-art privacy-preserving clustering protocols in [54] and [29].

7.1 Experimental Setup

To understand the scalability of our protocol, we evaluate it on a single server which has 2x 36-core
Intel Xeon 2.30GHz CPU and 256GB of RAM. Although there are many cores, each party does
their computation only on a single thread. We run all parties in the same network, but simulate a
network connection using the Linux tc command: a LAN setting with 0.02ms round-trip latency,
10 Gbps network bandwidth. We observe that running times on WAN can be computed with the
linear cost model as the overall running time is equal to the sum of computation time and data
transfer time. Moreover, the previous work has conducted expermentials numbers in LAN setting
only. Thus, we will focus on the LAN setting in all the experiments below.

For the most direct comparison to the work of Jäschke and Armknecht [29], we matched the
test system’s computational performance to that of [29]. We evaluate our protocol on a machine
Intel Core i7 2.60GHz with 12GB RAM.

In our protocol, the base-OT is implemented using Naor-Pinkas construction. The system is
implemented in C++, and builds on use the primitives provided by Ivory Runtime library [4]
for garbled circuits (free XOR [37], half-gate [62], fixed-key AES garbling optimizations [9]), and
libOTe [50] for OT extension of [26]. All evaluations were performed with statistical security
parameter λ = 40 and computational security parameter κ = 128. Our complete implementation
is available on GitHub: https://github.com/osu-crypto/secure-kmean-clustering.
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Dataset n K d
Lsun [29] 400 3 2
arff [2] 1000 2 4
S1 [55] 5000 15 2
scikit-learn [45] 10000 9 {2, 4, 6, 8, 10}
self-generated {10000, 100000} {2, 5} 2

Table 1: Descriptions of the Datasets, where n,K, T is the size of database, number of clusters,
and number of iterations, respectively.

7.2 Datasets

For fair comparison, we use two datasets, each of which was evaluated in some relevant previous
works:
• The first dataset is Lsun dataset [5], which consists of 400 data points of 2 dimensions and 3

clusters. This dataset was evaluated in [29]
• The second dataset is a 2D synthetic dataset S1 [17], which was experimented in [54] in the

Differentially Privacy setting. The S1 dataset contains 5,000 data points and 15 Gaussian
clusters.

We consider arff [2] dataset for a visual accuracy comparison. The dataset consists of 1000 data
points of 4 clusters and 2 dimensions. Furthermore, to verify the performance of our scheme for
datasets with different dimensions, we extract scikit-learn [45] to get dataset that contains 10000
vectors in d ∈ {2, 4, 6, 8, 10}-dimensional spaces, and group the dataset into 9 clusters. Finally, we
generate synthetic 2D datasets with sizes of {10000, 100000} and K ∈ {2, 5}. Table 1 summarizes
the datasets used in our experiments.

7.3 Experiments for Distance Metric

We start with the experimental results for the secure Euclidean squared distance protocol (its
functionality described in Figure 1), and compare it with previous privacy preserving solutions [15,
32].

7.3.1 Secure Euclidean Squared Distance

To examine how our SESD protocol scales, we run experiments on datasets with n ∈ {212, 216}
size, K ∈ {4, 8, 16} clusters, and T ∈ {10, 20} iterations. The field size is set to ` = 232 and the
dimensions of the data is fixed to be d = 2. We note that ` and d do not affect the comparison with
previous works.

Table 2 shows the running time (in millisecond) to perform a SESD, and the number of OT
instances needed. Recall that SESD from the ith point to the kth cluster is equal to

FEDist(JPiK, JφkK) =

d∑
ρ=1

(PA
i [ρ]− φAk [ρ])2 +

d∑
ρ=1

(PB
i [ρ]− φBk [ρ])2

+ 2
d∑
ρ=1

(PA
i [ρ]− φAk [ρ])(PB

i [ρ]− φBk [ρ])
)

All previous privacy preserving clustering protocols [11, 27, 29] use a standard secure multipli-
cation (based on garbled circuit or homomorphic encryption) to compute the mixed term of the
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above equation. Recently, [32] proposed and implemented SESD using the state-of-the-art secure
multiplication [15]. The baseline in Figure 1 shows the performance of [32]. We obtain the baseline
measurements by running the implementation of ABY [3, 32]. We note that in the baseline the
running time per SESD does not depend on n,K, T since this solution computes the mixed term
independently from other SESD instances. Therefore, this solution requires `dnKT instances of
OTs in total. For a database of size n = 216, K = 16, and T = 20, this baseline requires around
230 OT instances, which does not scale well.

