
Efficient Construction of Nominative Signature Secure

under Symmetric Key Primitives and Standard

Assumptions on Lattice

Meenakshi Kansal, Ratna Dutta and Sourav Mukhopadhyay
Department of Mathematics,

Indian Institute of Technology Kharagpur,
Kharagpur, India

Email:{kansal,ratna,sourav}@maths.iitkgp.ernet.in

Abstract

Nominative signature is a cryptographic primitive where two parties collude to produce a signature. It
is a user certification system and has applications in variety of sectors where nominee cannot trust heavily
on the nominator to validate nominee’s certificate and only targeted entities are allowed to verify signature
on sensitive data. We provide a new construction for nominative signature from standard assumptions
on lattice. Our construction relies on collision resistant preimage sampleable function and symmetric key
primitives like collision resistant pseudorandom function and zero knowledge proof system ZKB++ for
Boolean circuits. We provide a detailed security analysis and show that our construction achieves security
under unforgeability, invisibility, impersonation and non-repudiation in existing model. Furthermore, our
construction exhibits non-transferability. The security under non-repudiation is achieved in the quantum
random oracle model using Unruh transform to ZKB++.

Keywords: Nominative signature, User certification system, Zero knowledge proof, Unruh transform.

1 Introduction

User certification system. User certification system is an important mechanism that addresses privacy
issues associated with the distribution of signed digital certificates. Generally speaking, a user certification
system enables a user ‘U’ to convince a verifier ‘V’ that the certificate ‘c’ issued by an authority ‘A’ is
authentic. Typically, the signed certificate contains the truthfulness of certain statements and attributes
linked to the identity of the user to which the certificate is issued. The real life examples include the issuing
of identity cards, legal permanent residential proofs, birth certificates and driving licenses. A user can
present proofs to a verifier, who in turn can verify signature and be convinced of the truth of the statements
contained in the certificate.

A large fraction of applications can benefit from user certification system where the data to be verified are
sensitive and requires only the targeted party to verify the signature. Standard digital signatures are publicly
verifiable and thereby, insufficient to apply in user certification system.

Nominative Signature. A nominative signature (NS) scheme is a user certification system without any
trusted certifying authority where a nominator (nr) and a nominee (ne) jointly produce a nominative signature
featuring the following properties simultaneously.

P1: The nominator or nominee ‘alone’ cannot produce a valid nominative signature.

P2: The nominative signature must be verifiable only by the nominee.

P3: Only the nominee can prove the validity or invalidity of the nominative signature to a public verifier.

Meenakshi Kansal, Ratna Dutta, Sourav Mukhopadhyay 2

The central advantage of using nominative signature is that the nominee does not need to trust the nominator
as the nominator cannot validate nominee’s certificate to a third party. We review two examples below.

• NS in Medical Scenario. Consider medical records of patients in a hospital. These records are
sensitive and the patients do not want a third party to verify their records. At the same time, a
patient might need to recover the medical expenses from the insurance company. The patient must
prove the validity of his claim to the insurance company. Nominative signature can be issued on the
claim jointly by a patient (nominee) and the hospital authority (nominator). This signature is verifiable
only by the patient. Beside, the validity of the claim can be proved only by the patient to the insurance
company (verifier).

• NS in Tax Bill. Suppose a government agency ‘A’ is tasked with monitoring the income tax. The
income tax of an individual carries sensitive data, hence should not be verified by everyone. A nomi-
native signature can be used to serve the purpose. Suppose an employer (nominator) and an employee
(nominee) together generate a nominative signature tax bill of the employee. Only the employee can
verify the signature. The tax amount in the tax bill is deducted by the employer from the employee’s
salary and is sent to the government agency ‘A’. If the employee is not satisfied with the tax bill, he
communicates with ‘A’ providing his documents and requests for the tax return. If ‘A’ is convinced
with the documents then the agency ‘A’ returns the money. Otherwise rejects the employee’s request.
Note that NS enables only the employee to prove the validity or invalidity of the tax bill to ‘A’.

Our Contribution. Our main result is to put forth a new construction of nominative signature (NS) based
on the worst case hardness of lattice. The scheme is secure assuming the existence of preimage sampleable
function (PSF) and symmetric key primitives such as collision resistant pseudorandom function (CRPRF) and
collision resistant hash function. We integrate zero knowledge proof system ZKB++ using Unruh transform
[2]. For security under unforgeabiliy, we adopt the security model of Huang et al. [12]. For security under
invisibility, we follow the security model of Schuldt et al. [21]. Our scheme attains security in the random
oracle model. Besides, our construction achieves security under non-repudiation in the quantum random
oracle model Q(ROM) unlike [14].

Our construction derives its security from the worst-case hardness assumptions of lattice and the security of
the underlying symmetric key primitives. More precisely, we have the following.

• We achieve unforgeability against malicious nominee and unforgeability against malicious nominator
under the hardness of collision resistance preimage sampleable function (CRPSF). The invisibility relies
on the hardness of PRF.

• Non-repudiation follows from the completeness and soundness properties of the non-interactive zero
knowledge proof system ZKB++. We achieve the security under non-repudiation in quantum random
oracle model (QROM) by integrating ZKB++ using Unruh transform [2].

• Similar to [21], the security against impersonation in our model is addressed in the unforgeability
against malicious nominator.

• Non-transferability guarantees that the verifier cannot convince a third party that he has received a
valid/invalid signature from the nominee on a message. Non-transferability follows from the combina-
tion of invisibility and the zero knowledge property of the protocol.

Our Technique. At a high level, our nominative signature NS=(setup, keygen, neSign, nrSign, verify,
cfORds=(neTM, vrTM)) proceeds as follows.
At the time of key generation, a user’s public and secret key (pka, ska) are first generated using the proba-
bilistic polynomial time (PPT) algorithm TrapGen(n, m, q) → (Aa,TAa

). The pair (pka, ska) = (Aa,TAa
)

is generated by the user a. The user a can be a nominator nr or a nominee ne. We informally describe below
how we produce a nominative signature nsig on a message M ∈ {0, 1}∗ such that nsig satisfies the three
properties P1, P2, P3 of a nominative signature mentioned earlier. To issue a signature Sig = (M,v,y1,Π)
on a message M to the nominator (nr), the nominee (ne) first finds a short vector v ∈ Zmq satisfying
gBne(v) = Bne · v = H(M,Anr,Bne) mod q where Bne = Ane and H : M × (Zn×mq)2 → Znq is a hash
function. The nominee ne then samples a uniform vector r1 ∈ Zmq and computes y1 = f(r1,v) where

Efficient Construction of Nominative Signature 3

Table 1: Comparative summary of secured nominative signature schemes using bilinear map.

Scheme size of pknr size of sknr size of pkne size of skne NS size pairings exponentiations
[12] G G G G 4G 2 5
[21] (k + 3)G G (k + 6)G (k + 3)G 4G 3 11

The notations pknr, sknr, pkne, skne are respectively the public and secret key size of the nominator and
nominee.

Table 2: Comparative summary of lattice based nominative signature schemes.

Scheme Key size NS size Communication cost Security

[14] Õ(n2) Õ(n) t · (c+O(L) + 1) ROM

Ours Õ(n2) Õ(n) t · [c+ 3λ+ log2 3 + dlog qe(m+ 2b)] Q(ROM)

Here L = 6(m+ 1)p, p = blog2 βc+ 1, β = 2σ
√
m where σ is the standard deviation of the discrete Gaussian

distribution.

f : Zmq × Zmq → Znq is a collision resistant pseudorandom function (CRPRF). The nominee (ne) finally gen-
erates a zero knowledge proof Π using ZKB++ to prove the knowledge of the witness r1 ∈ Zmq and sends
the signature Sig = (M,v,y1,Π) to the nominator nr. Note that we sample r1 ∈ Zmq uniformly random,
hide r1 inside a CRPRF and send the knowledge of r1 through a zero knowledge proof Π. By the soundness
property of ZKB++ and the collision resistant property of the PRF f , the probability of finding r1 by an
adversary becomes negligible. After receiving and verifying the signature Sig = (M,v,y1,Π), the nominator
(nr) generates the nominative signature nsig = (z,v) ∈ Zmq × Zmq . The vector z ∈ Zmq is a short vector that
satisfies the equation gAnr(z) = Anr · z = y1 mod q.

Security. The verification of nsig can be performed only by the entity who possess r1 ∈ Zmq . We have shown
that an adversary which makes successful verification without the knowledge of r1 with non-negligible prob-
ability, can be reduced to an adversary attacking the output indistinguishable property of the pseudorandom
function i.e., given x ∈ Zmq , y ∈ Znq and a pseudorandom function f : {0, 1}m × {0, 1}m → {0, 1}n, it is
hard to distinguish whether y ∈ Znq is uniformly chosen from the set Znq or y = f(k,x) for some k ∈ Zmq .
It has also been spotted that a nominee solves the preimage sampleable function without trapdoor if it can
‘alone’ produce a nominative signature without interacting with the nominator. In a similar manner, if a
nominator produces a nominee’s signature then either nominator finds a solution to preimage sampleable
function without the trapdoor or solves the collision resistant property of PRF. We achieve the following
results.
Theorem 1. (informal) Our nominative signature scheme achieves unforgeability against malicious nominee
under the hardness of collision resistant preimage sampleable function.
Theorem 2. (informal) If collision resistant preimage sampleable function is hard then our proposed con-
struction of nominative signature achieves unforgeability against malicious nominator.
Theorem 3. (informal) Our scheme follows security under invisibility if for given x ∈ Zmq , y ∈ Znq and a
pseudorandom function f : {0, 1}m × {0, 1}m → {0, 1}n, it is hard to decide whether y ∈ Znq is uniformly
chosen from the set Znq or y = f(k,x) for some k ∈ Zmq .
Theorem 4. (informal) If the zero knowledge proof of knowledge ZKB++ follows completeness and sound-
ness properties then our nominative signature scheme is secure under non-repudiation.

Efficiency. Our construction for nominative signature enjoys improved efficiency compared to [12], [21]. It

achieves public and secret key sizes Õ(n2) for a user. The size of the nominative signature is Õ(n) in our
scheme. While [12] has public-secret key sizes |G| for nominator and nominee, the approach in [21] leads the
nominator’s public key and secret key sizes (k + 3)|G| and |G| respectively, the nominee’s public key and
secret key sizes (k + 6)|G| and (k + 3)|G| respectively. In [12], [21] the size of the nominative signature is
4|G|. Here |G| is the bit size of an element of the group G and k is the length of the message. Thus the
size of the public key and secret key of both nominator and nominee in [21] are linear in length k of the
message. The NS in [12] uses 2 pairings and 5 exponentiations and the NS in [21] uses 3 pairings and 11
exponentiation.

Meenakshi Kansal, Ratna Dutta, Sourav Mukhopadhyay 4

In our approach, the nominee needs to send a non-interactive zero knowledge proof Π to the nominator and
to a public verifier to prove the knowledge of a secret witness x ∈ Zmq satisfying the equation y = f(x) where
y ∈ Znq is publicly known. The size of the proof is a central issue apart from the strong security guarantees
and fast operations. We use ZKB++ with Unruh transform to generate the proof Π. Concretely, the size
of the proof Π is t · [c+ 3λ+ log2 3 + dlog qe(m+ 2b)] where λ is the security parameter, b is the number of
binary multiplication gates, t is the number of parallel repetitions and c is the size of the commitments (in
bits).

Related Work. There are several variants of user certification system– undeniable signature, designated
confirmer signature, designated verifier proofs, universal designated verifier signature, nominative signature
etc. [4, 3, 13, 22, 15]. Undeniable signature developed by Chaum et al. [4] is one of the user certification
systems that allows a signer to have complete control over its signature. The participation of the signer is
required in confirmation of the signature by a recipient. If the signer becomes unavailable (such as might
refuse to cooperate), a recipient cannot make use of the signature. Designated confirmer signature [3] solves
this issue by allowing designated parties to confirm the signature to a recipient without the signer.

