Evaluating Octic Residue Symbols

Marc Joye
OneSpan, Brussels, Belgium
marc.joye@onespan.com

We detail an algorithm for the evaluation of the $8^{\text {th }}$-power residue symbol. Algorithms for computing $r^{\text {th }}$-power residue symbols have only been devised for $r \in\{2,3,4,5,7\}$. See [8, 2], [7, 2], [6] and [1] for the cases $r=3,4,5$ and 7 , respectively. As noted in [1], as r grows, the technical details become increasingly complicated. An excellent account on the octic reciprocity can be found in [4, Chapter 9]. See also [3].

Let $\zeta:=\zeta_{8}=\frac{\sqrt{2}}{2}(1+i)$ be a primitive $8^{\text {th }}$ root of unity. Let also $\epsilon=1+\sqrt{2}=1+\zeta+\zeta^{-1}$. The field $\mathbb{Q}(\zeta)=\mathbb{Q}(i, \sqrt{2})$ is biquadratic and its group of units is $\langle\zeta, \epsilon\rangle$. The Galois group of $\mathbb{Q}(\zeta) / \mathbb{Q}$ contains the four automorphisms $\sigma_{k}: \zeta \mapsto \zeta^{k}$ with $k \in\{1,3,5,7\}$. For an element $\alpha \in \mathbb{Z}[\zeta]$, we write $\alpha_{k}=\sigma_{k}(\alpha)$. The (absolute) norm of α is given by $\mathrm{N}(\alpha)=\alpha_{1} \alpha_{3} \alpha_{5} \alpha_{7}$.

An element $\alpha=a_{0}+a_{1} \zeta+a_{2} \zeta^{2}+a_{3} \zeta^{3} \in \mathbb{Z}[\zeta]$ is said to be primary if $\alpha \equiv 1(\bmod 2+2 \zeta)$ or, equivalently, if

$$
\left\{\begin{array}{l}
a_{0}+a_{1}+a_{2}+a_{3} \equiv 1 \quad(\bmod 4), \\
a_{1} \equiv a_{2} \equiv a_{3} \equiv 0 \quad(\bmod 2)
\end{array}\right.
$$

Proof. By definition, α must be such that $(\alpha-1) \propto 2(1+\zeta)$. Since $1-\zeta^{4}=2$, we have $\frac{\left(a_{0}-1\right)+a_{1} \zeta+a_{2} \zeta^{2}+a_{3} \zeta^{3}}{2(1+\zeta)}=\frac{\left(\left(a_{0}-1\right)+a_{1} \zeta+a_{2} \zeta^{2}+a_{3} \zeta^{3}\right)(1-\zeta)\left(1+\zeta^{2}\right)}{4}=\frac{a_{0}-1+a_{1}-a_{2}+a_{3}}{4}+\frac{-a_{0}+1+a_{1}+a_{2}-a_{3}}{4} \zeta+$ $\frac{a_{0}-1-a_{1}+a_{2}+a_{3}}{4} \zeta^{2}+\frac{-a_{0}+1+a_{1}-a_{2}+a_{3}}{4} \zeta^{3}$. The condition is satisfied provided that $a_{0}-1+a_{1}-$ $a_{2}+a_{3} \equiv-a_{0}+1+a_{1}+a_{2}-a_{3} \equiv a_{0}-1-a_{1}+a_{2}+a_{3} \equiv-a_{0}+1+a_{1}-a_{2}+a_{3} \equiv 0$ $(\bmod 4)$; that is, $a_{0}+a_{1}+a_{2}+a_{3} \equiv 1(\bmod 4)$ and $2 a_{1} \equiv 2 a_{2} \equiv 2 a_{3} \equiv 0(\bmod 4)$.

Proposition 1. Let $\alpha \in \mathbb{Z}[\zeta]$ such that $(1+\zeta) \nmid \alpha$. Then there is a unit $v \in \mathbb{Z}[\zeta]$ such that $\alpha=v \alpha^{*}$ with α^{*} primary.

Proof. Let $\alpha=a_{0}+a_{1} \zeta+a_{2} \zeta^{2}+a_{3} \zeta^{3}$. The condition $(1+\zeta) \nmid \alpha$ implies $a_{0}+a_{1}+a_{2}+a_{3} \equiv 1$ $(\bmod 2)$.