The mixed term can be written as the formula (2). We observe that in each tth iteration, parties
perform K secure multiplications with the same factor PA

i or PB
i , thus, we compute our new SESD

formula (2) by using the technique of [40]. Concretely, all OT sender messages can be concatenated
before encrypting and sending them to other party. The column “Our Amortized” in Table 2
and Table 7 (in Appendix) present the performance of this optimization. For n = 216, K = 4,
and T = 20, we obtain an overall running time of 0.172 ms per SESD in the amortized setting.
Increasing the number of cluster from 4 to 16, our protocol shows a factor of 3.44× improvement in
terms of running time, due to the fact that it amortizes well. This solution requires `d(2n + K)T
instances of OTs in total. Note that the technique of [40] cannot be directly applied to compute
SESD without breaking down FEDist(JPK, JφK) into our formula (2). In other words, the technique
of [40] is worthless if computing the mixed term directly. Therefore, we do not consider [40] as the
baseline for SESD comparison.

In the K-means application, the centroids are changing after each iteration, thus our final secure
multiplication protocol allows these values to change during the execution. The column “Sequential
Amortized” shows its performance (described in Section 4.2), where parties can reused OT instances
across all iterations. Our experiments show that our SESD is highly scalable. For a database of
size n = 216, K = 16, and T = 20, our protocol requires around 223 OT instances, which is 159×
lower than that of the baseline. In terms of running time, our protocol requires only 0.135 ms to
compute a SESD in the sequential amortized setting with n = 216, K = 4, and T = 10. For the
same n, when increasing the number of cluster to K = 16, and the number of iteration to T = 20,
our protocol running time is 0.03 ms per SESD.

Of particular interest is the column “Improved Factor”, which presents the ratio between the
runtime and the number OT required of the baseline and our scheme. Our protocol yields a better
speedup when the dataset size and number of iterations are larger. For smallest dataset size of
n = 212,K = 4 and T = 10, the protocol achieves a speed up of about 47×. When considering the
larger database size n = 216,K = 16, the speed up of 134.1 × is obtained for T = 10 and 148.1×
at T = 20 iterations.

7.3.2 Approximation of Euclidean Distance

As discussed in Section 5.2.1, Manhattan metric and Chessboard metric (norm-∞) are considered
as alternative distance metrics in some ML applications. We implement these distance metric by
employing a generic secure computation, and compare their performance with our SESD. We note
that Manhattan metric is used in the privacy-preserving clustering protocol of [29]. We benchmark
these distance protocols and present their runtime in Table 3. It is not clear how to compute these
distance metrics in the amortized setting. Thus, the parameters n,K, T do not affect their cost.

The running time to measure Manhattan and Chessboard distance is similar in the low-
dimension space. It dues to the fact that secure Chessboard distance computation requires a
small number of the “maximum” gabled circuits. Computing Manhattan or Chessboard distance
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Parameters RunTime(ms) per SESD

n K T
Baseline Our Our Sequential Improved

[32] Amortized Amortized Factor

212
4

10

4.398

0.212 0.094 47×
20 0.152 0.079 55.7×

16
10 0.062 0.036 122.5×
20 0.061 0.031 142.5×

216
4

10 0.235 0.135 32.5×
20 0.172 0.093 47.5×

16
10 0.051 0.033 134.2×
20 0.05 0.03 148.1×

Table 2: Running time in millisecond per SESD (described in Figure 1), where n,K, T is the size
of database, number of clusters, and number of iterations, respectively, dimension d = 2, and
bit-length ` = 32.

Distance Dimension d
Metric 2 3 4 10

Manhattan 1.163 1.623 1.96 4.763
Chessboard 1.222 1.711 2.294 5.791

SESD

{K = 4, T = 10} 0.094 0.155 0.219 0.474
{K = 4, T = 20} 0.079 0.123 0.164 0.398
{K = 16, T = 10} 0.036 0.043 0.066 0.172
{K = 16, T = 20} 0.031 0.042 0.063 0.163

Table 3: Running time in millisecond per a distance metric with d dimension, and bit-length ` = 32.
In our SESD protocol, data size is n = 212, K,T is the number of clusters, and number of iterations,
respectively.

between two 3-dimensional vectors takes around 1.7ms. Increasing the dimension from d = 3 to
10, Manhattan distance computation costs 4.7 ms while Chessboard distance computation requires
5.7ms.

It is easy to see from Table 3, our amortized SESD cost is 8.9×− 38.5× faster than the cost of
computing a Manhattan distance, and 10.5×− 40.5× faster than that of Chessboard distance. We
note that our SESD is amortized well in both sequential and non-sequential setting. When executing
more and more SESD (between one fix point and other points), the cost drops dramatically to few
microseconds per SESD. Thus, we use SESD in our experiments for privacy-preserving clustering.