Undeniable signature allows only the prover to decide ‘when’ a signature (proof) is verified and not by
‘whom’ or ‘how many parties’. Thus in order to avoid man-in-the-middle attack in such scenario, the prover
must be able to designate ‘who’ will be convinced by the proof. To address this fact, Jakobsson et al. [13]
introduced designated verifier proofs whereby only the designated verifier can be convinced about the validity
or invalidity of the proof. This is due to the fact that the designated verifier can always create a signature
for himself indistinguishable from the original signature.

In a user certification system, Alice can send a copy of her certificate issued by a certifying authority to
any verifier Bob. After receiving the certificate, Bob can learn all the statements about Alice and will also
get convinced about the truth of the statement by verifying the signature of the certifying authority on the
certificate. Further, Bob can pass Alice’s certificate to any third party and thus it may cause a threat to
Alice’s privacy. This user privacy in user certification system is addressed by universal designated verifier
signature (UDVS) [22]. A UDVS scheme can work as a standard digital signature with an additional feature
which allows the holder of a signature to designate the signature to any desired designated verifier. Given
the designated signature, the designated verifier can verify that the message was signed by the signer, but is
unable to convince anyone else of this fact.

All the above mentioned user certification systems require either the direct involvement of the signer or
involvement of a designated party appointed by the signer to verify the signature. Nominative signature
solves this issue and provides the verification privacy to the recipient.

Nominative signature is first introduced by Kim et al. [15] in 1995. Since then it has been studied ex-
tensively [15],[6],[11],[12],[18],[21],[23],[25], [27], [14]. However, none of these except [12], [21] and [14] are
secure. Both the constructions [12], [21] use bilinear maps on prime order groups. The underlying hard
problems in [12] are bilinear Diffie-Hellman exponent (BDHE) problem, weak computational Diffie-Hellman-
I (WCDH-I) problem, WCDH-II problem, weak discrete logarithm (WDLOG) problem and weak decisional
Diffie-Hellman (WDDH) problem. The scheme in [21] is secure under the hardness of discrete logarithm
problem and the decisional linear problem. This is the only scheme secure in the standard model and
uses the transformation proposed by Cramer et al. [5] which converts a sigma protocol into a perfect zero
knowledge proof of knowledge. The resulting zero knowledge proofs are efficient 4–move protocols and no
additional hardness assumptions are required in the transformation. The construction in [12] is secure in
the random oracle model (ROM) and employs the witness indistinguishable Fiege and Fiat-Shamir protocol
[8] to prove/disprove the DH-tuple. Nominator starts the communication to issue the nominative signature
in both the schemes [12, 21] and the communication between nominee and nominator does not involve the
zero knowledge proof in [12, 21]. In contrast, in the work of [14] as well as ours nominee begins the com-
munication between nominee and nominator. The zero knowledge argument system of [16] is used in the
process of issuing nominative signature in [14]. To the best of our knowledge, the scheme in [14] is the only
scheme secure under standard assumptions on lattice. The scheme in [14] is secure in the random oracle
model (ROM).

Organization of the paper. We define notations and recall some concepts from lattice, symmetric key

Efficient Construction of Nominative Signature 5

primitives in Section 2. We provide the syntax and security model of nominative signature in Section 3.
In Section 4, we present our construction and provide the security proofs for the security models given in
Section 3. Section 5 concludes with a conclusion.

2 Preliminaries

Notations. Throughout this paper we assume that a vector a ∈ Sn denotes a column vector of dimension
n× 1 with entries from the set S. For u = (u1, u2, . . . , un) ∈ Rn, let ||u||∞ = max

i
|ui| denotes the maximum

norm and ||u|| =
√
u2

1 + . . .+ u2
n stands for the Euclidean norm. Let A = (a1,a2, . . . ,am) be a matrix with

m columns in Rn. Then ||A|| = max
1≤i≤m

||ai||. We say that a function f is negligible in λ if f = λ−ω(1). The

abbreviation PPT refers to the probabilistic polynomial time.

Definition 1. (Hash function). [20] A hash function H : D→ R is a function that takes an input x ∈ D of
arbitrary length and returns H(x) ∈ R of fixed finite length. Hash functions must be easy to compute. The
“ideal” hash function verifies the following properties.

(i) Collision resistance: Finding two inputs x, x′ ∈ D such that x 6= x′ and H(x) = H(x′) ∈ R should cost

Ω(|R| 12) by the birthday paradox [26].

(ii) Second preimage resistance: Given x ∈ D, H(x) ∈ R, finding another x′ ∈ D such that H(x) = H(x′) ∈ R
should cost Θ(|R|) by classical exhaustive search.

(iii) Preimage resistance: From a hash value h ∈ R, finding an input x ∈ D so that H(x) = h should cost
Θ(|R|) by classical exhaustive search.

Definition 2. (Pseudorandom function (PRF)) [19]. Let F = {F : D→ R} denotes the set of all functions
mapping from the domain D to the range R. Let f : K × D → R be an efficiently computable, length
preserving keyed function where K is the set of keys, D is the domain and R is the range of f . We say that
f is a pseudorandom function (PRF) if for all PPT distinguisher D,

|Pr[Df(k,.)(1n) = 1]− Pr[DF (.)(1n) = 1]| ≤ negl(n)

where F is chosen uniformly at random from F and negl(n) is a negligible function in n.

Definition 3. (Collision resistant pseudorandom function (CRPRF)). Let f : K ×D → R be a PRF. We say
f is a CRPRF if given x0 ∈ K, y0 ∈ D and f(x0, y0) ∈ R, it is computationally hard to find x1 ∈ K, y1 ∈ D
such that f(x0, y0) = f(x1, y1).

Definition 4. (Problem-I) [19] Given x ∈ Zmq , y ∈ Znq and a pseudorandom function f : {0, 1}m×{0, 1}m →
{0, 1}n, it is hard to decide whether y ∈ Znq is uniformly chosen from the set Znq or y = f(k,x) for some
k ∈ Zmq .

2.1 Lattice Problems

Definition 5. (Lattice).[10] For any m ≥ n, let B = {b1, b2, . . . , bm} be any linearly independent set of
vectors in Rn. A lattice generated by the set B is defined as Λ(B) = {

∑
bi∈B

cibi : ci ∈ Z} with basis B of

dimension n.
For q ∈ N, matrix A ∈ Zn×mq and vector u ∈ Znq , we define the following three q-ary lattices generated

by A: Λ⊥q (A) = {x ∈ Zm : Ax = 0 mod q}, Λu
q (A) = {x ∈ Zm : Ax = u mod q}, Λq(A) = {x ∈ Zm :

Ats = x mod q, for some s ∈ Znq }, where m,n are integers with m ≥ n ≥ 1 and 0 is a zero vector of size n×1.

Meenakshi Kansal, Ratna Dutta, Sourav Mukhopadhyay 6

Definition 6. (Gaussian distribution over a lattice). [10] For a lattice Λ and a real number σ > 0, dis-
crete Gaussian distribution over Λ centered at 0, denoted by DΛ,σ, is defined as: ∀y ∈ Λ, DΛ,σ[y] ∼
exp(−π||y||2/σ2), i.e. DΛ,σ[y] is proportional to exp(−π||y||2/σ2) where DΛ,σ[y] means the vector y←↩ DΛ,σ.
We say that DΛ,σ is a distribution with standard deviation σ.

Lemma 1. [10] For any n-dimensional lattice Λ and for any real number σ > 0, we have the following
results and probabilistic polynomial time (PPT) algorithms:

(i) Prb←↩DΛ,σ
[||b|| ≤ σ

√
n] ≥ 1− 2−Ω(n), i.e. if b←↩ DΛ,σ then ||b|| ≤ σ

√
n with overwhelming probability.

(ii) TrapGen(n,m, q) → (A,TA). This randomized algorithm outputs a matrix A ∈ Zn×mq and a short

basis TA ∈ Zm×m of Λ⊥q (A) such that A is within the statistical distance 2−Ω(n) to U(Zn×mq) and ||T̃A|| ≤
O(
√
n log q). Here U(Zn×mq) is the uniform distribution of integer matrices over Zq of order n×m and T̃A

is the Gram-Schmidt orthogonalization of TA.

(iii) SampleD(1n)→ x. This algorithm samples a vector x ∈ Zm from the distribution Dm = {e ∈ Zm | ||e|| ≤
σ
√
m}. Here m ≥ 5n log q and σ ≥ m1+ε · ω(

√
logm) for any ε > 0.

(iv) SamplePre(A,TA,u, σ) → (x ∈ Λu
q (A)). This algorithm takes as input a matrix A ∈ Zn×mq , a short

basis TA ∈ Zm×m of Λ⊥q (A), a vector u ∈ Zmq and a real number σ. The algorithm returns a short vector
x ∈ Λu

q (A) sampled from a distribution statistically close to DΛu
q(A),σ whenever Λu

q (A) is non empty i.e., x
satisfies the relation Ax = u mod q.

Definition 7. ((Inhomogeneous) short integer solution (I(SIS)) search problem) [1]. Given an integer q, a
real number β, a uniformly random matrix A ∈ Zn×mq and a uniformly random vector u ∈ Znq , the ISIS
problem is to find a non-zero integer vector e ∈ Zm such that Ae = u mod q and ||e|| ≤ β with non-negligible
probability. If u = 0 ∈ Znq , then it is known as short integer solution (SIS) problem.

If m,β = poly(n) and q > β · Õ(
√
n), then the SIS problem with parameters n,m, q, β is at least as hard

as the worst-case lattice problem shortest independent vector problem (SIVPγ) for some γ = β ·Õ(
√
mn) [17].

Definition 8. (Preimage Sampleable Function (PSF)) [10]. A collection of PSFs based on the average-case
hardness of SIS and/or ISIS is defined as follows for q = poly(n), m ≥ 5n log q, L = m1+ε for any ε > 0,
and Gaussian parameter σ ≥ L · ω(

√
logm).

(i) The function generator uses the algorithm TrapGen(n,m, q) → (A,TA) described in Lemma 1 where
A ∈ Zn×mq , TA ∈ Zm×m.

(ii) The function gA : DZm,σ → Znq is an efficiently computable function with public basis A and is defined
as gA(d) = A · d mod q with d ∈ DZm,σ = {e ∈ Zm | ||e|| ≤ σ

√
m} and gA(d) ∈ Znq . The input d is sampled

using the algorithm SampleD given in Lemma 1 with the standard basis for Zm. The distribution of gA(u) is
uniform over the range Znq .

(iii) The trapdoor inversion algorithm SamplePre(A,TA,u, σ) samples from the conditional distribution of
d← SampleD(1n) given gA(d) = u for every u ∈ Znq .

(iv) For any PPT algorithm F , Pr[F(1n,A,u) = d ∈ g−1
A (u) ⊆ DZm,σ] ≤ negl(n) where the probability is

taken over the choice of A and the target value u← Znq chosen uniformly at random.

A collision-resistant PSF satisfies the above four properties in addition to the following two properties.

(v) Preimage min-entropy: For every u ∈ Znq , the conditional min-entropy of d← SampleD(1n) given gA(d) =
u is atleast ω(log n). It means that the most likely element d← SampleD(1n) given gA(d) = u for any u ∈ Znq ,

occurs with probability 2−ω(logn).
(vi) Collision-resistance: For any PPT algorithm F , Pr[F(1n,A) → (d,d′) ∈ DZm,σ × DZm,σ | gA(d) =
gA(d′)] ≤ negl(n).

