
Sub-Linear Privacy-Preserving Near-Neighbor Search
M. Sadegh Riazi*

UC San Diego
mriazi@ucsd.edu

Beidi Chen*

Rice University
beidi.chen@rice.edu

Anshumali Shrivastava
Rice University

anshumali@rice.edu

Dan Wallach
Rice University

dwallach@cs.rice.edu

Farinaz Koushanfar
UC San Diego

farinaz@ucsd.edu

ABSTRACT
In Near-Neighbor Search (NNS), a client queries a database
(held by a server) for the most similar data (near-neighbors)
given a certain similarity metric. The Privacy-Preserving
variant (PP-NNS) requires that neither server nor the client
shall learn information about the other party’s data except
what can be inferred from the outcome of NNS. The over-
whelming growth in the size of current datasets and the
lack of a truly secure server in the online world render the
existing solutions impractical; either due to their high com-
putational requirements or non-realistic assumptions which
potentially compromise privacy. PP-NNS having query time
sub-linear in the size of the database has been suggested as
an open research direction by Li et al. (CCSW’15). In this
paper, we provide the first such algorithm, called Privacy-
Preserving Locality Sensitive Indexing (PPLSI) which has a
sub-linear query time and the ability to handle honest-but-
curious parties. At the heart of our proposal lies a secure
binary embedding scheme generated from a novel probabilis-
tic transformation over locality sensitive hashing family. We
provide information theoretic bound for the privacy guar-
antees and support our theoretical claims using substantial
empirical evidence on real-world datasets.

1 INTRODUCTION
Near-Neighbor Search (NNS) is one of the most fundamental

and frequent tasks in large-scale data processing systems. In
NNS problem, a server holds a collection of users’ data; a
new user’s objective is to find all similar data to her query
given a certain similarity metric. NNS is used in personal
recommendations of friends, events, movies, etc. [79], online
classification based on 𝐾-NN search, face recognition [68],
secure biometric authentication [5, 9], privacy-preserving
speech recognition [58]. The demand for privacy in big-data
systems has led to an increasing interest in the problem of
Privacy-Preserving Near-Neighbor Search (PP-NNS). In PP-
NNS, all of the clients’ data must remain private to their
respective owners. This implies that not only server(s), but
also a new client who queries the database, should not learn
information about other clients’ data except the NNS result.

The above setting is natural and ubiquitous in the online
world where matching and recommendations are common [59].
For example, on dating websites, a client is interested in
finding similar profiles (near neighbors) without revealing her

* Equal contribution of the first two authors.

attributes to anyone. Note that, it is problematic to assume
any trusted server in real settings. A well-publicized recent
example is Yahoo’s massive leak, which compromised 500
million user accounts including private information such as
phone number, date of birth, or even answers to security
questions [1]. It is, therefore, desirable that the protocol does
not rely on the complete security of participating servers
and even if data from the server is compromised, the user’s
information must remain secure.

Keeping in mind both big-data and modern security chal-
lenges, four main requirements have to be satisfied: (i) one
shall not assume any trusted server, (ii) data owners (clients)
are not trusted, (iii) modern datasets are very high dimen-
sional, and (iv) the query time must be sub-linear (near
constant) in the number of clients (or database size) in order
to handle web-scale datasets. Sub-linear privacy-preserving
solution without any trusted party is currently considered
to be a critical, yet open, research direction as stated in a
recent article [51].

Due to the importance of the PP-NNS problem, there have
been many attempts to create a practical solution. In theory,
any function (e.g., NNS) with inputs from different parties
can be evaluated securely without revealing the input of each
party to another using Secure Function Evaluation (SFE)
protocols such as Garbled Circuit (GC) protocol. While the
SFE protocols have been continuously improving in efficiency,
they still suffer from huge execution times and massive com-
munication between executive servers. In addition, realizing
NNS with any of the SFE protocols faces the scalability issue.
These protocols scale (at best) linearly with respect to the
size of the database [63], undermining requirement four. As
we describe later, we only utilize GC for a small part of the
computation.

Supporting NNS on encrypted data is an active area of re-
search [29, 41, 84, 86]. Unfortunately, available crypto-based
solutions fail to support high dimensional data and they usu-
ally require multiple rounds of communication between user
and the server. Mylar [61] is a system for web applications
that works on top of encrypted data which is proved to be
insecure by Grubbs et al. [37]. One of the most adopted solu-
tions is Asymmetric Scalar-Product-preserving Encryption
(ASPE) [84]. However, not only this scheme has linear query
complexity in terms of the size of the database, it has been
proven to be insecure against chosen plaintext attack by Yao
et al. [86]. More generally, they have proved that secure NNS
is at least as hard as Order Preserving Encryption (OPE).

Since it has been proven that it is impossible to have secure
OPE under standard security models [11, 12], it is not feasible
to have a Secure NNS under standard security models such as
Ciphertext Indistinguishability under chosen Plaintext Attack
(IND-CPA). In this paper, we define 𝜖-security and show that
our solution limits the information leakage (for any arbitrary
upper bound) while having a practical sub-linear PP-NNS.

We propose Privacy-Preserving Locality Sensitive Indexing
(PPLSI) as a practical solution for the sub-linear PP-NNS on
high dimensional datasets. Performing NNS on a very high
dimensional database is a non-trivial task even when data
privacy is not a constraint. For example, NNS algorithms
based on k-d trees are marginally better than exhaustive
search [36] in high-dimensional data spaces. Our solution has
two main components: (i) a novel probabilistic transformation
over locality sensitive hashing family (Section 5) and a (ii)
secure black-box hash computation method based on the GC
protocol (Section 6).

Locality Sensitive Hashing (LSH) is the only line of work
which guarantees sub-linear query time approximate near-
neighbor search for high-dimensional datasets [42]. One fun-
damental property of LSH-based binary embedding is that
it preserves all pairwise distances with little distortion [44],
eliminating the need for sharing original attributes. However,
the bits of the binary embeddings have enough information
to estimate any pairwise distance (or similarity) between
any two users [7], which makes them unsuitable in settings
with no trusted party. We argue that the ability to estimate
all pairwise distances is sufficient but not necessary for the
task of near-neighbor search. In fact, we show for the first
time, that the ability to estimate distances compromises the
security of LSH-based embedding; rendering them susceptible
to “triangulation” attack (see Section 5.1). In this work, we
eliminate the vulnerability of LSH with minimal modification
while not affecting the sub-linear property.

Contributions. Our main contributions are as follows:
∙ We propose the first algorithm for PP-NNS with query

time sub-linear in the number of clients. No trusted
party or server is needed for handling sensitive data.

∙ We introduce the first generic transformation which
makes any given LSH scheme secure for public release
in honest-but-curious adversary setting. This advan-
tage comes at no additional cost and we retain all the
properties of LSH required for the sub-linear search.

∙ We give information theoretic guarantees on the secu-
rity of the proposed approach. Our proposed transfor-
mation, analysis, and the information theoretic bounds
are of independent theoretical interest.

∙ We provide a practical implementation of triangulation
attack for compromising the security of LSH signatures
in high dimensions. Our attack is based on alternating
projections. The proposed attack reveals the vulnera-
bility and unnecessary information leakage by the LSH
embeddings. In general, we experimentally verify that
the ability to estimate all pairwise distances is sufficient
for recovering original attributes.

∙ We support our theoretical claims using substantial em-
pirical evidence on real-world datasets. We further pro-
vide the first thorough evaluation of accuracy-privacy
trade-off and its comparison with noise-based privacy.
Our scheme can process queries against a database
of size 3 Billion entries in real time on a typical PC.
Performing the same task with the state-of-the-art
GC protocol requires an estimated time of 1.5 × 108

seconds and 1.2× 107 GBytes of communication (see
Section 8.3).

2 PRELIMINARIES AND
BACKGROUND

In this section, we briefly review our notation. Then, we
discuss our threat model followed by a background on LSH.
Finally, we explain how LSH is currently used for large-scale
near-neighbor search when the server is trusted. Please refer
to [42, 43] for more specific details.

2.1 Key Notations and Terms
A server holds a giant collection 𝒞 of clients (or data owners),
each represented by some 𝐷 dimensional attribute vectors,
i.e., 𝒞 ⊂ R𝐷. We are interested in finding the answers to
queries. The objective is

argmax
𝑥∈𝒞

𝑆𝑖𝑚(𝑥, 𝑞),

where 𝑆𝑖𝑚(., .) is a desired similarity measure. However, the
process should prevent any given (possibly dishonest) client
from inferring the attributes of other clients, except for the
information that can be inferred from the answer of the NNS
queries.

We interchangeably use the terms clients, users, data own-
ers, vectors, and attributes. They all refer to the vectors in
the collection 𝒞. Unless otherwise stated, the hash functions
ℎ will produce a 1-bit output, i.e., ℎ(𝑥) ∈ {0, 1}. All the
hash functions are probabilistic, and in particular, there is an
underlying family (class) of hash functions ℋ and ℎ is drawn
uniformly from this family. The draw can be conveniently
fixed using random seeds. Our protocol will require some
𝑙-bits embedding and each of these 𝑙-bits will be formed by
concatenating 𝑙 independent draws ℎ𝑖 𝑖 ∈ {1, 2, ..., 𝑙} from
some family of hash functions. Similarity search and the near-
neighbor search will mean the same thing. Similarity and
distances can be converted into each other using the formula
distance = 1 - similarity. For any hash function ℎ, the event
ℎ(𝑥) = ℎ(𝑦), for given pair 𝑥 and 𝑦, will be referred to as the
collision of hashes.

2.2 Threat Model
There are two types of parties involved in our model: servers
and clients (data owners). The models in previous works, for
example [51], usually consider trusted servers. In this paper,
we assume Honest-but-Curious (HbC) adversary model for
both data owners and servers. In this threat model, each part
is assumed to follow the protocol but is curious to extract as
much information as possible about other party’s secret data.

While we do not trust any server, we assume that the servers
do not collude with each other. Please note that this is the
exact security model of the prior art [29]. We want to empha-
size that the assumption of two non-colluding HbC servers is
feasible since two servers can represent two different compa-
nies, e.g. Amazon and Microsoft. Due to the business reasons
and the fact that any collusion will significantly damage their
reputation, it would be very unlikely that two companies will
collude since it would be against their interests.

The solutions based on the GC protocol, Fully Homomor-
phic Encryption (FHE), and Oblivious RAM (ORAM) do not
leak any information about the database and the query [54]
other than what can be inferred from the answer of NNS.
All other solutions leak some information either in the setup
phase (creating the database) or the query phase. Unfortu-
nately, GC, FHE, and ORAM solutions are computationally
too expensive to be employed in real-world [84]. In this pa-
per we compare the performance of our proposed solution
(PPLSI) with GC. In addition, we formalize 𝜖-security and
prove that the information leakage in our scheme can be
made as small as required by tuning a privacy parameter
in the protocol. We also compare our solution to the noise
addition-based techniques and illustrate, both experimen-
tally and theoretically, that our solution has significantly
higher precision/recall for the same security limits. There-
fore, our work fills the gap between fast non-secure solutions
and impractical but secure ones, providing a practical and
controllable trade-off between efficiency and the privacy of
users.

Note that the answer to NNS may reveal some information
about the query and/or the database, regardless of imple-
mentation details and security guarantees of any protocol.
For example, if client 𝑖 and 𝑗 are very close w.r.t similarity
measure (near identical), then the near-neighbor query of
client 𝑖 should return 𝑗 as the correct answer (with a high
probability). A correct answer automatically reveals infor-
mation that 𝑗’s attributes are likely to be very similar to
𝑖’s attributes (with a high probability) even without having
knowledge of the other client’s attributes. This kind of infor-
mation leak cannot be avoided by any algorithm answering
the near-neighbor query with a reasonable accuracy.

Privacy guarantees in the PP-NNS protocols all rely on
the inherent assumption on bounded computations. Given
unbounded computations, the adversary can enumerate the
whole space of every possible vector and use near-neighbor
query until the generated vector returns the target client as
the neighbor. In high dimensions, this process will require
exponential computations due to the curse of dimensionality,
which turns out to be a boon for the privacy of NNS.

2.3 Locality Sensitive Hashing
A popular technique for approximate near-neighbor search
uses the underlying theory of Locality Sensitive Hashing [42].
LSH is a family of functions with the property that similar
input objects in the domain of these functions have a higher
probability of colliding in the range space than non-similar

ones. In formal terms, consider ℋ a family of hash functions
mapping R𝐷 to some set 𝒮.

definition 2.1 (LSH Family). A family ℋ is called
(𝑆0, 𝑐𝑆0, 𝑝1, 𝑝2)-sensitive if for any two points 𝑥, 𝑦 ∈ R𝐷 and
ℎ chosen uniformly from ℋ satisfies the following:

∙ if 𝑆𝑖𝑚(𝑥, 𝑦) ≥ 𝑆0 then 𝑃𝑟(ℎ(𝑥) = ℎ(𝑦)) ≥ 𝑝1
∙ if 𝑆𝑖𝑚(𝑥, 𝑦) ≤ 𝑐𝑆0 then 𝑃𝑟(ℎ(𝑥) = ℎ(𝑦)) ≤ 𝑝2

For approximate nearest neighbor search typically, 𝑝1 > 𝑝2
and 𝑐 < 1 is needed. An LSH allows us to construct data struc-
tures that give provably efficient query time algorithms for
the approximate near-neighbor problem with the associated
similarity measure.

One sufficient condition for a hash family ℋ to be a LSH
family is that the collision probability 𝑃𝑟ℋ(ℎ(𝑥) = ℎ(𝑦))
is monotonically increasing function of the similarity, i.e.

𝑃𝑟ℋ(ℎ(𝑥) = ℎ(𝑦)) = 𝑓(𝑆𝑖𝑚(𝑥, 𝑦)), (1)

where f is a monotonically increasing function. In fact most
of the popular known LSH families, such as MinHash (Sec-
tion 2.4) and SimHash (Section 2.5), actually satisfy this
stronger property. It can be noted that Equation 1 automat-
ically guarantees the two required conditions in the Defini-
tion 2.1 for any 𝑆0 and 𝑐 < 1.