Very recently, [13] proposed an efficient SESD protocol based on additive homomorphic encryp-
tion, which is used for k-Nearest neighbor search problem. However, it is not quite clear how to
extend their protocol to compute a large number of SESD in our sequential amortized setting.
From [13, Table 1], their protocol takes 19.8 seconds to compute one million distances between two
points, each point has 128 dimensions. Thus, one multiplication of two 8-bit integers [13] requires
about 1.54 nanoseconds in the average cost. On the other hand, from Table 3, our SESD takes only
0.011 nanoseconds to compute one multiplication of two 32-bit integers in the sequential amortized
cost.
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7.4 Experiments for Clustering

In this section we present our experimental results of our privacy-preserving clustering protocol.
We ran our experiments on a large number of synthetic data sets to show the practicality and
scalability. We also benchmark our scheme on the real dataset for comparison with previous work.

The offline phase includes the base OTs. We generate garbled circuits and OT extensions needed
for FKmin executed in the online phase (even these steps can be performed in the offline phase).

7.4.1 Scalability

Experiments with Generated Dataset We generate 2-dimensional synthetic data sets on the
range of set sizes n ∈ {10000, 100000}. Our synthetic data set generator takes a number of cluster
K ∈ {2, 5}. There exist various criteria to stop iterations in K-means. In this experiment, we
simply set the number of iterations to a fixed value (say, T ∈ {10, 20}).

We report both the running time and the communication cost of our scheme in Table 4. We
recall that our scheme consists of three major phases, which are distance phase, assignment phase,
and update phase (as described in Figure 4). To understand the performance of each phase, we
also report their empirical results in Table 4. The main cost of our scheme comes from the second
phase, where we need to evaluate (n − 1) “less than” garble circuits. To save time in evaluating
this phase a case of n = 105 and K = 5, instead of running it in every iteration, we measure its
runtime for one round iteration, and multiply by the number of iterations T .

As shown in Table 4, our scheme is practical. Small-size problems are few minutes; and larger
size problems (n = 100, 000) is under 2 hours, all single-threaded. In particular, it only takes 1.92
minutes to train a clustering model securely on 10,000 data samples with 2 clusters. From 1.92
minutes needed for privacy preserving training, only a small portion is spent on the distance and
update phases. Our scheme is mostly based on symmetric-key operations, it introduces a overhead
on the communication, namely 2.5GB for n = 10, 000. When n = 100, 000 and K = 5, our protocol
takes 115.78 minutes to train the model, in which 81.5% of the total runtime comes from the
assignment phase.

It is worth noting that our protocol is amenable to parallelization. Specifically, the computing
SESD and updating the centroids steps can be parallelized. Moreover, one can compute FKmin in
parallel per branch of the tree (see Figure 3). Therefore, we expect that our protocol can securely
cluster a large dataset of n = 100, 000 under 5 minutes using 32 threads. In addition, we estimate
that our scheme can deal with datasets of millions points by using several servers (e.g. 10 servers).
Experiments with Different Dimensions From the breakdown performance of our scheme
in Table 4, we can observe that the majority (70-80%) of the total cost is for the “Assign Points
to Cluster” step, which is independent of the dimension because distance metric is a number.
Additionally, from Table 2, it can seen that the cost of computing SESD increases 5× as the
dimension increases from 2 to 10, which implies that the running time of SESD is almost linear in
the dimension.

To understand the impact of different dimensions on the total cost of our scheme, we evaluate our
protocol using scikit-learn [45] with different values of d ∈ {2, 4, 6, 8, 10}. The number of iterations
T is set to be 15. The numerical results are reported in Figure 5. It can be observed that increasing
d affects only the SESD and “Centroid Update” phases in the clustering algorithm. For smaller
d, these two phases account for only a small portion of total running-time of our scheme. When
increasing dimension to 10, these phases takes 30% of the total cost.
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Parameters RunTime (minute) Communication (MB)

n K T
Distance Assign Points Update

Total
Distance Assign Points Update

Total
(SESD) to Clusters Centroids (SESD) to Clusters Centroids

104
2

10 0.65 1.14 0.13 1.92 200 2330 10 2540
20 0.95 2.29 0.26 3.5 398 4660 20 4878

5
10 0.73 4.61 0.47 5.81 496 8760 40 9296
20 1.18 9.23 0.94 11.35 989 17520 80 18589

105
2

10 5.69 11.12 1.2 18.02 1932 21400 140 23472
20 10.38 22.25 2.4 35.04 3985 42800 280 47065

5
10 5.77 47.18 5.13 58.09 4969 85630 340 90939
20 11.13 94.35 10.27 115.75 9927 171260 680 181867

Table 4: Running time in minute and communication cost of our privacy-preserving clustering
protocol, where n,K is the size of database and the number of clusters, respectively, T is number
of iterations, dimension d = 2, and bit-length ` = 32.

