
Permuted Puzzles and Cryptographic Hardness
Elette Boyle
IDC Herzliya

Justin Holmgren
Princeton University

Mor Weiss
IDC Herzliya

Abstract
A permuted puzzle problem is defined by a pair of distributions 𝒟0, 𝒟1 over Σ𝑛. The problem is

to distinguish samples from 𝒟0, 𝒟1, where the symbols of each sample are permuted by a single secret
permutation 𝜋 of [𝑛].

The conjectured hardness of specific instances of permuted puzzle problems was recently used to
obtain the first candidate constructions of Doubly Efficient Private Information Retrieval (DE-PIR)
(Boyle et al. & Canetti et al., TCC’17). Roughly, in these works the distributions 𝒟0, 𝒟1 over F𝑛 are
evaluations of either a moderately low-degree polynomial or a random function. This new conjecture
seems to be quite powerful, and is the foundation for the first DE-PIR candidates, almost two decades
after the question was first posed by Beimel et al. (CRYPTO’00). While permuted puzzles are a natural
and general class of problems, their hardness is still poorly understood.

We initiate a formal investigation of the cryptographic hardness of permuted puzzle problems. Our
contributions lie in three main directions:

∙ Rigorous formalization. We formalize a notion of permuted puzzle distinguishing problems,
extending and generalizing the proposed permuted puzzle framework of Boyle et al. (TCC’17).

∙ Identifying hard permuted puzzles. We identify natural examples in which a one-time per-
mutation provably creates cryptographic hardness, based on “standard” assumptions. In these
examples, the original distributions 𝒟0, 𝒟1 are easily distinguishable, but the permuted puzzle dis-
tinguishing problem is computationally hard. We provide such constructions in the random oracle
model, and in the plain model under the Decisional Diffie-Hellman (DDH) assumption. We ad-
ditionally observe that the Learning Parity with Noise (LPN) assumption itself can be cast as a
permuted puzzle.

∙ Partial lower bound for the DE-PIR problem. We make progress towards better understand-
ing the permuted puzzles underlying the DE-PIR constructions, by showing that a toy version of
the problem, introduced by Boyle et al. (TCC’17), withstands a rich class of attacks, namely those
that distinguish solely via statistical queries.

1

Contents
1 Introduction 3

1.1 Our Results . 4
1.2 Other Instances of Hardness from Random Permutations . 5
1.3 Techniques . 5

1.3.1 Defining Permuted Puzzles . 6
1.3.2 Hard Permuted Puzzle in the Random Oracle (RO) Model 6
1.3.3 Hard Permuted Puzzles in the Plain Model . 7
1.3.4 Statistical-Query Lower Bound . 8
1.3.5 Open Problems and Future Research Directions . 9

2 Preliminaries 10

3 Distinguishing Problems and Permuted Puzzles 10
3.1 String-Distinguishing Problems . 10
3.2 Distinguishing Games and Hardness . 11
3.3 Permuted Puzzles and a Related Indistinguishability Notion 12

4 Hard Permuted Puzzles in the Random Oracle Model 17

5 Hard Permuted Puzzles in the Plain Model 23
5.1 Permuted Puzzles and the Learning Parity With Noise (LPN) Assumption 23
5.2 Permuted Puzzles Based on DDH . 24

6 Statistical Query Lower Bound 29
6.1 Statistical Query Algorithms . 29
6.2 The Toy Problem and Lower Bound . 30

A Useful Lemmas 36

2

1 Introduction
Computational hardness assumptions are the foundation of modern cryptography. The approach of building
cryptographic systems whose security follows from well-defined computational assumptions has enabled us to
obtain fantastical primitives and functionality, pushing far beyond the limitations of information theoretic
security. But, in turn, the resulting systems are only as secure as the computational assumptions lying
beneath them. As cryptographic constructions increasingly evolve toward usable systems, gaining a deeper
understanding of the true hardness of these problems—and the relationship between assumptions—is an
important task.

To date, a relatively select cluster of structured problems have withstood the test of time (and intense
scrutiny), to the point that assuming their hardness is now broadly accepted as “standard.” These problems
include flavors of factoring [RSA78, Rab79] and computing discrete logarithms [DH76], as well as certain
computational tasks in high-dimensional lattices and learning theory [GKL88, BFKL93, Ajt96, BKW00,
Ale03, Reg05]. A central goal in the foundational study of cryptography is constructing cryptographic
schemes whose security provably follows from these (or weaker) assumptions.

In some cases, however, it may be beneficial – even necessary – to introduce and study new assump-
tions (indeed, every assumption that is “standard” today was at some point freshly conceived). There
are several important cryptographic primitives (notable examples include indistinguishability obfuscation
(IO) [BGI+01, GGH+13] and SNARKs [BCC+17]) that we do not currently know how to construct based
on standard assumptions. Past experience has shown that acheiving new functionalities from novel assump-
tions, especially falsifiable assumptions [Nao03, GW11, GK16], can be a stepping stone towards attain-
ing the same functionality from standard assumptions. This was the case for fully homomorphic encryp-
tion [RAD78, Gen09, BV11], as well as many recent primitives that were first built from IO and later (follow-
ing a long line of works) based on more conservative assumptions (notably, non-interactive zero-knowledge
protocols for NP based on LWE [KRR17, CCRR18, HL18, CCH+19, PS19], and the cryptographic hardness
of finding a Nash equilibrium based on the security of the Fiat-Shamir heuristic [BPR15, HY17, CHK+19]).
Finally, cryptographic primitives that can be based on diverse assumptions are less likely to “go extinct” in
the event of a devastating new algorithmic discovery.

Of course, new assumptions should be introduced with care. We should strive to extract some intuitive
reasoning justifying them, and some evidence for their hardness. A natural approach is to analyze the
connection between the new assumption and known (standard) assumptions, with the ultimate goal of
showing that the new assumption is, in fact, implied by a standard assumption. However, coming up with
such a reduction usually requires deep understanding of the new assumption, which can only be obtained
through a systematic study of it.

DE-PIR and permuted polynomials. A recent example is the new computational assumption underly-
ing the construction of Doubly Efficient Private Information Retrieval (DE-PIR) [BIPW17, CHR17], related
to pseudorandomness of permuted low-degree curves.

Private Information Retrieval (PIR) [CGKS95, KO97] schemes are protocols that enable a client to
access entries of a database stored on a remote server (or multiple servers), while hiding from the server(s)
which items are retrieved. If no preprocessing of the database takes place, the security guarantee inherently
requires the server-side computation to be linear in the size of the database for each incoming query [BIM00].
Database preprocessing was shown to yield computational savings in the multi-server setting [BIM00], but
the goal of single-server PIR protocols with sublinear-time computation was a longstanding open question,
with no negative results or (even heuristic) candidate solutions. Such a primitive is sometimes referred to as
Doubly Efficient (DE) PIR.1

Recently, two independent works [BIPW17, CHR17] provided the first candidate constructions of single-
server DE-PIR schemes, based on a new conjecture regarding the hardness of distinguishing permuted local-
decoding queries (for a Reed-Muller code [Ree54, Mul54] with suitable parameters) from a uniformly random
set of points. Specifically, although given the queries {𝑧1, . . . , 𝑧𝑘} ⊆ [𝑁] of the local decoder it is possible to

1Namely, computationally efficient for both client and server.

3

guess (with a non-trivial advantage) the index 𝑖 which is being locally decoded, the conjectures of [BIPW17,
CHR17] very roughly assert that adding a secret permutation can computationally hide 𝑖. More precisely, if
an adversary instead sees (many) samples of sets of permuted queries {𝜋(𝑧1), . . . , 𝜋(𝑧𝑘)}, where 𝜋 : [𝑁]→ [𝑁]
is a secret fixed permutation (the same for all samples), then the adversary cannot distinguish these from
independent uniformly random size-𝑘 subsets of [𝑁].

This new assumption (which we will refer to as PermRM, see Conjecture 1 in Section 6.2) allowed for
exciting progress forward in the DE-PIR domain. But what do we really know about its soundness? Al-
though [BIPW17, CHR17] provide some discussion and cryptanalysis of the assumption, our understanding
of it is still far from satisfactory.

Permuted puzzles. The PermRM assumption can be cast as a special case in a broader family of hardness
assumptions: as observed in [BIPW17], it can be thought of as an example of an instance where a secret
random permutation seems to make an (easy) “distinguishing problem” hard, namely the permutation is the
only sources of computational hardness. It should be intuitively clear that such permutations may indeed
create hardness. For example, while one can easily distinguish a picture of a cat from that of a dog, this
task becomes much more challenging when the pixels are permuted. There are also other instances in
which random secret permutations were used to introduce hardness (see Section 1.2 below). Therefore, using
permutations as a source of cryptographic hardness seems to be a promising direction for research, and raises
the following natural question:

Under which circumstances can a secret random permutation be a source of cryptographic hard-
ness?

1.1 Our Results
We initiate a formal investigation of the cryptographic hardness of permuted puzzle problems. More
concretely, our contributions can be summarized within the following three directions.

Rigorous formalization. We formalize a notion of permuted puzzle distinguishing problems, which extends
and generalizes the proposed framework of [BIPW17]. Roughly, a permuted puzzle distinguishing problem
is associated with a pair of distributions 𝒟0,𝒟1 over strings in Σ𝑛, together with a random permutation
𝜋 over [𝑛]. The permuted puzzle consists of the distributions 𝒟0,𝜋,𝒟1,𝜋 which are defined by sampling a
string 𝑠 according to 𝒟0,𝒟1 (respectively), and permuting the entries of 𝑠 according to 𝜋. A permuted
puzzle is computationally hard if no efficient adversary can distinguish between a sample from 𝒟0,𝜋 or 𝒟1,𝜋,
even given arbitrarily many samples of its choice from either of the distributions. We also briefly explore
related hardness notions, showing that a weaker and simpler variant (which is similar to the one considered
in [BIPW17]) is implied by our notion of hardness, and that in some useful cases the weaker hardness notion
implies our hardness notion. Our motivation for studying the stronger (and perhaps less natural) hardness
notion is that the weaker variant is insufficient for the DE-PIR application.

Identifying Hard Permuted Puzzles. We identify natural examples in which a one-time permuta-
tion provably introduces cryptographic hardness, based on standard assumptions. In these examples, the
distributions 𝒟0,𝒟1 are efficiently distinguishable, but the permuted puzzle distinguishing problem is com-
putationally hard. We provide such constructions in the random oracle model, and in the plain model under
the Decisional Diffie-Hellman (DDH) assumption [DH76]. We additionally observe that the Learning Parity
with Noise (LPN) assumption [BKW00, Ale03] itself can be cast as a permuted puzzle. This is formalized in
the following theorem (see Proposition 4.3, Proposition 5.12, and Proposition 5.5 for the formal statements).

Informal Theorem 1.1 (Hard Permuted Puzzles). There exists a computationally-hard permuted puzzle
distinguishing problem:

∙ In the random oracle model.

4

∙ If the DDH assumption holds.

∙ If the LPN assumption holds.

Statistical Query Lower Bound for DE-PIR Toy Problem. We make progress towards better under-
standing the PermRM assumption underlying the DE-PIR constructions of [BIPW17, CHR17]. Specifically,
we show that a toy version of the problem, which was introduced in [BIPW17], provably withstands a rich
class of learning algorithms known as Statistical Query (SQ) algorithms.