It was shown [42] that having an LSH family for a given
similarity measure is sufficient for efficiently solving near-
neighbor search in sub-linear time:

definition 2.2. Given a family of (𝑆0, 𝑐𝑆0, 𝑝1, 𝑝2)-sensitive
hash functions, one can construct a data structure for c-
NN with 𝑂(𝑛𝜌 log𝑛) query time and space 𝑂(𝑛1+𝜌), where
𝜌 = log 𝑝1

log 𝑝2
< 1.

2.4 Popular LSH 1: Minwise Hashing
(MinHash)

One of the most popular measures of similarity between web
documents is resemblance (or Jaccard similarity) ℛ [16]. This
similarity measure is only defined over sets which can be
equivalently thought of as binary vectors over the universe,
with non-zeros indicating the existence of those elements

The resemblance similarity between two given sets 𝑥, 𝑦 ⊆
Ω = {1, 2, ..., |Ω|} is defined as

ℛ =
|𝑥 ∩ 𝑦|
|𝑥 ∪ 𝑦| =

𝑎

𝑓1 + 𝑓2 − 𝑎
, (2)

where 𝑓1 = |𝑥|, 𝑓2 = |𝑦|, and 𝑎 = |𝑥 ∩ 𝑦|.
Minwise hashing [17] is the LSH for resemblance similarity.

The minwise hashing family applies a random permutation
𝜋 : Ω → Ω, on the given set 𝑥, and stores only the minimum
value after the permutation mapping. Formally MinHash and
its collision probability is given by

ℎ𝑚𝑖𝑛
𝜋 (𝑥) = min(𝜋(𝑥)); 𝑃𝑟(ℎ𝑚𝑖𝑛

𝜋 (𝑥) = ℎ𝑚𝑖𝑛
𝜋 (𝑦)) = ℛ. (3)

2.5 Popular LSH 2: Signed Random
Projections (SimHash)

SimHash is another popular LSH for the cosine similarity
measure, which originates from the concept of Signed Random

Projections (SRP) [21, 40, 62]. Given a vector 𝑥, SRP utilizes
a random 𝑤 vector with each component generated from i.i.d.
normal distribution, i.e., 𝑤𝑖 ∼ 𝑁(0, 1), and only stores the
sign of the projection. Formally,

ℎ𝑠𝑖𝑔𝑛
𝑤 (𝑥) = 𝑠𝑖𝑔𝑛(𝑤𝑇𝑥). (4)

It was shown in the seminal work [35] that collision under
SRP satisfies the following equation:

𝑃𝑟(ℎ𝑠𝑖𝑔𝑛
𝑤 (𝑥) = ℎ𝑠𝑖𝑔𝑛

𝑤 (𝑦)) = 1− 𝜃

𝜋
, (5)

where 𝜃 = 𝑐𝑜𝑠−1
(︁

𝑥𝑇 𝑦
||𝑥||2·||𝑦||2

)︁
. The term 𝑥𝑇 𝑦

||𝑥||2·||𝑦||2
, is the

cosine similarity. There is a variant of SimHash that performs
similar to the original one [62] where, instead of 𝑤𝑖 ∼ 𝑁(0, 1),
we choose each 𝑤𝑖 independently as either +1 or -1 with
probability 1

2
. Since 1 − 𝜃

𝜋
is monotonic with respect to

cosine similarity 𝒮, SimHash is a valid LSH.

2.6 Mapping LSH to 1-bit
LSH, such as MinHash, in general, generates an integer value,
which is expensive from the storage perspective. It would gain
a lot of benefits from having a single bit hashing schemes, or
binary locality sensitive bits. It is also not difficult to obtain
1-bit LSH. The idea is to apply a random universal hash
function to the LSH and map it to 1-bit.

A commonly used universal scheme is given by

ℎ1𝑏𝑖𝑡(𝑥) = 𝑎× 𝑥 mod 2, (6)

where 𝑎 is an odd random number, see [19] for more details.
With this 1-bit mapping, any hashing output ℎ(𝑥) can be
converted to 1-bit by applying universal 1-bit hash function
ℎ1𝑏𝑖𝑡(.). Collision probability of this new transformed 1-bit
hashing scheme is given by

𝑃𝑟(ℎ1𝑏𝑖𝑡(ℎ(𝑥)) = ℎ1𝑏𝑖𝑡(ℎ(𝑦))) =
𝑃𝑟(ℎ(𝑥) = ℎ(𝑦)) + 1

2
. (7)

It is not difficult to show that ℎ1𝑏𝑖𝑡(ℎ(𝑥)) is also a valid
LSH familiy for the same similarity measure associated with
ℎ(.) [21, 69]. Another convenient (and efficient) 1-bit rehash-
ing is to use the parity, or the most significant bit, of ℎ𝑚𝑖𝑛

𝜋 (𝑥)
as 1-bit hash [69].

2.7 PP-NNS in Sub-linear Time with a
Trusted Server

In the trusted server settings, LSH-based protocols are well-
known for sub-linear near-neighbor search [43]. The protocol
involves two major steps:

(1) Constructing Hash Tables (Pre-processing): The
trusted server fixes random seeds for hash functions
(e.g., random permutation for MinHash). Every client
𝑥 ∈ 𝒞 sends its attributes to the server. The server
computes the 𝑙-bit binary embedding 𝐸(𝑥), using ap-
propriate (pre-chosen) LSH schemes ℎ𝑖(𝑥)s. Computing
𝑙 bits involves generating multiple 1-bit hashes using
independent randomization and concatenating them
𝐸(𝑥) = [ℎ1(𝑥);ℎ2(𝑥); ...;ℎ𝑙(𝑥)], where ℎ𝑖(𝑥) is an in-
dependent hashing scheme. The server also generates

hash tables, as a part of preprocessing for sub-linear
time search. New clients can be dynamically inserted
into the tables.

(2) Sub-linear Search (Querying): To find near-neighbors
of any given query point 𝑞, the trusted server computes
the 𝑙-bit embedding of 𝑞, 𝐸(𝑞). Due to the LSH prop-
erty of 𝐸, it suffices to find points 𝑦 ∈ 𝒞 such that 𝐸(𝑞)
and 𝐸(𝑦) are close in Hamming distance. Searching for
close Hamming distance can be done very efficiently
in sub-linear time by only probing few buckets in the
pre-constructed hash tables [43].

The above protocol requires a trusted server which handles
all the data. The security relies on the fact that no client
is allowed to see any part of the computation process. The
sub-linearity of the search is due to the classical sub-linear
LSH algorithm for Hamming distance search [62].

3 CHALLENGES WITH UNTRUSTED
SERVER AND TYPES OF ATTACKS

For obtaining sub-linear solutions, we do not have many
choices. LSH-based techniques are well-known methods that
guarantee efficient sub-linear query time algorithms even in
high dimensions [34]. Thus, one cannot hope to deviate from
the philosophy of generating binary embeddings for data
vectors that preserve original near-neighbors in the obtained
Hamming space.

Conceptually, there can be three types of attacks when
the server is untrusted: (i) querying the database and brute-
forcing the space of inputs (ii) extracting the original attribute
vector from the hashes using compressive sensing theory, and
(iii) analyzing the combination of hashes and measuring their
mutual correlation to estimate the original attribute of a
user.

Brute-force/Probing Attacks. An attacker can ask for
the hash embedding of a random attribute vector and check
whether it is equal to another user’s hash (if the database is
compromised). However, exploring the entire input space is
computationally infeasible. If each element of the attribute
vector is represented as a 32-bit number, we have (232)𝐷

possible unique inputs. National Institute of Standards and
Technology (NIST) states that any attack that requires 2128

operations is computationally infeasible [80]. For example, for
the two datasets that are considered in this paper, 𝐷 ⩾ 186.
Thus, there are 25952 possible inputs which are far beyond
the security standards. Note that each element of attribute
vector might not have uniform distribution, e.g., the value
for age is typically a number between 0 and 100. Therefore,
each number may not have maximum randomness (entropy).
However, even if each number has minimum randomness (1-
bit entropy), for any input vector with 𝐷 ⩾ 128, the attack
is not possible.

Compressive Sensing/Reconstruction Attacks. The
theory of compressive sensing makes it possible to approxi-
mately recover 𝑥 from the hash embedding 𝐸(𝑥) given the
random seeds used in 𝐸(.). Thus, we need to ensure that
neither users nor the server have any information about the

User(s) Servers

- server 1 generates random seeds1 (off-line)
- server 2 generates random seeds2 (off-line)

for all xis in 𝐶, each data owner
computes random pad 𝑣i

and Enc𝑣i(xi)

𝑣i to server 1 - two servers jointly perform black-box computation of S(xi):
server 1 inputs: seeds1 and 𝑣i, server 2 inputs: seeds2 and Enc𝑣i(xi)

à output: S(xi)
- server 1 adds the new S(xi) to the hash tables

2. Constructing the Database
(Hash Tables)

1. Generating Random Seeds

new user with query q
computes random pad 𝑣q

and Enc𝑣q(q)

3. Searching
(Querying)

NNS(q)

Phases

Enc𝑣i(xi) to server 2

𝑣q to server 1
Enc𝑣q(q) to server 2

- two servers jointly perform black-box computation of S(q):
server 1 inputs: seeds1 and 𝑣q, server 2 inputs: seeds2 and Enc𝑣q(q)

à output: S(q)
- server 1 searches the hash tables using S(q) and finds NNS(q)

Figure 1: The PPLSI scheme consists of three phases: (i) generating random seeds, (ii) constructing the
database, and (iii) searching phase. The internal mechanism of 𝑆(.) is explained in Seciton 5. Black-box hash
computation of 𝑆(𝑥) is described in Section 6 which is based on the GC protocol and takes as input 𝐸𝑛𝑐𝑣(𝑥)
(encryption of 𝑥) and the pad 𝑣.

random seeds used in the computation of 𝐸(.). Every embed-
ding 𝐸(𝑥)|𝑥 ∈ 𝒞, however, should be created using identical
random seeds (see Appendix 5 for discussions). We show that
using secure function evaluation protocols, it is possible to
create secure binary embeddings using the same set of ran-
dom seeds while no-one knows the seeds used in the hashing
function. We describe the solution in Section 6. Since the
generation of the hash embedding is a one-time operation, it
is allowed to be costlier as it is independent of other query
processes.

Multilateration/Correlation/Triangulation Attacks.
Although, recovering 𝑥 from 𝐸(𝑥) is not possible without
knowing the random seeds inside ℎ𝑖 ∀𝑖, it is still possible
to recover 𝑥 from 𝐸(𝑥) by combining a “few” calls to the
function 𝐸(.) over few known inputs 𝑦′

𝑖𝑠 (similar to chosen-
plaintext attack). The LSH property allows the estimation
of any pairwise distance. Such estimations open room for
“triangulation” attack which is hard to prevent. We explain
the problem and the solution in Section 5. This information
leakage with LSH is one of the major reasons why sub-linear
search with semi-honest clients and absence of trusted party
is an open research direction.

We use a novel probabilistic transformation to show that
converting the bits generated from LSH family into secure
bits is suitable for public release in the semi-honest model
since it is secure against triangulation attack. Our secure
bits preserve only the near-neighbors in Hamming space,
unlike LSH, do not allow estimation of all possible distances.
Our final 𝑙-bit embedding functions will be denoted by 𝑆(𝑥)
instead of 𝐸(.) to signify the secure nature of 𝑆(.). Our
solutions for making LSH secure is the main contributions of
this paper, which makes sub-linear time PP-NNS possible in
the semi-honest setting with no trusted party. In the process,
we fundamentally leverage the theory of LSH from the privacy
perspective.

Before we describe the technical details of our solution in
Sections 5 and 6 respectively, we briefly give an overview of
our final protocol.

4 PROPOSED PPLSI PROTOCOL FOR
SUB-LINEAR QUERY TIME PP-NNS

The security of the final protocol is based on the proposed
secure LSH (described in Section 5). Utilizing Secure LSH,
we can generate 𝑙-bit embeddings, for some 𝑙, 𝑆(.), such
𝑆(𝑥) is safe for public release. Assuming that we know such
embedding 𝑆(.), our final protocol for sub-linear query time
PP-NNS works in three phases:

1. Generating Random Seeds of 𝑆(.): This process
needs to be performed only once and does not require any
communication between servers (off-line). Two servers are
required in PPLSI. They need to generate random seeds (that
are used in the black-box hash computation of 𝑆(.) in phase
two and three). The final internal random seeds of 𝑆(.) are
generated inside the GC protoocl and is not known to anyone.
The mathematical detail of secure LSH embedding, 𝑆(.), are
described in Section 5 while the details on its black-box
computation are described in Section 6.

2. Constructing the Database (Hash Tables): Every
data owner 𝑥 computes her 𝑙-bit secure binary embedding
𝑆(𝑥) using black-box hash computation by communicating
to the servers. This 𝑙-bit signature 𝑆(𝑥) serves as the secure
public identifier for client 𝑥. Server #1 which possesses all
𝑆(𝑥)s, pre-processes the collection of 𝑙-bit binary strings
{𝑆(𝑥) : 𝑥 ∈ 𝒞} and forms hash tables using the classical
algorithm for sub-linear search [62].

3. Searching in Sub-Linear Time (Query Phase):
To find near-neighbors of point 𝑥, it suffices to find points
𝑦 such that the corresponding secure embeddings, 𝑆(𝑥) and
𝑆(𝑦), are near-neighbors in Hamming distance. Searching
for close Hamming distance can be done very efficiently in
sub-linear time using the well-known algorithms [62].

It should be noted that other than the set 𝑆𝒞 = {𝑆(𝑥) : 𝑥 ∈
𝒞}, no information is transfered between clients and servers.
Hence, if 𝑆𝒞 is not sufficient to recover any of the client’s
information, the protocol is secure. For better readability we
summarize the end-to-end protocol in Figure 1.