Figure 5: Running time (in minute) of our privacy-preserving clustering protocol on dataset scikit-
learn, where dataset size is 10,000 points, dimension is d ∈ {2, 4, 6, 8, 10}, the number of cluster and
iterations are 9 and 15, respectively.

7.4.2 Comparison with Prior Work

We compare our prototype to the state-of-art privacy-preserving clustering protocols of Jäschke and
Armknecht [29], and differential privacy clustering protocols of Su et al. [54]. Since implementation
of the work [29] is not publicly available, we use their reported experimental numbers.

Comparison with [29] For the most direct comparison, we perform a comparison on the Lsun
dataset [5] to match the dataset used in [ [29], Table 2]. We also matched the test system’s
computational performance to that of [29]. Since [29] ran experiments on Intel i7-3770, 3.4 GHz,
20GB RAM; we use a similar (1.32× slower) machine as reported in Section 7.1. Table 5 presents
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Prot. Set.
Lsun S1

Exact Stabilized Approximate
(T = 30)

(T = 15) (T = 40) (T = 40)

[55] DP - - - 23.18s
[29]

SH
545.91d 15.56h 15.47h -

Ours 22.21s 48.9s 48.9s 1472.6s

Table 5: Comparison of total runtime between our protocol and [55, 29] on dataset Lsun and S1. T
is number of iterations. “DP” and “SH” denote differential-privacy and semi-honest setting. “s”,
“h”, and “d” denote second, hour and day, respectively. Cells with “-” denote the runtime not
given.

the running time of our protocol compared with [29]. The work of [29] evaluate three different
versions of privacy-preserving K-means clustering algorithm.

The first scheme [29] is exact K-means algorithm, in which the authors use TFHE library [6] to
implement ciphertext division c1

c2
, where both c1 and c2 are ciphertexts. This is a needed operation

in the update phase which recalculates the new cluster center by taking the average of the values
of the point’s attributes that are part of the cluster. The authors encoded each data entry with
35 bits, in which 20 bits are used for the numbers after the decimal point. In our experiment, we
use 32 bits to encode the data entry and use garble circuits to implement the ciphertext division
operation. We fix the number of iterations to be T = 15 rounds, which is the same as in the
experiment in [29]. As shown in Table 5, the protocol [29] costs 545.91 days to train Lsun dataset
while our scheme requires only 22.21 seconds (i.e, five orders of magnitude faster than [29]).

Since the main computational cost of their exact version comes from the division operation
where both numerator and denominator are ciphertext, the authors modify the update phase of
K-means algorithm to have denominator to be a constant number. Concretely, their new kth

cluster center can be computed by
∑n

i=1 P′
i

n , where P′i is exactly the data entry Pi if this data
entry is assigned to the kth centroid, otherwise, P′i is equal to the old centroid value φk. They
call this algorithm the stabilized K-means. Since the centroids move more slowly in this scheme,
the experiment [29] chooses T = 40 iterations which is also used in our experiment. Section 7.4.1
shows that our update phase takes only a small portion of the total runtime, therefore, we do not
apply the stabilized technique [29] in our protocol (which is in favor of [29]). From Table 5, the
protocol [29] costs 15.56 hours to train Lsun dataset while our scheme requires 48.9 seconds, an
approximate 1145× improvement.

The third scheme [29] is approximate K-means algorithm, where Euclidean distance is replaced
by Manhattan distance. This modification speeds up the runtime of the protocol [29]. However, as
discussed in Section 5.2.1, the amortized cost of our SESD is much better than that of Manhattan,
thus we use SESD in our experiment. We fix the number of iterations to be T = 40 rounds, which
is also used in the experiment [29]. Our experimental results show that our clustering scheme is
1138× faster than the third version of privacy-preserving K-mean clustering algorithm [29].

Comparison with [55] We do not intend to give a detailed comparison between MPC-based
and DP-based methods because the settings and design goals are different (comparing apples and
oranges). We only briefly compare running time of these two methods in Table 5 to examine the
performance gap between our semi-honest scheme and DP security model. The experimental results
on 2D synthetic dataset S1 [17] show that our privacy-preserving K-means clustering scheme is only

20



63.5× slower than the differential privacy model [55]. We include more discussion in Appendix A.3.

