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Abstract. This paper presents an efficient deterministic algorithm for computing 13*-power residue
symbols in the cyclotomic field Q(¢13), where (13 is a primitive 13" root of unity.

The new algorithm finds applications in the implementation of certain cryptographic schemes and
closes a gap in the corpus of algorithms for computing power residue symbols.

1 Introduction

Quadratic and higher-order residuosity are useful cryptographic building-blocks which applications in-
clude encryption [6, 19, 15, 14], digital signature and authentication primitives [1, 13, 2].

A central operation underlying those algorithms is the evaluation of a residue symbol [%} without
p

factoring the modulus A in the cyclotomic field Q((,), where ¢, is a primitive p root of unity.

For p = 2, it is well known that the Jacobi symbol can be computed by combining Euclid’s algorithm
with quadratic reciprocity and the complementary laws for —1 and 2; see e.g. [10, Chapter 1]. This
eliminates the necessity to factor A.

The cases p = {3,4,5,7,8,11} are discussed in the following references:

p="T7~ |3 p=8~[10,§9 p=11~1[1]
Caranay and Scheidler describe a generic algorithm in [3, § 7] for computing the p**-power residue

symbol for any prime p < 11, building on Lenstra’s norm-Euclidean algorithm. They also provide a
detailed implementation for the case p = 7. The general case is addressed probabilistically in a recent
algorithm by de Boer and Pagano [5].

So far no efficient and deterministic algorithm for p = 13 was known although the ring of cyclotomic
integers modulo 13 is norm-Euclidean [12]. The following sections present such an algorithm. Subsection
1.1 is reproduced with minor modifications from [7] to avoid unnecessary reformulation.

1.1 Basic Definitions and Notation

Fix ( :=(p = e?™/P g primitive pt* root of unity and let w = 1 — ¢. The number field Q(¢) defines the p**

cyclotomic field. The ring of integers of Q(() is Z[¢] and is norm-Euclidean [11, 9] (in particular, it is a
unique factorization domain). Since ¢,¢?,...,¢(P~! form an integral basis for Q(¢), any element o € Z[(]
can be expressed as
p—1
o= Zajgj with a; € Z
j=1

The norm and trace of o € Z[(] are the rational integers respectively given by

p—1 p—1
N(a) = H op(a) and T(a) = Zak(a) where oy: ¢ — C*
k=1 k=1

The group of units of Z[(] is the direct product of (£() and a free Abelian group £ of rank r = (p —3)/2.
The generators of £ are called fundamental units and will be denoted by 71, ...,n,. Two elements o and
B are called associates if they differ only by a unit factor. We write o ~ 3.

We follow the approach of Kummer. A central notion is that of primary elements (see [8, p. 158]) in

Z[¢]-



Definition 1. An element o € Z[(] is said to be primary whenever it satisfies
a#0 (modw), a=B (modw?), a@ = B? (mod p)
for some B € Z.

Lemma 1 (|3, Lemma 2.6]). Every element o € Z[(] with o # 0 (mod w) has a primary associate a*
of the form
af =oM% ot where 0 < eg,eq,...,e <p—1 .

Moreover, a* is unique up to its sign. a

1.2 Kummer’s Reciprocity Law

Let o, 7 € Z[¢] with 7 prime, 7 % w, and 7 { a. The p*-power residue symbol {%} is then defined to be
) P
the p*™-root of unity ¢’ such that

oN@=D/P = ¢t (mod ) .

This exponent ¢ (with 0 < ¢ < p — 1) is called the indez of o w.r.t. m and is noted ind, (). If 7 divides
o then {%} =0.

P

Analogously to the Legendre symbol, the p'"-power residue symbol generalizes: For any o, A € Z[(]
with A non-unit and ged(A,w) ~ 1, writing

A= ijej for primes 7; € Z[(]
J

the generalized p'"-power residue symbol {%} is defined as
p

ARGk

Kummer [3] stated the reciprocity law in 1850 (see also [16, Art. 54]). It is restricted to so-called
“regular” primes,® which include odd primes p < 13. Although initially formulated for primary primes in
Z[(], the reciprocity law readily extends to all primary elements; see |3, Corollary 3.4].

Theorem 1 (Kummer’s Reciprocity Law).
e

Let oo and X be two primary elements in Z[(]. Then {7]
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2 Primary Elements

Let ¢ be a 13" root of unity, K := Q(¢) the 13" cyclotomic field, and define w = 1 — ¢. We choose the
following generating units for Z[(]:

ni=14+¢ for i=1,...,5

We suppose that «, 8 € Z[¢] and denote by o*, 5* their primary associates. Let the e; be defined by:

5
* € €;
o =( OaHm‘
1=1

We then have

A-F-FECELCECECELELEL
ﬁlS /8*13 ﬂ*IS ﬁ*13 /8*13 ﬁ*lii /8*13 ﬁ*lii /3*13

The problem is thus two-fold: identifying the primary associate and having additional laws.