Efficient Construction of Nominative Signature 7

2.2 ZKB++ [2]

This section recalls the non-interactive zero knowledge proof system ZKB++ on arbitrary circuits that uses
Fiat-Shamir transform [9] and (2, 3)-decomposition of a function f : Fs → Fl which can be expressed as an
n-gate arithmetic circuit on an arbitrary finite field F using addition by constant, multiplication by constant,
binary addition and binary multiplication gates. The prover wants to prove the knowledge of a witness x
satisfying y = f(x) where y, f are public. A (2, 3)-decomposition of f is given by the following functions
where all the arithmetic operations are over F.

(i) Share(x, ρ1, ρ2, ρ3) → (sh
(0)
1 , sh

(0)
2 , sh

(0)
3) ∈ (Fs)3 is a randomized invertible function that generates

sh
(0)
1 = H1(ρ1), sh

(0)
2 = H1(ρ2), sh

(0)
3 = x − sh

(0)
1 − sh

(0)
2 . Here sh

(0)
j is the share for party Pj , ρj ∈ F∗

is the randomness used by the party Pj for j = 1, 2, 3 and H1 : F∗ → {0, 1}s is a hash function.

(ii) Update
(k)
j (sh

(k)
j , sh

(k)
j+1, ρj , ρj+1) → sh

(k+1)
j ∈ Fs computes party Pj ’s share of the output wire of gate

gk for k = 0, 1, . . . , n − 1 using shares, randomness of parties Pj , Pj+1 and using the following gate specific

operations. The notation wd refers to the d-th wire and w
(j)
d refers to the value of wd in party Pj ’s share.

addition by constant (wb = wa + c): w
(j)
b =

{
w

(j)
a + c if j = 1

w
(j)
a otherwise

multiplication by constant (wb = wa · c): w(j)
b = c · w(j)

a

binary addition (wc = wa + wb): w
(j)
c = w

(j)
a + w

(j)
b

binary multiplication (wc = wa ·wb): w(j)
c = w

(j)
a ·w(j)

b +w
(j+1)
a ·w(j)

b +w
(j)
a ·w(j+1)

b +Qj(C)−Qj+1(C),
where Qj(C) is the C-th output of a pseudorandom generator seeded with ρj .

(iii) Outputj(sh
(n)
j)→ outj ∈ Fl selects l output wires of the circuit stored in the share sh

(n)
j .

(iv) Reconstruct(out1, out2, out3)→ y = out1 + out2 + out3 ∈ Fl.

Theorem 5. [2] For all (sh
(0)
1 , sh

(0)
2 , sh

(0)
3) ← Share(x, ρ1, ρ2, ρ3), sh

(k+1)
j ← Updatej(sh

(k)
j , sh

(k)
j+1, ρj,

ρj+1) for k = 0, 1, . . . , n − 1, outj ← Outputj(sh
(n)
j), and for all circuits f , for all inputs x, Pr[f(x) =

Reconstruct(out1, out2, out3)] = 1.

Formally, ZKB++ for the relation L = {public(f, y),private(x)|y = f(x)} is a non-interactive one round
protocol ZKB=(prove, verify) between a prover and a verifier, both having access to y and f with the
following requirements. Here ZKB.prove is a PPT algorithm and ZKB.verify is a deterministic algorithm. Let
H1 : F∗ → Fs, H2 : F∗ → Fm, H3 : F∗ → {1, 2, 3}t be three hash functions used by both the prover and
verifier.

• ZKB.prove(L)→ (ΠL). The prover samples randomness ρj [γ] ∈ F∗ for each party Pj and does the following
for γ = 1, 2, . . . , t in parallel.

− compute (sh
(0)
1 [γ], sh

(0)
2 [γ], sh

(0)
3 [γ]) ← Share(x, ρ1[γ], ρ2[γ], ρ3[γ]) where sh

(0)
1 = H1(ρ1), sh

(0)
2 = H1(ρ2),

sh
(0)
3 = x− sh

(0)
1 − sh

(0)
2 , sh

(k+1)
j [γ]← Update

(k)
j (sh

(k)
j [γ], sh

(k)
j+1[γ], ρj [γ], ρj+1[γ]), k = 0, . . . , n− 1,

outj [γ]← Outputj(sh
(n)
j [γ]), cmtj [γ] = H2(ρj [γ], sh

(0)
j [γ], sh

(n)
j [γ]).

− set a[γ] = (out1[γ], out2[γ], out3[γ], cmt1[γ], cmt2[γ], cmt3[γ]). The prover then computes the challenge
ch = H3(a[1], a[2], . . . , a[t]) ∈ {1, 2, 3}t. Let ch[γ] ∈ {1, 2, 3} denotes the γ-th digit of ch. For γ = 1, 2, . . . , t,
the prover sets com[γ] = (out(j+2 mod 3)[γ], cmt(j+2 mod 3)[γ]) where j = ch[γ] and

rsp[γ] =


(sh

(n)
2 [γ], ρ1[γ], ρ2[γ]) if ch[γ] = 1

(sh
(n)
3 [γ], ρ2[γ], ρ3[γ], sh

(0)
3 [γ]) if ch[γ] = 2

(sh
(n)
1 [γ], ρ3[γ], ρ1[γ], sh

(0)
3 [γ]) if ch[γ] = 3.

Finally, the prover outputs the proof ΠL = [ch, (com[1], rsp[1]), . . . , (com[t], rsp[t])].

• ZKB.verify(y, f,ΠL)→ (0∨1). For each iteration γ ∈ [1, t], the verifier proceeds as follows where j = ch[γ]:
− Reconstruct

Meenakshi Kansal, Ratna Dutta, Sourav Mukhopadhyay 8

sh
(0)
j [γ] =


H1(ρ1[γ]) if j = 1

H1(ρ2[γ]) if j = 2

sh
(0)
3 [γ] if j = 3

, sh
(0)
j+1 mod 3[γ] =


H1(ρ2[γ]) if j = 1

sh
(0)
3 [γ] if j = 2

H1(ρ1[γ]) if j = 3

where ρ1[γ], ρ2[γ], ρ3[γ], sh
(0)
3 [γ] are extracted from rsp[γ] in ΠL.

− Recompute sh
(n)
j [γ] using sh

(0)
j [γ], sh

(0)
j+1 mod 3[γ] and extracting ρ1[γ], ρ2[γ], ρ3[γ] from rsp[γ] in ΠL and

invoking algorithm

Update
(k)
j

(
sh

(k)
j [γ], sh

(k)
(j+1 mod 3)[γ]), ρj [γ], ρ(j+1 mod 3)[γ]

)
→ sh

(k+1)
j [γ] for k = 0, 1, . . . , n− 1.

− Recover outj [γ]← Outputj(sh
(n)
j [γ]), cmtj [γ] = H2(ρj [γ], sh

(0)
j [γ], sh

(n)
j [γ]),

out(j+1 mod 3)[γ]← Output(j+1 mod 3)(sh
(n)
(j+1 mod 3)[γ]),

cmt(j+1 mod 3)[γ] = H2(ρ(j+1 mod 3)[γ], sh
(0)
(j+1 mod 3)[γ], sh

(n)
(j+1 mod 3)[γ]).

Note that com[γ] in ΠL contains out(j+2 mod 3) and cmt(j+2 mod 3).
− Set a′[γ] = (out1[γ], out2[γ], out3[γ], cmt1[γ], cmt2[γ], cmt3[γ]).
The verifier computes ch′ = H3(a′[1], a′[2], . . . , a′[t]) ∈ {1, 2, 3}t. If ch′ = ch, then the verifier accepts the
proof ΠL and outputs 1; otherwise it rejects ΠL and outputs 0.

2.2.1 Unruh Transform [24]

Similar to Fiat-Shamir (FS) transform [9], Unruh transform allows to construct non-interactive zero knowl-
edge (NIZK) proofs and signature schemes from Σ-protocol [7] that provide provable security in the quantum
random oracle model.

Given a Σ-protocol with challenge space S = {1, 2, 3}, an integer t, two hash functions H : F∗ → {1, 2, 3}t
and G : F∗ → Ft, the prover under Unruh’s transform will perform the following steps.
− Run the first phase of the Σ-protocol t times to produce com1, com2, . . . , comt.
− For each γ ∈ [1, t] and j ∈ S, compute the response rspγ,j for comγ and challenge j ∈ S. Compute
σγ,j = G(rspγ,j).
− Compute {j1, j2, . . . , jt} = H(x, com1, com2, . . ., comt, σ1,1, . . ., σt,1, σ1,2, . . ., σt,2, σ1,3, . . ., σt,3).
− Output ΠL = (com1, com2, . . . , comt, rsp1,j1 , rsp2,j2 , . . ., rspt,jt , σ1,1, . . .,σt,1, σ1,2, . . ., σt,2, σ1,3, . . ., σt,3).

The verifier will verify the hash, verify that the given values match the corresponding σi,ji values, and that
the rspi,ji values are valid responses with respect to the comi values.

3 Nominative Signature- Syntax and Security

Syntax of nominative signature. At high level, We define a nominative signature scheme NS as four
PPT algorithms setup, keygen, neSign, nrSign, a deterministic algorithm verify and a two party interactive
protocol cfORds. A trusted third party, called the key generation center (KGC), generates the system
parameter Y ← NS.setup. A user generates its public-secret key pairs (pk, sk)←NS.keygen. The public keys
are made publicly available while the secret keys are kept secret to the respective entities. The nominee uses
its own secret key sk to generate a signature (Sig, state) ←NS.neSign and sends Sig to the nominator over
a public channel and keeps its updated current internal state state secret to itself. The nominator in turn,
issues a nominative signature nsig←NS.nrSign using its own secret key sk. The nominative signature nsig is
verifiable only by the nominee using its internal state state by executing the algorithm NS.verify. Finally, the
confirmation (or disavowal) protocol NS.cfORds=(neTM, vrTM) is invoked which is an interactive protocol
between the nominee ne and a verifier vr. The aim of this protocol is to make it possible for ne to convince vr
that the nominative signature nsig is a valid (or invalid) signature. For this, the nominee ne sets a relation R
using a private witness that is available only to ne and generates (µ,ΠR)←NS.cfORds.neTM. Here µ ∈ {0, 1}
and ΠR is a zero knowledge proof for a relation R set by ne. The verifier runs the algorithm NS.cfORds.vrTM
on receiving (µ, ΠR) and returns β ∈ {0, 1}. The bit β = 0 indicates that the verifier vr is not convinced

Efficient Construction of Nominative Signature 9

that the private witness for the relation R is held by ne itself and disagrees with the proof ΠR whereas β = 1
assures it agrees with the proof ΠR.

Formally, a nominative signature NS=(setup, keygen, neSign, nrSign, verify, cfORds=(neTM, vrTM)) works
as follows.

• NS.setup(1λ) → Y. On input a security parameter λ, a trusted authority called the key generation
center (KGC) generates the system parameter Y.

• NS.keygen(Y, a) → (pka, ska). On given the system parameter Y, the user a generates the public and
secret key pair (pka, ska).

• NS.neSign(Y, skv, pkv, pku,M)→ (SigM,v,u, statev). On input of the public parameter Y, public-secret
key pair (pkv, skv) of a nominee v, public key of pku the nominator u and the message M , the nominee
v runs this algorithm to generate the nominee’s signature SigM,v,u on a message M with nominator u.

• NS.nrSign(Y, sku, pku, pkv,M, SigM,v,u)→ nsigM,v,u. This algorithm is run by a nominator u on input
the public parameter Y, public-secret key pair (pku, sku) of a nominator u, public key pkv of the
nominee v, message M and the nominee’s signature SigM,v,u and generates the nominative signature
nsigM,v,u.