7.4.3 Accuracy

The accuracy is the percentage of entities in the evaluation set grouped correctly. In this section,
we compare the accuracy of the produced models using our proposed approach and the plain-text
K-means clustering algorithm (i.e., without privacy). For a visual comparison, we use the 2D
dataset from arff [2] and S1 [17], which have the actual labels or ground truth centroids shown in
Appendix B (Figure 10a and Figure 11a, respectively). We evaluate the plain-text algorithm and
our privacy-preserving scheme, and present the obtained groups centroids in Appendix B (Figure
10b, 11b, 11c).

All functions employed in our framework is the same as the original functions used the plain-text
K-means clustering, except the update phase (step 3c in Figure 4), where we truncate the fractional
part of the new cluster centroid to obtain an integer. Note that we use the truncation technique
mentioned in [40]. The experimental results show that the truncation has a negligible impact on
model accuracy compared to the original function. Our scheme with truncation reaches the same
accuracy compared to a plain-text K-means clustering on decimal numbers. When training dataset
arff using both our privacy preserving approach and plain-text K-mean algorithm, 95% of entities
have been grouped correctly compared to the ground truth model.

Indeed, the K-means algorithm itself already has certain errors. A well-known disadvantage of
the K-means algorithm is that its performance lacks of consistency. A random choice of cluster
centers at the initialization step may result in different clusters since the algorithm can be stuck
in a local optimum and may not converge to the global optimum. Therefore, in practice, we often
run the algorithm with different initializations of centroids, and then pick the result of the run that
yields the lowest sum of squared distance. Hence, we also compare our privacy-preserving model to
the plaintext k-mean algorithm on S1.

Given the ground-truth of dataset S1, we find the best matching from each obtained centroid
to them. We calculate the Euclidean distance between each obtained centroid and all ground truth
centroids, map each obtained centroid to the ground truth centroid whose distance is the minimum
among all the ground truth centroids. We note that a ground-truth model is often not available
in practice since clustering is an unsupervised learning method. As shown in Appendix Figure 11,
both models produce the same accuracy ranging from 86% to 99% depending on the initially chosen
centroids.

In all experiments, our privacy-preserving model achieves the same accuracy that the plaintext
algorithm does. It can be explained as follows: the loss of accuracy of our protocol compared to the
plaintext algorithm is solely due to the garble-circuit based-division operation as mentioned above.
Moreover, the roundoff/truncation error is very small (e.g. 10−4). Therefore, the loss of accuracy
does not occur in our experiments. However, in the case this error is not very small, we would like
to note that the accuracy of our model can be improved by increasing the number of digits used in
the division operation. Specifically, during the truncation step, if we keep more digits, the accuracy
of our scheme will increase, however, it requires more computation/communication cost. There is
a tradeoff between computational time and accuracy of the division operation.

8 Conclusion

In this paper, we presented a novel privacy-preserving K-means clustering scheme with an efficient
batched secure squared Euclidean distance and a customized garbled circuit to compute the binary
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secret sharing of the minimum value among a list of secret shared values.
Although our proposed protocol currently takes about 2 hours for clustering 100,000 records,

it is practical for many real-world scenarios where privacy is critical to the parties (e.g., medi-
cal records of patients/hospitals, customer databases of companies) and the clustering algorithm
runs periodically (i.e., no need to be real-time). For example, two hospitals/companies usually
just want to train a model in a weekly, monthly, or even quarterly or yearly basis to update
knowledge about patients/customers/items in their joint database, to have efficient and dedicated
treatments/marketing schemes targeted/tailored for each subgroup (i.e., each cluster). More im-
portantly, it is worth emphasizing that the proposed algorithm is already five orders of magnitude
faster than the state-of-the-art work. We believe our work can serve as an important step to fa-
cilitate the development of faster privacy-preserving clustering algorithms in the future, especially
through MPC.

We finally describe three directions for future work: improving scalability, other applications of
secure squared Euclidean distance, and extension to malicious adversaries.

• The current implementation of our scheme only uses single-thread while our proposed protocol
can be implemented in a parallel fashion. To enhance scalability, we plan to implement each
step of the protocol (Figure 4) in parallel, which allows the scheme to deal with a big dataset
(e.g. million points) in minutes.

• We believe that the construction of our SSED is of independent interests, and can be used in
many applications such as k-nearest neighbors or face recognition. However, we usually need
to tailor the construction for each specific problem.

