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We detail an algorithm for the evaluation of the 8th-power residue symbol. Algorithms for
computing rth-power residue symbols have only been devised for r ∈ {2, 3, 4, 5, 7}. See [8, 2],
[7, 2], [6] and [1] for the cases r = 3, 4, 5 and 7, respectively. As noted in [1], as r grows,
the technical details become increasingly complicated. An excellent account on the octic
reciprocity can be found in [4, Chapter 9]. See also [3].

Let ζ := ζ8 =
√
2
2

(1+ i) be a primitive 8th root of unity. Let also ε = 1+
√

2 = 1+ ζ+ ζ−1.

The field Q(ζ) = Q(i,
√

2) is biquadratic and its group of units is 〈ζ, ε〉. The Galois group of
Q(ζ)/Q contains the four automorphisms σk : ζ 7→ ζk with k ∈ {1, 3, 5, 7}. For an element
α ∈ Z[ζ], we write αk = σk(α). The (absolute) norm of α is given by N(α) = α1α3α5α7.

An element α = a0 +a1ζ+a2ζ
2 +a3ζ

3 ∈ Z[ζ] is said to be primary if α ≡ 1 (mod 2+2ζ)
or, equivalently, if {

a0 + a1 + a2 + a3 ≡ 1 (mod 4) ,

a1 ≡ a2 ≡ a3 ≡ 0 (mod 2) .

Proof. By definition, α must be such that (α − 1) ∝ 2(1 + ζ). Since 1 − ζ4 = 2, we have
(a0−1)+a1ζ+a2ζ2+a3ζ3

2(1+ζ)
= ((a0−1)+a1ζ+a2ζ2+a3ζ3)(1−ζ)(1+ζ2)

4
= a0−1+a1−a2+a3

4
+ −a0+1+a1+a2−a3

4
ζ +

a0−1−a1+a2+a3
4

ζ2 + −a0+1+a1−a2+a3
4

ζ3. The condition is satisfied provided that a0 − 1 + a1 −
a2 + a3 ≡ −a0 + 1 + a1 + a2 − a3 ≡ a0 − 1 − a1 + a2 + a3 ≡ −a0 + 1 + a1 − a2 + a3 ≡ 0
(mod 4); that is, a0 + a1 + a2 + a3 ≡ 1 (mod 4) and 2a1 ≡ 2a2 ≡ 2a3 ≡ 0 (mod 4). ut

Proposition 1. Let α ∈ Z[ζ] such that (1 + ζ) - α. Then there is a unit υ ∈ Z[ζ] such that
α = υ α∗ with α∗ primary.

Proof. Let α = a0 +a1ζ+a2ζ
2 +a3ζ

3. The condition (1 + ζ) - α implies a0 +a1 +a2 +a3 ≡ 1
(mod 2).

1. Suppose first that a0 6≡ a2 (mod 2) (and thus a1 ≡ a3 (mod 2)). Noting that α ∼ α ζ−2 =
a2 + a3ζ − a0ζ2 − a1ζ3, we can assume that a0 ≡ 1 (mod 2) and a2 ≡ 0 (mod 2).

(a) If a1 ≡ a3 ≡ 0 (mod 2) then α = a0 + a1ζ + a2ζ
2 + a3ζ

3 with a0 ≡ 1 (mod 2) and
a1 ≡ a2 ≡ a3 ≡ 0 (mod 2).

(b) If a1 ≡ a3 ≡ 1 (mod 2), we replace α with α ε−1 and get

α ε−1 = (−a0 + a1 − a3)︸ ︷︷ ︸
≡1 (mod 2)

+ (a0 − a1 + a2)︸ ︷︷ ︸
≡0 (mod 2)

ζ + (a1 − a2 + a3)︸ ︷︷ ︸
≡0 (mod 2)

ζ2 + (−a0 + a2 − a3)︸ ︷︷ ︸
≡0 (mod 2)

ζ3 .

By possibly multiplying by −1 = ζ−4 yields a primary element.