• NS.verify(Y, statev, pkv, pku,M, nsigM,v,u) ∈ {valid, invalid}. This algorithm is run by the nominee with
its statev and it verifies whether the nominative signature nsigM,v,u is valid or invalid.

• NS.cfORds=(neTM, vrTM)→ ((µ,ΠR), β). This is an interactive protocol between a nominee v and a
verifier vr and the nominee returns a bit µ ∈ {0, 1} and a zero knowledge proof ΠR. If the verifier
agrees with the proof ΠR, the verifier returns β = 1. Otherwise vr returns β = 0.

Security model. Following are the security attributes of a nominative signature.

• Unforgeability against malicious nominee. The nominee ne alone cannot produce a valid nominative
signature nsigM,ne,nr where the nominee ne and the message M both are chosen by the nominator nr.

The security game Expuf−mne
F (λ) for unforgeability against malicious nominee between an attacker F

and a simulator S is provided in Figure 1.

1. The simulator S generates system parameter Y and fixes the uncorrupted nominator nr∗. The
simulator S also randomly fixes the public key pknr∗ of the nominator nr∗ and sends the tuple
(Y, nr∗, pknr∗) to the forger F .

2. The forger F makes polynomially many, say α, queries to S for each of the oracles Create, Corrupt,
SignNR, SignNE, cfORds. The simulator S returns ⊥ when the forger F makes Corrupt and SignNR
queries on a user a = nr∗.

3. Finally, F outputs a forgery (M∗, nsig∗M∗,ne,nr) on a corrupted nominee ne and the uncorrupted
nominator nr such that pkne ∈ Lcorrupt.

4. The simulator S returns 1 if the following conditions hold:
(a) NS.verify(Y, statene, pkne, pknr, M

∗, nsig∗M∗,ne,nr)→ valid,
(b) pknr /∈ Lcorrupt,
(c) (SigM∗,ne,nr, nsig

∗
M∗,ne,nr) /∈ LsignNR and

(d) (nsig∗M∗,ne,nr, µ, ΠR)/∈ LcfORds.
Otherwise, S returns 0.

5. The forger F wins the game if S returns 1.

Figure 1: selective unforgeability game Expuf−mne
F (λ) against malicious nominee

Definition 9. (Unforgeability against malicious nominee). We say that a nominative signature is
secure under unforgeability against malicious nominee if

Advuf−mne
F (λ) = Pr[Expuf−mne

F (λ) = 1] ≤ negl(λ)

for every PPT adversary F in the experiment Expuf−mne
F (λ) defined in Figure 1 where negl(λ) is a

negligible function in λ i.e., negl(λ)=λ−ω(1).

Meenakshi Kansal, Ratna Dutta, Sourav Mukhopadhyay 10

• Unforgeability against malicious nominator. The nominator nr alone cannot produce a valid nominative
signature nsigM,ne,nr and cannot convince a verifier about the validity or invalidity of the nominative

signature. The security game Expuf−mnr
F (λ) for unforgeability against malicious nominator between an

attacker F and a simulator S is provided in Figure 2.

1. The simulator S generates system parameter Y ←NS.setup(λ) and fixes the uncorrupted nominee
ne∗. The simulator S also randomly fixes the public key pkne∗ of the nominator ne∗ and sends the
tuple (Y, ne∗, pkne∗) to the forger F .

2. The forger F makes polynomially many, say α, queries to S for each of the oracles CreateNR,
CreateNE, CorruptNR, CorruptNE, SignNR, SignNE, cfORds. The simulator S returns ⊥ when the
forger F makes Corrupt, SignNE and cfORds queries on a user a = ne∗.

3. Finally, the forger F outputs a forgery (M∗, Sig∗M∗,ne,nr, nsig
∗
M∗,ne,nr) on a corrupted nominator nr

and an uncorrupted nominee ne such that pknr ∈ LcorruptNR, (pkne, skne)∈ LcreateNE.
4. The simulator S returns 1 if the following holds:

(a) NS.verify(Y, statene, pkne, pknr, M
∗, nsig∗M∗,ne∗,nr∗)→ valid,

(b) pkne /∈ LcorruptNE,
(c) (Sig∗M∗,ne,nr, statene) /∈ LsignNE and
(d) (nsig∗M∗,ne,nr, µ, ΠR)/∈ LcfORds.
Otherwise, S returns 0.

5. The forger F wins the game if S returns 1.

Figure 2: selective unforgeability game Expuf−mnr
F (λ) against malicious nominator

Definition 10. (Unforgeability against malicious nominator). We say that a nominative signature is
secure under unforgeability against malicious nominee if

Advuf−mnr
F (λ) = Pr[Expuf−mnr

F (λ) = 1] ≤ negl(λ)

for every PPT adversary F in the experiment Expuf−mnr
F (λ) defined in Figure 2 where negl(λ) is a

negligible function in λ i.e., negl(λ)=λ−ω(1).

• Security under invisibility. Only the nominee ne can verify the nominative signature nsigM,ne,nr. Let F
be a distinguisher and S be the challenger. The invisibility game ExpinvisF (λ, b) is described in Figure 3.

1. The simulator S generates system parameter Y ← NS.setup(λ) and sends it to the distinguisher F .
2. Next the distinguisher F makes polynomially many, say α queries to S for each of the oracles

Create, Corrupt, SignNR, SignNE, cfORds.
3. At any point of the game, F submits a tuple (M∗, ne, nr) where M∗ is a message to be signed with

ne as the nominee and nr as the nominator such that pkne, pknr ∈ Lcreate but pkne /∈ Lcorrupt i.e.,
the nominee ne is not corrupted.

4. The simulator chooses a random bit b ∈ {0, 1}. If b = 1, the simulator S generates
SigM∗,ne,nr ←NS.neSign(Y, skne, pkne, pknr, M

∗), nsigM∗,ne,nr ← NS.nrSign(Y, sknr, pknr, pkne, M
∗,

SigM∗,ne,nr) and sets Kb = nsigM∗,ne,nr. Else, Kb is generated uniformly.
5. The distinguisher F observes Kb, outputs a guess b′ and wins the game if

(i) b′ = b
(ii) F does not corrupt skne i.e., pkne /∈ Lcorrupt

Figure 3: Security game ExpinvisF (λ, b) under invisibility

Definition 11. (Security under invisibility). A nominative signature scheme is secure under invisibility
if

AdvinvisF (λ) = |Pr[ExpinvisF (λ, 0)]− Pr[ExpinvisF (λ, 1)]| ≤ negl(λ)
for every PPT adversary in the experiment ExpinvisF (λ, b) defined in Figure 3 where b ∈ {0, 1} and negl(λ)
is a negligible function in λ.

• Security under non-repudiation. If the nominative signature nsigM,ne,nr is valid then the nominee ne
cannot mislead a verifier vr by proving the invalidity of nsigM,ne,nr to the verifier vr and vice versa. Let

Efficient Construction of Nominative Signature 11

F be a cheating nominee and S be the simulator. The non-repudiation game ExprepF (λ) is explained in
Figure 4.

1. The simulator S generates Y ← NS.setup(λ) and sends it to the adversary F .
2. The adversary F may make polynomially many, say α, queries to oracles Create, Corrupt, SignNR,

SignNE, cfORds.
3. The adversary F prepares a tuple (M∗, nsigM∗,ne,nr, γ = 1 − µ) where ne is any nominee with

pkne ∈ Lcorrupt, nr is a nominator such that (pknr, sknr)∈ Lcreate, nsigM∗,ne,nr is a signature on M∗

and (nsigM∗,ne,nr, µ,ΠR) ∈ LcfORds where ΠR is a zero knowledge proof for the relation R and µ
is a bit. If NS.verify(Y, stateM∗,ne,nr, pkne, pknr, M

∗,nsigM∗,ne,nr)→ valid then µ = 1. Else µ = 0.
4. To mislead, the adversary F sends the disavowal proof ΠR if µ = 1. Otherwise, F computes the

confirmation proof ΠR. The simulator S runs NS.cfORds.vrTM(Y, pkne, pknr, M
∗, nsigM∗,ne,nr, µ,

ΠR)→ β and returns β.

The adversary F wins the game if β = 1.

Figure 4: Security game ExprepF (λ) under non-repudiation

Definition 12. (Security under non-repudiation). A nominative signature scheme is secure under
non-repudiation if

AdvrepF (λ) = |Pr[ExprepF (λ) = 1]| ≤ negl(λ)
for every PPT adversary in the experiment ExprepF (λ) defined in Figure 4 and negl(λ) is a negligible
function of λ.

The attacker F has access to the following oracles in the attack games given in Figures 1-4 and interacts with
the simulator S who generates the public parameter Y and maintains five private lists: Lcreate, Lcorrupt,
LsignNE, LsignNR, LcfORds (each initially empty).

• Create Query: When F makes this oracle query to S on a user a, the simulator S returns pka to F by
running NS.keygen(Y, a)→(pka, ska). The simulator S stores (pka, ska) in the list Lcreate.

• Corrupt Query: On receiving this query on a user a from F , the simulator S checks whether (pka, ska) ∈
Lcreate. If not, it returns ⊥. Otherwise, S sends ska to F and stores pka in the list Lcorrupt.

• SignNE Query: On querying this oracle on a tuple (v, u, M) by F where v is a nominee, u is a nominator
and M is a message, the simulator S checks whether (pku, sku), (pkv, skv) ∈ Lcreate. If not, S returns
⊥. Otherwise, S outputs the signature (SigM,v,u, statev) ← NS.neSign(Y, skv, pkv, pku, M) of the
nominee v on M and stores (SigM,v,u, statev) in the list LsignNE where statev is the current updated
internal secret state of the nominee v.

• SignNR Query: In response to this query on SigM,v,u from F , the simulator S verifies whether (SigM,v,u,
statev) ∈ LSignNE. If so, S returns the nominative signature nsigM,v,u ← NS.nrSign(Y, sku, pku, pkv,
M , SigM,v,u) to F and stores (SigM,v,u, nsigM,v,u) in the list LsignNR. Otherwise, S returns ⊥.

• cfORds Query: On receiving this query on nsigM,v,u from F , the simulator S checks whether (SigM,v,u,
nsigM,v,u) ∈ LsignNR. If not, S aborts. Otherwise, S extracts statev from (SigM,v,u, statev) ∈ LSignNE
and returns (µ,ΠR)← NS.cfORds.neTM(Y, statev, pkv, pku, M , nsigM,v,u) to F where R is the relation
for the zero knowledge ΠR. The simulator S stores (nsigM,v,u, µ, ΠR) in the list LcfORds.

4 Our Nominative Signature Scheme

Our nominative signature NS=(setup, keygen, neSign, nrSign, verify, cfORds=(neTM, vrTM)) works as follows.

• NS.setup(λ)→ Y. On input a security parameter λ > 0, the KGC selects integers n and q of sizes O(λ) and
O(n3) respectively, sets m ≥ 5ndlog qe, picks real numbers σ and δ where σ is the standard deviation of the
discrete Gaussian distribution DΛ,σ of size Ω(

√
n log q log n) and δ = 2σ

√
m is an error bound. It chooses

Meenakshi Kansal, Ratna Dutta, Sourav Mukhopadhyay 12

cryptographically secure hash function H : M× (Zn×mq)2 → Znq where M is the message space, selects a
CRPRF f : Zmq ×Zmq → Znq . For our scheme, it is suffice to consider a function that is collision resistant only
on one space. That is, given x0,y ∈ Zmq and f(x0,y) ∈ Znq , it should be hard to find another x1 ∈ Zmq such
that f(x0,y) = f(x1,y) and x0 6= x1. Finally, it publishes the public parameter Y = {n, q, m, σ, δ, H, f}.