• Another direction is to extend our scheme to the malicious adversarial setting where the
combination of malicious secure computation protocols is a non-trivial problem. For example,
it is not known how to efficiently verify parties that use the same shares from the previous
k-mean step to the next steps. One promising direction is to investigate the malicious secure
SPDZ protocol [14] which uses MACs to achieve malicious security.
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A Details of Our Building Blocks

A.1 Revising Communication-Efficient Secure multiplication Based on
1-out-of-N OT

Recently, several works [34, 35, 48, 43] have proposed efficient protocols to generalize 1-out-of-2
OT extension to 1-out-of-N OT, in which the the receiver learns one of the sender’s N messages.
To achieve 1-out-of-N OT, the main modification compared to the original IKNP scheme is the
different kinds of encoding used to construct the IKNP OT extension matrices. While IKNP use
a 128-bit repetition code, Kolesnikov and Kumaresan [34] employ 256-bit Walsh-Hadamard error-
correcting code and achieve 1-out-of-N OT on random strings, for N up to approximately 256.
The works [48, 43] use either pseudo-random code or linear BCH code to achieve 1-out-of-N OT
for large N . It is important to notice in the 1-out-of-N OT that the number of base OTs have to
increase to the codeword length of the underlying code in order to obtain the same computational
security level κ = 128 as in the original 1-out-of-2 OT IKNP. The reason is that the Hamming
distance of two codewords has to be at least κ. For arbitrarily large N and arbitrarily bit length `
of OT messages, the best 1-out-of-N OT protocol [35] uses 424-448 bits codeword length, which
requires 424-448 bits of communication per OT and N hash evaluations. For smaller `, the best
protocols [48, 43] use linear BCH code, in which codeword length depends on `.

Several works proposed to replace 1-out-of-2 OT with 1-out-of-N OT in some specific problems
(e.g. Private Set Intersection [35, 43]) to improve their performance. The work [16] proposed a
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communication efficient Beaver’s triple generation which implicitly improves secure multiplication
protocol. Our Section 4.1.1 explicitly described their construction. We now discuss the choice of
OT variants, and parameter N .

There are two noteworthy aspects of the 1-out-of-N OT based protocol. First, the 1-out-of-N
OT protocol of [35, 48, 43, 46, 47] is on random strings, in which the protocol itself “chooses” the
OT messages ri∈[N ] randomly, gives them to the sender and gives one chosen message rb to the
receiver. In this secure multiplication protocol, we need a standard 1-out-of-N OT protocol where
the OT messages mi∈[N ] are given by the sender. To achieve this OT variant, the sender requires
to correct the OT random messages by sending ci = ri +mi to the receiver, who later obtains the
correct choice message mb by subtracting rb from the received ci. This needed step increases the
bandwidth requirement of the protocol. Thus, it is necessary to analyze what is the best value for
N . Second, 1-out-of-2 OT-based protocol can use Correlated OT extension [7] since the sender’s
OT inputs mi,0,mi,1 are chosen randomly subject to mi,0 + mi,1 = 2iy. Doing so reduces the
communicational cost from the sender to the receiver by a factor of κ+`

κ+2` . This correlated OT idea
can be used in the 1-out-of-N OT-based protocol. As a result, we reduce the bandwidth requirement

by a factor of κ+(N−1)`
κ+N` .

Table 6 presents the communication cost the the 1-out-of-N OT-based secure multiplication
of two `-bit strings. The required codeword length and the best error-correcting code are chosen
according to [1] to achieve Hamming distance of two codewords at least κ. For short bit-length
` = 8 or ` = 16, Table 6 shows that using 1-out-of-24 OT gives us the best communication cost for
secure multiplication, which is 1.2−1.51× lower bandwidth requirement than the original 1-out-of-2
OT-based one. For bigger `, an incremental improvement is achieved by employing 1-out-of-22 OT
in the secure multiplication protocol.

A.2 SESD Details

The formal details of our SESD protocol are given in Figure 6. It closely follows and formalizes the
detail presented in sections 4.2 and 4.1.2. The security of our construction follows in a straight-
forward way from the security of its building block (e.g. oblivious transfer) and the encryption
scheme. Thus, we omit the proof of the following theorem.

Theorem 2. The protocol in Figure 6 securely computes the Secure Euclidean Squared Distance
(SESD) functionality (Figure 1) in semi-honest setting, given the ideal Oblivious Transfer (OT)
defined Figure 7.

A.3 Comparison with [55]

We evaluate our prototype on 2D synthetic dataset S1 [17], which was evaluated in [55] for dif-
ferentially privacy setting. We obtained the implementations of Su et al. scheme [55] from the
authors’s website, and evaluate their protocol on our own machine, described in Section 7.1 (a
single server with 2x 36-core Intel Xeon 2.30GHz CPU and 256GB of RAM). We note that the
implementation [55] is in Python.