1. Suppose first that $a_{0} \not \equiv a_{2}(\bmod 2)\left(\right.$ and thus $\left.a_{1} \equiv a_{3}(\bmod 2)\right)$. Noting that $\alpha \sim \alpha \zeta^{-2}=$ $a_{2}+a_{3} \zeta-a_{0} \zeta^{2}-a_{1} \zeta^{3}$, we can assume that $a_{0} \equiv 1(\bmod 2)$ and $a_{2} \equiv 0(\bmod 2)$.
(a) If $a_{1} \equiv a_{3} \equiv 0(\bmod 2)$ then $\alpha=a_{0}+a_{1} \zeta+a_{2} \zeta^{2}+a_{3} \zeta^{3}$ with $a_{0} \equiv 1(\bmod 2)$ and $a_{1} \equiv a_{2} \equiv a_{3} \equiv 0(\bmod 2)$.
(b) If $a_{1} \equiv a_{3} \equiv 1(\bmod 2)$, we replace α with $\alpha \epsilon^{-1}$ and get

$$
\alpha \epsilon^{-1}=\underbrace{\left(-a_{0}+a_{1}-a_{3}\right)}_{\equiv 1(\bmod 2)}+\underbrace{\left(a_{0}-a_{1}+a_{2}\right)}_{\equiv 0(\bmod 2)} \zeta+\underbrace{\left(a_{1}-a_{2}+a_{3}\right)}_{\equiv 0(\bmod 2)} \zeta^{2}+\underbrace{\left(-a_{0}+a_{2}-a_{3}\right)}_{\equiv 0} \zeta^{3} .
$$

By possibly multiplying by $-1=\zeta^{-4}$ yields a primary element.
2. Suppose now that $a_{0} \equiv a_{2}(\bmod 2)\left(\operatorname{and} a_{1} \not \equiv a_{3}(\bmod 2)\right)$. Then multiplying α by ζ^{-1} yields $\alpha \zeta^{-1}=a_{1}+a_{2} \zeta+a_{3} \zeta^{3}-a_{0} \zeta^{3}$. We so obtain a case similar to Case 1.
Consequently, in all cases, α can be expressed as $\alpha=v \alpha^{*}$ with α^{*} primary and $v=\zeta^{k} \epsilon^{l}$ for some $0 \leq k \leq 7$ and $l \in\{0,1\}$.

The main result is the octic reciprocity law; see [4, Theorem 9.19].
Theorem 1 (Octic Reciprocity). Let α and λ be co-prime primary elements of $\mathbb{Z}[\zeta]$. Let $\mathrm{N}_{1}, \mathrm{~N}_{2}$ and N_{3} respectively denote the relative norms of the extensions $\mathbb{Q}(\zeta) / \mathbb{Q}(i)$, $\mathbb{Q}(\zeta) / \mathbb{Q}(\sqrt{-2})$ and $\mathbb{Q}(\zeta) / \mathbb{Q}(\sqrt{2})$; and write $\mathrm{N}_{1}(\alpha)=a(\alpha)^{2}+b(\alpha)^{2}, \mathrm{~N}_{2}(\alpha)=c(\alpha)^{2}+2 d(\alpha)^{2}$, $\mathrm{N}_{3}(\alpha)=e(\alpha)^{2}-2 f(\alpha)^{2}$, and similarly for λ. Then ${ }^{1}$

$$
\left[\frac{\alpha}{\lambda}\right]_{8}=\left[\frac{\lambda}{\alpha}\right]_{8}(-1)^{\frac{\mathrm{N}(\alpha)-1}{8} \frac{\mathrm{~N}(\lambda)-1}{8}} \zeta^{\frac{d(\lambda) f(\alpha)-d(\alpha) f(\lambda)}{4}}
$$

Moreover,

$$
\begin{array}{rlrl}
{\left[\frac{1-\zeta}{\alpha}\right]_{8}} & =\zeta^{\frac{5 a-5+5 b+18 d+b^{2}-2 b d+d^{4} / 2}{8}}, & {\left[\frac{\zeta}{\alpha}\right]_{8}=\zeta^{\frac{a-1+4 b+2 b d+2 d^{2}}{4}},} \\
{\left[\frac{1+\zeta}{\alpha}\right]_{8}} & =\zeta^{\frac{a-1+b+6 d+b^{2}+2 b d+d^{4} / 2}{8}}, & {\left[\frac{\epsilon}{\alpha}\right]_{8}=\zeta^{\frac{d-3 b-b d-2 d^{2}}{2}}} \\
{\left[\frac{1+\zeta+\zeta^{2}}{\alpha}\right]_{8}} & =\zeta^{\frac{a-1-2 b+2 d-2 d^{2}}{4}}
\end{array}
$$