• NS.keygen(Y, a)→ (pka, ska). The user a invokes the algorithm TrapGen(n, m, q)→ (Aa, TAa
) (see Lemma

1 in Section 2.1) and sets pka=Aa ∈ Zn×mq , ska = TAa
∈ Zm×m. The user a publishes pka and keeps ska

secret to itself.

• NS.neSign(Y, skne, pkne, pknr, M)→ (SigM,ne,nr=(M , v, y1, ΠRf), statene). Let M ∈M be a message to be
signed. The nominee ne performs the following steps using Y=(n, q, m, σ, δ, H, f), skne=TAne , pkne=Ane

and public key pknr=Anr of a nominator nr. For our convenience, we write Bne = Ane and TBne = TAne .

• Compute y = H(M,Anr,Bne) ∈ Znq and generate a short vector v ∈ Zmq satisfying gBne(v) = Bne · v =
y mod q with ||v|| ≤ σ

√
m by running the algorithm SamplePre(Bne, TBne , y, σ)→ v using the short

basis TBne given in Lemma 1 in Section 2. Note that ||v||∞ ≤ ||v|| ≤ σ
√
m ≤ δ as δ = 2σ

√
m.

• Select randomly r1 ∈ Zmq , compute y1 = f(r1,v) ∈ Znq and generate a zero knowledge proof ΠRf
for the relation Rf = {public(f,v,y1,Y), private (r1) | y1 = f(r1,v)} by executing the algorithm
ZKB.prove using the protocol ZKB++ as described in Section 2.2.

• Set the signature SigM,ne,nr = (M,v,y1,ΠRf), send it to the nominator nr over a two party public
channel and update its current internal state statene = statene ∪ (r1, v, M , nr) (statene is initially
empty).

• NS.nrSign(Y, sknr, pknr, pkne, M , SigM,ne,nr)→ (nsigM,ne,nr = (z,v)). On receiving the signature SigM,ne,nr =
(M,v,y1,ΠRf) from the nominee ne, the nominator nr executes the following steps using sknr=TAnr , pknr=Anr

and pkne = Bne.

• Verify gBne(v) = Bne · v = H(M,Anr,Bne) mod q with ||v|| ≤ σ
√
m and zero knowledge proof ΠRf by

invoking the algorithm ZKB.verify using the ZKB++ protocol as described in Section 2.2. The nomi-
nator aborts and outputs nsigM,ne,nr =⊥ if any of the above verification fails where ⊥ is a designated
symbol indicating verification failure.

• Otherwise, find a short vector z ∈ Zmq satisfying gAnr(z) = Anr · z = y1 mod q with ||z|| ≤ σ
√
m using

the short basis sknr=TAnr following the algorithm SamplePre(Anr, TAnr , y1, σ)→ z as in Lemma 1 in
Section 2.1 and issues the nominative signature nsigM,ne,nr = (z,v).

• NS.verify(Y, statene, pkne, pknr, M , nsigM,ne,nr)∈ {valid, invalid}. This algorithm is executed by the nominee
ne with its current internal state statene containing (r1, v, M , nr) who on receiving nsigM,ne,nr = (z,v) uses
pknr = Anr and pkne = Bne to verify whether gAnr(z) = f(r1,v) mod q with ||z|| ≤ σ

√
m and gBne(v) =

H(M,Anr,Bne) mod q with ||v|| ≤ σ
√
m. Here the nominee ne extracts v, r1 from its internal secret state

statene containing (r1, v, M , nr). If the verification succeeds, it outputs valid; otherwise it returns invalid.

• NS.cfORds=(neTM, vrTM)→ ((µ,ΠR), β). This protocol is an interactive protocol between the nominee
ne and a verifier vr satisfying the following requirements:

(i) neTM(Y, statene, pkne, pknr, M , nsigM,ne,nr)→ (µ,ΠR). The nominee performs the following steps using
pkne = Bne, pknr = Anr, statene and nsigM,ne,nr = (z,v):

• Extract r1,v from (r1, v, M , nr) contained in statene, generate a zero knowledge proof ΠR for the
relation R = {public(Anr,Bne,v, z,M,Y), private (r1) | Bne · v = H(M,Anr,Bne), Anr · z = f(r1,v)}
by executing the algorithm ZKB.prove using the protocol ZKB++ as described in Section 2.2.

• Run NS.verify(Y, statene, pkne, pknr, M , nsigM,ne,nr). If the output is valid then return (µ = 1,ΠR) to
the verifier vr; otherwise, send (µ = 0,ΠR) to the verifier vr. The proof ΠR is treated as a confirmation
(disavowal) proof of the relation R when µ = 1 (µ = 0).

(ii) vrTM(Y, pkne, pknr, M , nsigM,ne,nr, µ, ΠR) → β. On receiving a pair (µ,ΠR) from the nominee ne,
the verifier vr verifies the zero knowledge proof ΠR by invoking the algorithm ZKB.verify using the ZKB++
protocol as described in Section 2.2. The verifier vr outputs β = 1 if vr agrees with the confirmation proof ΠR

Efficient Construction of Nominative Signature 13

i.e., if vr receives µ = 1 and ZKB.verify passes (or disavowal proof ΠR i.e. vr receives µ = 0 and ZKB.verify
succeeds). The verifier vr thus convinced in zero knowledge that neither nominator nor nominee is a cheater.
Otherwise, vr disagrees with the confirmation/disavowal proof ΠR and returns β = 0.

Remark 1. Note that the cheating nominee cannot construct a valid signature on some message M∗ 6= M .
It follows from the zero knowledge proof ΠRf which proves the knowledge of r1 ∈ Zmq such that y1 = f(r1, v)
and the collision resistant property of the PRF f .

Correctness. Let the KGC generates the public parameter (Y = (n, q,m, σ, β,H, f)) ← NS.setup(λ). A
nominator nr generates its public-secret key pair (pknr = Anr, sknr = TAnr)← NS.keygen(Y, nr) and a nominee
ne generates its public-secret key pair (pkne = Ane, skne = TAne) ← NS.keygen(Y, ne). Set Bne = Ane and
TBne = TAne . Let the nominee ne generates

(SigM,ne,nr = (M,v,y1,ΠRf), statene))← NS.neSign(Y, skne, pkne, pknr,M)

where ΠRf ←ZKB.prove is a zero knowledge for the relation Rf = {public(f,v,y1,Y), private (r1) | y1 =
f(r1,v)}, v ∈ Zmq is a short vector satisfying Bne ·v = H(M,Anr,Bne) with ||v|| ≤ σ

√
m, y1 = f(r1,v) ∈ Znq

with r1 ∈ Zmq , M ∈M and statene contains (r1,v,M, nr). Also, let the nominator nr computes the nominative
signature

(nsigM,ne,nr = (z,v))← NS.nrSign(Y, sknr, pknr = Anr, pkne,M, SigM,ne,nr = (M,v,y1,ΠRf))

where z is a short vector satisfying the equation Anr · z = y1 mod q with ||z|| ≤ σ
√
m. Let the nominee

ne outputs (µ,ΠR) ← NS.cfORds.neTM(Y, statene, pkne = Bne, pknr = Anr,M, nsigM,ne,nr = (z,v)) where
µ ∈ {0, 1} and ΠR ← ZKB.prove is a zero knowledge proof for the relation R = { public (Anr, Bne, v, z, M ,
Y), private (r1) | Bne · v = H(M,Anr,Bne),Anr · z = f(r1,v)} where (r1,v,M, nr)∈ statene.

If the nominee ne, the nominator nr and the verifier vr are honest then we have the following.
(i) The algorithm NS.verify(Y, statene, pkne, pknr = Anr, M , nsigM,ne,nr = (z,v)) run by the honest nominee
ne outputs valid as Anr · z = f(r1,v) where (r1,v,M, nr)∈ statene.
(ii) The algorithm NS.cfORds.vrTM(Y, pkne, pknr, M , nsigM,ne,nr, µ, ΠR) run by the honest verifier vr. The
verifier vr outputs β = 1 which follows from the correctness of ZKB.verify in Section 2.2. In other words,
the verifier agrees with the proof ΠR and thereby convinced in zero knowledge that ne has the knowledge of
the private witness r1 satisfying Anr · z = f(r1,v) mod q and Bne · v = H(M,Anr,Bne). Note that ΠR is a
confirmation proof when µ = 1 and disavowal proof when µ = 0.

4.1 Security Proofs

Theorem 6. The nominative signature scheme NS=(setup, keygen, neSign, nrSign, verify, cfORds=(neTM,
vrTM)) described in Section 4 is secure under the unforgeability against malicious nominee in the standard
model as per Definition 9 for the security game given in Figure 1 assuming the existence of collision-resistant
preimage sampleable function (CRPSF). Concretely, suppose there is a forger F that has advantage ε against
the scheme NS. Suppose F makes atmost QH > 0 hash queries to H and Qf > 0 pseudorandom queries to
f . Then there is an algorithm S that breaks the collision resistant property of CRPSF with probability

Pr
[
F(Ā,x, n,m, q) → x′ |((gĀ(x) = gĀ(x′) ∧ (x 6= x′)), Ā ∈ Zn×mq ,x ∈ Zmq , ||x|| ≤ β, β = 2σ

√
m,σ =

Ω(
√
n log q log n),m = 2n log q, q = O(n3), n = O(λ)

]
atleast ε′ where ε ≥ αe2 ·ε′. Here e is the base of the natural logarithm. The running time of S is O(time(F)).

Proof. Let a PPT forger F with the secret key of a nominee forges our proposed nominative signature scheme
NS with non-negligible advantage ε. We construct an algorithm S that breaks the collision-resistant property
of PSF with probability close to ε. The algorithm S plays the role of the simulator in the security game
Expuf−mne
F (λ) (Figure 1) and interacts with F as follows:

1. The simulator S runs NS.setup(λ) to honestly generate the public parameters Y = (n, q,m, σ, δ,H, f)
with integers n and q of sizes O(λ) and O(n3) respectively, real number σ of size Ω(

√
n log q log n) which

Meenakshi Kansal, Ratna Dutta, Sourav Mukhopadhyay 14

is the standard deviation of the discrete Gaussian distribution DΛ,σ, an error bound δ = 2σ
√
m where

m ≥ 5ndlog qe, a hash function H : M× (Zn×mq)2 → Znq where M is the message space and a collision
resistant pseudorandom function f : Zmq × Zmq → Znq . The simulator S sends Y to the forger F , fixes the
uncorrupted nominator nr∗ along with its public key pknr∗ ∈ Zn×mq uniformly at random.

2. The forger F makes polynomially many, say α, queries to S for each of the following oracles where Hlist,
PRFlist, Successlist, LsignNE, LsignNR, LcfORds are the private lists maintained by the simulator S (which
are initially empty).

− Create Query: On receiving this query on a user a 6= nr∗, the simulator S runs NS.keygen(Y, a)→(pka,
ska) where pka = Aa ∈ Zn×mq and ska = TAa

∈ Zm×m. For the case a = nr∗, the simulator S sends the
already fixed public key pknr∗ . In this case sknr∗ =⊥. The simulator S stores (pka, ska) ∈ Lcreate and sends
pka to the forger F . When user a plays the role of a nominee, we set Ba = Aa and TBa = TAa . Observe
that the simulation of this query is exactly same as in the original protocol.

− Corrupt Query: On receiving this query on a user a from F , the simulator S checks whether a 6= nr∗ and
(pka = Aa, ska = TAa) ∈ Lcreate. If not, S returns ⊥. Otherwise, S sends ska to F and stores pka in the
list Lcorrupt.