3 An odd prime p is said to be regular if it does not divide the class number of Q(¢,).



@ The first part can be solved by an algorithm based on the definition of primary elements and some
special units. A primary element is congruent to a natural integer modulo w? and its complex norm is
congruent to a natural integer modulo 13. One must keep in mind that 13 is equal to w'? up to a unit.
By definition, we have ( =1 — w and vy, 21 € N such that

¢ o =z mod w?

@ The next step consists in using the unit (''n,. This unit is = 2 mod w? and its complex norm is
=4+ w? mod w*. So Jvs, 22 € N such that

(M) a =z modw?  and  Ngr(¢U(¢Mna)? - a) = 23 mod w?

@ The third step consists in using the unit ¢31;93. This unit is = 3 mod w? and its complex norm
is =9 + 3w?* mod wb. So Jus, z3 € N such that

¢ (¢Mna) 2 (CPmn3)® - = 2z mod w®  and Ngyr(C (¢ na) (CPmm3) ™ - @) = 23 mod w°

The fourth, fifth, and sixth steps use the units (1%nnins, ninanins and C*n3ni®nSnins till
the complex norm is equal to a natural integer modulo w'? which is equal to 13 modulo a multiplicative

unit. Since the units used are another set of generators of the unit group, the existence of a primary
associate for any algebraic integer in the number field ensures that there is no term to cancel modulo odd
powers of w.

To finalize the primary representative algorithm, we reconstruct the e; exponents. One can also
reduce these numbers modulo 13 since it does not spoil the primary nature of the result.

3 Additional Laws

One way to address the needed additional laws is to rely on Ray Class Field Theory and on an isomorphism
which is based on the Artin map and its link with the power residue symbols. We shall not prove the
result here and limit ourselves to mention that we consider the Abelian extension L/K of conductor

f = (w') with
We will build an algorithm for computing the additional laws based on the following proposition: let
a € {w, ¢, m1,m2,m3, M4, M5 ), let 8,7 € Z[¢] be non-unit and coprime to w. If, in addition, 8 =y mod w'?,

lhen we have:
(6% (6%
13 13

Being given a cyclotomic integer 3 for which one wants to compute the 13*" residue symbol, we build
a cyclotomic integer v for which the computation is easy and which is = 8 mod w'*. To that end, we
define units:

Ao =M1 = 2 mod w

M=n? =14+7w modw?

Ao = nf5774 = 14 8v? mod w?
We also need some particular primes in K to fully generate Zx mod w'?. An automated search yields the
primes \; = 1 + w? 4+ 9;w'? for 3 < i < 13 where the constants 1); are given in Appendix A.

We have the property that, for 0 <i < 13, \; = 1 mod w’ and \; # 1 mod w’*!. This ensures that if 3
is coprime to w, there exists natural integers e; such that

13
8= H A" mod wlt
i=0

From the above proposition, this implies (by multiplicativity of the residue symbols):

13 €
o (6%
{_} = I I {—} NVa € {w, Cmsm2,m3, M4y 15}
B 13 =0 )\i 13

Taking into account that only the exponents e; depend on 3, one can pre-compute the residue symbols
on the right-hand side. One can also make a direct link between the exponents e; and the coefficients of
B when expressed as a polynomial in w, using developments and the Newton formula to turn exponents
in polynomials. The following framed paragraph summarizes this process in a synthetic way.



Using the above-mentioned units, Jug,vg, wg € N such that
7" -B=1modw and n;°¢"-B=1mod w?

v =0 C (ninanana) - =1 mod o
11
Let the numbers do, ..., d;1 be the w-expansion of v, i.e. v = Z d;w"

i=0
—d, 1—dy)—d
Let us furthermore define dio = 9 and diz = 6(1—3)1
We then have (for the A; polynomials cf. to the Druidic Grimoire of Appendix A):
w C A i A .
—| =(¢Ao {—} = [—] =7 for 1<47<5.
|:B:| 13 ﬂ 13 ﬂ 13

4 Further Research: Beyond Thirteen?

The natural question that comes to the mind is what happens for p > 137

While considerably complex, the formulae for p = 17 and p = 19 should remain manageable. The real
problem is — however — the lack of Euclidean division for p = 17 and p = 19. In other words, we have no
deterministic way to decrease the norm of elements.