We recall that differential privacy requires the output of a data analysis mechanism approxi-
mately the same, even if any single entity of the input database is arbitrarily added or removed.
Formally, a randomized mechanism A gives ε-differential privacy [?, ?, 55] if for any pair of neighbor-
ing datasets D and D′, and any S ∈ Range(A), P r[A(D) = S] ≤ eεPr[A(D′) = S]. Differentially
privacy is used in machine learning (ML) context such that the server has full access to the data
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N Improved
21 22 23 24 28 Factor

Codeword length 128 192 224 240 255

` = 8 136 108 105 90 288 1.51
Comm. ` = 16 288 240 252 240 1085 1.2
per OT ` = 32 640 576 616 720 4209 1.11

` = 64 1536 1536 1848 2400 16575 1

Table 6: Bit-length (in bit) of Linear Error Correcting Code (OT width) and the communication
cost of secure multiplication (in byte) for 1-out-of-N OT of `-bit strings.

Parameters #OT (×`d)

n K T
Baseline Our Our Sequential Improved

[32] Amortized Amortized Factor

212
4

10 163840 81960 8232 19.9×
20 327680 163920 8272 39.6×

16
10 655360 82080 8352 78.5×
20 1310720 164160 8512 154×

216
4

10 2621440 1310760 131112 20×
20 5242880 2621520 131152 40×

16
10 10485760 1310880 131232 79.9×
20 20971520 2621760 131392 159.6×

Table 7: The number of OT instances needed for SESD protocol (described in Figure 1), where
n,K is the size of database, T is number of iterations, dimension d = 2, and bit-length ` = 32.
in plaintext but wants to guarantee that the released model cannot be used to infer the data used
during the training. A common technique used in differentially private ML is to introduce an addi-
tive Laplacian noise [?] to the data or the iteration of updating function scaled with the sensitivity.
In the experiment of Su et al., we set ε = 1 and T = 30.

Typically, training a differentially privacy ML model is much faster than training semi-honest
ML. We are interested to examine the performance gap between our scheme and this security model.
The experimental results in Table 5 show that our privacy-preserving K-means clustering scheme is
only 63.5× slower than the differential privacy model [55]. Concretely, our protocol requires 1472.6
seconds to evaluate the model on 2D synthetic dataset S1 while the differential privacy model [55]
requires 23.8 seconds.

B Figure Details
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Parameters:
• Number of iterations K; number of clusters K; number of data points n; dimension d; value N
• Ideal OT primitive defined in Figure 7
• An encryption/decryption scheme Enc,Dec (e.g. AES)

Input of Alice: Arithmetic secret shares PA = {PA
1 ,P

A
2 , . . . ,P

A
n } of n points P = {P1,P2, . . . ,Pn}

Input of Bob: Arithmetic secret shares PB = {PB
1 ,P

B
2 , . . . ,P

B
n } of n points P

Protocol:

1. For each secret shares PA
i ∈ PA:

• Alice uses an N -based representation and rewrites PA
i =

∑d`/ log(N)e−1
j=0 N jPA

i [j]

• Parties invoke d`/ log(N)e instances of 1-out-of-N OT as follows:

– Bob acts as an OT sender with input sequence (∆B
i,j,0, . . . ,∆

B
i,j,N−1) which are randomly chosen from Z2`

– Alice acts as an OT receiver with choice value PA
j [i], and obtains ∆B

i,j,PA
i [j]

2. For each secret shares PB
i ∈ PB :

• Bob uses an N -based representation and rewrites PB
i =

∑d`/ log(N)e−1
j=0 N jPB

i [j]

• Parties invoke d`/ log(N)e instances of 1-out-of-N OT as follows:

– Alice acts as an OT sender with input sequence (∆A
i,j,0, . . . ,∆

A
i,j,N−1) which are randomly chosen from Z2`

– Bob acts as an OT receiver with choice value PB
j [i], and obtains ∆A

i,j,PB
i [j]

3. For each iteration t ∈ T :

Input of Alice: Arithmetic secret shares {φAt1,φAt2, . . . ,φAtK} of K centroids {φt1, . . . ,φtK}
Input of Bob: Arithmetic secret shares {φBt1,φBt2, . . . ,φBtK} of K centroids {φt1, . . . ,φtK}
I. Sub-protocol: computing the first term of the mixed term in formula (2)

(1) For each i ∈ [N ]:

• For each k ∈ K, Bob defines yi,k := PB
i [ρ]− φBtk[ρ]

• For j ∈ [d`/ log(N)e] and θ ∈ [N ], Bob computes encryptions ei,j,θ = Enc(∆B
i,j,θ,mj,θ,1||mj,θ,2|| . . . ||mj,θ,K) where

for all mj,0,k∈[K] is randomly chosen from Z2` ; for 1 ≤ θ ≤ N − 1, mj,θ,k = (N jθyi,k −mj,0,k) mod 2`

(2) Bob sends to Alice the ciphertexts ei,j,θ in order.