− Hash Query: To answer hash queries, S maintains a list Hlist for the hash function H. This list stores
records of the form (x, H(x)) where x ∈ M× (Zn×mq)2 and H(x) ∈ Znq . The stored value is returned on
the queried x ∈ M× (Zn×mq)2 if it has already been queried before. Otherwise, a fresh value H(x) ∈ Znq is
generated honestly by using the public hash function H and (x, H(x)) is included in Hlist. The simulator S
returns H(x) to F . Note that the distribution of hash query is same as in the original protocol.

− PRF Query: To respond pseudorandom queries, S maintains a list PRFlist for the collision resistant
pseudorandom function f . Here f : Zmq × Zmq → Znq is assumed to be collision resistant only on one space
i.e., given r1,v ∈ Zmq , f(r1,v) ∈ Znq , it is hard to find r2 ∈ Zmq with r2 6= r1 and f(r1,v) = f(r2,v).

On receiving a query (r1,v) ∈ Zmq × Zmq from F , the simulator S checks whether ((r1,v),y1) ∈ PRFlist
and returns y1 to F if so. Otherwise, S checks whether ((M,Anr∗ ,Bv), H(M,Anr∗ ,Bv)) ∈ Hlist satisfying
Bv · v = H(M,Anr∗ ,Bv) mod q. If such a pair does not exist in Hlist then S computes y1 = f(r1,v) ∈ Znq
honestly similar to that in the real protocol, passes y1 ∈ Znq to the forger F and stores ((r1,v),y1) in PRFlist.
If there exists such a pair ((M,Anr∗ ,Bv), H(M,Anr∗ ,Bv)) ∈ Hlist satisfying Bv ·v = H(M,Anr∗ ,Bv) mod q
then the simulator S simulates pseudorandom query on (r1,v) as follows.

(i) choose a short vector d← SampleD(1n) i.e., d ∈ Zmq with ||d|| ≤ σ
√
m,

(ii) compute y1 = gAnr∗ (d) = Anr∗ · d mod q where gAnr∗ forms a PSF (see Definition 8 in Section 2.2),

(iii) store ((r1,v),y1) in PRFlist and return y1 to F ,

(iv) maintain a list Successlist and store (M, r1,v,d,y1) in Successlist.

For each distinct query (r1,v) to f , the value returned by S is either the honest value f(r1,v) or the value
gAu(d) where d ← SampleD(1n); by the uniform output property of the the algorithm SampleD, this is
identical to the uniform random value of f(r1,v) ∈ Znq . By the pseudorandom property of f , this simulation
is same as in the real protocol. We fix the value of y1 ∈ Znq for the pseudorandom query on (r1,v) and for
every query on the same tuple (r1,v), the simulator returns the same value y1 ∈ Znq . In the original protocol,
pseudorandom queries on (r1,v) are answered by a single value having the same distribution as that in the
simulated answer.

− SignNE Query: On querying this oracle on a tuple (Bv, Au, M) by F for a nominee v, nominator u and
message M , the simulator S proceed as follows.

(i) checks if ((M , Au, Bv), y) /∈ Hlist, then S queries (M,Au,Bv) to hash query and receives y ∈ Znq ,

(ii) find v ∈ Zmq satisfying Bv · v = y,

(iii) check whether ((r1,v),y1) ∈ PRFlist for some r1 ∈ Zmq , y1 ∈ Znq . If no, choose r1 ∈ Zmq randomly and
make pseudorandom query on (r1,v),

Efficient Construction of Nominative Signature 15

(iv) generate a zero knowledge proof ΠRf using ZKB++ for the relation Rf =
{

public (Au, Bv, v, z, M ,

Y), private (r1) | Au · z = f(r1,v)
}

and return SigM,v,u=(M,v,y1,ΠRf) to F .

(v) update the current internal state statev = statev ∪ (r1,v,M, u),

(vi) store (SigM,v,u, statev) in the list LsignNE.

Observe that the distribution of SignNE query is identical to that in the real protocol by the uniform output
property of the algorithms SampleD and SamplePre.

− SignNR Query: In response to this query on SigM,v,u = (M , v, y1, ΠRf) from F , the simulator S verifies
whether the pair (SigM,v,u, statev) ∈ LSignNE and u 6= nr∗. If not, S returns ⊥. Otherwise, the simulator S
returns the nominative signature (nsigM,v,u = (z,v))← NS.nrSign(Y, sku, pku, pkv, M , SigM,v,u) to F and
stores (SigM,v,u, nsigM,v,u) in the list LsignNR. The distribution of nsigM,v,u = (z,v) is similar to that in the
real protocol.

− cfORds Query: The simulator S, on receiving this query on nsigM,v,u = (z,v) from F , calls the algorithm
NS.cfORds.neTM(Y, statev, pkv, pku, M , nsigM,v,u)→ (µ,ΠR) to execute the following steps using pkv = Bv,
pku = Au and (r1, v, M , u) contained in statev.

(i) extract r1,v from (r1, v, M , u) contained in statev,

(ii) generate a zero knowledge proof ΠR for the relationR =
{

public(Au,Bv,v, z,M,Y), private (r1) |Bv ·
v = H(M,Au,Bv),Au · z = f(r1,v)

}
with ((r1,v),y1) in PRFlist and ((M , Au, Bv), H(M , Au, Bv))

in Hlist using the algorithm ZKB.prove of the non-interactive zero knowledge proof system ZKB++ as
described in Section 2.2,

(iii) return (µ = 1,ΠR) to the verifier vr if NS.verify(Y, statev, pkv, pku, M , nsigM,v,u) is valid, otherwise,
send (µ = 0,ΠR) to vr,

(iv) record (nsigM,v,u, µ, ΠR) in the list LcfORds.

The proof ΠR is treated as a confirmation (disavowal) proof of the relation R when µ = 1 (µ = 0). Note
that, the simulation of (µ,ΠR) is exactly same as in the real protocol.

3. Finally, F produces a forgery nsig∗M∗,ne,nr = (z∗),v∗ on a message M∗ ∈ M against an uncorrupted
nominator nr and a corrupted nominee ne i.e., pkne ∈ Lcorrupt. If the forgery nsig∗M∗,ne,nr = (z∗,v∗) is valid,
the following conditions must hold.

(a) NS.verify(Y, statene, pkne, pknr, M
∗, nsig∗M∗,ne,nr)→ valid,

(b) pknr /∈ Lcorrupt,

(c) (SigM∗,ne,nr, nsig
∗
M∗,ne,nr) /∈ LsignNR and

(d) (nsig∗M∗,ne,nr, µ, ΠR)/∈ LcfORds.

When nr = nr∗, note that both the equations Anr ·z∗ = y∗1 mod q with ||z∗|| ≤ σ
√
m and Bne ·v∗ = y∗ mod q

must be satisfied when F produces a valid forgery (M∗, nsig∗M∗,ne,nr = (z∗,v∗)). This implies that the pair
((M∗, Anr, Bne), y∗)) ∈ Hlist, ((r∗1,v

∗),y∗1) ∈ PRFlist and (M∗, r∗1, v∗, d∗, y∗1) ∈ Successlist. The simulator
S collects d∗ ∈ Zmq from Successlist satisfying gAnr(d

∗) = f(r∗1,v
∗) = Anr ·d∗. This yields a collision in gAnr as

the forgery nsig∗M∗,ne,nr = (z∗,v∗) gives gAnr(z
∗) = Anr · z∗ = y∗1 = gAnr(d

∗). From the preimage min-entropy
of d∗ (see Definition 8 in Section 2.1) it follows that the signature z∗ 6= d∗, except with negligible probability
2−ω(logn). Thus S outputs a valid collision in gAnr with probability negligibly close to 1− 2−ω(logn).

Now, we show that S finds the collision in the PSF gA∗
nr

with probability atleast ε′. To do so, we analyze the
three events required for S to succeed.

A : S does not abort as a result of any of F ’s Corrupt and SignNR queries.
B : F generates a valid forgery nsig∗M∗,ne,nr = (z∗,v∗).
C : Event B occurs and nr = nr∗ with (M∗, r∗1,v

∗,d∗,y∗1) ∈ Successlist.

Meenakshi Kansal, Ratna Dutta, Sourav Mukhopadhyay 16

The simulator S succeeds if all these events occur. Note that

Pr[A ∩B ∩ C] = Pr[A] · Pr[B|A] · Pr[C|A ∩B].

Then using Lemma 2, Lemma 3 and Lemma 4 described below, the simulator S produces a collision to
the preimage sampleable function with probability atleast ε

αe2 ≥ ε′. Simulator S’s running time is same
as F ’s running time together with the time it takes to respond to α many queries to each of the oracles
Create, Corrupt, SignNE, SignNR, cfORds, QH hash queries and Qf queries. Each query requires some
computation time, let us assume that tgen is the time taken. Hence, the total running time is atmost
t+ tgen(QH +Qf + 5α) ≤ t′. This completes the proof of Theorem 6.

Lemma 2. Pr[A] ≥ 1
e2 .

Proof. We prove by induction that after F makes i many Corrupt queries, the probability that S does not
abort is atleast (1 − 1

α)i. The claim is trivially true for i = 0. The probability that the forger F makes a
Corrupt query for the user u = nr∗ is atmost 1

α (the total number of allowed Corrupt query is α). Thus, the
probability that S does not abort is atleast (1− 1

α). Using the inductive hypothesis, the probability that S
does not abort after i many Corrupt queries is atleast (1 − 1

α)i. Similarly, the probability that S does not
abort after j many SignNR queries is atleast (1− 1

α)j . Thus, the total probability that S does not abort is
atleast (1− 1

α)i+j . Since F makes atmost α many Corrupt and SignNR queries each, the probability that S
does not abort as a result of all the Corrupt and SignNR queries is atleast (1− 1

α)2α ≥ 1
e2 .

The public key given to F is from the same distribution as a public key produced by algorithm NS.keygen.
The distribution of responses to all the queries Create, Corrupt, Hash, pseudorandom, SignNE, SignNR, cfORds
are as in the real attack. All responses to Corrupt, SignNE and SignNR are valid. Therefore F will produce
a valid message-signature pair with probability atleast ε. Hence, Pr[B|A] ≥ ε. Thus we have the following
lemma.
Lemma 3. Pr[B|A] ≥ ε. � (of Lemma 3)

Given that the events A and B have happened, the simulator S will declare failure only if nr 6= nr∗. So,
Pr[C|A ∩B] = Pr[nr = nr∗] = 1

α . Hence we have the following lemma.

Lemma 4. Pr[C|A ∩B] = 1
α . � (of Lemma 4)

Theorem 7. The NS=(setup, keygen, neSign, nrSign, verify, cfORds=(neTM, vrTM)) described in Section 4
is secure under the unforgeability against malicious nominator in the random oracle model as per Definition
10 for the security game given in Figure 2 assuming the existence of collision-resistant preimage sampleable
function (CRPSF). Concretely, suppose there is a forger F that has advantage ε against the scheme NS.
Suppose F makes atmost QH > 0 hash queries to H and Qf > 0 pseudorandom queries to f . Then there is
an algorithm S that breaks the collision resistant property of CRPSF with probability

Pr
[
F(Ā,x, n,m, q) → x′ |((gĀ(x) = gĀ(x′) ∧ (x 6= x′)), Ā ∈ Zn×mq ,x ∈ Zmq , ||x|| ≤ β, β = 2σ

√
m,σ =

Ω(
√
n log q log n),m ≥ 5n log q, q = O(n3), n = O(λ)

]
atleast ε′ where ε ≥ αe2 ·ε′. Here e is the base of the natural logarithm. The running time of S is O(time(F)).