5 THE KEY INGREDIENT: LSH
TRANSFORMATION

We explain why traditional LSH (or any scheme) which allows
for estimation of any pairwise distance is not secure in the
HbC adversary model. We describe the attack followed by
its solution. We later formalize the privacy budget.

5.1 “Triangulation” Attack
To give more insight into the situation, we describe triangu-
lation attack which leads to an accurate estimation of any
target client’s attribute 𝑞. For illustration, we focus on two
dimensions, but the arguments naturally extend in higher di-
mensions. Assume that we are given the LSH embedding 𝐸(𝑞)
of the target point 𝑞 (instead of secure embedding 𝑆(.)). An
attacker, who wants to know the attributes of 𝑞, can create
three random data (points) in the space 𝐴, 𝐵, and 𝐶. Cre-
ating few random points is not hard, e.g., fake online profiles
with random attributes. The protocol allows computation of
their LSH embeddings 𝐸(𝐴), 𝐸(𝐵), and 𝐸(𝐶).

Given the random points 𝐴, 𝐵, 𝐶, and their corresponding
hashes 𝐸(𝐴), 𝐸(𝐵), and 𝐸(𝐶), the attacker can compute the
Hamming distance between the hash values of 𝐸(𝐴), 𝐸(𝐵),
and 𝐸(𝐶) with the target hash, 𝐸(𝑞). Given this information,
the distances of 𝑞 with 𝐴, 𝐵, and 𝐶, denoted by 𝑑𝐴, 𝑑𝐵 and
𝑑𝐶 , can be accurately estimated [7].

Estimation of Distances from LSH Embeddings:
Let us focus on estimating 𝑑𝐴 from 𝑙-bit binary LSH em-
bedding 𝐸(𝐴) and 𝐸(𝑞). For illustrations let 𝑙 be equal to
5 and 𝐸(𝐴) = 11010 and 𝐸(𝑞) = 10110. Let 𝑚 be the mea-
sured number of bit matches between 𝐸(𝐴) and 𝐸(𝑞) out
of 𝑙. For our case, we have 𝑚 = 3, because bits at loca-
tions 1, 4 and 5 of 𝐸(𝐴) and 𝐸(𝑞) are equal. Since every
bit comes from an independent 1-bit LSH scheme, we have
E[𝑛𝑚𝑎𝑡𝑐ℎ] = 𝑙×𝑃𝑟(ℎ𝑖(𝑞) = ℎ𝑖(𝐴)) = 𝑚, where 𝑛𝑚𝑎𝑡𝑐ℎ is the
number of bit matches between two LSH embeddings and
E[.] denotes the expected value of a random variable.

Thus we can estimate, in an unbiased way, the collision
probability 𝑃𝑟(ℎ(𝐴) = ℎ(𝑞)) by the expression 𝑚

𝑙
, the mean

number of bit matches. As we discussed in Section 2, the
collision probability is usually a monotonic function of the
distance (or similarity) 𝑃𝑟(ℎ(𝐴) = ℎ(𝑞)) = 𝑓(𝑑𝑖𝑠𝑡(𝐴, 𝑞))
where 𝑓 is the monotonic function. Every monotonic function
has an inverse, thus

𝑑𝑖𝑠𝑡(𝐴, 𝑞) = 𝑓−1(︀𝑚
𝑙

)︀
,

is an accurate estimator of the distance or similarity [52, 53,
69]. See Section 9 for details where we describe the imple-
mentation of triangulation attack.

After estimating the distances 𝑑𝐴, 𝑑𝐵 and 𝑑𝐶 , the at-
tributes of 𝑞 can be inferred using triangulation. Figure 2
shows a two-dimensional illustration of our setup.

It should be noted that even if the distance estimation is
not very accurate, generating many distance estimates from
different random points would be sufficient to achieve a very
good accuracy in locating any target point.

q

dA

dB

dC
A

B

C

Figure 2: The user 𝑞 can be located using random
points 𝐴, 𝐵, and 𝐶 along with the distances 𝑑𝐴, 𝑑𝐵,
and 𝑑𝐶 which are estimated from the available binary
embeddings (hashes).

The above illustration only shows two dimensions. For
higher dimensions, we show an efficient iterative process,
using the idea of alternating projections [15], to infer the
attributes even for high-dimensional vectors. In Section 9, we
describe the process in details. Our inference process shows
the power of simple iterative machine learning in breaking
the security, which itself can be of independent interest. The
ease of triangulation-based inference of attributes further
emphasizes the need for more secure hashing schemes which
we propose in the next section.

5.2 Probabilistic Transformations for
Generating Secure LSH

Our proposal is a generic framework for making any given
LSH privacy-preserving. In particular, we prevent LSH from
leaking the distance information without compromising on
the accuracy of the near-neighbor search.

We illustrate the main idea using 1-bit MinHash and later
we formally introduce the methodology. The collision prob-
ability, for any two given data points 𝑥 and 𝑦, under 1-bit
MinHash is given by ℛ(𝑥,𝑦)+1

2
(Equation 7). This quantity

varies linearly, between 1 to 0.5 as ℛ(𝑥, 𝑦) varies from 1 to
0, with a constant gradient of 1

2
. Thus, even when ℛ(𝑥, 𝑦) is

small, the variation of the collision probability with distance
keeps changing and gets reflected in the Hamming distance
between the public 𝑙-bit hash embeddings. This property
allows us to estimate the distances accurately by counting
the number of bit matches out of the 𝑙-bits which are public.
For example, if 65% of bits matches, then a good estimate of
similarity between 𝑥 and 𝑦 is 0.65× 2− 1 = 0.3 (Equation 7).

To make LSH privacy-preserving without losing the accu-
racy in near-neighbor search tasks, it is necessary to have
the flat collision probability with no gradient if the similarity
between the pair 𝑥 and 𝑦 is below the satisfactory level. Thus,
for any pair of random points 𝑥 and 𝑦, the Hamming distance
between the publicly available 𝑙-bit hash codes is around 𝑙/2
(due to the 0.5 probability of agreement), which prohibits
the estimation of distances between 𝑥 and 𝑦.

Until now, we have realized that we need to transform
the collision probability. The primary challenge is to find the
precise expression for the curve which has the desired behavior
and at the same time represents the collision probability of
some 1-bit hashing scheme. It should be noted that not every

curve is a collision probability curve [21], therefore, it is not
even known if such a mathematical expression exists.

We show that the expression given by ℛ(𝑥,𝑦)𝑘+1
2

, for some
large enough 𝑘, has the required “sweet” property. In partic-
ular, we construct a new 1-bit secure MinHash with collision
probability ℛ(𝑥,𝑦)𝑘+1

2
for any positive integer 𝑘, instead of

ℛ(𝑥,𝑦)+1
2

. The observation is that since ℛ ≤ 1, ℛ𝑘 for rea-
sonably large 𝑘 quickly falls to zero as ℛ(𝑥, 𝑦) goes away
from 1. Therefore, the quantity ℛ(𝑥,𝑦)𝑘+1

2
will be very close

to 1
2

for even moderately high similarity. Furthermore, we
can control the decay of the probability curve by choosing
𝑘 appropriately. The function ℛ(𝑥,𝑦)𝑘+1

2
follows the desired

trend of collision probability and is secure from information
theoretic perspective.

The key mathematical observation is that we can generate
1-bit hash functions with collision probability ℛ(𝑥,𝑦)𝑘+1

2
by

combining 𝑘 independent MinHashes. Note that, given 𝑥 and
𝑦, the probability of agreement of an independent MinHash
value is ℛ(𝑥, 𝑦). Therefore, the probability of agreement of
all 𝑘 independent MinHashes will be ℛ(𝑥, 𝑦)𝑘, see [70] for
details. Also, to generate a 1-bit hash value from 𝑘 integers,
we need a universal hash function that takes a vector of 𝑘
MinHashes and maps it uniformly to 1-bit. The final collision
probability of this new 1-bit scheme is precisely ℛ(𝑥,𝑦)𝑘+1

2
,

as required. The overall idea is quite general and applicable
to any LSH. We formalize it in the next section.

5.3 Formalization
As we argued in the previous section, we need a universal
hashing scheme, ℎ𝑢𝑛𝑖𝑣 : N𝑘 ↦→ {0, 1}, which maps a vector
of 𝑘 integers uniformly to 0 or 1. There are many ways to
achieve this and a common candidate is

ℎ𝑢𝑛𝑖𝑣(𝑥1, 𝑥2, ..., 𝑥𝑘) = (𝑟𝑘+1 +

𝑘∑︁
𝑖=1

𝑟𝑖𝑥𝑖) 𝑚𝑜𝑑 𝑝, 𝑚𝑜𝑑 2,

where 𝑟𝑖 are fixed randomly generated integers.
Given a hash function ℎ, uniformly sampled from any given

locality sensitive family ℋ, let us denote the probability of
agreement (collision) of hash values of 𝑥 and 𝑦 by 𝑃𝑐,

𝑃𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 ≡ 𝑃𝑐 ≡ 𝑃𝑟ℋ(ℎ(𝑥) = ℎ(𝑦)). (8)

definition 5.1 (Secure LSH). Our proposed secure 1-
bit LSH, ℎ𝑠𝑒𝑐, parameterized by 𝑘, for any point 𝑥 is given
by

ℎ𝑠𝑒𝑐(𝑥) = ℎ𝑢𝑛𝑖𝑣(ℎ1(𝑥), ℎ2(𝑥), ..., ℎ𝑘(𝑥)), (9)

where ℎ𝑖s, 𝑖 ∈ {1, 2, ..., 𝑘} are 𝑘 independent hash functions
sampled uniformly from the LSH family of interest ℋ.

It is not difficult to show the following:

Theorem 5.1. For any vectors 𝑥 and 𝑦, under the ran-
domization of ℎ𝑠𝑒𝑐 and 𝑟𝑖 we have

𝑃 𝑠𝑒𝑐
𝑐 = 𝑃𝑟ℋ,𝑟 (ℎ𝑠𝑒𝑐(𝑥) = ℎ𝑠𝑒𝑐(𝑦)) =

𝑃 𝑘
𝑐 + 1

2
(10)

Resemblance
00.51

C
ol

lis
io

n
P

ro
ba

bi
lit

y
P

c

0.5

0.6

0.7

0.8

0.9

1

5 2
10

20

1 (LSH)

Cosine Similarity
00.51

C
ol

lis
io

n
P

ro
ba

bi
lit

y
P

c

0.5

0.6

0.7

0.8

0.9

1

4
3

10
5

2

1 LSH

100

Figure 3: Left: The probability of collision of Secure
MinHash as a function of R (resemblance) for differ-
ent values of k. Right: The probability of collision of
Secure SimHash as a function of 𝜃 (Cosine Similar-
ity) for different values of k. Increasing 𝑘 makes the
collision probability drop to the constant 0.5 rapidly.

Proof. It should be noted that ℎ𝑠𝑒𝑐(𝑥) = ℎ𝑠𝑒𝑐(𝑦) can
happen due to the random bit collision with probability 1

2
.

Otherwise the two are equal if and only if

(ℎ1(𝑥), ℎ2(𝑥), ..., ℎ𝑘(𝑥)) = (ℎ1(𝑦), ℎ2(𝑦), ..., ℎ𝑘(𝑦)),

which happens with probability 𝑃 𝑘
𝑐 , because each ℎ𝑖 is inde-

pendent and 𝑃𝑟(ℎ𝑖(𝑥) = ℎ𝑖(𝑦)) = 𝑃𝑐. Therefore, the total
probability is 1

2
+ 1

2
𝑃 𝑘
𝑐 leading to the desired expression. □

We illustrate the usefulness of the framework proposed
above in deriving secure 1-bit hash for two most popular
similarity measures: 1) Secure MinHash for Jaccard similarity
and 2) Secure SimHash for Cosine similarity. The idea is
applicable to any general LSH including ALSH for Maximum
Inner Product Search (MIPS) [71, 74, 75].

5.3.1 Making Minwise Hashing Secure (Secure MinHash).
As an immediate consequence of Theorem 5.1, we can ob-
tain secure 1-bit MinHash in order to search based on the
Resemblance similarity,

ℎ𝑚𝑖𝑛
𝑠𝑒𝑐 (𝑥) = ℎ𝑢𝑛𝑖𝑣(ℎ

𝑚𝑖𝑛
𝜋1

(𝑥), ℎ𝑚𝑖𝑛
𝜋2

(𝑥), ..., ℎ𝑚𝑖𝑛
𝜋𝑘

(𝑥)), (11)

with the following Corollary:

Corollary 1. For MinHash we have:

𝑃 𝑠𝑒𝑐
𝑐 = 𝑃𝑟

(︁
ℎ𝑚𝑖𝑛
𝑠𝑒𝑐 (𝑥) = ℎ𝑚𝑖𝑛

𝑠𝑒𝑐 (𝑦)
)︁
=

ℛ𝑘 + 1

2
(12)

Figure 3 shows that the nature of new collision probability
follows the desired trend. The parameter 𝑘 gives us the knob
to tune the probability curve. In section 5.4, we discuss how
to tune this knob.

To generate our final 𝑙-bit binary embedding 𝑆(𝑥), we
simply generate 𝑙 independent ℎ𝑚𝑖𝑛

𝑠𝑒𝑐 , by using independent
permutations for MinHashes and independent random num-
bers for the universal hashing. Therefore, 𝑆(𝑥) is the con-
catenation of 𝑙 different ℎ𝑚𝑖𝑛

𝑠𝑒𝑐 .
In Section 5.3.3, we formally show that our transformed

bits are more secure than LSH. In particular, we prove that
the mutual information between the two secure 1-bit Min-
Hashes, ℎ𝑚𝑖𝑛

𝑠𝑒𝑐 (𝑥) and ℎ𝑚𝑖𝑛
𝑠𝑒𝑐 (𝑦) decays sharply (exponentially

with 𝑘) to zero as the similarity between 𝑥 and 𝑦 (i.e. ℛ)

decreases. Thus, there is negligible mutual information about
𝑥 in the embedding of some random (non-neighbor) 𝑦.