The next barrier is p > 23 (and beyond) for which the class number is # 1. This ensures in particular
that no Euclidean division can exist. It however does not prevent Kummer reciprocity nor establishing
additional laws.

Finally, for p = 37 we stumble on a hardcore issue: a class number which is a multiple of 37. The
prime 37 is not a regular and we cannot rely on Kummer reciprocity anymore.

We propose as a future research direction the following workaround:

Observe that
b » b »

Hence, if we can find an r such that ¢ = a + br is prime in Q(¢), we can apply the definition to get

b c
[—] and, using reciprocity, obtain {3}
c

p P

For the resulting algorithm to be a deterministic polynomial time algorithm, we would need theoretical
results ensuring the existence of such rs under a given bound depending on the norms of a and b.
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A Druidic Grimoire

Ag =
12(dy3+d3ds+dsdi+d3dr)+11dsdads+drods+d3ids+dedr+dsds+dadg

Al =
12 Z?:3 didj 1 1o i+d3(3d3+2dads+dsdy o+d3)+993 4 +643 +d3 10 Where Dby = D Y

A; =
12d7 +11(d3 +dg) +10(dy1 +dzd2 +d3ds +d2) +9dg +8(d5 +dy +dyds +dzdr) +7(d12 +d2ds) +6(dsdr +dg -+
d4d8+d3dg)+3(d§+d5 +d5d6+d%+d4d7+d3d8)+5(d10+d§d4)+4(d3 +dyds +d§+d3d6)+2d3d5 +d3d4+di+
dyd,yds

As =
12(d3d9+d4d8+d5d7)+10(d3d5+d§)+9(di+d4)—|—7(d3 (d6+d7)+d4(d5—l—dﬁ))+6(d10+d9+d§+d§d4)+5(di+
de+ds) +4d2+3(dg+d3) +2(d3 +dzdads) +d12 +d2ds

Ay =
12(d3d4+d8)-‘r11d§+10(d4d6+d3d7)+9(d11+d3d421+d§d5+d%)+8(d12+d§d6+d9)+7(dg+di+di+d6)+6d4+
5(d4d5 +d52)+d3d6 +dsd7+dyds —|—d3d9) +4(d5d6+d4d7+d3d8) +3(d10 +d3 +d§+d§d4+d3d4d5)+d3d5 +d7+
2

As =
12d24-11(dyy +dy+dzd3 +d3ds +dsdr +dadg+dzde ) +9(d1o+d3+d3da+ds ) +8de+7(d7 +dg) +6(ds+dads+
d3d5)+5d2+4(d3d4d5+d4d5+d3d7)+3di—|—2(d12+d§+d§d6+d5d6+d4d7—|—d3d8)+d3

Ag =

11(d1o + didy + dg) + 10d7 + 9(d12 + dids) + T(dsd + dadr + ds + dsds) + 6(d11 + d3d3 + dsds + d3ds) +
5(ds + dzdads) + 4(dsdr + dads + dzdg) + 3(d3 + dy + dzds + d3 + d3) + 2(dade + d% + dzdy) + d3 + di +
d

20 = C117’]4 Yy = 107
i = 7436
1 11 3 100 4 i = 1+ C ' 21 = <3771773 Z: = 1000
0 0 1 2 1 2 fori<is<b = (Oninins e = 2300
3= IUPURYE — 8632
T Ho =1 21 = Crning"ngniins Z; — 4496
- 0
00 0 1 4 6 Z;:O . - o = 2307
0 1 0 0 0 3 o — ¢ ;{10 = 31;2
12 i 11 =
00 0 0 1 1 X =25 s2= MMM s = 6929
P13 = 3194

Let P,Q be two polynomials, we denote by P MOD (@ the reduction of P modulo Q.
x mod y denotes the usual modular reduction of integers.

Let P({) be a polynomial in the variable (. We denote by P[[¢]] the polynomial P in which ¢ was
replaced by ¢. £ may be an integer, a polynomial in ¢ or any other expression.