(3) For each i ∈ [N ] and j ∈ [d`/ log(N)e], Alice decrypts the ciphertexts ei,j,θ̃ using the decrypted key ∆B
i,j,θ̃

where

θ̃i := PA
i [j], and obtains mj,θ̃i,1

||mj,θ̃i,2
|| . . . ||mj,θ̃i,K

(4) For each i ∈ [N ] and k ∈ [K], Alice locally computes zAi,k :=
∑d`/ log(N)e−1
j=0 mj,θ̃i,k

mod 2`

(5) For each i ∈ [N ] and k ∈ [K], Bob locally computes zBi,k :=
∑d`/ log(N)e−1
j=0 mj,0,k mod 2` respectively.

II. Sub-protocol: computing the second term of the mixed term in formula (2)

(1) For each i ∈ [N ]:

• For each k ∈ K, Alice defines yi,k := φAtk[ρ]

• For j ∈ [d`/ log(N)e] and θ ∈ [N ], Alice computes encryptions ei,j,θ = Enc(∆A
i,j,θ,mj,θ,1||mj,θ,2|| . . . ||mj,θ,K)

where for all mj,0,k∈[K] is randomly chosen from Z2` ; for 1 ≤ θ ≤ N − 1, mj,θ,k = (N jθyi,k −mj,0,k) mod 2`

(2) Alice sends to Bob the ciphertexts ei,j,θ in order.

(3) For each i ∈ [N ] and j ∈ [d`/ log(N)e], Bob decrypts the ciphertexts ei,j,θ̃ using the decrypted key ∆A
i,j,θ̃

where

θ̃i := PB
i [j], and obtains mj,θ̃i,1

||mj,θ̃i,2
|| . . . ||mj,θ̃i,K

(4) For each i ∈ [N ] and k ∈ [K], Bob locally computes uBi,k :=
∑d`/ log(N)e−1
j=0 mj,θ̃i,k

mod 2`

(5) For each i ∈ [N ] and k ∈ [K], Alice locally computes uAi,k :=
∑d`/ log(N)e−1
j=0 mj,0,k mod 2` respectively.

III. Sub-protocol: outputting arithmetic secret sharings of the output FEDist(Pi,φtk)

(1) For each k ∈ [K], Parties invoke a standard secure multiplication to compute the third terms φAtk[ρ]φBtk[ρ] of Eq. (2),
and obtains an output under a secret share form as vAk and vBk , respectively.

(2) For each i ∈ [N ], k ∈ [K], Alice outputs
∑d
ρ=1(PA

i [ρ]− φAtk[ρ])2 + zAi,k + uAi,k + vAk as a secret share of FEDist(Pi,φtk)

(3) For each i ∈ [N ], k ∈ [K], Bob outputs
∑d
ρ=1(PB

i [ρ]− φBtk[ρ])2 + zBi,k + uBi,k + vBk as a secret share of FEDist(Pi,φtk)

Figure 6: Our Secure Euclidean Squared Distance (SESD) Construction in the Sequential Amortized
Setting.
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Parameters: A bit length m, and two par-
ties: sender S and receiver R
Functionality:
• Wait for pair-input (x0,x1) ∈ {0, 1}m

from S
• Wait for bit-input b ∈ {0, 1} from R
• Give output xb to the receiver R.

Figure 7: Oblivious Transfer functionality OTm.

Parameters: A bit length m, a function f ,
and two parties: sender S and receiver R
Functionality:

• Wait for input x ∈ {0, 1}∗ from S
• Wait for input y ∈ {0, 1}∗ from R
• Give output f(x, y) to the receiver R.

Figure 8: Garbled circuit functionality
GC(x, y, f).

Figure 9: Matrix transposition of a matrix C.

(a) Ground Truth Model [2] (b) Plaintext and Privacy-Preserving K-means Model.

Figure 10: Comparison of accuracy for privacy-preserving, plain-text, and ground truth model. Our
privacy-preserving model achieves the same accuracy as the plain-text model, which reaches 95%
accuracy compared to the expected ideal clusters
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(a) Ground Truth Model [17]
(b) Plaintext and Privacy-
Preserving
K-means Model (91.68% accuracy)

(c) Plaintext and Privacy-
Preserving
K-means Model (86.84% accuracy)

Figure 11: Comparison of accuracy for privacy-preserving, plain-text, and ground truth model. Our
privacy-preserving model achieves the same accuracy as the plain-text model, which reaches 86.84%
and 91.68% accuracy compared to the expected ideal clusters. The 99% accuracy privacy-preserving
model is almost exactly the ground truth model in Figure 11a.
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