5.3.2 Making Signed Random Projections Secure (Secure
SimHash). Analogous to MinHash, we can make SimHash
secure with the same properties.

ℎ𝑠𝑖𝑔𝑛
𝑠𝑒𝑐 (𝑥) = ℎ𝑢𝑛𝑖𝑣(ℎ

𝑠𝑖𝑔𝑛
𝑤1

(𝑥), ℎ𝑠𝑖𝑔𝑛
𝑤2

(𝑥), ..., ℎ𝑠𝑖𝑔𝑛
𝑤𝑘

(𝑥)), (13)

where 𝑤𝑖s for all 𝑖 are independently chosen. Figure 3 (right)
summarizes the collision probability as a function of similarity
for different values of 𝑘.

Corollary 2. For Secure SimHash we have:

𝑃 𝑠𝑒𝑐
𝑐 = 𝑃𝑟

(︁
ℎ𝑠𝑖𝑔𝑛
𝑠𝑒𝑐 (𝑥) = ℎ𝑠𝑖𝑔𝑛

𝑠𝑒𝑐 (𝑦)
)︁
=

(1− 𝜃
𝜋
)𝑘 + 1

2
(14)

5.3.3 Info. Theoretic Bound as a Function of 𝑘. We provide
the theoretical property of our transformation by quantifying
the mutual information between two 𝑙-bit secure embeddings.
The similarity of 𝑥 and 𝑦 (𝑆𝑖𝑚(𝑥, 𝑦)) is denoted as 𝑆𝑥,𝑦.

Theorem 5.2. For any two data points 𝑥 and 𝑦, with 𝑆𝑥,𝑦

being the similarity between them, the mutual information
between ℎ𝑠𝑒𝑐(𝑥) and ℎ𝑠𝑒𝑐(𝑦) is bounded by

𝐼(ℎ𝑠𝑒𝑐(𝑥);ℎ𝑠𝑒𝑐(𝑦)|𝑆𝑥,𝑦) < 𝑙 · (2𝑃 𝑠𝑒𝑐
𝑐 − 1)𝑙𝑜𝑔(

𝑃 𝑠𝑒𝑐
𝑐

1− 𝑃 𝑠𝑒𝑐
𝑐

) (15)

Proof. For simplicity let us call the 𝑖𝑡ℎ bit of ℎ𝑠𝑒𝑐(𝑥), 𝑢𝑖

and 𝑖𝑡ℎ bit of ℎ𝑠𝑒𝑐(𝑦), 𝑢′
𝑖. and derive the mutual information

between these two bits conditioned on 𝑆𝑥,𝑦 as follows:

𝐼(𝑢𝑖;𝑢
′
𝑖|𝑆𝑥,𝑦) ≡ ∑︁

𝑢𝑖,𝑢
′
𝑖∈{0,1}

𝑃 (𝑢𝑖, 𝑢
′
𝑖|𝑆𝑥,𝑦)𝑙𝑜𝑔

𝑃 (𝑢𝑖, 𝑢
′
𝑖|𝑆𝑥,𝑦)

𝑃 (𝑢𝑖|𝑆𝑥,𝑦)𝑃 (𝑢′
𝑖|𝑆𝑥,𝑦)

= 𝑃 𝑠𝑒𝑐
𝑐 𝑙𝑜𝑔(2𝑃 𝑠𝑒𝑐

𝑐) + (1− 𝑃 𝑠𝑒𝑐
𝑐)𝑙𝑜𝑔(2(1− 𝑃 𝑠𝑒𝑐

𝑐))

< (2𝑃 𝑠𝑒𝑐
𝑐 − 1)𝑙𝑜𝑔(

𝑃 𝑠𝑒𝑐
𝑐

1− 𝑃 𝑠𝑒𝑐
𝑐

)

Since every bits of the binary embeddings are generated inde-
pendently, the mutual information between 𝑙-bit embeddings
is multiplied by 𝑙. □

Substituting 𝑃 𝑠𝑒𝑐
𝑐 from Equation 12 and Equation 14, the

mutual information can be expressed as a function of Resem-
blance and Cosine similarities, respectively.

Corollary 3. For secure MinHash we have:

𝐼(ℎ𝑚𝑖𝑛
𝑠𝑒𝑐 (𝑥);ℎ𝑚𝑖𝑛

𝑠𝑒𝑐 (𝑦)|ℛ) < ℛ𝑘𝑙𝑜𝑔(
1 +ℛ𝑘

1−ℛ𝑘
) (16)

and for Secure SimHash:

𝐼(ℎ𝑠𝑖𝑔𝑛
𝑠𝑒𝑐 (𝑥);ℎ𝑠𝑖𝑔𝑛

𝑠𝑒𝑐 (𝑦)|𝜃) < (1− 𝜃

𝜋
)𝑘𝑙𝑜𝑔(

1 + (1− 𝜃
𝜋
)𝑘

1− (1− 𝜃
𝜋
)𝑘

) (17)

As can be seen from Equations 16 and 17, the mutual
information drops rapidly (exponentially with 𝑘) to zero for
𝑥 and 𝑦 that have small similarity. Thus, for any two non-
neighbor points (small 𝑆𝑖𝑚(𝑥, 𝑦)) the generated bits behave
like random bits revealing no information about each other.
Obviously, 𝑘 = 1, which is the traditional choice for LSH, is
not secure, as the bits contain significant mutual information.

The choice of 𝑘 controls the decay of the mutual information
and hence is the privacy knob (see Section 5.4 for details on
how to tune this knob).

5.4 Formalism of Privacy Budget
Suppose, the application at hand considers any pair of points
𝑥 and 𝑦 with 𝑆𝑖𝑚(𝑥, 𝑦) < 𝑠0 as non-neighbors, for some
problem-dependent choice of 𝑠0. The application also speci-
fies an 𝜖 such that the collision probability of any two non-
neighbors should not exceed 1

2
+ 𝜖 (be very close to half

(random)). Forcing this condition ensures that whenever
𝑆𝑖𝑚(𝑥, 𝑦) < 𝑠0, the released bits cannot distinguish 𝑥 and 𝑦
with any randomly chosen pair. Formally,

definition 5.2 (𝜖-Secure Hash at Threshold 𝑠0).
For any 𝑥 and 𝑦 with 𝑆𝑖𝑚(𝑥, 𝑦) ≤ 𝑠0, we call a 1-bit hashing
scheme ℎ𝑠𝑒𝑐 secure at threshold 𝑠0 if the probability of bit-
matches satisfies:

1

2
≤ 𝑃𝑟(ℎ𝑠𝑒𝑐(𝑥) = ℎ𝑠𝑒𝑐(𝑦)) ≤

1

2
+ 𝜖.

Note that the expression of 𝜖-secure hash is not symmetric
since the probability of collision is always greater than or
equal to 1

2
(see Equation 10).

We show that for any 𝜖-secure hash function, the mutual
information in the bits of non-neighbor pairs is bounded.

Theorem 5.3 (Information Bound). For any 1-bit 𝜖-
secure hash function at threshold 𝑠0, the mutual information
between ℎ(𝑥) and ℎ(𝑦), for any pair with 𝑆𝑖𝑚(𝑥, 𝑦) ≤ 𝑠0, is
bounded as

𝐼(ℎ(𝑥);ℎ(𝑦)) ≤ 2𝜖 log
1 + 2𝜖

1− 2𝜖
(18)

Proof. Follows from Theorem 5.2 and Definition 5.2. □

In triangulation attack, we have access to 𝑚 attributes
𝑦𝑖s: 𝑌 = 𝑦1, 𝑦2, ..., 𝑦𝑚, and their corresponding hashes ℎ(𝑦𝑖)s.
Assuming 𝑦𝑖s are independent, we can bound the mutual
information about any target 𝑥 conditional on knowing 𝑦𝑖’s
and ℎ𝑖s as follows:

Theorem 5.4. For any 1-bit 𝜖-secure hash function at
threshold 𝑠0, the mutual information between ℎ(𝑥) and
{ℎ(𝑦1), ℎ(𝑦2)...ℎ(𝑦𝑚)}, for any pair with 𝑆𝑖𝑚(𝑥, 𝑦𝑖) ≤ 𝑠0 and
any pair of 𝑦𝑖, 𝑦𝑗 are independent, is bounded as

𝐼(ℎ(𝑥);ℎ(𝑦1)ℎ(𝑦2)...ℎ(𝑦𝑚)) ≤ 2𝑚𝜖 log
1 + 2𝜖

1− 2𝜖
(19)

Proof. Define subsets 𝒯 ⊆ 𝒱, where 𝒱 = 𝑛.

𝐼(ℎ(𝑥);ℎ(𝑦1)ℎ(𝑦2)...ℎ(𝑦𝑚)) =𝐼(ℎ(𝑦1)ℎ(𝑦2)...ℎ(𝑦𝑚);ℎ(𝑥))

=
∑︁

𝑇⊆2,...,𝑛

(−1)|𝑇 |𝐼(𝑇 ;ℎ(𝑥))

≤2𝑚𝜖 log
1 + 2𝜖

1− 2𝜖
(20)

Note that the mutual information of any 𝑦𝑖, 𝑦𝑗 pair is 0
because they are independent. □

Thus, for small enough 𝜖, it is impossible to get enough
information about any non-neighbor 𝑥 via triangulation. We
verify this observation empirically in the experiments. Next,
we show that Secure LSH can always be made 𝜖-secure hash
function for any 𝜖 using an appropriate choice of 𝑘.

Theorem 5.5. Any Secure LSH, ℎ𝑠𝑒𝑐, is also an 𝜖-secure
hash function at any given threshold 𝑠0, for all

𝑘 ≥
⌈︂

log 2𝜖

log
(︀
𝑃𝑟(ℎ(𝑥) = ℎ(𝑦)|𝑆𝑖𝑚(𝑥, 𝑦) = 𝑠0)

)︀⌉︂, (21)

where ⌈.⌉ is the ceiling operation. Here, ℎ(𝑥) is the original
hash function from which the ℎ𝑠𝑒𝑐 is derived.

Proof. Follows from the definition of 𝜖-secure hashing
added with fact that ℎ(𝑥) satisfies Definition 2.1. □

In order to obtain 𝜖-secure MinHash, we need 𝑘 =

⌈︂
log 2𝜖
log 𝑠0

⌉︂
.

For secure SimHash, we need to choose 𝑘 =

⌈︂
log 2𝜖

log
(︀
1− 𝑐𝑜𝑠−1(𝑠0)

𝜋

)︀⌉︂.

To get a sense of quantification, if we consider 𝑠0 = 0.75 (high
similarity) and 𝜖 = 0.05, then we have 𝑘 = 8 (MinHash) and
𝑘 = 12 (SimHash).

5.5 Utility-Privacy Trade-off of Secure
LSH

As mentioned in Section 2.3, the querying time and space for
approximate Near-Neighbor search are directly quantified by
𝜌 = log 𝑝1

log 𝑝2
< 1. The space complexity grows as 𝑛1+𝜌, while

the query time grows as 𝑛𝜌, where 𝑛 is the size of the dataset.
Thus, smaller 𝜌 indicates better theoretical performance. The
collision probability of our secured LSH is 𝑃 𝑠𝑒𝑐

𝑐 =
𝑃𝑘
𝑐 +1

2
. The

new 𝜌′ for Secure LSH would be log
𝑃𝑘
1 +1

2

log
𝑃𝑘
2 +1

2

.

Theorem 5.6. 𝜌′ is monotonically increasing with 𝑘.

𝑑𝜌′

𝑑𝑘
=

𝑝𝑘1 ln (𝑝1)

ln
(︁

𝑝𝑘2+1

2

)︁ (︀
𝑝𝑘1 + 1

)︀ −
ln

(︁
𝑝𝑘1+1

2

)︁
𝑝𝑘2 ln (𝑝2)

ln2
(︁

𝑝𝑘2+1

2

)︁ (︀
𝑝𝑘2 + 1

)︀ > 0 (22)

Therefore, when we increase 𝑘, we get the privacy at the cost
of reduced space and query time. The quantification of this

tradeoff is given as log
𝑃𝑘
1 +1

2

log
𝑃𝑘
2 +1

2

6 HIDING THE MECHANISM OF S(.)
We are now ready to describe the final piece of our protocol.
We describe in detail how we can reasonably hide the random
seeds inside of 𝑆(.) from the users in addition to both servers.
To compute the hash of the client’s input, we need random
seeds (e.g., for MinHash, random seeds are the random per-
mutations and for SimHash, they are random vectors used
in the projection step). Since these random seeds should be
equal for all clients, we cannot let each client generate her
seeds independently. Seeds should be chosen in a consistent

fashion. However, seeds should not be revealed to any server,
otherwise, they might be used to reconstruction the secret
attributes. As a result, we need to design a mechanism such
that no party knows the seeds, which is an important and yet
difficult task. To compute 𝑆(𝑥) securely without revealing
the actual random seeds to any party, at least two different
(non-colluding) servers need to be deployed. While we do
not trust either server, we require that two servers do not
collude.

Seeds2 RNG

RNG

x

v

Garbled
Circuit (GC)

Protocol S1(x)User

RNG

Server #1

S(x)

Server #2

Secure
Hash

Garbled
Circuit (GC)

Protocol

S2(x)

Input

Seeds1

Figure 4: Global flow of black-box hash computation.
RNG stands for Random Number Generator.

In the initial phase, each server generates its own version
of the seeds randomly. Whenever a client wants to compute
a secure hash, 𝑆(𝑥), she generates a random 𝐷 dimensional
vector 𝑣 (same dimensionality as her input value) and then
XORs this vector with 𝑥 (resulting in 𝑥⊕ 𝑣). She then sends
𝑣 to server #1 and 𝑥 ⊕ 𝑣 to server #2. The term 𝑥 ⊕ 𝑣 is
One-Time Pad (OTP) encryption of 𝑥 using 𝑣 as the pad and
we denote it as 𝐸𝑛𝑐𝑣(𝑥). Given this information and the two
initial random seeds, then both servers engage in a two-party
secure computation. Here, we utilize Garbled Circuit (GC)
protocol in order to compute 𝑆(𝑥). The GC protocol is one of
the generic secure function evaluation protocols that allows
two parties to jointly compute a function on their inputs
while keeping each input private to their respective owners.
In this protocol, the function that is evaluated securely has
to be described as a Boolean circuit. The computation and
communication complexity of this algorithm is proportional
to the number of non-XOR gates in the circuit.