Proof. Let a PPT forger F with the secret key of a nominator forges our proposed nominative signature
scheme NS with non-negligible advantage ε. We construct an algorithm S that breaks the collision-resistant
property of PSF with probability close to ε. The algorithm S plays the role of the simulator in the security
game Expuf−mnr

F (λ) (Figure 2) and interacts with F as follows:

1. The simulator S runs NS.setup(λ) and honestly generates the public parameters Y = (n, q,m, σ, δ,H, f)
where integers n and q are of sizes O(λ) and O(n3) respectively, real number σ of size Ω(

√
n log q log n) is the

standard deviation of the discrete Gaussian distribution DΛ,σ, an error bound δ = 2σ
√
m with m ≥ 5ndlog qe,

a hash function H :M×(Zn×mq)2 → Znq withM as the message space and a collision resistant pseudorandom
function f : Zmq × Zmq → Znq . The simulator S sends Y to the forger F , fixes the uncorrupted nominee ne∗

and the public key pkne∗ ∈ Zn×mq of the nominee ne∗ uniformly at random.

Efficient Construction of Nominative Signature 17

2. The forger F makes polynomially many, say α, queries to S for each of the following oracles where Hlist,
PRFlist, Successlist, LsignNE, LsignNR, LcfORds are the private lists maintained by the simulator S (which
are initially empty).

− Create Query: On receiving this query on a user a 6= ne∗, the simulator S runs NS.keygen(Y, a)→(pka,
ska) where pka = Aa ∈ Zn×mq and ska = TAa

∈ Zm×m. For the case a = ne∗, the simulator S sends the
already fixed public key pkne∗ . In this case skne∗ =⊥. The simulator S stores (pka, ska) ∈ Lcreate and sends
pka to the forger F . When user a plays the role of a nominee, we set Ba = Aa and TBa = TAa

. Observe
that the simulation of this query is exactly same as in the original protocol.

− Corrupt Query: On receiving this query on a user a from F , the simulator S checks whether a 6= ne∗ and
(pka = Aa, ska = TAa

) ∈ Lcreate. If not, S returns ⊥. Otherwise, S sends ska to F and stores pka in the
list Lcorrupt.

− Hash Query: To answer hash queries, S maintains a list Hlist for the hash function H. This list stores
records of the form (x, y) where x = (M,Au,Bv) ∈M× (Zn×mq)2 and y ∈ Znq . The stored value is returned
on the queried x ∈ M × (Zn×mq)2 if it has already been queried before. Otherwise, a fresh random value
y = H(x) ∈ Znq is generated when v 6= ne∗. When v = ne∗, the simulator chooses a small random vector
w ← SampleD(1n) i.e., w ∈ Zmq with ||w|| ≤ σ

√
m and computes y = Bne∗ · w and (x,y) is included in

Hlist. The simulator S returns y to F . The simulator stores (x,w) in the list Succlist. Distributions of hash
queries are exactly same as that in the original protocol as long as H is treated as a random oracle.

− PRF Query: To respond pseudorandom queries, S maintains a list PRFlist for the collision resistant
pseudorandom function f . On receiving a query (r1,v) ∈ Zmq ×Zmq from F , the simulator S checks whether
((r1,v),y1) ∈ PRFlist and returns y1 to F if so. Otherwise, S computes y1 = f(r1,v) ∈ Znq honestly similar
to that in the real protocol, passes y1 ∈ Znq to the forger F and stores ((r1,v),y1) in PRFlist. Distributions
of PRF queries are exactly same as that in the original protocol

− SignNE Query: In response to this query on (M,v, u) from F , the simulator S verifies whether v 6=
ne∗. If not, S returns ⊥. Otherwise, the simulator S returns the nominative signature (SigM,v,u =
(M,v,y1,ΠRf)) ← NS.neSign(Y, skv, pkv, pku, M) to F and stores SigM,v,u in the list LsignNE. Note

that ΠRf is a zero knowledge on the relation Rf =
{

public(f,v,y1,Y), private (r1) | y1 = f(r1,v)
}

. The
distribution of SigM,v,u is similar to that in the real protocol. The simulator S updates the current internal
state statev = statev ∪ (r1,v,M, u) and stores (SigM,v,u, statev) in the list LsignNE.

− SignNR Query: In response to this query on SigM,v,u=(M , v, y1, ΠRf) from F , the simulator S returns
the nominative signature (nsigM,v,u = (z,v)) ← NS.nrSign(Y, sku, pku, pkv, M , SigM,v,u) to F and stores
(SigM,v,u, nsigM,v,u) in the list LsignNR. The distribution of nsigM,v,u = (z,v) is similar to that in the real
protocol.

− cfORds Query: The simulator S, on receiving this query on nsigM,v,u = (z, v) from F . The simulator S
returns ⊥ if v = ne∗. Otherwise, S calls NS.cfORds.neTM(Y, statev, pkv, pku, M , nsigM,v,u)→ (µ,ΠR) to
execute the following steps using pkv = Bv, pku = Au and (r1, v, M , u) contained in statev.

(i) extract r1,v from (r1, v, M , u) contained in statev,

(ii) generate a zero knowledge proof ΠR for the relationR =
{

public(Au,Bv,v, z,M,Y), private (r1) |Bv ·
v = H(M,Au,Bv),Au · z = f(r1,v)

}
with ((r1,v),y1) in PRFlist and ((M , Au, Bv), H(M , Au, Bv))

in Hlist using the algorithm ZKB.prove of the non-interactive zero knowledge proof system ZKB++ as
described in Section 2.2,

(iii) return (µ = 1,ΠR) to the verifier vr if NS.verify(Y, statev, pkv, pku, M , nsigM,v,u) is valid, otherwise,
send (µ = 0,ΠR) to vr,

(iv) record (nsigM,v,u, µ, ΠR) in the list LcfORds.

The proof ΠR is treated as a confirmation (disavowal) proof of the relation R when µ = 1 (µ = 0). Note
that, the simulation of (µ,ΠR) is exactly same as in the real protocol.

Meenakshi Kansal, Ratna Dutta, Sourav Mukhopadhyay 18

3. Finally, F produces a forgery Σ∗ = (Sig∗M∗,ne,nr = (M∗,v∗,y∗1,Π
∗
Rf), nsig∗M∗,ne,nr = (z∗,v∗)) on a message

M∗ ∈M against an uncorrupted nomiee ne and a corrupted nominator nr i.e., pknr ∈ Lcorrupt. If the forgery
Σ∗ is valid, the following conditions must hold.

(a) NS.verify(Y, statene, pkne, pknr, M
∗, nsig∗M∗,ne,nr)→ valid,

(b) pkne /∈ Lcorrupt,

(c) (Sig∗M∗,ne,nr, statene) /∈ LsignNE and

(d) (nsig∗M∗,ne,nr, µ, ΠR)/∈ LcfORds.

When ne = ne∗, note that both the equations Anr ·z∗ = y∗1 mod q and Bne ·v∗ = y∗ mod q with ||z∗||, ||v∗|| ≤
σ
√
m must be satisfied when F produces a valid forgery Σ∗. This implies that the pair ((M∗, Anr, Bne),

H(M∗, Anr, Bne)) ∈ Hlist, ((r∗1,v
∗), f(r∗1,v

∗)) ∈ PRFlist and (M∗, Anr, Bne,w
∗) ∈ Succlist. The simulator

S collects w∗ ∈ Zmq from Succlist satisfying gBne(w
∗) = Bne ·w∗. This yields a collision in gBne as the forgery

Σ∗ gives gBne(v
∗) = Bne · v∗ = gBne(w

∗). From the preimage min-entropy of w∗ (see Definition 8 in Section
2.1) it follows that the signature v∗ 6= w∗, except with negligible probability 2−ω(logn). Thus S outputs a
valid collision in gBne with probability negligibly close to 1− 2−ω(logn).

Now, we show that S finds the collision in PSF with probability atleast ε′. To do so, we analyze the three
events required for S to succeed.

A : S does not abort as a result of any of F ’s Corrupt and SignNE queries.
B : F generates a valid forgery Σ∗.
C : Event B occurs and ne = ne∗ with (M∗,Anr,Bne,w

∗) ∈ Succlist.

The simulator S succeeds if all these events occur. Note that

Pr[A ∩B ∩ C] = Pr[A] · Pr[B|A] · Pr[C|A ∩B].

Then using the Lemma 2, Lemma 3 and Lemma 4 described below, the simulator S produces a collision to
the PSF with probability atleast ε

αe2 ≥ ε
′. Simulator S’s running time is same as F ’s running time together

with the time it takes to respond to α many Create, Corrupt, SignNE, SignNR, cfORds queries, QH hash
queries and Qf pseudorandom queries. Each query requires some computation time, let us assume that tgen
is the time taken. Hence, the total running time is atmost t+ tgen(QH +Qf + 5α) ≤ t′. This completes the
proof of Theorem 7.

Lemma 5. Pr[A] ≥ 1
e2 .

Proof. We prove by induction that after F makes i many Corrupt queries, the probability that S does not
abort is atleast (1 − 1

α)i. The claim is trivially true for i = 0. The probability that the forger F makes a
Corrupt query for the user u = ne∗ is atmost 1

α (the total number of allowed Corrupt query is α). Thus, the
probability that S does not abort is atleast (1− 1

α). Using the inductive hypothesis, the probability that S
does not abort after i many Corrupt queries is atleast (1 − 1

α)i. Similarly, the probability that S does not
abort after j many SignNE queries is atleast (1− 1

α)j . Thus, the total probability that S does not abort is
atleast (1− 1

α)i+j . Since F makes atmost α many Corrupt and SignNE queries each, the probability that S
does not abort as a result of all the Corrupt and SignNE queries is atleast (1− 1

α)2α ≥ 1
e2 .

The public key given to F is from the same distribution as a public key produced by algorithm NS.keygen.
The distribution of responses to all the queries Create, Corrupt, Hash, pseudorandom, SignNE, SignNR, cfORds
are as in the real attack. All responses to Corrupt, SignNE and SignNR are valid. Therefore F will produce
a valid message-signature pair with probability atleast ε. Hence, Pr[B|A] ≥ ε. Thus we have the following
lemma.
Lemma 6. Pr[B|A] ≥ ε. � (of Lemma 6)

Given that the events A and B have happened, the simulator S will declare failure only if ne 6= ne∗. So,
Pr[C|A ∩B] = Pr[ne = ne∗] = 1

α . Hence we have the following lemma.

Efficient Construction of Nominative Signature 19

Lemma 7. Pr[C|A ∩B] = 1
α . � (of Lemma 7)

Theorem 8. Assume that Problem-I 4 defined in Section 2 is hard. Then the construction of our nominative
signature scheme NS={setup, keygen, neSign, nrSign, verify, cfORds =(neTM, vrTM)} described in Section 4
is secure under invisibility as per the Definition 11 for the security game given in Figure 3.

Proof. Let F be a PPT distinguisher that breaks the invisibility security game ExpinvisF (λ, b) defined in Figure
3 with non-negligible advantage ε. We will construct a simulator S that breaks an instance of Problem-I
using F as a subroutine i.e., given two vectors d ∈ Zmq , w ∈ Znq with q = O(n3), m ≥ 5ndlog qe and

σ = Ω(
√
n log q log n), the simulator S interacts with F and distinguishes whether w = f(k,d) for some

k ∈ Zmq or w is uniformly chosen from Znq . The simulator S sets Y=(n, q, m, σ, β, H, f) where β = 2σ
√
m,

f : Zmq × Zmq → Znq and H : {0, 1}∗ → Znq are cryptographically secure hash functions.

The simulator S speculates an index k ∈ {1, 2, . . . , qH}. More specifically, S guesses that F makes k-th H1

query that is used by F to output a challenged tuple.