Let a(¢) be a polynomial, we define:

flo k] = T ell¢'T mop x
k

The function Coefficient isolates the coefficient of a specific term in a polynomial, i.e.:

u u
Coefficient[z e;x',27] = ¢; or equivalently: Coefficient[z er',m, ] = ¢
i=0 i=0
whereas CoefficientList returns the list of all the coefficients in the indicated variable, i.e.:
u
CoefficientList[Z ezt x] ={eo, .., €u}
i=0



B Code in Mathematical Form

7

Function PrimaryRep [a]

*

af=a
{61,62,63764,65,66} = {0,0,070,0,0}
While[Coefficient [a"[[1 —w],w] #Z0 mod 13,
o = (a® mop Y
er++
]
For[j=1,7<5,5++,
While[Coefficient [(a*(a*[[¢*?]) mop X)[[1 —w],w?]1 #0 mod 13,
a* =a*z; Mop X
ej+1 + +
]
]
e=7-e mod 13
0" = ac T, 1 wop x
Return [{a", e}]

Function AdditionallLaws [a]

Y=«
For[u=0,u <2, u—++,
While [
Coefficient [y mop (1 —¢)*", ¢, ul# pu mod 13,
¥ = Su+17 MOD X
]
]
{do,...,di2}=CoefficientList [(w'? +7)[[1 — w],w]
dio = (1—d0)/13
diz = 6d12 — d1/13
Return[{Ag...,As} mod 13]

Function Resid [a, 3]

n= f[B8,1]
v = f[B,2]
n:a(”_l)/ls MoD ¥ mod n

Let 0<¢<12 such that (p—(%)y Mop x =0 mod n
Return [q¢]



C Activation Code & Execution Trace in Mathematical Form

7

Activation Code

For[j=1,j<2j++,
p; =4
While[p; is composite,

{po,...,p11} €r [~min, +max] for some moderate min, max
11 i
T = Zi:opi<
pi = flrj, 1]
]
]
Print["a : ",a=r1, "\nf : ", B=r2]

Print ["Residues :y",{Resid [, B],Resid [5,al}]
{a*,m}=PrimaryRep [a]

B* =PrimaryRep [3] [[1]]

Print ["Primaries,: " ,{Resid[a",8"],Resid [B",a"]}]

Print ["Recovered,:,",Resid[a", 8] -Prepend [m,0] . Additionallaws [$"] mod 13]

7

Execution Trace

a 1 6-50—C"—T7¢+8¢* —2¢° +2¢° +9¢" +10¢® — 7¢? — 10¢"° — 4¢t
Bt =9-C43C =20+ 7 +9¢° +2¢7 +9¢7 +9¢7 = 5¢10 - 4¢H
Residues : {12,1}

Primaries : {10,10}
Recovered : 12



D Executable Code

)= Modx[p_, n_:0] := vo“_.vSoa“m.m.“_.wm:_m:.:..amq._”nh
sum[&’, (i, @, 12}], &, Modulus - n];

1= Modx [Product[ (#1 /. £~ &), (i, #2, 12}]] &[#1, #2] &;
PolynomialPowerMod :=

Modx [If[#2 == @, 1, #9[Modx [#1~2, #3], Floor[#2 /2], #3]

#1 Mod[#2, 211, #3] &[#1, #2, #3] &;

(* Generating units »)
{n1, n2, n3, n4, n5} = Table[1+&", {i, 1, 5}];

11 10

© 0000 R

O r OO

OO0 WwWERrWw

® ® Br NN

P O®MdPRO
&

PrimaryRep[a ] :=
Module[{as = a, e = Array[@ &, 6], j,
z={g%n4, &n1n2?, g°n1’n2" n3, n1n2*n3*ns,
g*n1? n2'°n3°na®ns }},
While[Coefficient[as /. £ -» 1 -w, w, Modulus » 13] # O,
as = Modx[Z as];
e[[1]]++;
15
For[j=1,3 <5, j++,
While[Coefficient[Modx[as (as /. & - nHJ ]7-8-1-0,
w7, Modulus » 13] # o,
as = Modx [as z[[J111;
e[[J+1]]++;
1
B
e=Mod[t.e, 13];
as = Modx [ & £ n1°T31 2°I31 ;3°141 pgels] pselsl | ;
Return[{as, e}];

1

2

| 13.nb

AdditionallLaws[a ] :=
Module[{y = @, z= {1+ &, & n1*n2>n3*na}, u, do,

di, d2, d3, d4, ds, d6, d7, d8, d9, die, di1, di2, n_“_.ww.