The global flow of our approach is illustrated in Figure 4.
Server #1 inputs 𝑣 and server #2 inputs 𝐸𝑛𝑐𝑣(𝑥) (𝑥⊕ 𝑣) to
the GC protocol. In addition, each server inputs her random
seeds to the GC protocol. Actual seeds used for generating the
hash of 𝑥 are based on the two random seeds from two servers
and are generated using the Boolean circuit that is used inside
the GC protocol. In our case, the Boolean circuit is the secure
hash computation suggested in Section 5. For this reason, we
have designed the corresponding Boolean circuits for securely
computing secure MinHash and SimHash. The internal ar-
chitecture of the two circuits are described in Appendix 2

and Appendix 3, respectively. After two servers run the GC
protocol, they both acquire secret shared values of the hash
(𝑆1(𝑥) and 𝑆2(𝑥)) and server #1 needs to XOR the two values
to get the real hash (𝑆(𝑥)). RNG stands for Random Number
Generator. The security proof of our proposed approach is
given in Proposition 1.1 in Appendix 1. We utilize the recent
advances which make hashing algorithmically faster [72, 73].

The above procedure is called XOR-sharing technique
and is secure in HbC attack model because: (i) server #1
receives nothing but a true random number which contains no
information about 𝑥 and (ii) server #2 receives the encryption
of the message 𝑥 using 𝑣 as the encryption pad and is perfectly
secure [55]. Since both servers are assumed to not collude,
they cannot infer any information about the user’s input 𝑥.
The theory behind the GC protocol guarantees that neither of
the parties that execute the protocol can infer any information
about the intermediate values [85]. Since the actual random
seeds used to compute 𝑆(𝑥) is created by the GC protocol as
an intermediate value, none of the servers nor the users know
the value of true seeds and hence our protocol is secure.

7 NOISE ADDITION METHODS AND
THEIR POOR UTILITY-PRIVACY
TRADE-OFF

Obfuscating information by adding noise is one of the most
popular techniques for achieving privacy. By adding sufficient
noise to the hashes, one can construct 𝜖-secure scheme satis-
fying Definition 5.2. However, any protocol based on adding
a noise will obfuscate the information uniformly in every
bit, which will significantly affect the utility of near-neighbor
search. We elaborate this poor utility-privacy trade-off. This
is not the first time when such poor utility-privacy trade-off
is being observed by adding a noise [33].

Following popular noise addition mechanism [47], in order
to achieve the requirement in Definition 5.2, we can choose to
corrupt 1-bit LSH ℎ(𝑥) with a random bit, with probability
𝑓 . Formally, the generated hash function is

ℎ𝑐𝑜𝑟𝑟(𝑥) =

{︃
𝑟𝑎𝑛𝑑𝑜𝑚_𝑏𝑖𝑡, with probability f
ℎ(𝑥), with probability 1-f

Theorem 7.1. The new collision probability after this
corruption, for any 𝑥 and 𝑦, is given by:

𝑃 (ℎ𝑐𝑜𝑟𝑟(𝑥) = ℎ𝑐𝑜𝑟𝑟(𝑦))

= (1− 𝑓)(𝑃𝑟(ℎ1𝑏𝑖𝑡(𝑥) = ℎ1𝑏𝑖𝑡(𝑦)) +
𝑓

2
. (23)

Let us define 𝑃 (𝑠) = 𝑃𝑟(ℎ1𝑏𝑖𝑡(𝑥) = ℎ1𝑏𝑖𝑡(𝑦)|𝑆𝑖𝑚(𝑥, 𝑦) =
𝑠). Using this quantity, it is not difficult to show:

Theorem 7.2. ℎ𝑐𝑜𝑟𝑟 is 𝜖-secure at threshold 𝑠0, iff

(1− 𝑓)𝑃 (𝑠0) + 0.5𝑓 ≤ 0.5 + 𝜖; 𝑓 ≥ 1− 𝜖(︂
𝑃 (𝑠0)− 1

2

)︂ .

For 1-bit MinHash with corruption, the collision probability
boils down to 𝑅(1−𝑓)+1

2
. Thus, 𝑓 only changes the slope

of collision probability curve. To ensure 𝜖-secure hash at
similarity 𝑠0 threshold, we must have

𝑓 ≥ 1− 2𝜖

𝑠0
. (24)

To understand its implication, consider, an example with
𝑠0 = 0.75 (high similarity) and 𝜖 = 0.05. This combination
requires 𝑓 ≥ 0.86. Such high 𝑓 implies that most bits (86%)
are randomly chosen, and hence they are uninformative. Even
for very similar (almost identical) 𝑥 and 𝑦, the collision
probability is close to random. This degrades the usefulness of
LSH scheme significantly. In contrast, for the same threshold
𝑠0 = 0.75 and same epsilon 𝜖 = 0.05, secure LSH needs 𝑘 = 8

which leads to the collision probability expression ℛ8+1
2

. For
𝑥 = 𝑦, i.e. ℛ = 1, this expression is always 1. For 𝑥 and 𝑦 with
similarity 0.95, the collision probability is greater than 0.83,
significantly higher than 0.56 obtained using noise addition
(very close to the random probability 0.5).

8 EVALUATIONS
8.1 Utility-Privacy Tradeoff
In this section, we provide thorough evaluations of the ac-
curacy and privacy trade-off in our framework. Our aim is
two-fold: (i) We want to evaluate the benefits of our proposal
compared to traditional LSH in preventing triangulation at-
tack and simultaneously evaluate the effect of our proposal
on the utility of near-neighbor search. (ii) We also want to
understand the utility-privacy of noise addition techniques
in practice and further quantify it with the trade-offs of our
approach. It is important to have such evaluations, as pure
noise addition may be a good heuristic on real datasets that
prevents the triangulation attack without hurting accuracy.

Datasets: We use the IWPC [24] and Speed Dating
datasets [32]. They belong to different domains but both
contain private and sensitive attributes of the concerned indi-
viduals. The IWPC is a medical dataset which consists of 186
demographic, phenotypic, and genotypic features like race,
medicines taken, and Cyp2C9 genotypes of 5700 patients. We
split the records to 80% for creating hash tables and 20%
for querying. The dataset is publicly available for research
purposes. The type of data contained in the IWPC dataset
is equivalent to that of other private medical datasets that
have not been released publicly [33]. Speed-Dating dataset
has 8378 text survey samples, each has 190 features repre-
senting geometric features or answers to designed questions
by subjects.

We focus on the cosine similarity search, therefore, our
underlying LSH scheme is SimHash (or Signed Random Pro-
jections). The gold standard neighbors for every query were
chosen to be the points with cosine similarity greater than or
equal to 0.95. Please note that LSH is threshold-based [42].
Hence, we chose a reasonable high similarity threshold.

Baselines: We chose the following three baselines for our
comparisons. 1. LSH: This is the standard SimHash-based
embedding. 2. Secure LSH: As described in Section 5, we
use our proposed transformation to make LSH secure. To

Recall
0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Speed-Dating

sigma=0.0
sigma=0.25
sigma=0.5
sigma=0.75
sigma=1.0
sigma=1.5
sigma=2.0

LSH

Noise
Addition

Recall
0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Speed-Dating

k=1
k=2
k=4
k=6
k=8
k=10
k=12

Secure SimHash

LSH

Recall
0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
IWPC

sigma=0.0
sigma=0.25
sigma=0.5
sigma=0.75
sigma=1.0
sigma=1.5
sigma=2.0

Noise
Addition

LSH

Recall

0 0.2 0.4 0.6 0.8 1

P
r
e
c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
IWPC

k=1

k=2

k=4

k=6

k=8

k=10

k=12

LSH

Secure SimHash

Figure 5: Utility-Privacy Tradeoff: The plots represent the precession recall curves (higher is better) based
on noise addition (first and third from the left) and secure cosine similarity (second and fourth from the left)
for both datasets. The dotted red line is the vanilla LSH. We can clearly see that adding noise loses utility
while the proposed approach is significantly better.

study the utility-privacy trade-off, a range for privacy param-
eter 𝑘 = 2, 4, 6, 8, 12 is chosen. Note, 𝑘 = 1 is vanilla SimHash.
3. Noise-based LSH: [47] shows a way to release user infor-
mation in a privacy-preserving way for near-neighbor search.
The paper showed that adding Gaussian noise 𝑁(0, 𝜎2) af-
ter the random projection preserves differential privacy. To
compute the private variant of SimHash, we used the sign
of the differentially random private vector (generated by
perturbed random projections) as suggested in [47]. To un-
derstand the trade-off the noise levels are varied over a fine
grid 𝜎 = 0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0.

We generated 32-bit hashes for IWPC and 64-bit hashes for
Speed-Dating using each of the competing candidate hashing
schemes. For each query data, we ranked points in training
data based on the Hamming distance of the competing hash
codes. We then computed the precision and recall of the
Hamming-based ranking on the gold standard neighbors. We
summarized the complete precision-recall curves for both
the datasets and all the competing scheme in Figure 5. This
is a standard evaluation for hashing algorithms in the lit-
erature [83]. Higher precision-recall under a given ranking
indicates a better correlation of binary Hamming distance
with the actual similarity measure. A better correlation di-
rectly translates into a faster algorithm for sub-linear near
neighbor search [62] with Hamming distance.

In Figure 5, the first and third plots from the left-hand side
show the retrieval precision and recall curve using various
𝜎 in noise-based LSH. The Vanilla LSH line, which is the
performance of LSH 𝑘 = 1 or 𝜎 = 0 serves as the reference in
the plots. By increasing 𝜎, the accuracy of noise-based hashing
drops dramatically. Adding noise as argued in Section 7 leads
to poor collision probability for similar neighbors which in
turn leads to a significant drop in accuracy compared to LSH
as evident from the plots. As the privacy budget is increased,
by adding more noise, the performance drops significantly. In
contrast, the second and fourth plots from the left-hand side
show the precision and recall curve using different 𝑘s with
Secure SimHash.

By increasing privacy budget 𝑘, the accuracy does not drop
and even gets better than vanilla LSH. This improvement is
not surprising and can be attributed to the enhanced gap
between the collision probability of near-neighbor and any

random pair (Figure 3). It is known that with hashing-based
techniques, such enhanced gap leads to a better accuracy [42].
The plots show a consistent trend across the datasets and
clearly signify the superiority of our proposed transformation
over both LSH and noise addition based methods in terms
of retrieving near-neighbors. The result clearly establishes
the importance of studying problem-specific privacy before
resorting to obfuscation based on noise.

8.2 Effectiveness Against Triangulation
Attack

We showed that irrespective of the privacy budget, our pro-
posal is significantly more accurate than LSH and Noise-based
LSH. Our theoretical results suggest that the proposal is also
secure against triangulation attack, whereas, vanilla LSH is
not. We validate this claim in this section. Furthermore, we
also study the effectiveness of noise addition in preventing
the attack.

To evaluate the privacy, we implemented the “triangulation
attack” and inferred its accuracy on real datasets, IWPC,
and Speed-Dating. The task was to infer sensitive attributes
of a given target query vector by triangulating it with respect
to randomly chosen points as explained in Section 5.1. For
IWPC, we selected some sensitive attributes for inference
like cancer or not, set of medicines taken, or Cyp2C9 geno-
types to form the attack data points. For Speed-Dating, we
randomly chose the attributes for inferring. To scale-up the
implementation for higher dimensions, we use a novel itera-
tive projection algorithm which successively approaches the
target. The procedure is described separately in Section 9,
which could be of separate interest.

We used the same privacy budget, i.e., 𝑘 = 1, 2, 4, 6, 8, 12
for Secure SimHash and 𝜎 = 0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, for
noise-based SimHash. Again, 𝑘 = 1 and 𝜎 = 0 corresponded
to the vanilla LSH method which will serve as our reference
point. We computed the error of the estimated target using
triangulation attack with the actual target. We then calcu-
lated the mean and standard deviations of the errors over
100 independent triangulation attacks. The errors for varying
𝑘 for our proposed secure LSH and varying 𝜎 for noise-based

Sigma
-0.5 0 0.5 1 1.5 2 2.5

E
rr

o
r

D
is

ta
n

c
e

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
Speed-Dating

Random Guess

Noise Addition

K
0 5 10 15

E
rr

o
r

D
is

ta
n

c
e

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
Speed-Dating

Random Guess

Secure SimHash

Sigma
-0.5 0 0.5 1 1.5 2 2.5

E
rr

o
r

D
is

ta
n

c
e

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
IWPC

Random Guess

Noise Addition

K

0 5 10 15

E
r
r
o

r
 D

is
ta

n
c
e

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
IWPC

Random Guess

Secure SimHash

Figure 6: Effectiveness Against Triangulation Attack: Plots show the error (mean and error bars) in the
triangulation-attack-based inference of attributes (higher is more secure, random is holy grail). We can see
that both adding noise (first and third form the left) and increasing 𝑘 with secure hashing (second and fourth
form the left) lead to increased security. Contrasting this with Figure 5 clearly shows the superiority of our
proposal in retaining utility for the same level of privacy.

LSH were summarized in Figure 6. We also plotted the accu-
racy of random guess which will serve as our holy grail for
privacy. The attack accuracy for 𝑘 = 1 (𝜎 = 0) is substan-
tially better than the random guess which clearly indicates
the vanilla LSH is not secure. The decrease in attack accuracy
with an increase in 𝑘 clearly shows the high security level of
our solution.

As indicated by our theoretical results, the accuracy of
the triangulation attack decreases and slowly approaches the
random level (holy grail for privacy) as the privacy budget
increases. We can conclude that both noise addition and our
proposal effectively prevent triangulation attack. Increasing
noise, as expected, preserves privacy but at a significant loss
in utility. However, the retrieval experiments show that our
proposal provides privacy without loss in accuracy. For all 𝜎,
there always exists some 𝑘 which could achieve significantly
better performance for the same level of security.