2. Suppose now that a0 ≡ a2 (mod 2) (and a1 6≡ a3 (mod 2)). Then multiplying α by ζ−1

yields α ζ−1 = a1 + a2ζ + a3ζ
3 − a0ζ3. We so obtain a case similar to Case 1.

Consequently, in all cases, α can be expressed as α = υ α∗ with α∗ primary and υ = ζkεl for
some 0 ≤ k ≤ 7 and l ∈ {0, 1}. ut

The main result is the octic reciprocity law; see [4, Theorem 9.19].

Theorem 1 (Octic Reciprocity). Let α and λ be co-prime primary elements of Z[ζ].
Let N1, N2 and N3 respectively denote the relative norms of the extensions Q(ζ)/Q(i),
Q(ζ)/Q(

√
−2) and Q(ζ)/Q(

√
2); and write N1(α) = a(α)2 + b(α)2, N2(α) = c(α)2 + 2d(α)2,

N3(α) = e(α)2 − 2f(α)2, and similarly for λ. Then1[
α

λ

]
8

=

[
λ

α

]
8

(−1)
N(α)−1

8
N(λ)−1

8 ζ
d(λ)f(α)−d(α)f(λ)

4 .

Moreover, [
1−ζ
α

]
8

= ζ
5a−5+5b+18d+b2−2bd+d4/2

8 ,
[
ζ

α

]
8

= ζ
a−1+4b+2bd+2d2

4 ,[
1+ζ

α

]
8

= ζ
a−1+b+6d+b2+2bd+d4/2

8 ,
[
ε

α

]
8

= ζ
d−3b−bd−2d2

2 ,[
1+ζ+ζ2

α

]
8

= ζ
a−1−2b+2d−2d2

4 .

ut
Letting α = a0 + a1ζ + a2ζ

2 + a3ζ
3, a direct calculation shows that α1α5 = (a0

2 − a22 +
2a1a3)+(−a12 +a3

2 +2a0a2)i, α1α3 = (a0
2−a12 +a2

2−a32)+(a0a1 +a0a3−a1a2 +a2a3)
√
−2,

and α1α7 = (a0
2 +a1

2 +a2
2 +a3

2) + (a0a1−a0a3 +a1a2 +a2a3)
√

2 [4, Exerc. 5.21]. This yields
a(α) = a0

2 − a22 + 2a1a3, b(α) = −a12 + a3
2 + 2a0a2,

2 d(α) = a0a1 + a0a3 − a1a2 + a2a3, and
f(α) = a0a1 − a0a3 + a1a2 + a2a3.

As stated, the reciprocity law requires α and λ being primary. Suppose that α is such
that (1 + ζ) - α, but is not necessarily primary. Then from Proposition 1, we can write
α = ζkεl α∗ for some 0 ≤ k ≤ 7 and l ∈ {0, 1}, with α∗ primary. We note α∗ = primary(α)
and (k, l) = ν(α). Likewise, suppose that λ is such that (1 + ζ) - λ and is not necessarily
primary. Then λ = ζk

′
εl
′
λ∗ with λ∗ = primary(λ) and (k′, l′) = ν(λ).

We assume (1 + ζ) - λ. Putting all together, when (1 + ζ) - α, we have:[
α

λ

]
8

=

[
α

λ∗

]
8

=

[
ζk

λ∗

]
8

[
εl

λ∗

]
8

[
α∗

λ∗

]
8

by Proposition 1

= ζ
k(a(λ∗)−1+4b(λ∗)+2b(λ∗)d(λ∗)+2d(λ∗)2)

4 ζ
l(d(λ∗)−3b(λ∗)−b(λ∗)d(λ∗)−2d(λ∗)2)

2[
λ∗

α∗

]
8

ζ
(N(α∗)−1)(N(λ∗)−1)

16
+
d(λ∗)f(α∗)−d(α∗)f(λ∗)