Roughly, the toy problem is to distinguish randomly permuted graphs of random univariate polynomials
of relatively low degree from randomly permuted graphs of random functions. More formally, for a function
𝑓 : 𝑋 → 𝑌 , we define its 2-dimensional graph Graph(𝑓) : 𝑋 × 𝑌 → {0, 1} where Graph(𝑓)(𝑥, 𝑦) = 1 ⇔ 𝑦 =
𝑓(𝑥). For a security parameter 𝜆 and a field F, the distributions 𝒟0,𝒟1 in the toy problem are over {0, 1}𝑛

for 𝑛 = |F|2, and output a sample Graph(𝛾) where 𝛾 : F→ F is a uniformly random degree-𝜆 polynomial in
𝒟0, and a uniformly random function in 𝒟1.

We analyze the security of the toy problem against SQ learning algorithms. Our motivation for focusing
on learning algorithms in general is that permuted puzzles are a special example of a learning task. Indeed,
the adversary’s goal is to classify a challenge sample, given many labeled samples. Thus, it is natural to
explore approaches from learning theory as potential solvers for (equivalently, attacks on) the permuted
puzzle. Roughly speaking, most known learning algorithms can be categorized within two broad categories.
The first category leverages linearity, by identifying correlations with subspaces and using algorithms based
on Gaussian elimination to identify these. The second category, which is our focus in this work, is SQ
algorithms. Informally, an SQ algorithm obtains no labeled samples. Instead, it can make statistical queries
that are defined by a boolean-valued function 𝑓 , and the algorithm then obtains the outcome of applying 𝑓
to a random sample. A statistical query algorithm is an SQ algorithm that makes polynomially many such
queries. We show that the toy problem is hard for SQ algorithms (see Theorem 6.3):

Informal Theorem 1.2. The BIPW toy problem is hard for statistical query algorithms.

We contrast this statistical-query lower bound with the bounded-query statistical indistinguishability
lower bound of [CHR17]. That result showed that there is some fixed polynomial 𝐵 such that no adversary
can distinguish 𝐵 DE-PIR queries from random, even if computationally unbounded. In contrast, our result
proves a lower bound for adversaries (also computationally unbounded), that have no a-priori polynomial
bound on the number of queries that they can make – in fact, they can make up to 2𝜖𝜆 queries where 𝜆 is
the security parameter and 𝜖 is a small positive constant. However, they are restricted in that they cannot
see the result of any individual query in its entirety; instead, adversaries can only see the result of applying
bounded (up to 𝜖𝜆-bit) output functions separately to each query.

1.2 Other Instances of Hardness from Random Permutations
There are other instances in which random secret permutations were used to obtain computational hardness.
The Permuted Kernel Problem (PKP) is an example in the context of a search problem. Roughly, the
input in PKP consists of a matrix 𝐴 ∈ Z𝑚×𝑛

𝑝 and a vector �⃗� ∈ Z𝑛
𝑝 , where 𝑝 is a large prime. A solution

is a permutation 𝜋 on [𝑛] such that the vector �⃗�′ obtained by applying 𝜋 to the entries of �⃗� is in the
kernel of 𝐴. PKP is known to be NP-complete in the worst-case [GJ02], and conjectured to be hard on
average [Sha89], for sufficiently large 𝑛−𝑚 and 𝑝. It is the underlying assumption in Shamir’s identification
scheme [Sha89], and has lately seen renewed interest due to its applicability to post-quantum cryptography
(e.g., [LP12, FKM+18, KMP19]). Despite being studied for 3 decades, the best known algorithms to date
run in exponential time; see [KMP19] and the references therein.

1.3 Techniques
We now proceed to discuss our results and techniques in greater detail.

5

1.3.1 Defining Permuted Puzzles

We generalize and extend the intuitive puzzle framework proposed in [BIPW17], by formally defining the
notions of (permuted) puzzle distinguishing problems.

We formalize a puzzle distinguishing problem as a pair of distributions 𝒟0,𝒟1 over Σ𝑛, for some alphabet
Σ and some input length 𝑛. Very roughly, hardness of a puzzle distinguishing problem means one cannot
distinguish a single sample from 𝒟0 or 𝒟1, even given oracle access to 𝒟0 and 𝒟1. We say that a puzzle
problem is (𝑠, 𝜖)-hard if any size-𝑠 adversary distinguishes 𝒟0 from 𝒟1 with advantage at most 𝜖. This
concrete hardness notion naturally extends to computational hardness of an ensemble of puzzles, in which
case we allow the distributions to be keyed (by both public and secret key information) and require that
they be efficiently sampleable given the key.

With this notion of puzzle distinguishing problems, we turn to defining a permuted puzzle which, in-
formally, is obtained by sampling a random permutation 𝜋 once and for all as part of the secret key, and
permutating all samples according to 𝜋. Hardness of a permuted puzzle is defined identically to hardness of
(standard) puzzle distinguishing problems.

We also consider a simpler hardness definition, in which the adversary is given oracle access only to a
randomly selected 𝒟𝑏 (but not to 𝒟1−𝑏), and attempts to guess 𝑏. We say that a puzzle distinguishing
problem is weak computationally hard if every adversary of polynomial size obtains a negligible advantage
in this modified distinguishing game. Weak computational hardness captures the security notion consid-
ered in [BIPW17], but is too weak for certain applications, as it allows for trivial permuted puzzles, e.g.,
𝒟0 =

{︀
0𝑛/21𝑛/2}︀ ,𝒟1 =

{︀
1𝑛/20𝑛/2}︀. More generally, and as discussed in Remark 3.10 (Section 3), weak

computational hardness is generally weaker than the definition discussed above (which is more in line with
the DE-PIR application). Concretely, we show that the definition discussed above implies the weaker def-
inition, and that in certain cases (e.g., when 𝒟1 is the uniform distribution), the weaker definition implies
the stronger one. This last observation will be particularly useful in proving security of our permuted puzzle
constructions.

1.3.2 Hard Permuted Puzzle in the Random Oracle (RO) Model

Our first permuted puzzle is in the random oracle model. Recall that a permuted puzzle is defined as the
permuted version of a puzzle distinguishing problem. For our RO-based permuted puzzle, the underlying
puzzle distinguishing problem is defined as follows. There is no key, but both the sampling algorithm and the
adversary have access to the random oracle 𝐻. The sampling algorithm samples a uniformly random input
𝑥0 for 𝐻, and uniformly random seeds 𝑠1, . . . , 𝑠𝑛, where 𝑛 = 𝜆, and computes 𝑥𝑛 sequentially as follows. For
every 1 ≤ 𝑖 ≤ 𝑛, 𝑥𝑖

def= 𝐻 (𝑠𝑖, 𝑥𝑖−1). The sample is then (𝑥0, 𝑥′𝑛, 𝑠1, . . . , 𝑠𝑛) where 𝑥′𝑛
def= 𝑥𝑛 in 𝒟0, and 𝑥′𝑛

is uniformly random in 𝒟1. Notice that in this (unpermuted) puzzle distinguishing problem one can easily
distinguish samples from 𝒟0 and 𝒟1, by sequentially applying the oracle to 𝑥0 and the seeds, and checking
whether the output is 𝑥′𝑛. This will hold with probability 1 for samples from 𝒟0, and only with negligible
probability for samples from 𝒟1 (assuming 𝐻 has sufficiently long outputs). The corresponding permuted
puzzle is obtained by applying a fixed random permutation 𝜋* to the seeds (𝑠1, . . . , 𝑠𝑛).2

Hardness of the Permuted Puzzle. We focus on a simpler case in which the adversary receives only
the challenge sample (and does not request any additional samples from its challenger). This will allow us
to present the main ideas of the analysis, and (as we show in Section 4), the argument easily extends to the
general case.

At a very high level, we show that the hardness of the permuted puzzle stems from the fact that to
successfully guess 𝑏, the adversary has to guess the underlying random permutation 𝜋*, even though it has

2We note that syntactically, this is not a permuted puzzle since the permutation should be applied to the entire sample.
However, this simplified view of the permuted puzzle captures the fact that in our construction, the permutation essentially
operates only over the seeds. In the actual construction, this is achieved by tagging the different parts of the sample (with
either “input”, “output”, or “seed”) such that any permutation over the entire sample uniquely determines a permutation over
the seeds; see Section 4.

6

oracle access to 𝐻.
We first introduce some terminology. For a random oracle 𝐻, input 𝑥0 and seeds 𝑠′1, . . . , 𝑠′𝑛, each per-

mutation 𝜋 over the seeds uniquely defines a corresponding “output” 𝑥𝜋
𝑛 through a length-(𝑛 + 1) “path” P𝜋

defined as follows. Let 𝑥𝜋
0

def= 𝑥0, and for every 1 ≤ 𝑖 ≤ 𝑛, let 𝑠′′𝑖
def= 𝑠′𝜋−1(𝑖) and 𝑥𝜋

𝑖
def= 𝐻

(︀
𝑠′′𝑖 , 𝑥𝜋

𝑖−1
)︀
. Then the

label of the 𝑖’th node on the path P𝜋 is 𝑥𝜋
𝑖 . We say that a node 𝑣 with label 𝑥 on some path P𝜋 is reachable

if 𝑥 was the oracle answer to one of the adversary’s queries in the distinguishing game. We note that when
𝑠′𝑖 = 𝑠𝜋*(𝑖), i.e., the seeds are permuted with the permutation used in the permuted puzzle, then 𝑥𝜋*

𝑖 = 𝑥𝑖

for every 1 ≤ 𝑖 ≤ 𝑛. We call P𝜋* the special path.
We will show that with overwhelming probability, unless the adversary queries 𝐻 on all the 𝑥𝑖’s on the

special path (i.e., on 𝑥𝜋*

0 , 𝑥𝜋*

1 , . . . , 𝑥𝜋*

𝑛 = 𝑥𝑛), then he obtains only a negligible advantage in guessing 𝑏.
Hardness of the permuted puzzle then follows because there are 𝑛! possible paths, and the adversary has a
negligible chance of guessing the special path (because 𝜋* is a secret random permutation).

We would first like to prove that all node labels, over all paths P𝜋, are unique. This, however, is clearly
false, because the paths are not disjoint: for example, the label of node 0 in all of them is 𝑥0. More generally,
if 𝜋 ̸= 𝜋′ have the same length-𝑘 prefix for some 0 ≤ 𝑘 < 𝜆, then for every 0 ≤ 𝑖 ≤ 𝑘, the 𝑖’th nodes on
P𝜋, P𝜋′ have the same label. In this case, we say that the 𝑖’th nodes correspond to the same node. Let
Unique denote the event that across all paths there do not exist two nodes that (1) do not correspond to the
same node, but (2) have the same label. Our first observation is that Unique happens with overwhelming
probability. Indeed, this holds when 𝐻’s output is sufficiently large (e.g., of the order of 3𝜆 · log 𝜆), because
there are only 𝜆 · 𝜆! different nodes (so the number of pairs is roughly of the order of 22𝜆·log 𝜆).

Let ℰ denote the event that the adversary queries 𝐻 on the label of an unreachable node, and let
ReachQ = ℰ̄ denote its complement. Our next observation is that conditioned on Unique, ReachQ happens
with overwhelming probability. Indeed, conditioned on Unique, the label of an unreachable node is uniformly
random, even given the entire adversarial view (including previous oracle answers). Thus, querying 𝐻 on an
unreachable node corresponds to guessing the random node label. When 𝐻’s output length is sufficiently
large (on the order of 3𝜆 · log 𝜆 as discussed above) this happens only with negligible probability.