8.3 Computational Cost Comparison with
SFE Protocols

In this section, we compare the performance of our proto-
col with the GC protocol, one of the most promising and
efficient Secure Function Evaluation (SFE) protocols. In our
scheme, we have integrated the GC protocol only for our
black-box hash computation step that is computed indepen-
dently and only once for each client. We will compare the
performance of our protocol with the pure execution of NNS
in GC to show the shortcomings of this approach. While GC
protocol can compute NNS without any computational error
(compare to Figure 5), it has rather limited practical usage
and scalability. The recent work of [77] has implemented the
K-Near-Neighbor (KNN) search using TinyGarble [78] frame-
work, one of the most efficient GC frameworks. Based on
their performance results, they report execution time of 6.7s
for 𝑁 = 128, 000 when processing 31-bit data. According to
their cost functions (which scales linearly with 𝑁 and input
bit length), for 𝑁 = 3 Billion and input size of 1280-bit (same
as ours), the execution time exceeds 74 days. In contrast, our
protocol requires 0.415 second for black-box hash computa-
tion and 0.887 second to search the hash-tables, resulting

in an overall 1.3 s execution time on the same machine. We
have also modified their solution and synthesized the circuit
for NNS based on the Cosine similarity (see Appendix 4).
For the exact same problem and parameters as ours, their
solution requires an estimated processing time of 1.5× 108

seconds and communication of 1.2× 107 GBytes. This clearly
illustrates the superiority of our novel scheme over GC.

9 ALTERNATING PROJECTIONS FOR
TRIANGULATION ATTACK

We provide the details of our implementation for the trian-
gulation attack over SimHash with cosine similarity (angles)
as the measure. We start with all normalized vectors. Given
the target point 𝑞, we generate 𝐷 + 1 random points 𝑋𝑖s in
the space.

𝑞 ∈ 𝑅𝐷, 𝑋𝑖 ∈ 𝑅𝐷, ‖𝑋𝑖‖2 = ‖𝑞‖2 = 1, (25)

∀𝑖 ∈ {1, 2, ..., (𝐷 + 1)}.

The distance between every 𝑋𝑖 and 𝑞,

𝑑𝑖 = ‖𝑋𝑖 − 𝑞‖2, ∀𝑖 ∈ {1, 2, ..., (𝐷 + 1)} (26)

is estimated as described in Section 5.1, first we estimate
the angle 𝜃 using hash matches between 𝐻(𝑋𝑖) and 𝐻(𝑞):
Then, we can get the distance 𝑑𝑖, from 𝜃 easily as the data
is normalized.

After finding all of the distances, we use Alternating Pro-
jection Method [38] to find the possible intersection of 𝐷 + 1
𝐷-dimensional spheres, 𝑆1, ..., 𝑆𝐷+1, each with central point
𝑋𝑖 and radius ‖𝑋𝑖 − 𝑞‖2. Any point in the intersection will
likely be very close to the target point. The procedure for
computing the point in the intersection is summarized in Al-
gorithm 1. 𝑡0 is initialized to a random vector (representing
the estimated location for the target point 𝑞) and is itera-
tively updated. 𝒫𝑆𝑖(𝑡𝑘) denotes the projection of point 𝑡𝑘 on
sphere 𝑆𝑖. We generate the sequence of projections:

𝑡𝑘+1 = 𝒫𝑆𝑁

(︀
𝒫𝑆𝑁−1(...𝒫𝑆1(𝑡𝑘))

)︀
,

Algorithm 1: POCS Algorithm

1: Initialize the maximum number of iteration 𝐼max

2: 𝑡0 = rand(1, D) //D-dimensional random vector
3: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 0
4: repeat
5: for 𝑗 = 1 𝑡𝑜 𝐷 + 1 do
6: 𝑡𝑗 = 𝑃𝑆𝑗 (𝑡𝑗−1) //P is projection

//of 𝑡𝑗−1 on 𝑆𝑗

7: end for
8: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ++
9: until Convergence == true or 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 == 𝐼max

10 PRIOR ART
PP-NNS is a heavily studied problem. However, existing so-
lutions are limited with respect to at least one of the three
requirements outlined in Section 1. In addition to PP-NNS
approaches discussed in Section 1, we briefly discuss most
relevant prior works. Several PP-NNS solutions are built
upon the principals of cryptographically secure computation
with the ability to compute on encrypted data [22, 25, 29–
31, 50, 65, 67, 68, 77]. The security of this approach, like
cryptographic tools, is based on the hardness of certain prob-
lems in number theory (e.g. factorization of large numbers).
Since every single bit in the computation is encrypted, dis-
tance calculations are computationally demanding and slow.

A line of work focuses on computing the distances using
Paillier AHE scheme [56] and reporting the nearest neighbor
to the query [30, 31, 68]. In [27], authors leverage additive
secret sharing to compute distances to find the closest point.
The work [6] enables a client to receive all similar entries
(more than a pre-specified threshold). In [87], an approach
based on TFHE [23] is proposed to compute argmin. However,
all of these solutions are several orders of magnitude slower
than our proposed scheme and do not support an untrusted
server.

In [22], authors study the secure nearest neighbor search
problem in which a client wants to query a database held by
a server. The security model guarantees that no information
about the query as well as the result is leaked to the server
and clients learns nothing beyond the result of the search.
However, it is assumed that the server holds the plaintext
database which is in contrast to our security model where the
server is not trusted. Authors use Homomorphic Encryption
for distance computation and Garbled Circuits to identify
minimum distances. In [65], a solution for K nearest neighbors
search is introduced where the database is distributed among
many parties and a client wishes to query the aggregation
of the database without revealing her input. The solution is
based on the BMR protocol [8].

Another popular approach is to use information-theoretic
secure multi-party computations, which guarantees that even
with unlimited computational power no adversary can com-
promise the data. This method is based on secret-shared
information to perform the secure computation and requires
three or more servers. Securely computing pairwise distances

needs “comparison” which is computationally intensive us-
ing secret-sharing alone and needs additional cryptographic
blocks which limit the overall scalability [25, 48]. These algo-
rithms work by first computing all possible distances securely,
before they find the near-neighbors based on minimum dis-
tance values. Irrespective of the underlying technique, calcu-
lating all distance pairs incurs 𝑂(𝑁) complexity. Thus, the
sub-linear time requirement cannot be satisfied by this class
of techniques, rendering it unscalable to modern massive
datasets.

There has been successful advances in the area of Dif-
ferential Privacy (DP) [14, 28, 39]. However, their security
model and use cases of DP is different than ours. DP usually
assumes a trusted server and aims to bound the information
leakage when answering each query. In a very high level, a
certain noise is added to the data stored on the database such
that the statistical information of the database is preserved
but an attacker cannot infer significant information about
single entry in the database.

Order-Preserving Encryption (OPE) [11, 60] allows to
carry out the comparison on encrypted version of data instead
of the raw version. Wang et al. [82] have proposed a solution
based on OPE and R-tree for faster than linear PP-NNS.
However, Naveed et al. [54] introduced several attacks that
can recover original users’ data from an encrypted database
that are based on OPE or Deterministic Encryption (DTE).
They have illustrated that the encrypted databases based on
OPE or DTE are insecure. Searchable encryption [20, 26, 45,
46, 57, 66, 76] allows a user to store the encrypted data on
the cloud server while being able to perform secure search.
However, these solutions are limited to exact keyword search
and are not compatible with NNS algorithms.

LSH is the algorithm of choice for sub-linear near-neighbor
search in high dimensions [42]. LSH techniques rely on ran-
domized binary embeddings (or representations) [2–4, 13,
43, 64]. These embeddings act as a probabilistic encryp-
tion which does not reveal direct information about the
original attributes [13, 43]. Due to the celebrated Jonson-
Lindenstrauss [44] or LSH property, it is possible to compare
the generated embedding for a potential match.

11 CONCLUSION
This paper addresses the important problem of privacy-
preserving near-neighbor search for multiple data owners
while the query time is sub-linear in the number of clients.
We show that the generic method of Locally Sensitive Hash-
ing (LSH) for sub-linear query search is vulnerable to the
triangulation attack. To secure LSH, a novel transformation
is suggested based on the secure probabilistic embedding over
LSH family. We theoretically demonstrate that our transfor-
mation preserves the near-neighbor embedding of LSH while
it makes distance estimation mathematically impossible for
non-neighbor points. By combining our transformation with
Yao’s Garbled Circuit protocol, we devise the first practical
privacy-preserving near-neighbor algorithm, called Secure
Locality Sensitive Indexing (SLSI) that is scalable to the

massive datasets without relying on trusted servers. The
paper provides substantial empirical evidence on real data
from medical records of patients to online dating profiles to
support its theoretical claims.

REFERENCES
[1] [n. d.]. Yahoo Security Notice. https://help.yahoo.com/kb/

account/SLN27925.html. ([n. d.]).
[2] Armen Aghasaryan, Merouane Bouzid, Dimitre Kostadinov, Man-

gal Kothari, and AK Nandi. 2013. On the use of LSH for privacy
preserving personalization. In IEEE International Conference on
Trust, Security and Privacy in Computing and Communications
(TrustCom).

[3] Martin Aumüller, Tobias Christiani, Rasmus Pagh, and Francesco
Silvestri. 2018. Distance-sensitive hashing. In Proceedings of the
37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems. ACM, 89–104.

[4] Martin Aumüller, Rasmus Pagh, and Francesco Silvestri. 2019.
Fair Near Neighbor Search: Independent Range Sampling in High
Dimensions. arXiv preprint arXiv:1906.01859 (2019).

[5] Mauro Barni, Tiziano Bianchi, Dario Catalano, Mario Di Rai-
mondo, Ruggero Donida Labati, Pierluigi Failla, Dario Fiore,
Riccardo Lazzeretti, Vincenzo Piuri, Fabio Scotti, et al. 2010.
Privacy-preserving fingercode authentication. In Proceedings of
the 12th ACM workshop on Multimedia and security.

[6] Mauro Barni, Tiziano Bianchi, Dario Catalano, Mario Di Rai-
mondo, Ruggero Donida Labati, Pierluigi Failla, Dario Fiore,
Riccardo Lazzeretti, Vincenzo Piuri, Fabio Scotti, et al. 2010.
Privacy-preserving fingercode authentication. In Proceedings of
the 12th ACM workshop on Multimedia and security. ACM,
231–240.

[7] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. 2007.
Scaling up all pairs similarity search. In WWW.

[8] Donald Beaver, Silvio Micali, and Phillip Rogaway. 1990. The
round complexity of secure protocols. In STOC, Vol. 90. 503–513.

[9] Marina Blanton and Paolo Gasti. 2011. Secure and efficient
protocols for iris and fingerprint identification. In ESORICS.

[10] Thomas Blumensath and Mike E Davies. 2009. Iterative hard
thresholding for compressed sensing. Applied and Computational
Harmonic Analysis 27, 3 (2009), 265–274.

[11] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam
OâĂŹneill. 2009. Order-preserving symmetric encryption. In An-
nual International Conference on the Theory and Applications
of Cryptographic Techniques.

[12] Alexandra Boldyreva, Nathan Chenette, and Adam OâĂŹNeill.
2011. Order-preserving encryption revisited: Improved security
analysis and alternative solutions. In Annual Cryptology Confer-
ence.

[13] Petros Boufounos and Shantanu Rane. 2011. Secure binary em-
beddings for privacy preserving nearest neighbors. In IEEE In-
ternational Workshop on Information Forensics and Security
(WIFS).

[14] Anders Bourgeat, Jana Schmurr, and Martin Aumüller. [n. d.].
Local Differential Private Estimation of Jaccard Similarity. ([n.
d.]).

[15] Stephen Boyd and Jon Dattorro. 2003. Alternating projections.
(2003).

[16] Andrei Z. Broder. 1997. On the Resemblance and Containment of
Documents. In the Compression and Complexity of Sequences.

[17] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael
Mitzenmacher. 1998. Min-Wise Independent Permutations. In
STOC.

[18] Emmanuel J Candès and Michael B Wakin. 2008. An introduction
to compressive sampling. IEEE signal processing magazine 25, 2
(2008), 21–30.

[19] J. Lawrence Carter and Mark N. Wegman. 1977. Universal classes
of hash functions. In STOC.

[20] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S Jutla,
Hugo Krawczyk, Marcel-Catalin Rosu, and Michael Steiner. 2014.
Dynamic Searchable Encryption in Very-Large Databases: Data
Structures and Implementation.. In NDSS.

[21] Moses S. Charikar. 2002. Similarity estimation techniques from
rounding algorithms. In STOC.

[22] Hao Chen, Ilaria Chillotti, Yihe Dong, Oxana Poburinnaya, Ilya
Razenshteyn, and M Sadegh Riazi. 2019. Sanns: Scaling up

secure approximate k-nearest neighbors search. arXiv preprint
arXiv:1904.02033 (2019).

[23] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika
Izabachène. August 2016. TFHE: Fast Fully Homomorphic En-
cryption Library. (August 2016). https://tfhe.github.io/tfhe/.

[24] International Warfarin Pharmacogenetics Consortium et al. 2009.
Estimation of the warfarin dose with clinical and pharmacogenetic
data. N Engl J Med (2009).

[25] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. 2009.
Multiparty computation, an introduction. Contemporary cryp-
tology (2009).

[26] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky.
2011. Searchable symmetric encryption: improved definitions and
efficient constructions. Journal of Computer Security (2011).

[27] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015.
ABY: A Framework for Efficient Mixed-Protocol Secure Two-Party
Computation.. In NDSS.

[28] Cynthia Dwork. 2006. Differential privacy. In Automata, lan-
guages and programming.

[29] Yousef Elmehdwi, Bharath K Samanthula, and Wei Jiang. 2014.
Secure k-nearest neighbor query over encrypted data in outsourced
environments. In International Conference on Data Engineering
(ICDE).