Letting $\alpha=a_{0}+a_{1} \zeta+a_{2} \zeta^{2}+a_{3} \zeta^{3}$, a direct calculation shows that $\alpha_{1} \alpha_{5}=\left(a_{0}^{2}-a_{2}^{2}+\right.$ $\left.2 a_{1} a_{3}\right)+\left(-a_{1}^{2}+a_{3}^{2}+2 a_{0} a_{2}\right) i, \alpha_{1} \alpha_{3}=\left(a_{0}^{2}-a_{1}^{2}+a_{2}^{2}-a_{3}^{2}\right)+\left(a_{0} a_{1}+a_{0} a_{3}-a_{1} a_{2}+a_{2} a_{3}\right) \sqrt{-2}$, and $\alpha_{1} \alpha_{7}=\left(a_{0}^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)+\left(a_{0} a_{1}-a_{0} a_{3}+a_{1} a_{2}+a_{2} a_{3}\right) \sqrt{2}$ [4, Exerc. 5.21]. This yields $a(\alpha)=a_{0}{ }^{2}-a_{2}{ }^{2}+2 a_{1} a_{3}, b(\alpha)=-a_{1}{ }^{2}+a_{3}{ }^{2}+2 a_{0} a_{2},{ }^{2} d(\alpha)=a_{0} a_{1}+a_{0} a_{3}-a_{1} a_{2}+a_{2} a_{3}$, and $f(\alpha)=a_{0} a_{1}-a_{0} a_{3}+a_{1} a_{2}+a_{2} a_{3}$.

As stated, the reciprocity law requires α and λ being primary. Suppose that α is such that $(1+\zeta) \nmid \alpha$, but is not necessarily primary. Then from Proposition 1, we can write $\alpha=\zeta^{k} \epsilon^{l} \alpha^{*}$ for some $0 \leq k \leq 7$ and $l \in\{0,1\}$, with α^{*} primary. We note $\alpha^{*}=\operatorname{primary}(\alpha)$ and $(k, l)=\nu(\alpha)$. Likewise, suppose that λ is such that $(1+\zeta) \nmid \lambda$ and is not necessarily primary. Then $\lambda=\zeta^{k^{\prime}} \epsilon^{l^{\prime}} \lambda^{*}$ with $\lambda^{*}=\operatorname{primary}(\lambda)$ and $\left(k^{\prime}, l^{\prime}\right)=\nu(\lambda)$.

We assume $(1+\zeta) \nmid \lambda$. Putting all together, when $(1+\zeta) \nmid \alpha$, we have:

$$
\begin{aligned}
& {\left[\frac{\alpha}{\lambda}\right]_{8}=\left[\frac{\alpha}{\lambda^{*}}\right]_{8}=\left[\frac{\zeta^{k}}{\lambda^{*}}\right]_{8}\left[\frac{\epsilon^{l}}{\lambda^{*}}\right]_{8}\left[\frac{\alpha^{*}}{\lambda^{*}}\right]_{8} \quad \quad \text { by Proposition } 1} \\
& =\zeta^{\frac{k\left(a\left(\lambda^{*}\right)-1+4 b\left(\lambda^{*}\right)+2 b\left(\lambda^{*}\right) d\left(\lambda^{*}\right)+2 d\left(\lambda^{*}\right)^{2}\right)}{4}} \zeta^{\frac{l\left(d\left(\lambda^{*}\right)-3 b\left(\lambda^{*}\right)-b\left(\lambda^{*}\right) d\left(\lambda^{*}\right)-2 d\left(\lambda^{*}\right)^{2}\right)}{2}} \\
& {\left[\frac{\lambda^{*}}{\alpha^{*}}\right]_{8} \zeta^{\frac{\left(\mathrm{N}\left(\alpha^{*}\right)-1\right)\left(\mathrm{N}\left(\lambda^{*}\right)-1\right)}{16}+\frac{d\left(\lambda^{*}\right) f\left(\alpha^{*}\right)-d\left(\alpha^{*}\right) f\left(\lambda^{*}\right)}{4}} \quad \text { by Theorem } 1} \\
& =\left[\frac{\lambda^{*} \bmod \alpha^{*}}{\alpha^{*}}\right]_{8} \zeta^{k \mathcal{K}\left(\lambda^{*}\right)+l \mathcal{L}\left(\lambda^{*}\right)+\mathcal{J}\left(\alpha^{*}, \lambda^{*}\right)}(\bmod 8)
\end{aligned}
$$