Consequently, it suffices to analyze the adversarial advantage in the distinguishing game conditioned on
Unique ∧ ReachQ. Notice that in this case, the only potential difference between the adversarial views when
𝑏 = 0 and when 𝑏 = 1 is in the label of the endpoint 𝑣end of the special path P𝜋* , which is 𝑥′𝑛 when 𝑏 = 0,
and independent of 𝑥′𝑛 when 𝑏 = 1. Indeed, conditioned on Unique, the label of 𝑣end appears nowhere else
(i.e., is not the label of any other node on any path). Therefore, conditioned on ReachQ ∧ Unique, the label
of 𝑣end appears as one of the oracle answers only if 𝑣end is reachable, i.e., only if the adversary queried 𝐻 on
all the node labels on the special path.

1.3.3 Hard Permuted Puzzles in the Plain Model

Our second permuted puzzle is based on the Decisional Diffi-Helman (DDH) assumption. The underlying
puzzle distinguishing problem is defined over a multiplicative cyclic group 𝐺 of prime order 𝑝 with generator
𝑔. The public key consists of 𝐺, 𝑔 and a uniformly random vector �⃗� ←

(︀
Z*𝑝
)︀𝑛. A sample from 𝒟0,𝒟1 is of

the form (𝑔𝑥1 , . . . , 𝑔𝑥𝑛), where in 𝒟0 (𝑥1, . . . , 𝑥𝑛) is chosen as a uniformly random vector that is orthogonal
to �⃗�, whereas in 𝒟1 (𝑥1, . . . , 𝑥𝑛) is uniformly random. As discussed below, in this (unpermuted) puzzle
distinguishing problem one can easily distinguish samples from 𝒟0 and 𝒟1. The corresponding permuted
puzzle is obtained by applying a fixed random permutation to the samples (𝑔𝑥1 , . . . , 𝑔𝑥𝑛).

Why are both DDH and a permutation needed? The computational hardness of the permuted
puzzles stems from the combination of the DDH assumption and the permutation, as we now explain. To
see why the DDH assumption is needed, notice that in 𝒟0, all sampled (𝑥1, . . . , 𝑥𝑛) belong to an (𝑛 − 1)-
dimensional subspace of Z𝑛

𝑝 , whereas in 𝒟1 this happens only with negligible probability, because each
sample is uniformly and independently sampled. Consider a simpler version in which 𝒟0,𝒟1 simply output
the vector (𝑥1, . . . , 𝑥𝑛). In this case, one can obtain an overwhelming distinguishing advantage by (efficiently)
checking whether all samples (𝑥1, . . . , 𝑥𝑛) lie within an (𝑛 − 1)-dimensional subspace, and if so guess that

7

the underlying distribution is 𝒟0. This “attack” can be executed even if the samples are permuted (as is the
case in a permuted puzzle), because applying a permutation to the (𝑥1, . . . , 𝑥𝑛) is a linear operation, and
therefore preserves the dimension of the subspace. Therefore, a permutation on its own is insufficient to get
computational hardness, and we need to rely on the DDH assumption.

To see why the permutation is needed, notice that even if the DDH assumption holds in 𝐺, given
(𝑔𝑥1 , . . . , 𝑔𝑥𝑛) one can efficiently test whether the underlying exponents (𝑥1, . . . , 𝑥𝑛) are orthogonal to a
known vector �⃗�, by only computing exponentiations and multiplications in 𝐺. Notice that for a sufficiently
large 𝑝, the exponents of a sample from 𝒟1 will be orthogonal to �⃗� only with negligible probability, so this
“attack” succeeds with overwhelming probability.

Hardness of the permuted puzzle. We now show that the combination of the DDH assumption, and
permuted samples, gives computational hardness. Notice that it suffices to prove that the permuted puzzle is
weak computationally hard, because 𝒟1 is random over 𝐺𝑛 (see Section 1.3.1). In this case, the adversarial
view V𝑏, 𝑏 ∈ {0, 1} consists of the public key (𝐺, 𝑔, �⃗�), and a polynomial number of permuted samples
of the form (𝑔𝑥1 , . . . , 𝑔𝑥𝑛) which were all sampled according to 𝒟𝑏 and permuted using the same random
permutation 𝜋.

Our first observation is that V𝑏 is computationally indistinguishable from the distribution ℋ𝑏 in which
the public key is (𝐺, 𝑔, 𝜋′ (�⃗�)) for 𝜋′

def= (𝜋)−1, and the samples from 𝒟𝑏 are unpermuted.
Our second observation is that the DDH assumption implies that ℋ𝑏 is computationally indistinguishable

from the distribution ℋ′𝑏 in which the (𝑥1, . . . , 𝑥𝑛) additionally lie in a random 1-dimensional subspace 𝐿𝑏,�⃗�.
That is, (𝑥1, . . . , 𝑥𝑛) are chosen at random from 𝐿𝑏,�⃗�, where in ℋ′0 �⃗� is random subject to �⃗� · �⃗� = 0, and in
ℋ′1 �⃗� is uniformly random. Specifically, we show that the problem of distinguishing between ℋ𝑏,ℋ′𝑏 can be
efficiently reduced to the task of distinguishing between a polynomial number of length-(𝑛 − 1) vectors of
the form (𝑔𝑦1 , . . . , 𝑔𝑦𝑛−1), where the (𝑦1, . . . , 𝑦𝑛−1) are all sampled from a random 1-dimensional subspace of
Z𝑛−1

𝑝 or all sampled from the full space Z𝑛−1
𝑝 . If the DDH assumption holds in 𝐺 then a polynomial-sized

adversary cannot efficiently distinguish between these distributions [BHHO08]. Consequently, it suffices to
show that ℋ′0,ℋ′1 are computationally close.

The final step is to show that ℋ′0,ℋ′1 are computationally (in fact, statistically) close. The only difference
between the two distributions is in the choice of �⃗� (which is orthogonal to �⃗� in ℋ′0, and random in ℋ′1),
where all other sampled values are either identical or deterministically determined by the choice of �⃗�. Notice
that in ℋ′1, (𝜋 (�⃗�) , �⃗�) is uniformly random in Z𝑛

𝑝 ×Z𝑛
𝑝 . Thus, to show that ℋ′0,ℋ′1 are statistically close and

conclude the proof, it suffices to prove that (𝜋 (�⃗�) , �⃗�) in ℋ′0 is statistically close to uniform over Z𝑛
𝑝 × Z𝑛

𝑝 .
Very roughly, this follows from the leftover hash lemma due to the following observations. First, 𝜋 (�⃗�) has
high min entropy even conditioned on �⃗� (because 𝜋 is random). Second, the family of inner product functions
with respect to a fixed vector (i.e., ℎ�⃗� (�⃗�′) = �⃗� · �⃗�′) is a pair-wise independent hash function.

Permuted Puzzles and the Learning Parity with Noise (LPN) Assumption. The argument used
in the DDH-based permuted puzzle can be generalized to other situations in which it is hard to distinguish
between the uniform distribution and a hidden permuted kernel (but easy to distinguish when the kernel is
not permuted). This more general view allows us to cast the LPN assumption as a permuted puzzle, see
Section 5.1.

1.3.4 Statistical-Query Lower Bound

We show that SQ algorithms that make polynomially many queries obtain only a negligible advantage in
distinguishing the distributions 𝒟0,𝒟1 in the toy problem presented in Section 1.1. Recall that a sample
in the toy problem is a permuted Graph(𝛾) where 𝛾 is either a uniformly random degree-𝜆 polynomial (in
𝒟0), or a uniformly random function (in 𝒟1), and that the SQ algorithm obtains the outputs of boolean-
valued functions 𝑓 of its choice on random samples. Very roughly, we will show that the outcome of 𝑓 on
(permutation of) a random sample 𝑥← 𝒟𝑏 is independent of the challenge bit 𝑏 and the permutation 𝜋.

8

Notice that every permutation 𝜋 over Graph(𝛾) defines a partition Φ def= {𝜋 ({𝑖} × F)}𝑖∈F of F× F, where
each set in the partition corresponds to a single 𝑥 value. We say that 𝜋 respects the partition Φ. Notice also
that each set contains a single non-0 entry (which is 𝜋 (𝑖, 𝛾(𝑖)), where 𝑖 is the value of 𝑥 that corresponds to
the set). Thus, an SQ algorithm can compute this partition, so we cannot hope to hide it. Instead, we show
indistinguishability even when the adversary is given the partition.

Our main observation is that for every partition Φ, and any boolean-valued function 𝑓 , there exists
𝑝𝑓,Φ ∈ [0, 1] such that for every 𝑏 ∈ {0, 1}, with overwhelming probability over the choice of random
permutation 𝜋 that respects the partition Φ, the expectation E𝑥←𝒟𝑏

[𝑓 (𝜋 (𝑥))] is very close to 𝑝𝑓,Φ, where
𝜋 (𝑥) denote that the entries of 𝑥 are permuted according to 𝜋. Crucially, 𝑝𝑓,Φ is independent of the challenge
bit 𝑏, any particular sample 𝑥, and the permutation (other than the partition).

We prove this observation in two steps. First, we show that in expectation over the choice of the permu-
tation, E𝑥←𝒟0 [𝑓 (𝜋 (𝑥))] and E𝑥←𝒟1 [𝑓 (𝜋 (𝑥))] have the same value. To see this, we write the expectations
over 𝑥 ← 𝒟𝑏 as a weighted sum

∑︀
𝑥 𝑃𝑏(𝑥)𝑓(𝜋(𝑥)), and apply linearity of the expectation over 𝜋. To show

that this is independent of 𝑏, we observe that for any fixed 𝑥, the distribution of 𝜋(𝑥) is the same (i.e. does
not depend on 𝑥).

Next, we show that for any distribution 𝒟, the variance (over the choice of the permutation 𝜋) of
E𝑥←𝒟𝑏

[𝑓 (𝜋 (𝑥))] is small. The variance is by definition the difference between

E
𝜋

[︀
E

𝑥←𝒟𝑏

[𝑓 (𝜋 (𝑥))]2
]︀

(1)

and
E
𝜋

[︀
E

𝑥←𝒟𝑏

[𝑓 (𝜋 (𝑥))]
]︀2

. (2)

We show that both Eq. (1) and Eq. (2) can be expressed as an expectation (over some distribution
of 𝑔, 𝑔′) of E𝜋

[︁(︀
𝑓(𝜋(Graph(𝑔))), 𝑓(𝜋(Graph(𝑔′)))

)︀]︁
. We observe that this depends only on the Hamming

distance between 𝑔 and 𝑔′. Finally, we observe that the distribution of (𝑔, 𝑔′) is uniform in Eq. (2) and two
independent samples from 𝒟𝑏 in Eq. (1). To complete the bound on the variance, we show that when 𝑔, 𝑔′

are sampled independently from 𝒟𝑏 (specifically, the interesting case is when they are sampled from 𝒟0),
then the distribution of the Hamming distance between 𝑔 and 𝑔′ is nearly the same as when 𝑔 and 𝑔′ are
independent uniformly random functions.