1. The simulator S sends (Y, pk∗ne) to the forger F .

2. The simulator responds to the distinguisher F on queries Create, CorruptNR, Hash, PRF, SignNE,
SignNR, cfORds as follows and maintains seven lists Lcreate, Lcorrupt, Hlist, PRFlist, LsignNE, LsignNR,
LcfORds.

• Create Query. On receiving this query for a user a from F , the simulator S runs NS.keygen(Y, a)→(pka,
ska) where pka=Ba ∈ Zn×mq and ska=TBa ∈ Zm×mq by calling the algorithm TrapGen(n, m, q)→ (Ba,
TBa). The simulator S sends the public key pka to F and stores the public-secret key pair (pka, ska)
in its private list Lcreate.

• Corrupt Query. On receiving the query on a user a from F , the simulator S checks whether (pka =
Ba, ska = TBa) ∈ Lcreate. If not, S returns ⊥. Otherwise, S sends ska to F and stores pka in the list
Lcorrupt.

• Hash query. If the answer to the received tuple x = (M,Au,Bv) has already made, the simulator
returns the same value stored in Lhash. For k-th H1 query, the simulator responds as H1(x) = y∗ =
Bne∗ · d mod q and stores (x, H1(x),d) in the list Lsuccess. Otherwise, the simulator S honestly
generates as in the real protocol. The simulator finally sends (x, H1(x)) to the forger F and stores
(x, H1(x)) in the list Lhash and (x, H1(x),d) in the list Lsuccess.

• PRF query. To respond pseudorandom queries, S maintains a list PRFlist for the collision resistant
pseudorandom function f . On receiving a query (r1,v) ∈ Zmq × Zmq from F , the simulator S checks
whether ((r1,v),y1) ∈ PRFlist and returns y1 to F if so. Otherwise, S computes y1 = f(r1,v) ∈ Znq
honestly similar to that in the real protocol, passes y1 ∈ Znq to the forger F and stores ((r1,v),y1) in
PRFlist. Distributions of PRF queries are exactly same as that in the original protocol.

• SignNE Query. In response to the tuple (v, u, M) by F , the challenger S checks whether (pku =
Au, sku = TAu

), (pkv = Bv, skv = TBv) ∈ Lcreate. If not, S returns ⊥. Otherwise, S returns the
signature SigM,v,u = (M,v,y1,ΠRf)← NS.neSign(Y, skv, pkv, pku, M) to D and stores (SigM,v,u,
statev) in the list LsignNE where statene contains tuple of the form (r1,v,M, v).

• SignNR Query. In response to this query on SigM,v,u from F , the challenger S, returns the nominative
signature nsigM,v,u ← NS.nrSign(Y, sku, pku, pkv, M , SigM,v,u) to F and stores (SigM,v,u, nsigM,v,u)
in the list LsignNR.

• cfORds Query. The challenger S responses on receiving this query on nsigM,v,u from F by checking
if (SigM,v,u, nsigM,v,u) ∈ LsignNR. If not, S aborts. Otherwise, S extracts statev from (SigM,v,u,
statev) ∈ LSignNE and returns (µ,ΠR) ← NS.cfORds.neTM(Y, statev, pkv, pku, M , nsigM,v,u) to F .
The challenger F stores (nsigM,v,u, µ, ΠR) in the list LcfORds.

3. At any point of the game, F submits a challenge tuple (M , ne, nr) where M is a message to be signed
with ne as the nominee and nr as the nominator such that pkne ∈ Lcreate and pknr ∈ Lcorrupt.

Meenakshi Kansal, Ratna Dutta, Sourav Mukhopadhyay 20

4. The challenger chooses a random bit b ∈ {0, 1}. If b = 1, the challenger S generates SigM∗,ne,nr ←
NS.neSign(Y, skne, pkne, pknr, M

∗), nsigM∗,ne,nr ← NS.nrSign(Y, sknr, pknr, pkne, M
∗, SigM∗,ne,nr) and

sets Kb = nsigM∗,ne,nr. If the bit b = 0 then S finds z ∈ Zmq satisfying Anr · z = w mod q and returns
the nominative signature nsigM,ne,nr = (z,d,w).

5. The distinguisher F observes Kb, outputs a guess b′ and wins the game if b′ = b and pkne /∈ Lcorrupt.

Note that one of the verification steps of nsigM,ne,nr = (z,d,w) is to check whether Anr · z = f(r1,d) mod q
which in turn checks whether w = f(r1,d) for some r1 ∈ Zmq . Thus the simulator S will correctly solve the
given problem-I whenever F correctly solves the invisibility challenge.

Theorem 9. Our nominative signature scheme NS={setup, keygen, neSign, nrSign, verify, cfORds =(neTM,
vrTM)} described in Section 4 is secure under non-repudiation if no PPT cheating nominee has a non
negligible advantage in game 4 assuming the completeness and soundness properties of the zero knowledge
proof system ZKB++.

Proof. Let F be the cheating nominee and S be the challenger as given in the game experiment 4.

1. The simulator S runs NS.setup(λ)→ Y =(n, q, m, σ, β, H, f).

2. The simulator responds to the distinguisher F on queries Create, CorruptNR, Hash, PRF, SignNE,
SignNR, cfORds exactly same as in the proof of Theorem 8.

3. The cheating nominee prepares the tuple (M∗, nsigM∗,ne,nr, γ = 1 − µ) where ne is any nominee with
pkne ∈ Lcorrupt, nr is a nominator such that (pknr, sknr)∈ Lcreate, nsigM∗,ne,nr is a signature on M∗ and
(nsigM∗,ne,nr, µ,ΠR) ∈ LcfORds where ΠR is a zero knowledge proof for the relation R and µ is a bit.
Recall that µ = 1 if NS.verify(Y, statene, pkne, pknr, M , nsig∗M∗,ne,nr)→ valid; otherwise µ = 0.

4. If µ = 1, the cheating nominee executes the disavowal proof. The probability that the verifier accepts
the proof is ε ∈ [0, 1

2) by the completeness property of the zero knowledge proof ΠR. Here R is a
relation R =

{
public(Anr,Bne,v, z,M,Y), private (r1) | Bne ·v = H(M,Anr,Bne),Anr · z = f(r1,v)

}
.

If µ = 0 then the cheating nominee executes the confirmation proof. The probability that the veifier accepts
the proof is ε ∈ [0, 1

2) by the soundeness property of the zero knowledge proof ΠR.

5 Conclusion

In summary, the goal of this work is the construction of a nominative signature scheme secure against quan-
tum adversary. Our construction provides unforgeability, invisibility, impersonation and non-repudiation.
The scheme is secure under non-repudiation in the quantum random oracle model. The proposed construc-
tion is computationally efficient as lattice computations (addition and multiplication of vectors) are very
efficient as compared to exponentiation and bilinear pairing.

References

[1] Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of the twenty-eighth annual
ACM symposium on Theory of computing. pp. 99–108. ACM (1996)

[2] Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C., Slamanig, D., Za-
verucha, G.: Post-quantum zero-knowledge and signatures from symmetric-key primitives. In: Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. pp. 1825–1842.
ACM (2017)

[3] Chaum, D.: Designated confirmer signatures. In: Workshop on the Theory and Application of of
Cryptographic Techniques. pp. 86–91. Springer (1994)

Efficient Construction of Nominative Signature 21

[4] Chaum, D., Van Antwerpen, H.: Undeniable signatures. In: Conference on the Theory and Application
of Cryptology. pp. 212–216. Springer (1989)

[5] Cramer, R., Damg̊ard, I., MacKenzie, P.: Efficient zero-knowledge proofs of knowledge without in-
tractability assumptions. In: International Workshop on Public Key Cryptography. pp. 354–372.
Springer (2000)

[6] Dennis, Y., CHANG, S., et al.: A more efficient convertible nominative signature. In: SECRYPT
2007-International Conference on Security and Cryptography (2007)

[7] Derler, D., Ramacher, S., Slamanig, D.: Post-quantum zero-knowledge proofs for accumulators with
applications to ring signatures from symmetric-key primitives. In: International Conference on Post-
Quantum Cryptography. pp. 419–440. Springer (2018)

[8] Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In: Proceedings of the
twenty-second annual ACM symposium on Theory of computing. pp. 416–426. Citeseer (1990)

[9] Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems.
In: Conference on the Theory and Application of Cryptographic Techniques. pp. 186–194. Springer
(1986)

[10] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic con-
structions. In: Proceedings of the fortieth annual ACM symposium on Theory of computing. pp. 197–
206. ACM (2008)

[11] Guo, L., Wang, G., Wong, D.S.: Further discussions on the security of a nominative signature scheme
(2007)

[12] Huang, Q., Liu, D.Y., Wong, D.S.: An efficient one-move nominative signature scheme. International
Journal of Applied Cryptography 1(2), 133–143 (2008)

[13] Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their applications. In: Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques. pp. 143–154. Springer
(1996)

[14] Kansal, M., Dutta, R., Mukhopadhyay, S.: Construction for a nominative signature scheme from lattice
with enhanced security. In: International Conference on Codes, Cryptology, and Information Security.
pp. 72–91. Springer (2019)

[15] Kim, S.J., Park, S.J., Won, D.H.: Nominative signatures. In: ICEIC: International Conference on
Electronics, Informations and Communications. pp. 68–71 (1995)

[16] Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes with efficient protocols
and dynamic group signatures from lattice assumptions. In: Advances in Cryptology–ASIACRYPT
2016: 22nd International Conference on the Theory and Application of Cryptology and Information
Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part II 22. pp. 373–403. Springer (2016)

[17] Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-based accumula-
tors: logarithmic-size ring signatures and group signatures without trapdoors. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques. pp. 1–31. Springer (2016)

[18] Liu, D.Y., Wong, D.S., Huang, X., Wang, G., Huang, Q., Mu, Y., Susilo, W.: Formal definition and
construction of nominative signature. In: International Conference on Information and Communications
Security. pp. 57–68. Springer (2007)

[19] Luby, M., Rackoff, C.: How to construct pseudo-random permutations from pseudo-random functions.
In: Advances in Cryptology–CRYPTO. vol. 85, p. 447 (1985)

[20] Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: Definitions, implications, and sepa-
rations for preimage resistance, second-preimage resistance, and collision resistance. In: International
workshop on fast software encryption. pp. 371–388. Springer (2004)

Meenakshi Kansal, Ratna Dutta, Sourav Mukhopadhyay 22

[21] Schuldt, J.C., Hanaoka, G.: Non-transferable user certification secure against authority information
leaks and impersonation attacks. In: International Conference on Applied Cryptography and Network
Security. pp. 413–430. Springer (2011)

[22] Steinfeld, R., Bull, L., Wang, H., Pieprzyk, J.: Universal designated-verifier signatures. In: Interna-
tional Conference on the Theory and Application of Cryptology and Information Security. pp. 523–542.
Springer (2003)

[23] Susilo, W., Mu, Y.: On the security of nominative signatures. In: Australasian Conference on Informa-
tion Security and Privacy. pp. 329–335. Springer (2005)

[24] Unruh, D.: Quantum proofs of knowledge. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. pp. 135–152. Springer (2012)

[25] Wang, G., Bao, F.: Security remarks on a convertible nominative signature scheme. In: IFIP Interna-
tional Information Security Conference. pp. 265–275. Springer (2007)

[26] Yuval, G.: How to swindle rabin. Cryptologia 3(3), 187–191 (1979)

[27] Zhao, W., Ye, D.: Pairing-based nominative signatures with selective and universal convertibility. In:
International Conference on Information Security and Cryptology. pp. 60–74. Springer (2009)

	Introduction
	Preliminaries
	Lattice Problems
	ZKB++ chase2017post
	Unruh Transform unruh2012quantum

	Nominative Signature- Syntax and Security
	Our Nominative Signature Scheme
	Security Proofs

	Conclusion