[^0]where $\mathcal{K}\left(\lambda^{*}\right)=\frac{1}{4}\left[a\left(\lambda^{*}\right)-1+4 b\left(\lambda^{*}\right)+2 b\left(\lambda^{*}\right) d\left(\lambda^{*}\right)+2 d\left(\lambda^{*}\right)^{2}\right], \mathcal{L}\left(\lambda^{*}\right)=\frac{1}{2}\left[d\left(\lambda^{*}\right)-3 b\left(\lambda^{*}\right)-\right.$ $\left.b\left(\lambda^{*}\right) d\left(\lambda^{*}\right)-2 d\left(\lambda^{*}\right)^{2}\right]$ and $\mathcal{J}\left(\alpha^{*}, \lambda^{*}\right)=\frac{1}{16}\left[\left(\mathrm{~N}\left(\alpha^{*}\right)-1\right)\left(\mathrm{N}\left(\lambda^{*}\right)-1\right)+4 d\left(\lambda^{*}\right) f\left(\alpha^{*}\right)-4 d\left(\alpha^{*}\right) f\left(\lambda^{*}\right)\right]$. When $(1+\zeta) \mid \alpha$, we have:
$$
\left[\frac{\alpha}{\lambda}\right]_{8}=\left[\frac{\alpha}{\lambda^{*}}\right]_{8}=\left[\frac{\alpha /(1+\zeta)}{\lambda^{*}}\right]_{8}\left[\frac{1+\zeta}{\lambda^{*}}\right]_{8}
$$
$$
=\left[\frac{\alpha /(1+\zeta)}{\lambda^{*}}\right]_{8} \zeta^{\mathcal{I}\left(\lambda^{*}\right)}(\bmod 8) \quad \text { by Theorem } 1
$$
where $\mathcal{I}\left(\lambda^{*}\right)=\frac{1}{8}\left(a\left(\lambda^{*}\right)-1+b\left(\lambda^{*}\right)+6 d\left(\lambda^{*}\right)+b\left(\lambda^{*}\right)^{2}+2 b\left(\lambda^{*}\right) d\left(\lambda^{*}\right)+d\left(\lambda^{*}\right)^{4} / 2\right)$. These two observations lead to Algorithm 1.

```
Algorithm 1: Computing \(\left[\frac{\alpha}{\lambda}\right]_{8}\)
    Data: \(\alpha, \lambda \in \mathbb{Z}[\zeta]\) with \(\alpha\) and \(\lambda\) co-prime, and \((1+\zeta) \nmid \lambda\)
    Result: \(\left[\frac{\alpha}{\lambda}\right]_{8} \in\{ \pm 1, \pm i, \pm \zeta, \pm i \zeta\}\)
    \(\lambda \leftarrow \operatorname{primary}(\lambda) ; j \leftarrow 0\)
    while \(\mathrm{N}(\alpha) \neq 1\) do
        if \((1+\zeta) \mid \alpha\) then
            \(\alpha \leftarrow \alpha /(1+\zeta)\)
            \(j \leftarrow j+\mathcal{I}(\lambda)(\bmod 8)\)
        else
            \((k, l) \leftarrow \nu(\alpha) ; \alpha \leftarrow \operatorname{primary}(\alpha)\)
            \(j \leftarrow j+k \mathcal{K}(\lambda)+l \mathcal{L}(\lambda)+\mathcal{J}(\alpha, \lambda)(\bmod 8)\)
        \((\alpha, \lambda) \leftarrow(\lambda \bmod \alpha, \alpha)\)
    end
end
\((k, l) \leftarrow \nu(\alpha) ; \alpha \leftarrow \operatorname{primary}(\alpha)\)
    \(\left[u_{0}, u_{1}, u_{2}, u_{3}\right] \leftarrow \alpha \bmod 8 ; k \leftarrow k+u_{0}-1 ; l \leftarrow l+u_{3}\)
    \(j \leftarrow j+k \mathcal{K}(\lambda)+l \mathcal{L}(\lambda)(\bmod 8)\)
    return \(\zeta^{j}\)
```

At the end of the while-loop, α is transformed into a primary unit, say v^{*}. Letting $v^{*} \bmod 8=u_{0}+u_{1} \zeta+u_{2} \zeta^{2}+u_{3} \zeta^{3}:=\left[u_{0}, u_{1}, u_{2}, u_{3}\right]$, it turns out that the possible values are $[1,0,0,0],[1,4,0,4],[5,6,0,2],[5,2,0,6]$, respectively corresponding to $\left[\frac{v^{*}}{\lambda^{*}}\right]_{8}=\left[\frac{1}{\lambda^{*}}\right]_{8},\left[\frac{\epsilon^{4}}{\lambda^{*}}\right]_{8}$, $\left[\frac{\zeta^{4} \epsilon^{2}}{\lambda^{*}}\right]_{8},\left[\frac{\zeta^{4} \epsilon^{6}}{\lambda^{*}}\right]_{8}$.