To prove this, we prove a lemma (Lemma A.4) stating that when 𝑡-wise independent random variables
(𝑋1, . . . , 𝑋𝑛) satisfy Pr[𝑋𝑖 ̸= ⋆𝑖] = 𝑝𝑖 for some values of ⋆𝑖 and 𝑝𝑖 such that

∑︀
𝑖∈[𝑛] 𝑝𝑖 ≤ 𝑡

4 ≥ 𝜔(log 𝜆),
then (𝑋1, . . . , 𝑋𝑛) are statistically negl(𝜆)-close to mutually independent. We apply this with 𝑋𝑖 being the
indicator random variable for the event that 𝑔(𝑖) ̸= 𝑔′(𝑖). This lemma quantitatively strengthens a lemma
of [CHR17].

1.3.5 Open Problems and Future Research Directions

The broad goal of basing DE-PIR on standard assumptions was a motivating starting point for this work,
in which we put forth the framework of permuted puzzles. In describing hard permuted puzzles, we take
a “bottom-up“ approach by describing such constructions based on standard cryptographic assumptions.
Since these permuted puzzles are still not known to imply DE-PIR, we try to close the gap between the
permuted puzzle on which DE-PIR security is based, and provably hard permuted puzzles, by taking a “top
down” approach, and analyzing the security of a toy version of the DE-PIR permuted puzzle, against a wide
class of possible attacks.

Our work still leaves open a fascinating array of questions, we discuss some of them below. First, it would
be very interesting to construct a hard permuted puzzle based only on the existence of one-way functions, as
well as to provide “public key” hard permuted puzzles, namely ones in which the key generation algorithm
needs no secret key, based on standard assumptions. In the context of DE-PIR and its related permuted
puzzle, it would be interesting to construct DE-PIR based on other (and more standard) assumptions, as
well as to analyze the security of its underlying permuted puzzle (and its toy version) against a wider class
of attacks.

9

2 Preliminaries
For a set 𝑋, we write 𝑥← 𝑋 to denote that 𝑥 is sampled uniformly at random from 𝑋. For a distribution
𝒟, we use Supp (𝒟) to denote its support. The min entropy of 𝒟 is H∞ (𝒟) def= min𝑥∈Supp(𝒟) log 1

Pr[𝑥] . For a
pair 𝑋, 𝑌 of random variables, we denote their statistical distance by 𝑑TV (𝑋, 𝑌). We use · to denote inner
product, i.e., for a pair �⃗� = (𝑥1, . . . , 𝑥𝑛) , �⃗� = (𝑦1, . . . , 𝑦𝑛) of vectors, �⃗� · �⃗� def=

∑︀𝑛
𝑖=1 𝑥𝑖𝑦𝑖. We use [𝑛] to denote

the set {1, . . . , 𝑛}, and 𝑆𝑛 to denote the group of permutations of [𝑛].

Notation 2.1 (Permutation of a vector). For a vector �⃗� = (𝑥1, . . . , 𝑥𝑛), and a permutation 𝜋 ∈ 𝑆𝑛, we
denote:

𝜋 (�⃗�) def=
(︀
𝑥𝜋−1(1), . . . , 𝑥𝜋−1(𝑛)

)︀
.

3 Distinguishing Problems and Permuted Puzzles
In this section, we formally define (permuted) puzzle problems which are, roughly, a (special case) of ensem-
bles of keyed “string-distinguishing” problems.

We begin in Section 3.1 by developing terminology for general string-distinguishing and puzzle problems.
In Section 3.2 we present the formal distinguishing challenge and define hardness. Then, in Section 3.3, we
discuss the case of permuted puzzles, and present an alternative indistinguishability notion that is equivalent
in certain cases.

3.1 String-Distinguishing Problems
At the core, we consider string-distinguishing problems, defined by a pair of distributions over 𝑛-element
strings. We begin by defining a finite instance.

Definition 3.1 (String-Distinguishing Problems). A string-distinguishing problem is a tuple Π =
(𝑛, Σ,𝒟0,𝒟1), where 𝑛 is a positive integer, Σ is a non-empty finite set, and each 𝒟𝑏 is a distribution
on Σ𝑛. We call 𝑛 the string length, and Σ the string alphabet.

More generally, an oracle-dependent string-distinguishing problem is a function Π(·) that maps an oracle
𝑂 : {0, 1}* → {0, 1} to a string-distinguishing problem Π𝑂.

For example, we will consider permuted puzzle string-distinguishing problems relative to a random oracle
in Section 4. Note that oracle-dependent string-distinguishing problems are strictly more general than
string-distinguishing problems, as the distributions can simply ignore the oracle.
Remark 3.2 (Oracle Outputs). In the above, we modeled the oracle as outputting a single bit for simplicity.
However, any (deterministic) oracle with multi-bit output can be emulated given a corresponding single-bit-
output oracle, at the cost of making more oracle queries.

We will be interested in distinguishing problems where the distributions 𝒟0 and 𝒟1 may depend on com-
mon sampled “key” information. Parts of this key may be publicly available, or hidden from a distinguishing
adversary (discussed in Definition 3.7); these parts are denoted pk, sk, respectively.

Definition 3.3 (Keyed Families). A keyed family of (oracle-dependent) string-distinguishing problems is a
tuple (𝒦, {Π𝑘}𝑘∈𝒦), where 𝒦 is a distribution on a non-empty finite set of pairs (pk, sk) and each Π𝑘 is an
(oracle-dependent) string-distinguishing problem. We refer to the support of 𝒦 as the key space, and also
denote it by 𝒦.

Note that any string-distinguishing problem can trivially be viewed as a keyed family by letting 𝒦 be a
singleton set.
Example 3.4 (Keyed Family: Dimension-𝑡 Subspaces). For a finite field F, and 𝑛 ∈ N, consider an example
keyed family of string-distinguishing problems (𝒦, {Π𝑘}𝑘∈𝒦) as follows:

10

∙ 𝒦 samples a random 𝑡 ← {1, . . . , 𝑛 − 1}, and a random subspace 𝐿 ⊆ F𝑛 of dimension 𝑡, sets pk = 𝑡
and sk = 𝐿, and outputs (pk, sk).

∙ For a key 𝑘 = (𝑡, 𝐿), the corresponding string-distinguishing problem is Π𝑘 = (𝑛,F,𝒟0,𝒟1) where 𝒟0
outputs a uniformly random �⃗� ∈ 𝐿, and 𝒟1 outputs a uniformly random �⃗� ∈ F𝑛.

Note that in this example, it will be computationally easy to distinguish between the distributions 𝒟0,𝒟1
given sufficiently many samples.

We next define a puzzle problem which, informally, is an efficiently sampleable ensemble of keyed families
of string-distinguishing problems.

Definition 3.5 (Puzzle problem). A puzzle problem is an ensemble {(𝒦𝜆, {Π(·)
𝑘 }𝑘∈𝒦𝜆

)}𝜆∈Z+ of keyed fami-
lies of (oracle-dependent) string-distinguishing problems associated with probabilistic polynomial-time algo-
rithms KeyGen and Samp such that:

∙ For any 𝜆 ∈ Z+, KeyGen(1𝜆) outputs a sample from 𝒦𝜆.

∙ For any 𝑘 ∈ 𝒦𝜆, any 𝑏 ∈ {0, 1}, and any oracle 𝑂 : {0, 1}* → {0, 1}, Samp𝑂(𝑘, 𝑏) outputs a sample
from 𝒟𝑏, where Π𝑂

𝑘 = (𝑛, Σ,𝒟0,𝒟1).

Remark 3.6 (Abbreviated terminology). Somewhat abusing notation, we will also refer to a single keyed
family of string-distinguishing problems as a puzzle problem.

3.2 Distinguishing Games and Hardness
We will focus on puzzle problems where it is computationally hard to distinguish between the pair of dis-
tributions. This notion of hardness is formalized through the following distinguishing game. Roughly, the
distinguishing adversary is given a challenge sample 𝑥 from a randomly selected 𝒟𝑏, and query access to
both distributions (denoted by choices 𝛽 below), and must identify from which 𝒟𝑏 the 𝑥 was sampled.

Definition 3.7 (Distinguishing Game). Let 𝒫 = (𝒦, {Π𝑘}𝑘∈𝒦) be a puzzle problem, and let 𝒪 be a distri-
bution of oracles. The distinguishing game 𝒢𝒪dist[𝒫] is run between an “adversary” 𝒜 and a fixed “challenger”
𝒞, and is defined as follows:

1. 𝒞 samples a key 𝑘 = (pk, sk) from 𝒦, and 𝑂 ← 𝒪, and denote Π𝑂
𝑘 = (𝑛, Σ,𝒟0,𝒟1). 𝒞 sends pk to 𝒜,

who is also given oracle access to 𝑂 throughout the game.

2. 𝒞 samples a random bit 𝑏← {0, 1}, samples 𝑥← 𝒟𝑏, and sends 𝑥 to 𝒜.

3. The following is repeated an arbitrary number of times: 𝒜 sends a bit 𝛽 to 𝒞, who samples 𝑥′ ← 𝒟𝛽

and sends 𝑥′ to 𝒜.

4. 𝒜 outputs a “guess” bit 𝑏′ ∈ {0, 1}.

𝒜 is said to win the game if 𝑏′ = 𝑏. 𝒜’s advantage is Adv𝒜(𝒢𝒪dist[𝒫]) def= 2 ·
⃒⃒
Pr[𝑏′ = 𝑏]− 1

2
⃒⃒
.

Informally, a permuted puzzle is computationally hard if any polynomial-time adversary wins the distin-
guishing game of Definition 3.7 with negligible advantage. We first formalize the notion of concrete hardness.

Definition 3.8 (Concrete Hardness). A puzzle problem 𝒫 = (𝒦, {Π𝑘}𝑘∈𝒦) is said to be (𝑠, 𝜖)-hard (with
respect to oracle distribution 𝒪) if in the game 𝒢𝒪dist[𝒫], all adversaries 𝒜 of size at most 𝑠 have advantage at
most 𝜖.

We say a puzzle problem
{︀

(𝒦𝜆, {Π(·)
𝑘 }𝑘∈𝒦𝜆

)
}︀

𝜆∈Z+ is
(︀
𝑠(·), 𝜖(·)

)︀
-hard (with respect to an ensemble {𝒪𝜆} of

oracle distributions) if each (𝒦𝜆, {Π(·)
𝑘 }𝑘∈𝒦𝜆

) is
(︀
𝑠(𝜆), 𝜖(𝜆)

)︀
-hard with respect to 𝒪𝜆.

11

Definition 3.9 (Asymptotic Hardness). As usual, we say simply that 𝒫 is (computationally) hard if for every
𝑠(𝜆) ≤ 𝜆𝑂(1), there exists 𝜖(𝜆) ≤ 𝜆−𝜔(1) such that for every 𝜆 ∈ Z+, 𝒫 is (𝑠(·), 𝜖(·))-hard.
𝒫 is statistically hard if for some 𝜖(𝜆) ≤ 𝜆−𝜔(1), 𝒫 is (∞, 𝜖(·))-hard against adversaries that are re-

stricted to making a polynomial number of queries to their oracle and challenger in the distinguishing game
of Definition 3.7.

Remark 3.10 (Discussion on Definition). A slightly simpler and more natural definition would be to give
the adversary access to (polynomially-many samples from) only a randomly selected 𝒟𝑏, where the adversary
must identify 𝑏.