4 by Theorem 1

=

[
λ∗ mod α∗

α∗

]
8

ζkK(λ
∗)+lL(λ∗)+J (α∗,λ∗) (mod 8)

1 We note that a factor − 1
4

is missing in the expression given in [4, Theorem 9.19].
2 The first formula listed in [4, Exerc. 5.21] actually corresponds to −b.
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where K(λ∗) = 1
4

[
a(λ∗) − 1 + 4b(λ∗) + 2b(λ∗)d(λ∗) + 2d(λ∗)2

]
, L(λ∗) = 1

2

[
d(λ∗) − 3b(λ∗) −

b(λ∗)d(λ∗)−2d(λ∗)2
]

and J (α∗, λ∗) = 1
16

[
(N(α∗)−1)(N(λ∗)−1)+4d(λ∗)f(α∗)−4d(α∗)f(λ∗)

]
.

When (1 + ζ) | α, we have:[
α

λ

]
8

=

[
α

λ∗

]
8

=

[
α/(1 + ζ)

λ∗

]
8

[
1 + ζ

λ∗

]
8

=

[
α/(1 + ζ)

λ∗

]
8

ζI(λ
∗) (mod 8) by Theorem 1

where I(λ∗) = 1
8

(
a(λ∗) − 1 + b(λ∗) + 6d(λ∗) + b(λ∗)2 + 2b(λ∗)d(λ∗) + d(λ∗)4/2

)
. These two

observations lead to Algorithm 1.

Algorithm 1: Computing
[
α

λ

]
8

Data: α, λ ∈ Z[ζ] with α and λ co-prime, and (1 + ζ) - λ
Result:

[
α

λ

]
8

∈ {±1,±i,±ζ,±iζ}
λ← primary(λ); j ← 0
while N(α) 6= 1 do

if (1 + ζ) | α then
α← α/(1 + ζ)
j ← j + I(λ) (mod 8)

else
(k, l)← ν(α); α← primary(α)
j ← j + kK(λ) + lL(λ) + J (α, λ) (mod 8)
(α, λ)← (λ mod α, α)

end

end
(k, l)← ν(α); α← primary(α)
[u0, u1, u2, u3]← α mod 8; k ← k + u0 − 1; l← l + u3

j ← j + kK(λ) + lL(λ) (mod 8)

return ζj

At the end of the while-loop, α is transformed into a primary unit, say υ∗. Letting
υ∗ mod 8 = u0 +u1ζ +u2ζ

2 +u3ζ
3 := [u0, u1, u2, u3], it turns out that the possible values are

[1, 0, 0, 0], [1, 4, 0, 4], [5, 6, 0, 2], [5, 2, 0, 6], respectively corresponding to
[
υ∗

λ∗

]
8

=
[
1

λ∗

]
8

,
[
ε4

λ∗

]
8

,[
ζ4ε2

λ∗

]
8

,
[
ζ4ε6

λ∗

]
8

.

As a reminder, a ring R is said norm-Euclidean or Euclidean with respect to the norm N
if for every α, β ∈ R, β 6= 0, there exist η, ρ ∈ R such that α = β η + ρ and N(ρ) < N(β).
The correctness of the algorithm is a consequence of the fact that Z[ζ] is norm-Euclidean [5]:
when α is replaced by λ mod α, its norm decreases. Also, when α is divided by (1 + ζ), its
norm is divided by 2 since N(1 + ζ) = 2. Therefore, in all cases, the norm of α is decreasing
and eventually becomes 1.

3



Remark 1. Letting α = a0 + a1ζ + a2ζ
2 + a3ζ

3, the condition (1 + ζ) | α simply amounts to
verify whether a0 +a1 +a2 +a3 ≡ 0 (mod 2); in this case, α/(1 + ζ) = 1

2
(a0 +a1−a2 +a3) +

1
2
(−a0 + a1 + a2 − a3)ζ + 1

2
(a0 − a1 + a2 + a3)ζ

2 + 1
2
(−a0 + a1 − a2 + a3)ζ

3.
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