[30] Zekeriya Erkin, Martin Franz, Jorge Guajardo, Stefan Katzen-
beisser, Inald Lagendijk, and Tomas Toft. 2009. Privacy-preserving
face recognition. In International Symposium on Privacy En-
hancing Technologies Symposium. Springer, 235–253.

[31] David Evans, Yan Huang, Jonathan Katz, and Lior Malka. 2011.
Efficient privacy-preserving biometric identification. In Proceed-
ings of the 17th conference Network and Distributed System
Security Symposium, NDSS.

[32] Raymond Fisman, Sheena S Iyengar, Emir Kamenica, and Itamar
Simonson. 2006. Gender differences in mate selection: Evidence
from a speed dating experiment. The Quarterly Journal of
Economics (2006).

[33] Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David
Page, and Thomas Ristenpart. 2014. Privacy in pharmacogenetics:
An end-to-end case study of personalized warfarin dosing. In
USENIX Security.

[34] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Simi-
larity Search in High Dimensions via Hashing. In Proceedings of
the 25th International Conference on Very Large Data Bases
(VLDB).

[35] Michel X Goemans and David P Williamson. 1995. Improved
approximation algorithms for maximum cut and satisfiability
problems using semidefinite programming. Journal of the ACM
(JACM) (1995).

[36] Jacob E. Goodman, Joseph O’Rourke, and Piotr Indyk. 2004.
Nearest neighbours in high-dimensional spaces. Handbook of
Discrete and Computational Geometry (2nd edition), CRC Press.

[37] Paul Grubbs, Richard McPherson, Muhammad Naveed, Thomas
Ristenpart, and Vitaly Shmatikov. 2016. Breaking web applica-
tions built on top of encrypted data. In Proceedings of ACM
SIGSAC Conference on Computer and Communications Secu-
rity.

[38] LG Gubin, BT Polyak, and EV Raik. 1967. The method of
projections for finding the common point of convex sets. U. S. S.
R. Comput. Math. and Math. Phys. 7, 6 (1967), 1–24.

[39] Moritz Hardt, Katrina Ligett, and Frank McSherry. 2012. A simple
and practical algorithm for differentially private data release. In
Advances in Neural Information Processing Systems.

[40] Monika Henzinger. 2006. Finding near-duplicate web pages: a
large-scale evaluation of algorithms. In Proceedings of the 29th
annual international ACM SIGIR conference on Research and
development in information retrieval.

[41] Haibo Hu, Jianliang Xu, Chushi Ren, and Byron Choi. 2011.
Processing private queries over untrusted data cloud through
privacy homomorphism. In IEEE International Conference on
Data Engineering (ICDE).

[42] Piotr Indyk and Rajeev Motwani. 1998. Approximate Nearest
Neighbors: Towards Removing the Curse of Dimensionality. In
STOC.

[43] Piotr Indyk and David Woodruff. 2006. Polylogarithmic private
approximations and efficient matching. In Theory of Cryptogra-
phy.

[44] William B Johnson and Joram Lindenstrauss. 1984. Extensions
of Lipschitz mappings into a Hilbert space. Contemporary math-
ematics (1984).

https://help.yahoo.com/kb/account/SLN27925.html
https://help.yahoo.com/kb/account/SLN27925.html

[45] Seny Kamara and Charalampos Papamanthou. 2013. Parallel
and dynamic searchable symmetric encryption. In International
Conference on Financial Cryptography and Data Security.

[46] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. 2012.
Dynamic searchable symmetric encryption. In Proceedings of the
ACM conference on Computer and communications security.

[47] Krishnaram Kenthapadi, Aleksandra Korolova, Ilya Mironov, and
Nina Mishra. 2013. Privacy via the Johnson-Lindenstrauss trans-
form. Journal of Privacy and Confidentiality (2013).

[48] Joe Kilian. 1988. Founding crytpography on oblivious transfer.
In Proceedings of annual ACM symposium on Theory of com-
puting.

[49] Vladimir Kolesnikov and Thomas Schneider. 2008. Improved
garbled circuit: Free XOR gates and applications. In International
Colloquium on Automata, Languages, and Programming.

[50] Kasper Green Larsen, Tal Malkin, Omri Weinstein, and Kevin
Yeo. 2019. Lower Bounds for Oblivious Near-Neighbor Search.
arXiv preprint arXiv:1904.04828 (2019).

[51] Frank Li, Richard Shin, and Vern Paxson. 2015. Exploring pri-
vacy preservation in outsourced k-nearest neighbors with multiple
data owners. In Proceedings of the ACM Workshop on Cloud
Computing Security Workshop.

[52] Ping Li, Michael Mitzenmacher, and Anshumali Shrivastava. 2014.
Coding for Random Projections. In ICML.

[53] Y. Moon, S. Noh, D. Park, C. Luo, A. Shrivastava, S. Hong, and K.
Palem. 2016. CaPSuLe: Camera Based Positioning System Using
Learning. In Proceedings of international IEEE System-on-Chip
Conference.

[54] Muhammad Naveed, Seny Kamara, and Charles V Wright. 2015.
Inference attacks on property-preserving encrypted databases. In
ACM SIGSAC Conference on Computer and Communications
Security.

[55] Christof Paar and Jan Pelzl. 2009. Understanding cryptography:
a textbook for students and practitioners. Springer Science &
Business Media.

[56] Pascal Paillier. 1999. Public-key cryptosystems based on compos-
ite degree residuosity classes. In International Conference on the
Theory and Applications of Cryptographic Techniques. Springer,
223–238.

[57] Vasilis Pappas, Fernando Krell, Binh Vo, Vladimir Kolesnikov,
Tal Malkin, Seung Geol Choi, Wesley George, Angelos Keromytis,
and Steve Bellovin. 2014. Blind seer: A scalable private dbms. In
IEEE Symposium on Security and Privacy (S&P).

[58] Manas A Pathak and Bhiksha Raj. 2012. Privacy-preserving
speaker verification as password matching. In IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP).

[59] Huseyin Polat and Wenliang Du. 2003. Privacy-preserving col-
laborative filtering using randomized perturbation techniques. In
IEEE International Conference on Data Mining (ICDM).

[60] Raluca Ada Popa, Frank H Li, and Nickolai Zeldovich. 2013. An
ideal-security protocol for order-preserving encoding. In IEEE
Symposium on Security and Privacy (S&P).

[61] Raluca Ada Popa, Emily Stark, Steven Valdez, Jonas Helfer,
Nickolai Zeldovich, and Hari Balakrishnan. 2014. Building Web
Applications on Top of Encrypted Data Using Mylar. In NSDI.

[62] Anand Rajaraman and Jeffrey David Ullman. 2011. Mining of
massive datasets. Cambridge University Press.

[63] Shantanu Rane and Petros T Boufounos. 2013. Privacy-preserving
nearest neighbor methods: Comparing signals without revealing
them. IEEE Signal Processing Magazine (2013).

[64] Shantanu Rane, Wei Sun, and Anthony Vetro. 2010. Privacy-
preserving approximation of L1 distance for multimedia appli-
cations. In IEEE International Conference on Multimedia and
Expo (ICME).

[65] M Sadegh Riazi, Mojan Javaheripi, Siam U Hussain, and Farinaz
Koushanfar. 2019. MPCircuits: Optimized Circuit Generation for
Secure Multi-Party Computation. In 2019 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST).
IEEE, 198–207.

[66] M Sadegh Riazi, Ebrahim M Songhori, and Farinaz Koushanfar.
2017. PriSearch: Efficient Search on Private Data. In Design
Automation Conference.

[67] M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko,
Ebrahim M Songhori, Thomas Schneider, and Farinaz Koushanfar.
2018. Chameleon: A hybrid secure computation framework for
machine learning applications. In Proceedings of the 2018 on

Asia Conference on Computer and Communications Security.
ACM, 707–721.

[68] Ahmad-Reza Sadeghi, Thomas Schneider, and Immo Wehren-
berg. 2009. Efficient privacy-preserving face recognition. In Inter-
national Conference on Information Security and Cryptology.
Springer, 229–244.

[69] Anshumali Shrivastava and Ping Li. 2012. Fast Near Neighbor
Search in High-Dimensional Binary Data. In ECML.

[70] Anshumali Shrivastava and Ping Li. 2013. Beyond Pairwise: Prov-
ably Fast Algorithms for Approximate k-Way Similarity Search.
In NIPS.

[71] Anshumali Shrivastava and Ping Li. 2014. Asymmetric LSH
(ALSH) for Sublinear Time Maximum Inner Product Search
(MIPS). In NIPS.

[72] Anshumali Shrivastava and Ping Li. 2014. Densifying One Per-
mutation Hashing via Rotation for Fast Near Neighbor Search. In
ICML.

[73] Anshumali Shrivastava and Ping Li. 2014. Improved Densification
of One Permutation Hashing. In UAI.

[74] Anshumali Shrivastava and Ping Li. 2015. Asymmetric Minwise
Hashing for Indexing Binary Inner Products and Set Containment..
In WWW.

[75] Anshumali Shrivastava and Ping Li. 2015. Improved Asymmetric
Locality Sensitive Hashing (ALSH) for Maximum Inner Product
Search (MIPS). In UAI.

[76] Dawn Xiaoding Song, David Wagner, and Adrian Perrig. 2000.
Practical techniques for searches on encrypted data. In IEEE
Symposium on Security and Privacy (S&P).

[77] Ebrahim M Songhori, Siam U Hussain, Ahmad-Reza Sadeghi,
and Farinaz Koushanfar. 2015. Compacting privacy-preserving
k-nearest neighbor search using logic synthesis. In Design Au-
tomation Conference.

[78] Ebrahim M Songhori, Siam U Hussain, Ahmad-Reza Sadeghi,
Thomas Schneider, and Farinaz Koushanfar. 2015. TinyGarble:
Highly compressed and scalable sequential garbled circuits. In
IEEE Symposium on Security and Privacy (S&P).

[79] Xiaoyuan Su and Taghi M Khoshgoftaar. 2009. A survey of col-
laborative filtering techniques. Advances in artificial intelligence
(2009).

[80] http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_
part1_rev3_general.pdf. 2017. National Institute of Standards
and Technology. (2017).

[81] Abraham Waksman. 1968. A permutation network. Journal of
the ACM (JACM) 15, 1 (1968), 159–163.

[82] Boyang Wang, Yantian Hou, and Ming Li. 2016. Practical and
secure nearest neighbor search on encrypted large-scale data. In
International Conference on Computer Communications.

[83] Yair Weiss, Antonio Torralba, and Rob Fergus. 2009. Spectral
hashing. In Advances in neural information processing systems.

[84] Wai Kit Wong, David Wai-lok Cheung, Ben Kao, and Nikos
Mamoulis. 2009. Secure knn computation on encrypted databases.
In Proceedings of the ACM SIGMOD International Conference
on Management of data.

[85] Andrew Chi-Chih Yao. 1986. How to generate and exchange
secrets. In Annual Symposium on Foundations of Computer
Science.

[86] Bin Yao, Feifei Li, and Xiaokui Xiao. 2013. Secure nearest neighbor
revisited. In IEEE International Conference on Data Engineer-
ing (ICDE).

[87] Martin Zuber, Sergiu Carpov, and Renaud Sirdey. [n. d.]. To-
wards real-time hidden speaker recognition by means of fully
homomorphic encryption. ([n. d.]).

APPENDICES
1 SECURITY OF BLACK-BOX HASH

COMPUTATION
As we discussed in Section 6, the security of our black-box
hash computation scheme is provided in Proposition 1.1.

Proposition 1.1. The proposed black-box hash compu-
tation scheme is secure in the honest-but-curious adversary
model (standard security model in the literature) as long as
two servers do not collude.

http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf

Proof: The security proof of our scheme has two parts: (i)
we need to prove that each server cannot infer any information
about the actual client’s input. (ii) No information about the
final random seeds (that are used to compute hash value) are
revealed neither to the servers nor the clients.

First, (i) is true because server #1 gets the random value 𝑣
which is totally independent of 𝑥 and is generated randomly.
Server #2 receives 𝑥⊕𝑣 which is identical to the definition of
one-time pad encryption and is proven to be secure (server #2
doesn’t have the encryption pad (𝑣) and only receives 𝑥⊕ 𝑣).
Please note that XORing the two secret shared values that
are held by two servers (𝑣 and 𝑥⊕𝑣), yields the client’s input
(𝑣⊕ (𝑥⊕𝑣) = 𝑥). But by the assumption of the non-colluding
servers, this can never happen.

Second, (ii) is true because the GC protocol is a secure
function evaluation protocol and by definition, at the end of
the protocol none of the parties has any information about
the other party’s input. The inputs of server #1 to the GC
protocol consist of her random seeds and the pad 𝑣 while
server #2 inputs her random seeds along with 𝑥 ⊕ 𝑣. All
other computations are done inside the GC protocol and are
therefore secure. The final random seeds are the combination
of the two random seeds from both servers inside the GC
protocol and as a result, no one has access to its value.

2 CIRCUIT FOR SECURE MINHASH
As we discussed earlier, we need to design a Boolean circuit
of the function that we want to evaluate securely. Here, we
describe the circuit for computing secure MinHash. Figure 7
shows the block diagram of the circuit. The circuit is designed
based on the definition of secure MinHash. Our goal is to
minimize the number of non-XOR gates due to the free-XOR
technique [49]. This technique makes the use of XOR gates
almost free and hence the dominant cost metric is the number
of non-XOR gates.
Inputs. Each server puts her input as described bellow:

∙ Server #1: Binary vector 𝑣 of length 𝐷 that has been
received from the client. Randomly generated 𝑆𝑒𝑒𝑑𝑖 #1
and 𝑟𝑖 where 𝑖 = 1, 2, ..., 𝑘.

∙ Server #2: Binary vector 𝑥⊕ 𝑣 of length 𝐷 that has
been received from the client. Randomly generated
𝑆𝑒𝑒𝑑𝑖 #2 and 𝑟′𝑖 where 𝑖 = 1, 2, ..., 𝑘.