For keyed puzzles, these definitions are in general not equivalent. Consider, for example, a modified
version of Example 3.4, where both 𝒟0 and 𝒟1 are defined by random dimension-𝑡 subspaces, 𝐿0 and 𝐿1.
Then over the choice of the key (including 𝐿0, 𝐿1), the distributions 𝒟0 and 𝒟1 on their own are identical:
that is, even an unbounded adversary with arbitrarily many queries would have 0 advantage in the simplified
challenge. However, given 𝑡 samples from both distributions, as in Definition 3.7, 𝒟0 and 𝒟1 are trivially
separated, and a sample 𝑥 can be correctly labeled with noticeable advantage. On the other hand, hardness
with respect to our definition implies hardness with respect to the simplified notion, by a hybrid argument
over the number of queries (see Lemma 3.13).

Since our motivation for studying puzzles come from applications where correlated samples from the
corresponding distributions can be revealed (e.g., correlated PIR queries on different indices 𝑖), we thus
maintain the more complex, stronger definition.

The definitional separation in the example above stems from the fact that given access to only one dis-
tribution 𝒟𝑏, one cannot necessarily simulate consistent samples from 𝒟0 and 𝒟1. However, in certain
instances, this issue does not arise; for example, if one of the two is simply the uniform distribution over
strings. We formally address this connection in the following section: presenting the simplified indistin-
guishability notion in Definition 3.12, and proving equivalence for certain special cases in Lemma 3.16.

3.3 Permuted Puzzles and a Related Indistinguishability Notion
In this work we will focus on permuted puzzles. This is a special case of puzzle problems, as we now define.
Here, the key includes an additional secret random permutation on the indices of the 𝑛-element strings, and
strings output by the distributions 𝒟0,𝒟1 will be permuted as dictated by 𝜋.

Definition 3.11 (Permuted Puzzle Problems). For a puzzle problem 𝒫 = {(𝒦𝜆, {Π(·)
𝑘 }𝑘∈𝒦𝜆

)}𝜆∈Z+ , we define
the associated permuted puzzle problem Perm (𝒫) def= {(𝒦′𝜆, {Π′(·)𝑘′ }𝑘′∈𝒦′

𝜆
)}𝜆∈Z+ , where:

∙ A sample from 𝒦′𝜆 is
(︀
pk, (sk, 𝜋)

)︀
, where:

– (pk, sk) is sampled from 𝒦𝜆, and
– If Π𝑘 = (𝑛, Σ,𝒟0,𝒟1), then 𝜋 is sampled uniformly at random from the symmetric group 𝑆𝑛.

∙ For any key 𝑘′ = (pk, (sk, 𝜋)), if Π(pk,sk) = (𝑛, Σ,𝒟0,𝒟1) then Π′𝑘′ = (𝑛, Σ,𝒟′0,𝒟′1), where a sample
from 𝒟′𝑏 is 𝜋(𝑥) for 𝑥← 𝒟𝑏.

Recall (Notation 2.1) for vector 𝑥 ∈ Σ𝑛 and 𝜋 ∈ 𝑆𝑛, that 𝜋(𝑥) denotes the index-permuted vector.

As discussed in Remark 3.10, we now present a simplified notion of indistinguishability, and show that
in certain special cases, this definition aligns with Definition 3.9. In such cases, it will be more convenient
to work with the simplified version.

Definition 3.12 (Weak Hardness of Puzzle Problems). Let 𝒫 = (𝒦, {Π𝑘}𝑘∈𝒦) and 𝒪 be as in Definition 3.7.
The simplified distinguishing game 𝒢𝒪dist,𝑠[𝒫] is defined similarly to 𝒢𝒪dist[𝒫], except that in Step 3, 𝒞 samples
𝑥′ ← 𝒟𝑏 (instead of 𝑥′ ← 𝒟𝛽).

A puzzle problem 𝒫 = (𝒦, {Π𝑘}𝑘∈𝒦) is weak (𝑠, 𝜖)-hard if Adv𝒜(𝒢𝒪dist,𝑠[𝒫]) ≤ 𝜖 for any size-𝑠 adversary 𝒜.
Weak computational hardness is defined similarly to Definition 3.9.

12

Note that weak computational (statistical) hardness (with respect to Definition 3.12) is implied by hard-
ness with respect to Definition 3.7:

Lemma 3.13 (Standard ⇒ Weak). Let 𝒫 = {(𝒦𝜆, {Π(·)
𝑘 }𝑘∈𝒦𝜆

)}𝜆∈Z+ be a puzzle problem. If 𝒫 is computa-
tionally (statistically, respectively) hard in the standard sense (Definition 3.9) then it is weak computationally
(statistically, respectively) hard (Definition 3.12).

Proof. Assume towards negation that 𝒫 is not weak computationally hard, and let 𝒜 = {𝒜𝜆} be a (non-
uniform) polynomial-time adversary that obtains a non-negligible distinguishing advantage 𝜖 = 𝜖 (𝜆) in the
simplified distinguishing game of Definition 3.12. Let 𝑞 denote a bound on the number of samples which
𝒜 obtains from his challenger throughout the game. We define a sequence of hybrids ℋ0, . . .ℋ𝑞 where ℋ𝑖

consists of 𝑞 samples, the first 𝑖 ones sampled from 𝒟0, and the rest from 𝒟1. Notice that 𝒜 has advantage
𝜖 in distinguishing ℋ0 from ℋ𝑞, and so there exists some 𝑖* ∈ [𝑞] such that 𝒜 distinguishes between ℋ𝑖* and
ℋ𝑖*−1 with non-negligible advantage 𝜖/𝑞.

We now describe an adversary 𝒜′ that obtains advantage 𝜖/𝑞 in the distinguishing game of Definition 3.7.
𝒜′ obtains a challenge sample 𝑥 sampled from 𝒟𝑏 (where 𝑏 is the challenge bit chosen by the challenger in
the distinguishing game). 𝒜′ then requests 𝑖* samples from 𝒟0 and 𝑞− 𝑖* − 1 samples from 𝒟1, and obtains
samples 𝑥1, . . . , 𝑥𝑖* , 𝑥𝑖*+2, . . . , 𝑥𝑞. It then runs 𝒜 on input 𝑥1, . . . , 𝑥𝑖* , 𝑥, 𝑥𝑖*+2, . . . , 𝑥𝑞. Notice that if 𝑥 is
sampled from 𝒟0 then 𝒜 is run with a sample from ℋ𝑖*+1, otherwise it is run with a sample from ℋ𝑖* , so
the distinguishing advantage of 𝒜′ is 𝜖/𝑞, contradicting computational hardness.

The more interesting direction is that weak hardness implies (standard) hardness in the case that one of
the two distributions 𝒟0 or 𝒟1 is efficiently sampleable and permutation-invariant, in the following sense.

Definition 3.14 (Permutation-Invariant Distributions). Let 𝑛 ∈ N, let Σ be a non-empty set, and let 𝒟 be
a distribution over Σ𝑛. For a permutation 𝜋 ∈ 𝑆𝑛, let 𝒟𝜋 be the distribution induced by sampling 𝑥 ← 𝒟
and outputting 𝜋 (𝑥). We say that 𝒟 is permutation-invariant if for a uniformly random 𝜋 ∈ 𝑆𝑛, the joint
distribution 𝒟𝜋 ×𝒟𝜋 is identical to 𝒟 ×𝒟𝜋.

Remark 3.15. One example of a permutation-invariant distribution 𝒟 particularly useful in this work is the
uniform distribution over Σ𝑛.

Lemma 3.16 (In certain cases Weak ⇒ Standard). Let 𝒫 = {(𝒦𝜆, {Π(·)
𝑘 }𝑘∈𝒦𝜆

)}𝜆∈Z+ be a puzzle problem.
If:

∙ The corresponding permuted puzzle Perm (𝒫) is weak computationally hard (Definition 3.12).

∙ For every 𝜆, every 𝑘 = (pk, sk) ∈ Supp (𝒦𝜆), and every Π𝑘 = (𝑛, Σ,𝒟0,𝒟1):

– 𝒟1 is permutation-invariant.
– One can efficiently sample from 𝒟1 without sk.

Then Perm (𝒫) is computationally hard in the standard sense (Definition 3.9).

Proof. Assume towards negation that Perm (𝒫) is not computationally hard, and let 𝒜 = {𝒜𝜆} be a (non-
uniform) polynomial-time adversary that obtains a non-negligible distinguishing advantage in the distin-
guishing game of Definition 3.7. Let 𝛽 denote the bits which 𝒜 sent to its challenger in Step 3 of the game.
We first show that without loss of generality, 𝛽 = 0⃗⃗1 or 1⃗⃗0 (i.e., all queries with 𝛽 = 0 are made first, and
all queries with 𝛽 = 1 are made last, or vice-versa). Specifically, we show that the existence of 𝒜 implies the
existence of a (non-uniform) polynomial-time 𝒜′ = {𝒜′𝜆} which obtains the same distinguishing advantage,
and whose queries are of this form.
𝒜′𝜆 interacts with its challenger 𝒞′, and emulates the challenger 𝒞 for 𝒜𝜆. Let 𝑇 = 𝑇 (𝜆) be a bound

on the number of queries which 𝒜𝜆 makes (e.g., its runtime). 𝒜′𝜆 obtains a challenge 𝑥 from 𝒞′, which it
forwards to 𝒜𝜆 as the challenge. Then, 𝒜′𝜆 makes 𝑇 queries with 𝛽 = 0, followed by 𝑇 queries with 𝛽 = 1.
Let 𝑥′1, . . . , 𝑥′2𝑇 denote the challenger answers to the queries. Then, 𝒜′𝜆 enters Step 3 of the distinguishing

13

game with 𝒜𝜆, answering the 𝑖’th query with 𝛽 = 0 (𝛽 = 1, respectively) with 𝑥′𝑖 (𝑥′𝑇 +𝑖, respectively). When
𝒜 makes a guess 𝑏′, 𝒜′𝜆 outputs 𝑏′ as its own guess. Then 𝒜′ is polynomial-time and obtains the same
advantage as 𝒜.

Consequently, we now assume that the queries of 𝒜 are of the form 𝛽 = 0𝑘1𝑙 for some 𝑘 = 𝑘 (𝜆) , 𝑙 =
𝑙 (𝜆) : N → N (the case that 𝛽 = 1⃗⃗0 is symmetric). Let V𝜆,𝑏 denote the view of 𝒜𝜆 in the distinguishing
game with bit 𝑏. That is, V𝜆,𝑏 =

(︀
𝑦𝑏, 𝑦′1, . . . , 𝑦′𝑘, 𝑦′′1 , . . . , 𝑦′′𝑙

)︀
such that 𝑦𝑏 = 𝜋𝜆

(︀
𝑥𝑏
)︀
, 𝑦′𝑖 = 𝜋𝜆 (𝑥′𝑖) , 𝑖 = 1, . . . , 𝑘,

and 𝑦′′𝑖 = 𝜋𝜆 (𝑥′′𝑖) , 𝑖 = 1, . . . , 𝑙, where 𝜋𝜆 ← 𝑆𝑛𝜆
, 𝑥𝑏 ← 𝒟𝜆,𝑏, 𝑥′1, . . . , 𝑥′𝑘 ← 𝒟𝜆,0, and 𝑥′′1 , . . . , 𝑥′′𝑙 ← 𝒟𝜆,1.