As a reminder, a ring R is said norm-Euclidean or Euclidean with respect to the norm N if for every $\alpha, \beta \in R, \beta \neq 0$, there exist $\eta, \rho \in R$ such that $\alpha=\beta \eta+\rho$ and $\mathrm{N}(\rho)<\mathrm{N}(\beta)$. The correctness of the algorithm is a consequence of the fact that $\mathbb{Z}[\zeta]$ is norm-Euclidean [5]: when α is replaced by $\lambda \bmod \alpha$, its norm decreases. Also, when α is divided by $(1+\zeta)$, its norm is divided by 2 since $\mathrm{N}(1+\zeta)=2$. Therefore, in all cases, the norm of α is decreasing and eventually becomes 1 .

Remark 1. Letting $\alpha=a_{0}+a_{1} \zeta+a_{2} \zeta^{2}+a_{3} \zeta^{3}$, the condition $(1+\zeta) \mid \alpha$ simply amounts to verify whether $a_{0}+a_{1}+a_{2}+a_{3} \equiv 0(\bmod 2)$; in this case, $\alpha /(1+\zeta)=\frac{1}{2}\left(a_{0}+a_{1}-a_{2}+a_{3}\right)+$ $\frac{1}{2}\left(-a_{0}+a_{1}+a_{2}-a_{3}\right) \zeta+\frac{1}{2}\left(a_{0}-a_{1}+a_{2}+a_{3}\right) \zeta^{2}+\frac{1}{2}\left(-a_{0}+a_{1}-a_{2}+a_{3}\right) \zeta^{3}$.

Acknowledgments I am grateful to Franz Lemmermeyer for providing a copy of [3].

References

[1] Perlas C. Caranay and Renate Scheidler. An efficient seventh power residue symbol algorithm. International Journal of Number Theory, 6(8):1831-1853, 2010. https://doi.org/10.1142/s1793042110003770.
[2] Ivan Bjerre Damgård and Gudmund Skovbjerg Frandsen. Efficient algorithms for the gcd and cubic residuosity in the ring of Eisenstein integers. Journal of Symbolic Computation, 39(6):643-652, 2005. https://doi.org/10.1016/j.jsc.2004.02.006.
[3] Franz Goldscheider. Das Reziprozitätsgesetz der achten Potenzreste. Wissenschaftliche Beilage zum Programm des Luisenstädtischen Realgymnasiums, 96:1-29, 1889. URL https://zbmath.org/?q=an\%3A21.0178.02.
[4] Franz Lemmermeyer. Reciprocity Laws: From Euler to Eisenstein. Springer Monographs in Mathematics. Springer, 2000. https://doi.org/10.1007/978-3-662-12893-0.
[5] Hendrik W. Lenstra, Jr. Euclid's algorithm in cyclotomic fields. Journal of the London Mathematical Society (2), 10(4):457-465, 1975. https://doi.org/10.1112/jlms/s210.4.457.
[6] Renate Scheidler and Hugh C. Williams. A public-key cryptosystem utilizing cyclotomic fields. Designs, Codes and Cryptography, 6(2):117-131, 1995. https://doi.org/10.1007/BF01398010.
[7] André Weilert. Fast computation of the biquadratic residue symbol. Journal of Number Theory, 96(1):133-151, 2002. https://doi.org/10.1006/jnth.2002.2783.
[8] Hugh C. Williams. An M^{3} public-key encryption scheme. In H. C. Williams, editor, $A d-$ vances in Cryptology - CRYPTO '85, volume 218 of Lecture Notes in Computer Science, pages 358-368. Springer, 1986. https://doi.org/10.1007/3-540-39799-X_26.

[^0]: ${ }^{1}$ We note that a factor $-\frac{1}{4}$ is missing in the expression given in [4, Theorem 9.19].
 ${ }^{2}$ The first formula listed in [4, Exerc. 5.21] actually corresponds to $-b$.