Output. 1-bit secure MinHash. We now explain how the
circuit works. First, 𝑣 and 𝑥⊕𝑣 are XORed to produce the real
client’s input (𝑥) inside the circuit. Then two permutation
seeds from two servers are used to permute the client’s input.
The final permutation is not revealed to either server since it is
the combination of both permutations. The first seed together
with 𝑥 are given to the first Waksman shuffling network [81].
We have used this network to efficiently compute the random
permutation with minimum number of non-XOR gates. The
Waksman shuffling network is based on 2 input swapping
blocks with 1-bit selection signal. To get the minimum number
of non-XOR gates in the circuit, we have designed this block
to have only one AND gate. Figure 8 shows the circuit for
the swapping block. The swap signal is 𝑠, two inputs to the
swap block are 𝑎 and 𝑏, and two outputs are 𝑎′ and 𝑏′. When

𝑠 = 0, 𝑎′ = 𝑎 and 𝑏′ = 𝑏 and when 𝑠 = 1, 𝑎′ = 𝑏 and 𝑏′ = 𝑎.
The number of swap blocks that are needed to implement the
network is 𝐹 (𝑁) = 𝑁 𝑙𝑜𝑔2𝑁 −𝑁 +1 where 𝑁 is the number
of elements that are going to be shuffled (permuted) [81]
which in our case 𝑁 = 𝐷.

v

x XOR v

Waksman
Shuffling
Network

Seedk
#1

Seedk
#2

Priority
Encoder

rk r'k rk+1 r'k+1

v

x XOR v

Priority
Encoder

rk-1 r'k-1

v

x XOR v

Priority
Encoder

r1 r'1

Mod pMod 2
1-bit

Secure
MinHash

Bitwise XOR Operation

Addition

Waksman
Shuffling
Network

Waksman
Shuffling
Network

Seedk-1
#1

Seedk-1
#2

Waksman
Shuffling
Network

Waksman
Shuffling
Network

Seed1
#1

Seed1
#2

Waksman
Shuffling
Network

Figure 7: Boolean circuit for secure MinHash com-
putation.

As the next step, we input the permuted client’s input to
the second Waksman network with the permutation seeds
from the second server. The final permuted binary vector is
then given to the priority encoder to find the index of the first
non-zero element. Please note that from this point forward,
the bit-length of wires are changed to log2 𝐷 (because the
index of the first non-zero element of 𝐷-bit binary vector
needs to be described with log2 𝐷 bits). At this point, we
have computed a regular MinHash of client’s input. Now,
by the definition of secure MinHash, we need to multiply
the hash with a random coefficient. Again, this coefficient is
computed as the XOR of two random coefficients from two
servers.

a
b

s

a'

b'

Figure 8: Boolean circuit used for swap block inside
the Waksman shuffling network [81].

The same procedure is repeated 𝑘 times and the result of
each step is added to the previous ones. In order to compute

𝑚𝑜𝑑 𝑝 operation, we utilize a loop of subtraction to find the
residue. The realization of 𝑚𝑜𝑑 2 operation in a Boolean
circuit can be performed by only outputting the Least Sig-
nificant Bit (LSB) of the previous step. In the end, we have
1-bit secure MinHash. We need to run this circuit 𝑙 times to
get 𝑙-bit secure MinHash.

Table 1: Number of non-XOR gates in each block of
the circuit.

Block Name Number of non-XOR gates

Waksman Network 𝐷 × 𝑙𝑜𝑔2𝐷 −𝐷 + 1

Priority Encoder 2×𝐷 + (𝐷
2
− 1)× 𝑙𝑜𝑔2𝐷

Multiplication (𝑙𝑜𝑔2𝐷)2

Addition 𝑙𝑜𝑔2𝐷

Mod p 𝐶𝑚𝑜𝑑 × 𝑙𝑜𝑔2𝐷 †
Mod 2 0
Bitwise XOR 0
† 𝐶𝑚𝑜𝑑 is a constant that depends on the fixed prime 𝑝.

Concrete Circuit Cost. We analyze the number of non-
XOR gates in the circuit concretely and give a mathematical
cost function based on our aforementioned parameters. Ta-
ble 1 summarizes the costs. All of the operations in Table 1
have to be performed 𝑘 times except for 𝑚𝑜𝑑 𝑝 (one time)
and Waksman network (2 × 𝑘 times). Therefore, the total
cost (number of non-XOR gates) is given by the following
formula:

#𝑜𝑓_𝑛𝑜𝑛_𝑋𝑂𝑅_𝑔𝑎𝑡𝑒𝑠 =

𝑘×(
5

2
𝐷 × 𝑙𝑜𝑔2𝐷 + (𝑙𝑜𝑔2𝐷)2 + 2) + 𝐶𝑚𝑜𝑑 × 𝑙𝑜𝑔2𝐷 (27)

Please note that we need to run the circuit for 𝑙 times.
Therefore, the total number of non-XOR gates in the GC
protocol is 𝑙 times the total number of non-XOR gates in
depicted circuit. Substituting 𝑙 = 32, 𝑘 = 8, and 𝐷 = 1024
(210), the total number of non-XOR gates is 6.58M. Using
state-of-the-art GC frameworks such as TinyGarble [78], the
end-to-end secure hash computation takes almost 1 second
to finish.

3 CIRCUIT FOR SECURE SIMHASH
In this section, we provide the Boolean circuit description
of SimHash black-box computation. Figure 9 shows the ar-
chitecture of the circuit. Similar to the circuit of MinHash,
server #1 inputs vector 𝑣 of length 𝐷 along with her random
seeds (Seed_i #1s and 𝑟𝑖s). Also, server #2 inputs vector
𝑥 ⊕ 𝑣 and her random seeds (Seed_i #2s and 𝑟′𝑖s) to the
circuit. Please note that each element of vector 𝑣 can be
more than 1-bit as opposed to MinHash. Here, we implement
our circuit for 32-bit fixed-point signed numbers. In contrast
to MinHash circuit, the final random seeds in SimHash (𝑤𝑖

vectors) are created by simply XORing the two random seeds

from two servers. Since none of the servers has access to
the other share, final 𝑤𝑖 vectors are not known to anyone.
After calculating the vector dot product of 𝑤𝑖s and 𝑥, we
extract the sign bit. Up to this point, we have computed 𝑘
different regular SimHashes. As described in Section 5.3.2,
we need to feed 𝑘 regular SimHash values to the universal
hash function (right half of the circuit). The coefficients in
the universal hash function are also the XOR of two servers’
shares. 1-bit Secure SimHash is computed after 𝑚𝑜𝑑 𝑝 and
𝑚𝑜𝑑 2 modules.

v

x XOR v

Seedk
#1

Seedk
#2

Sign

rk r'k rk+1 r'k+1

rk-1 r'k-1

r1 r'1

Mod pMod 2
1-bit

Secure
SimHash

Bitwise XOR Operation

Addition

Vector
Dot

Product

v

x XOR v

Seedk-1
#1

Seedk-1
#2

Sign
Vector

Dot
Product

v

x XOR v

Seed1
#1

Seed1
#2

Sign
Vector

Dot
Product

Figure 9: Boolean circuit for secure SimHash com-
putation.

As mentioned in Section 5.3.2, SimHash can be efficiently
computed by randomly choosing values of 𝑤𝑖 between +1
and -1 with 0.5 probability [62]. Therefore, the “Vector Dot
Product” of Figure 9 can efficiently be implemented as 𝐷− 1
32-bit Addition modules. The “Sign” modules only output
the sign bit and therefore does not require any Boolean gate
to be implemented. In addition, since the output of the “Sign”
module is only 1-bit, multiplying it with 𝑟𝑖 ⊕ 𝑟′𝑖 translates to
changing the sign bit of 𝑟𝑖 ⊕ 𝑟′𝑖. These optimizations signifi-
cantly reduce the number of gates in the circuit. Similar to
secure MinHash, we need to evaluate the circuit 𝑙 times in
order to create a 𝑙-bit secure SimHash.

Concrete Circuit Cost. We analyze the number of non-
XOR gates in the circuit concretely and give a mathematical
cost function based on our aforementioned parameters. Ta-
ble 2 summarizes the costs. All of the operations in Table 2
have to be performed 𝑘 times except for 𝑚𝑜𝑑 𝑝 (one time).

Table 2: Number of non-XOR gates in each block of
the circuit.

Block Name Number of non-XOR gates

Vector Dot Product 32× (𝐷 − 1)

Multiplication 0†
Addition 32
Mod p 𝐶𝑚𝑜𝑑 × 32 ‡
Mod 2 0
Sign 0
Bitwise XOR 0

† Because one operand is only a sign bit.
‡ 𝐶𝑚𝑜𝑑 is a constant that depends on the fixed prime 𝑝.

Therefore, the total cost (number of non-XOR gates) is given
by the following formula:

#𝑜𝑓_𝑛𝑜𝑛_𝑋𝑂𝑅_𝑔𝑎𝑡𝑒𝑠 =

𝑘×(32×𝐷) + 𝐶𝑚𝑜𝑑 × 𝑙𝑜𝑔2𝐷 (28)

We run the GC protocol utilizing this circuit in the Tiny-
Garble [78] platform and the total execution time was 0.415
second for 𝑘 = 12, 𝑙 = 32, and 𝐷 = 40 (IWPC dataset
parameters). Since each client only needs to perform this
task once and independently of others, black-box hash com-
putation only adds 0.415 second to the execution time of our
end-to-end protocol.

4 NNS EXECUTION IN GC
Secure K-Near-Neighbor (KNN) search has previously been
studied by [77]. They consider Hamming distance as their
measure of similarity and utilize the GC protocol. In Sec-
tion 8.3, we compared the performance of our scheme with
theirs. However, we modify their approach by replacing the
Hamming distance block with the Cosine similarity block.
Also, in order to provide a fair comparison, we have changed
the KNN search with the threshold-based NNS (same as
ours). That is, instead of outputting the K nearest neighbors,
we simply output whether two input data are more similar
than a predefined threshold. Therefore, we have implemented
a Boolean circuit that compares two input data and outputs
the Boolean value one if their cosine similarity is more than
a threshold. To find all near neighbors of a given query, we
have to run the circuit for all the data on the server. Each
time, we input the query together with one of the data in the
database and after the GC protocol execution, we announce
whether they are similar or not.

The number of non-XOR gates in the circuit for 𝐷 =
40 is 125, 754, where each value is represented as a 32-bit
signed fixed-point number. In order to perform NNS on
the database size of 𝑁 = 3 billion, 3.75 × 1014 non-XOR
gates should be processed. Utilizing state-of-the-art GC-based
framework [78], this task requires 1.5×108 second processing
time and 1.2× 107 GBytes of communication.

5 COMPRESSED SENSING LOWER
BOUNDS

Our protocol requires an assumption that multiple parties
involved in the generating of 𝑆(.) do not collude. However,
even if parties collude and function 𝑆(.) is compromised,
it is significantly hard to invert 𝑆(𝑥). Revealing the exact
mechanism of 𝑆(.) poses a threat of possible inversion of the
function 𝑆(𝑥) to obtain 𝑥 using Compressed Sensing. Note
that there is a loss of information from 𝑥 to 𝑆(𝑥), due to
heavy quantization and mod operations. Following are the
two main reasons why such an inversion is hard even with
the complete knowledge of 𝑆(.):

(1) Compressed Sensing Inference is Similar to Tri-
angulation: The algorithms for compressed sensing
are only known for LSH-style signed measurements.
Compressed sensing from our proposed secure LSH is
not known, and we suspect it might be significantly dif-
ficult. Current compressed sensing algorithms work by
iteratively reducing the possible space of the 𝑥, given
𝑆(.), by introducing constraints about some known
point [10]. This procedure is similar to triangulation
attack. Thus, if triangulation attack does not work, it is
unlikely that there will be an efficient compressed sens-
ing algorithm. Compressed sensing attack for PPLSI is
a topic for future work which could be of independent
interest.

(2) Compressed Sensing Lower Bounds: Compressed
sensing requires at least 𝑂(𝑠 log𝐷) measurements for
reasonable accuracy [18], where 𝑠 is the number of
non-zeros in the data vector and 𝐷 is the dimension-
ality of the data. Also, the big-O has large hidden
constant. Thus, for high-dimensional vectors with sig-
nificant non-zeros, the number of bits in 𝑆(.) is smaller
than 𝑂(𝑠 log𝐷), making it automatically secure against
any possible attack since compressed sensing lower
bounds are generic to any linear measurements [18].
Note that we only need few (constant number of) bit
measurements to identify neighbors/non-neighbors in
the Hamming distance. The number of bits required
is independent of dimension and only depends on the
similarity level.

	Abstract
	1 Introduction
	2 Preliminaries and Background
	2.1 Key Notations and Terms
	2.2 Threat Model
	2.3 Locality Sensitive Hashing
	2.4 Popular LSH 1: Minwise Hashing (MinHash)
	2.5 Popular LSH 2: Signed Random Projections (SimHash)
	2.6 Mapping LSH to 1-bit
	2.7 PP-NNS in Sub-linear Time with a Trusted Server

	3 Challenges with Untrusted Server and Types of Attacks
	4 Proposed PPLSI Protocol for Sub-Linear Query Time PP-NNS
	5 The Key Ingredient: LSH Transformation
	5.1 ``Triangulation'' Attack
	5.2 Probabilistic Transformations for Generating Secure LSH
	5.3 Formalization
	5.4 Formalism of Privacy Budget
	5.5 Utility-Privacy Trade-off of Secure LSH

	6 Hiding the Mechanism of S(.)
	7 Noise Addition Methods and Their Poor Utility-Privacy Trade-off
	8 Evaluations
	8.1 Utility-Privacy Tradeoff
	8.2 Effectiveness Against Triangulation Attack
	8.3 Computational Cost Comparison with SFE Protocols

	9 Alternating Projections for Triangulation Attack
	10 Prior Art
	11 Conclusion
	References
	1 Security of Black-Box Hash Computation
	2 Circuit for Secure MinHash
	3 Circuit for Secure SimHash
	4 NNS Execution in GC
	5 Compressed Sensing Lower Bounds