Let ℋ𝜆 denote the view of 𝒜𝜆 when the challenge, and all query answers, are sampled from 𝒟𝜆,1. That
is, ℋ𝜆 =

(︀
𝑦, 𝑦′1, . . . , 𝑦′𝑘+𝑙

)︀
such that 𝑦 = 𝜋𝜆 (𝑥), and 𝑦′𝑖 = 𝜋𝜆 (𝑥′𝑖) , 𝑖 = 1, . . . , 𝑘 + 𝑙, where 𝜋𝜆 ← 𝑆𝑛𝜆

,
𝑥, 𝑥′1, . . . , 𝑥′𝑘+𝑙 ← 𝒟𝜆,1. For 𝑏 = 0, 1 let V𝑏 = {V𝜆,𝑏}, and let ℋ = {ℋ𝜆}. We use the weak computational
indistinguishability of Perm (𝒫), and the properties of 𝒟1,𝜆, to show that ℋ is computationally close to both
V0 and V1.
ℋ is computationally close to V0. Assume towards negation that there exists a polynomial-sized

family circuit 𝒜0 = {𝒜0
𝜆} which obtains a non-negligible advantage 𝜖 (𝜆) in distinguishing ℋ and V0. We

construct an efficient adversary 𝒜′ = {𝒜′𝜆} which obtains advantage 𝜖 (𝜆) in the weak security game.
𝒜′𝜆 requests 𝑘 + 1 samples from its challenger, obtaining the answers 𝑦, 𝑦′1, . . . , 𝑦′𝑘. Then, it samples

𝑦′′1 , . . . , 𝑦′′𝑙 ← 𝒟𝜆,1, and runs 𝒜0
𝜆 with (𝑦, 𝑦′1, . . . , 𝑦′𝑘, 𝑦′′1 , . . . , 𝑦′′𝑙), outputting the guess which 𝒜0

𝜆 makes. Then
𝒜′ is polynomial-time because one can efficiently sample from 𝒟𝜆,1 without the secret key. Moreover, when
𝑏 = 0 in 𝒜′’s simplified distinguishing game then 𝒜0’s input is distributed as in V0, whereas when 𝑏 = 1 its
input is distributed as inℋ. Indeed, the only difference between the input which𝒜′ provides to𝒜0, and V0,ℋ,
is the samples 𝑦′′1 , . . . 𝑦′′𝑙 , which are permuted in V0,ℋ but not in the input provided by 𝒜′. However, since
𝑦, 𝑦′1, . . . , 𝑦′𝑘 were generated using a random secret permutation 𝜋, then 𝒜0’s inputs from 𝒜′ are distributed
identically to V0 (ℋ, respectively) when 𝑏 = 0 (𝑏 = 1, respectively) because 𝒟 is permutation-invariant.
ℋ is computationally close to V1. The proof is similar to the previous case. Assume towards negation

that there exists a polynomial-sized family circuit 𝒜1 = {𝒜1
𝜆} which obtains a non-negligible advantage in

distinguishing ℋ and V1. We again construct an adversary 𝒜′ = {𝒜′𝜆} breaking weak hardness. 𝒜′𝜆 requests
𝑘 samples from its challenger, obtaining the answers 𝑦′1, . . . , 𝑦′𝑘, and runs 𝒜1

𝜆 with (𝑦, 𝑦′1, . . . , 𝑦′𝑘, 𝑦′′1 , . . . , 𝑦′′𝑙),
where 𝑦, 𝑦′′1 , . . . , 𝑦′′𝑙 ← 𝒟𝜆,1, and outputs 𝒜1

𝜆’s guess. Then similarly to the previous case, 𝒜′ is polynomial-
time and obtains the same distinguishing advantage as 𝒜1 because 𝒜1’s inputs from 𝒜′ are distributed
identically to V1 (ℋ, respectively) when 𝑏 = 0 (𝑏 = 1, respectively).

Finally, we show that the existence of hard permuted puzzles for which the original distributions 𝒟0,𝒟1
are statistically far implies the existence of OWFs. This follows from the fact that if 𝒫 is not statistically
hard, then Perm(𝒫) is not statistically hard either.

Lemma 3.17. If 𝒫 is a puzzle problem that is not statistically hard, then Perm(𝒫) is not statistically hard.

Proof. Let 𝒫 = {(𝒦𝜆, {Π𝑘}𝑘∈𝒦𝜆
)}𝜆∈Z+ be a given puzzle problem, with Π𝑘 = (𝑛𝑘, Σ𝑘,𝒟𝑘,0,𝒟𝑘,1). We first

prove the following lemma.

Lemma 3.18. If 𝒫 is not statistically hard, then there is some 𝑞(𝜆) ≤ 𝜆𝑂(1) and 𝜖(𝜆) ≥ 𝜆−Ω(1) such that
for infinitely many 𝜆 ∈ Z+, the random variables 𝑀 (0) and 𝑀 (1), sampled by the following process, are
statistically 𝜖(𝜆)-far.

1. Sample 𝐾 ← 𝒦𝜆.

2. For each 𝑖 ∈ [𝑞(𝜆)] and 𝑗 ∈ {0, 1}, independently sample 𝑚
(0)
𝑖,𝑗 ← 𝒟𝐾,0 and 𝑚

(1)
𝑖,𝑗 ← 𝒟𝐾,𝑗.

3. Output 𝑀 (𝑏) =
(︁

𝑚
(𝑏)
𝑖,𝑗

)︁
𝑖∈[𝑞(𝜆)],𝑗∈{0,1}

.

Proof. Since 𝒫 is not statistically hard then there exists an adversary 𝒜′ in the distinguishing game of Def-
inition 3.7 that makes a polynomial number 𝑞′ of queries to its challenger, and obtains a non-negligible
advantage 2𝜖′ in distinguishing between 𝒟0,𝒟1. In particular, if 𝐷𝑏,𝑘 denotes a random variable whose
distribution is that of 𝒟𝑏 conditioned on key 𝐾 = 𝑘, then by Markov’s inequality for infinitely many 𝜆 ∈ Z+,

14

with probability at least 𝜖′ over the choice of 𝐾 ← 𝒦𝜆, 𝒜′ obtains advantage 𝜖′ in the distinguishing game
of Definition 3.7, conditioned on the chosen key being 𝐾. We say that 𝐾 is good if it satisfies the above.

We set 𝑞 = (𝑞′ + 1) · 4𝜆
(𝜖′)2 and 𝜖 = 𝜖′ − 𝑒−2𝜆 · (1 + 𝜖′). We construct an adversary 𝒜 against 𝑀 (0), 𝑀 (1),

which operates as follows. 𝒜 obtains 𝑞 pairs of samples of the form
(︁

𝑚
(𝑏)
𝑖,0 , 𝑚

(𝑏)
𝑖,1

)︁
, where 𝑚

(𝑏)
𝑖,0 ∈ 𝒟𝐾,0 and

𝑚
(𝑏)
𝑖,1 ∈ 𝒟𝐾,𝑏 (for some key 𝐾). We divide these samples into two columns: a “left” column containing all

samples of the form 𝑚
(𝑏)
𝑖,0 , and a “right” column containing all samples of the form 𝑚

(𝑏)
𝑖,1 . 𝒜 divides its 𝑞 pairs

into subsets of 𝑞′+ 1 pairs, and emulates 𝒜′ 4𝜆/(𝜖′)2 times as follows, using the 𝑙’th subset of samples in the
𝑙’th emulation. It picks a random bit 𝑏𝑙 ← {0, 1}, if 𝑏𝑙 = 0 (𝑏𝑙 = 1) then it gives the first sample from the left
(right) column to 𝒜′ as the challenge sample. Then, it answers 𝒜′’s queries to 𝒟0,𝒟1 using the first unused
sample from the left and right columns, respectively, and records 𝒜′’s guess for 𝑏𝑙. For each iteration 𝑙, let
𝑋𝑙 be indicator of the event that 𝒜′ guessed 𝑏𝑙 correctly, and let 𝑋 = (𝜖′)2

4𝜆

∑︀
𝑙 𝑋𝑙. If 𝑋 ≥ 1/2 + 𝜖′/2 then 𝒜

guesses that 𝑏 = 1, otherwise it guesses that 𝑏 = 0.
We now analyze the distinguishing advantage of 𝒜, conditioned on the key 𝐾. Notice first that if 𝑏 = 0

then the left and right columns are identically distributed (they are distributed according to 𝒟0,𝐾) and so
𝒜′ obtains no distinguishing advantage, i.e., 𝐸[𝑋𝑙] = 𝐸[𝑋] = 1/2, so by Hoeffding’s inequality,

Pr [𝑋 ≥ 1/2 + 𝜖′/2] ≤ 𝑒
−2(𝜖′/2)2· 4𝜆

(𝜖′)2 = 𝑒−2𝜆.

On the other hand, if 𝑏 = 1 then conditioned on the key 𝐾 being good, each iteration exactly emulates the
distinguishing game for 𝒜′, and so if 𝐾 is good then 𝐸[𝑋𝑙] ≥ 1/2 + 𝜖′ so 𝐸[𝑋] ≥ 1/2 + 𝜖′. Therefore, by
Hoeffding’s inequality:

Pr [𝑋 < 1/2 + 𝜖′/2] ≤ Pr [𝑋 ≤ (1/2 + 𝜖′)− 𝜖′/2] ≤ 𝑒
−2(𝜖′/2)2· 4𝜆

(𝜖′)2 = 𝑒−2𝜆.

Thus, 𝒜’s distinguishing advantage is:⃒⃒⃒
Pr
𝐾

[︁
𝒜
(︁

𝑀
(1)
𝐾

)︁
= 1
]︁
− Pr

𝐾

[︁
𝒜
(︁

𝑀
(0)
𝐾

)︁
= 1
]︁⃒⃒⃒

≥
⃒⃒⃒
Pr
𝐾

[︁
𝒜
(︁

𝑀
(1)
𝐾

)︁
= 1|𝐾 is good

]︁
· Pr

𝐾
[𝐾 is good] + Pr

𝐾

[︁
𝒜
(︁

𝑀
(1)
𝐾

)︁
= 1|𝐾 is bad

]︁
· Pr

𝐾
[𝐾 is bad]− Pr

𝐾

[︁
𝒜
(︁

𝑀
(0)
𝐾

)︁
= 1
]︁⃒⃒⃒

≥
⃒⃒
𝜖′ ·
(︀
1− 𝑒−2𝜆

)︀
+ 0− 𝑒−2𝜆

⃒⃒
≥ 𝜖′ − 𝑒−2𝜆 · (1 + 𝜖′).

In particular, if we denote by 𝑀
(𝑏)
𝑘 a random variable whose distribution is that of 𝑀 (𝑏) conditioned on

𝐾 = 𝑘, then there is a statistical distinguishing algorithm 𝒜 such that for infinitely many 𝜆 ∈ Z+ and with
probability at least 𝜖(𝜆)/2 over the choice of 𝐾 ← 𝒦𝜆, we have⃒⃒⃒

Pr
[︁
𝒜(𝑀 (0)

𝐾) = 1
]︁
− Pr

[︁
𝒜(𝑀 (1)

𝐾) = 1
]︁ ⃒⃒⃒
≥ 𝜖(𝜆)

2 .

(This follows from Markov’s inequality.)
Next, we define random variables �̃� (0) and �̃� (1), sampled by the following process. Let 𝑁 : Z+ → Z+ be

a polynomially bounded function such that for every 𝑘 ∈ 𝒦𝜆 it holds that 𝑛𝑘 ≤ 𝑁(𝜆). Let 𝑞(𝜆) = 3𝑞(𝜆)·𝑁(𝜆)2

𝜖(𝜆)2 .