(* Reducing a to 1 modulo w® )

For[u=0, us2,u+s,

While|
Coefficient[PolynomialRemainder[y, (1- &) usd ],

£, u, Modulus - Hw“_ #{1,0,0}[[u+1]],

¥ =Modx[z[[u+1]]¥];

(* Computing special w polynomial =)
{de, di, d2, d3, d4, ds, d6, d7, d8, d9, die@, dil, d12} =
CoefficientList[w' +v /. (£~ 1-w), 0];
{d12, d13} = {(1-d@) /13, 6 (1-de) /13 - d1/13};
(* Computing addional laws through polynomials =)
wmﬁ_.:.s_”
Mod[{12d13 + d10d3 + d3® d4 + 12.d4? d5 + 12d3 d5° +
11d3d4d6 + 12d3%2d7 + d6 d7 + d5 d8 + d4 d9,
d10 +d11+d12+d3+6d3%+9d3%+3d3* +da+
12d3d4 + d3% d4 + 6 d4? + d3 da? + 9.d4® + d5 +
12d3d5 + d32d5 + 12d4 d5 + 2 d3 d4 d5 + 6 d52 +
d6 +12d3d6 + d32d6 + 12d4 d6 + 12 d5 d6 + 6 d62 +
d7 +12d3d7 +12d4d7 +12d5d7 + d8 + 12d3 d8 +
12 d4 d8 + d9 + 12 d3 d9,
5d10 +10d11 +7d12 +4d3 + 10d3? + 3d3% + 8d3% +
8d4 + d3d4 + 5d3%d4 + d4? + 10 d3 d4? + 11d4® +
3d5+2d3d5+10d32d5 +4d4ds +d3dads+
4d5%2+6d6+4d3d6+7d32d6+8d4d6+3d5d6 +
3d62+12d7+8d3d7 +3d4d7 + 6d5d7 +11d8 +
3d3d8 +6d4d8 +9d9 +6d3d9,
6d10 +d12 +4d3%+2d3% +3d3* +9d4 + 6d32d4 +
5d42 + 9d4® + 5d5 + 10 d3 d5 + 7 d4 d5 + 2 d3 d4 d5 +
10d5? + 5d6 + 7 d3 d6 + d32 d6 + 7 d4 d6 + 6 d6° +




13.nb

7d3d7 +12d5d7 +3d8 + 12d4 d8 + 6d9 + 12d3 d9,
3d10+9d11+8d12+3d3+3d3%+7d3%+11d3%+
6d4 +12d3d4 +3d32d4 +7d4? +9d3da? +7d4® +
2d5 +d3d5 +9d3%d5 +5d4d5 +3d3d4ads +5d5% +
7d6+5d3d6+8d3%d6 +10d4 d6 + 4d5d6 + 9d6? +
d7 +10d3d7 +4d4d7 + 5d5d7 +12d8 +4d3 d8 +
5d4ds8 +8d9 +5d3do,
9d10+11d11+2d12+d3+9d3%2+6d3*+11d4 +
6d3d4+9d3?da+3da?+11d3da? +5d4% +9d5 +
6d3d5+11d32d5+4d3dads5+2d5%+8d6 +
2d3%d6 +4d4d6 +2d5d6 +12d6% + 7d7 + 4d3d7 +
2d4d7 +11d5d7 + 7d8 + 2d3 d8 + 11 d4 d8 + 11 d3 d9,
11d10 +6d11+9d12 +3d3 +d3%+d3* +3da +
3d3d4 +11d3%d4 + 3d4? + 6d3da? +3da® +5d5 +
6d3d5+6d3%d5+5d3d4ads+d52+11d6+
9d3%2d6 +2d4d6 +7d5d6+2d6%+10d7 +2d3d7 +
7d4d7 +4d5d7 +7d8 +7d3d8 +4d4d8 +4d3d9},

3]s
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Resid[a_, 5] := 3on:HmT: =fl4,11, v =f[5, 21, n, a},
n = PolynomialPowerMod[«, (n-1) /13, n];
For[q=0, q<12, q++,
H:zonxﬁ ? - nnv ¥s :“_
1
1
(* Generating to prime elements in cyclotomic field x)
SeedRandom[1122];
For[j=1, 52, j++,
plJl = 4;
While[! PrimeQ[p[j1],

0, Return[q] “_ H

rijl = m::.?m:noaH:ﬁmnmlTu? 10}] g, {i, o, ”_.“CT
p[j1 = fr(3jl, 11;

1

15

3

a

| 13.nb

Print["a : ", a=r[1], "\nB : ", B=r[2]];
(* Checking residue values using associates =)
Print["Residues : ", {Resid[a, B], Resid[B, al}];
{as, m} = PrimaryRep[a];
Bs = PrimaryRep[B] [[1]];
Print["Primaries : ", {Resid[as, Bs], Resid[Bs, as]}];
Print["Recovered : ",

Mod [Resid[as, Bs] - Prepend[m, O] .AdditionalLaws[f3s],

13115

a:6-5c0-c2-783+8¢8%-

20°42¢6%+9¢7 +1028-7¢6° 102" -4
B:-9-C+38%-22%+%+9c%+2c7+9c%+92° -5¢c° 4t
Residues : {12, 1}
Primaries : {10, 10}

Recovered : 12
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