1. Sample 𝐾 ← 𝒦𝜆 and 𝜋 ← 𝑆𝑛𝐾
.

2. For each 𝑖 ∈ [𝑞(𝜆)] and 𝑗 ∈ {0, 1}, independently sample 𝑚
(0)
𝑖,𝑗 ← 𝒟𝐾,0 and 𝑚

(1)
𝑖,𝑗 ← 𝒟𝐾,𝑗 . Define

�̃�
(𝑏)
𝑖,𝑗 = 𝜋

(︁
𝑚

(𝑏)
𝑖,𝑗

)︁
.

3. Output �̃� (𝑏) =
(︁

�̃�
(𝑏)
𝑖,𝑗

)︁
𝑖∈[𝑞(𝜆)],𝑗∈{0,1}

.

15

To complete the proof, we show that �̃� (0) and �̃� (1) are statistically distinguishable, and use this to
show that Perm(𝒫) is not statistically hard.

Lemma 3.19. �̃� (0) and �̃� (1) are statistically distinguishable.

Proof. Let 𝒜 be a distinguisher for 𝑀 (0) vs. 𝑀 (1), and recall that 𝒜 makes at most 𝑞 queries. That is,
suppose that for infinitely many 𝜆 ∈ Z+,

⃒⃒
Pr[𝒜(𝑀 (1)) = 1]− Pr[𝒜(𝑀 (0)) = 1]

⃒⃒
≥ 𝜖(𝜆). To show that �̃� (0)

and �̃� (1) are statistically distinguishable, we show how they can be mapped to 𝑁(𝜆)2

4𝜖(𝜆)2 independent samples
that are (depending on whether we started with �̃� (0) or �̃� (1)) either statistically indistinguishable or (with
non-negligible probability) distinguishable by 𝒜 ∘ 𝜋 for a suitable permutation 𝜋. Thus �̃� (0) and �̃� (1) can
be statistically distinguished by trying all permutations 𝜋, and checking whether any 𝒜 ∘ 𝜋 distinguishes
these samples (correctness of this distinguisher is proven with Hoeffding’s bound and a union bound over all
possible 𝑁(𝜆)! permutations).

More specifically, we interpret the samples from �̃� (𝑏) as consisting of left and right columns (for 𝑗 = 0
and 𝑗 = 1, resp.), containing lists of samples from 𝒟𝐾,0 and 𝒟𝐾,𝑏 (resp.) for some key 𝐾, permuted according
to the same permutation 𝜋′. The idea is to divide these lists into subsets of size 3𝑞, and use these subsets to
construct “tests” for 𝒜. Each such “test” will contain, in its left column, the first 2𝑞 samples from the left
column, and the right column will consist of the remaining 𝑞 samples from the left column, concatenated
with the first 𝑞 samples from the right column. Notice that if 𝑏 = 0 then the two columns are identically
distributed, otherwise these are samples according to 𝑀 (0) and 𝑀 (1), respectively, permuted according to
𝜋′. Therefore, 𝒜 ∘ (𝜋′)−1 can distinguish between these distributions. The idea is to run 𝒜 ∘ (𝜋′)−1 with
each of these “tests” and check whether it distinguishes (we need multiple tests to use Chernoff’s bound).
Of course, 𝜋′ is unknown, so instead we run 𝒜 with all possible permutations and check whether there exists
some permutation for which it distinguishes. This will be the case for (𝜋′)−1 in case 𝑏 = 1, but no such
permutation exists when 𝑏 = 0. We proceed to formalize this argument.

The key is how to map �̃� (0) and �̃� (1) to such samples, that (depending on 𝑏) are either statistically
indistinguishable or (with non-negligible probability) distinguishable by 𝒜 ∘ 𝜋 for some 𝜋. As before, let
�̃�

(𝑏)
𝑘 denote a random variable distributed like �̃� (𝑏) conditioned on 𝐾 = 𝑘. We define a function 𝜑 such

that:

∙ For any 𝑘 ∈ 𝒦𝜆 and any 𝜋 ∈ 𝑆𝑛𝑘
, 𝜑
(︁

𝜋, �̃�
(0)
𝑘

)︁
is 𝑁(𝜆)2/4𝜖(𝜆)2 independent pairs of i.i.d. random

variables.

∙ With probability at least 𝜖(𝜆)/2 over a choice of 𝐾 ← 𝒦𝜆, there exists 𝜋 ∈ 𝑆𝑛𝐾
such that 𝜑

(︁
𝜋, �̃�

(1)
𝑘

)︁
is 𝑁(𝜆)2/4𝜖(𝜆)2 independent samples that are 𝜖(𝜆)/2-distinguishable by 𝒜.

Sketch of 𝜑. When the input to 𝜑 is �̃�
(𝑏)
𝑘 , regardless of whether 𝑏 is 0 or 1, 𝜑 has access to 𝑞(𝜆) independent

samples that are distributed like (permuted) samples from 𝒟𝑘,0 (specifically the entries �̃�
(𝑏)
𝑖,0 for 𝑖 ∈ [𝑞(𝜆)]).

𝜑 also has access to 𝑞(𝜆) independent (permuted) samples from 𝒟𝑘,𝑏 (specifically the entries �̃�
(𝑏)
𝑖,1). So, let

the 𝑖𝑡ℎ output of 𝜑(𝜋, �̃� (𝑏)) be⎛⎜⎜⎝
⎡⎢⎢⎣

𝜋(�̃�(𝑏)
(4𝑖)·𝑞(𝜆),0) 𝜋(�̃�(𝑏)

(4𝑖+1)·𝑞(𝜆),0)
...

...
𝜋(�̃�(𝑏)

(4𝑖+1)·𝑞(𝜆)−1,0) 𝜋(�̃�(𝑏)
(4𝑖+2)·𝑞(𝜆)−1,0)

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
𝜋(�̃�(𝑏)

(4𝑖+2)·𝑞(𝜆),0) 𝜋(�̃�(𝑏)
(4𝑖+3)·𝑞(𝜆),1)

...
...

𝜋(�̃�(𝑏)
(4𝑖+3)·𝑞(𝜆)−1,0) 𝜋(�̃�(𝑏)

(4𝑖+4)·𝑞(𝜆)−1,1)

⎤⎥⎥⎦
⎞⎟⎟⎠

If 𝑏 = 0, this will be a pair of i.i.d. random variables, whereas if 𝑏 = 1 this pair of random variables will be
distinguishable by 𝒜 (for the right choice of 𝜋).

This completes the proof of Lemma 3.17.

16

Lemma 3.20. If 𝒫 is a puzzle problem that is not statistically hard, but Perm(𝒫) is computationally hard,
then there exists a one-way function.

Proof. By a result of [Gol90], it suffices to prove that there exist a pair of distribution ensembles that are
efficiently sampleable, statistically far, and computationally indistinguishable. By Lemma 3.17, the pair
�̃� (0) and �̃� (1) as defined in the proof of Lemma 3.17 are efficiently sampleable and statistically far. We now
use the fact that Perm(𝒫) is computationally hard to prove that they are computationally indistinguishable.

Assume towards negation that �̃� (0) and �̃� (1) are computationally distinguishable by an efficient adver-
sary 𝒜 that obtains a non-negligible distinguishing advantage 𝜖. We construct an efficient adversary 𝒜 that
obtains advantage 𝜖 = 𝜖/𝑞 in the distinguishing game of Definition 3.7, in contradiction to Perm(𝒫) being
computationally hard. We use a hybrid argument, defining, for 0 ≤ 𝑖 ≤ 𝑞, a hybrid ℋ𝑖 which contains the
first 𝑖 samples from �̃� (0) and the rest of the samples are from �̃� (1). Then

𝜖 ≤
⃒⃒⃒
Pr
[︁
𝒜
(︁

�̃� (0)
)︁

= 1
]︁
− Pr

[︁
𝒜
(︁

�̃� (0)
)︁

= 1
]︁⃒⃒⃒

=

⃒⃒⃒⃒
⃒

𝑞∑︁
𝑖=1

(︀
Pr
[︀
𝒜 (ℋ𝑖) = 1

]︀
− Pr

[︀
𝒜 (ℋ𝑖−1) = 1

]︀)︀⃒⃒⃒⃒⃒
𝒜 picks a random 𝑖 ∈ [𝑞], and asks for 𝑖 samples from 𝒟0 and 𝑞− 𝑖− 1 samples from 𝒟1. It uses the samples
from 𝒟0 as the first 𝑖 samples, the samples from 𝒟1 as the last 𝑞− 𝑖− 1 samples, and its challenge sample as
the sample 𝑖 + 1. Then, it runs 𝒜 on the resultant list of samples and outputs whatever 𝒜 outputs. Notice
that if the challenge bit in 𝒜’s distinguishing game is 𝑏 = 0 (𝑏 = 1, resp.) then 𝒜 is emulated with input
ℋ𝑖+1 (ℋ𝑖, resp.). Therefore, 𝒜’s distinguishing advantage is:⃒⃒⃒⃒

⃒1𝑞
𝑞∑︁

𝑖=1

(︀
Pr
[︀
𝒜 (ℋ𝑖) = 1

]︀
− Pr

[︀
𝒜 (ℋ𝑖−1) = 1

]︀)︀⃒⃒⃒⃒⃒ ≥ 𝜖

𝑞
.

4 Hard Permuted Puzzles in the Random Oracle Model
We show that there exist computationally hard permuted puzzles in the random oracle model. We first
formally define the notion of a random oracle.

Definition 4.1 (Random Oracle). We use the term random oracle to refer to the uniform distribution on
functions mapping {0, 1}* → {0, 1}.

Construction 4.2 (Permuted puzzles in the ROM). Let 𝐻 be a random oracle. For a security parameter
𝜆, we interpret 𝐻 as a function 𝐻𝜆 : {0, 1}𝑚𝜆+𝜆 → {0, 1}𝑚𝜆 for 𝑚𝜆 = 2 (𝜆 + 1) log 𝜆 (also see Remark 3.2).
We define a puzzle problem 𝒫 =

{︀
(𝒦𝜆, {Π𝑘}𝑘∈𝒦𝜆

)
}︀

by the following KeyGen and Samp algorithms:

∙ KeyGen
(︀
1𝜆
)︀

outputs 1𝜆 as the public key (the secret key is empty).3

We note that for any 𝜆, the corresponding string distinguishing problem Π𝜆 =
(︁

𝑛, Σ,𝒟(·)
0 ,𝒟(·)

1

)︁
has

𝑛 = 𝜆 + 2 and Σ = {0, 1}𝑚𝜆 × {INPUT, OUTPUT, SEED}.

∙ Samp (𝑘, 𝑏) where 𝑘 = 1𝜆 outputs a sample from 𝒟𝐻𝜆

𝜆,𝑏 for 𝐻𝜆 : {0, 1}𝑚𝜆+𝜆 → {0, 1}𝑚𝜆 as defined above,
where 𝒟𝐻𝜆

𝜆,𝑏 is defined as follows.

– A sample from 𝒟𝐻𝜆

𝜆,0 is of the form (𝜎1, . . . , 𝜎𝜆+2), where:
* For 𝑖 ∈ [𝜆], 𝜎𝑖 = (𝑠𝑖, SEED) for uniformly random and independent 𝑠1, . . . , 𝑠𝜆 in {0, 1}𝑚𝜆 .
* 𝜎𝜆+1 = (𝑥0, INPUT), where 𝑥0 is uniformly random in {0, 1}𝑚𝜆 .

3We note that in this permuted puzzle construction the key generation stage is obsolete.

17

* 𝜎𝜆+2 = (𝑥𝜆, OUTPUT), where for each 𝑖 ∈ [𝜆], 𝑥𝑖 = 𝐻𝜆(𝑠′𝑖, 𝑥𝑖−1), where 𝑠′𝑖 is the length-𝜆 prefix
of 𝑠𝑖. (That is, the random oracle uses length-𝜆 seeds, and the rest of the bits in the seed are
ignored.)

– 𝒟𝐻𝜆

𝜆,1 is defined identically to 𝒟𝐻𝜆

𝜆,0 , except that 𝑥𝜆 is uniformly random in {0, 1}𝑚𝜆 , independent
of 𝑥0, 𝐻𝜆, and 𝑠1, . . ., 𝑠𝜆.

Proposition 4.3. The puzzle problem 𝒫 of Construction 4.2 is computationally easy, and the corresponding
permuted puzzle problem Perm (𝒫) is statistically hard, with respect to a random oracle.

We note that 𝒫 is computationally easy in an extremely strong sense: a polynomial-sized adversary can
obtain advantage 1− negl (𝜆) in the distinguishing game.

Before proving Proposition 4.3, we first set some notation. For a permutation 𝜋 ∈ 𝑆𝑛, we define the
permutation 𝜋′ which, informally, is the permutation over the seeds which is induced by 𝜋. That is:

∙ For 𝑖 ∈ [𝜆], if 𝜋 (𝜎𝑖) = 𝜎𝑗 for 𝑗 ∈ [𝜆] then 𝜋′ (𝜎𝑖) = 𝜋 (𝜎𝑖).

∙ For 𝑖 ∈ [𝜆], if 𝜋 (𝜎𝑖) = 𝜎𝑗 for 𝑗 ∈ {𝜆 + 1, 𝜆 + 2}, and 𝜋 (𝜎𝑗) = 𝜎𝑙 for 𝑙 /∈ {𝜆 + 1, 𝜆 + 2}, then 𝜋′ (𝜎𝑖) =
𝜋 (𝜋 (𝜎𝑖)) = 𝜎𝑙.

∙ For 𝑖 ∈ [𝜆], if 𝜋 (𝜎𝑖) = 𝜎𝑗 for 𝑗 ∈ {𝜆 + 1, 𝜆 + 2}, and 𝜋 (𝜎𝑗) = 𝜎𝑙 for 𝑙 ∈ {𝜆 + 1, 𝜆 + 2}, then 𝜋′ (𝜎𝑖) =
𝜋 (𝜋 (𝜋 (𝜎𝑖))) = 𝜋 (𝜎𝑙).

Next, we define the notion of a “permutation tree”. Intuitively, the root node is labeled by the input
𝑥0. Edge labels on a path from 𝑥0 correspond to a partial permutation on the indices of the seeds for the
random oracle. Node labels correspond to the output of the random oracle when recursively applied to 𝑥0,
with the seeds permuted according to the edge labels on the path.

Definition 4.4 (Permutation tree). For an oracle 𝐻, and a sample
((𝑠1, SEED) , . . . (𝑠𝜆, SEED) , (𝑥0, INPUT) , (𝑥𝜆, OUTPUT)) from 𝒟𝐻

𝜆,0, we define a tree T𝑥0,𝐻 of depth 𝜆
with 𝜆! leaves as follows. The tree is leveled from level 0 (the leaves) to level 𝜆 (the root). For every
1 ≤ 𝑙 ≤ 𝜆, each node in level 𝑙 has 𝑙 edges leaving it. The edges are labeled recursively as follows:

∙ The edges leaving the root are labeled from left to right by 1, 2, . . . , 𝜆. (We note that the edges are
directed from level 𝑖 to level 𝑖− 1. If an edge is directed from a node 𝑣 in level 𝑖 to a node 𝑢 in level
𝑖− 1, then we say that 𝑣 is 𝑢’s parent.)

∙ For a node 𝑣 in level 1 ≤ 𝑙 < 𝜆, let 𝐿𝑣 denote the labels of the edges on the path from the root to 𝑣.
Then the edges leaving 𝑣 are labeled by the labels in [𝜆] ∖ 𝐿𝑣, in increasing order from left to right.

The nodes of the tree are likewise labeled recursively, as follows:

∙ The label of the root is 𝑥0.

∙ For every level 0 ≤ 𝑙 < 𝜆, the label of a node 𝑣 in level 𝑙 is computed as follows. Let 𝑧 denote the label
of 𝑣’s parent in level 𝑙 + 1, and let 𝑖 denote the label of the edge leading from 𝑣’s parent to 𝑣. Then
𝑣’s label is set to 𝐻 (𝑠′𝑖, 𝑧), where 𝑠′𝑖 is the length-𝜆 prefix of 𝑠𝑖.

For a 𝑘 ≤ 𝜆, a path P = (𝑒1, 𝑒2, . . . , 𝑒𝑘) is defined by the edge labels 𝑒1, . . . , 𝑒𝑘. It follows the edge labeled
𝑒1 from the root to a node 𝑣1 in level 𝜆−1, then follows the edge labeled 𝑒2 from 𝑣1 to a node 𝑣2 in level 𝜆−2
and so on, until it follows the edge labeled 𝑒𝑘 to a node in level 𝜆− 𝑘. Let 𝜋 ∈ 𝑆𝑛 denote the permutation
chosen as part of the secret key in the permuted puzzle, then we call the path (𝜋′ (1) , 𝜋′ (2) , . . . , 𝜋′ (𝜆)) the
special path, and we call the leaf ℓ at the end of the special path the special leaf.

We first consider an 𝒜 that receives a single sample from 𝒟𝐻𝜆

𝜆,0 . Let 𝒬 denote the set of queries which 𝒜
makes to 𝐻𝜆, where a query 𝑞 ∈ 𝒬 is of the form 𝑞 = (𝑖, 𝑣) and denotes that 𝒜 queried 𝐻𝜆 on 𝑣 with seed

18

𝑠′𝑖.4 Let 𝒬𝑡 denote the restriction of 𝒬 to the first 𝑡 queries which 𝒜 makes. For a path (𝑒1, . . . , 𝑒𝑘) in the
tree, where 𝑣0, 𝑣1, . . . , 𝑣𝑘 are the nodes on the path (in particular, 𝑣0 is the root), and 𝑦0 = 𝑥0, 𝑦1, . . . , 𝑦𝑘

are the corresponding node labels, we say that 𝑣𝑘 is reachable if for every 1 ≤ 𝑖 ≤ 𝑘, (𝑒𝑖, 𝑦𝑖−1) ∈ 𝒬. We use
Labels (𝑇𝑥0,𝐻 ,𝒬) to denote the set of labels of reachable nodes in 𝑇𝑥0,𝐻 .

We define the following events.

1. Collide: this event happens if there exist two nodes 𝑣, 𝑣′ in the tree T𝑥0,𝐻𝜆
that have the same label.

2. PrevQ: this event occurs when the adversary queries the oracle about a node label of an unreachable
node. Formally, PrevQ is the event that there exists a node 𝑣 in the tree T𝑥0,𝐻𝜆

with label 𝑦 such that
𝑣 is not reachable but (𝑖, 𝑦) ∈ 𝒬 for some 𝑖 ∈ [𝜆].

3. Reach: this is the event that the special leaf is reachable at the end of the distinguishing game of
Definition 3.7.

We will prove Proposition 4.3 in four steps. First, we bound the probability that events Collide, PrevQ
occur. Then, we show that if 𝒜 has a non-negligible advantage in the distinguishing game of Definition 3.7
then Reach happens with non-negligible probability. Third, we derive a contradiction by showing that
conditioned on ¬Collide and ¬PrevQ, Reach can only occur with negligible probability, since if it occurs then
the adversary can guess a uniformly random permutation. In the final step, we generalize the argument to
hold even when the adversary receives multiple samples.

Analysis of events Collide, PrevQ. We show that for our choice of 𝑚𝜆, each of the events Collide, and
PrevQ|¬Collide, happen only with negl (𝜆) probability, where in the following the probability is over the
choice of 𝐻𝜆 and the randomness of 𝒜.

Lemma 4.5. Pr [Collide] = negl (𝜆).

We prove the lemma by bounding, using induction, the collision probability of nodes in different levels
of the tree. The inductive argument allows us to argue about the collision probability of two intermediate
nodes 𝑣, 𝑣′, since by the induction hypothesis we can bound the probability that the labels of their parent
nodes collide. We note that such label collisions in parent nodes are the reason the lemma does not follow
directly by a standard union bound over all nodes.

Proof of Lemma 4.5. First, notice that it suffices to prove the lemma conditioned on the event ℰ that there
are no seed collisions, because Pr [¬ℰ] = Pr [∃𝑖 ̸= 𝑖′, 𝑠′𝑖 = 𝑠′𝑖′] ≤ 𝜆2 · 2−𝜆 = negl (𝜆).

For a distance 0 ≤ 𝑑 ≤ 𝜆 from the root, let 𝑘𝑑 denote the number of nodes in levels 𝜆, 𝜆− 1, . . . , 𝜆− 𝑑 of
the tree. Let ℰ𝑑 denote the event that the label of some node in one of the levels 𝜆, 𝜆− 1, . . . , 𝜆− 𝑑 collides
with the label of some other node in the tree T𝑥0,𝐻𝜆

. We prove by induction on 𝑑 that Pr [ℰ𝑑] ≤ 𝑘𝑑 ·2𝜆!·2−𝑚𝜆 .
The lemma then follows from this claim because for 𝑑 = 𝜆 we get, using the fact that 𝑘𝜆 ≤ 2𝜆!, that

Pr [Collide|ℰ] ≤ 2𝜆! · 2𝜆! · 2−𝑚𝜆 ≤(*) 8𝜋𝑒𝜆

(︂
𝜆

𝑒

)︂2𝜆

· 𝜆−2(𝜆+1) = negl (𝜆)

where the inequality denoted (*) holds because 𝑛! <
√

2𝜋𝑒𝑛
(︀

𝑛
𝑒

)︀𝑛 and 𝑚 = 2 (𝜆 + 1) log 𝜆. Therefore,
Pr [Collide] ≤ Pr [Collide|ℰ] + Pr [¬ℰ] = negl (𝜆).

We now prove the claim. The basis is for 𝑑 = 0, in which case we need to bound the probability that
any node other than the root has the root label 𝑥0. Since 𝐻 is a random function, any single node label
collides with 𝑥0 only with 2−𝑚𝜆 probability, so by a union bound over the (at most) 2𝜆! nodes in the tree,
Pr [ℰ0] ≤ 2𝜆! · 2−𝑚𝜆 which proves the base case because 𝑘0 = 1.

4We note that 𝒜 can also query 𝐻𝜆 on seeds which are not part of the sample, i.e., with 𝑠 /∈ {𝑠1, . . . , 𝑠𝜆}. However, the
oracle answers to such queries are uniformly random and independent of 𝒟𝐻𝜆

𝜆,0 , so they can be trivially simulated with random
values and we therefore disregard them.

19

For the step, assume the claim holds up to 𝑑− 1 and we prove it holds for 𝑑. Notice that

Pr [ℰ𝑑] = Pr [ℰ𝑑 ∧ ¬ℰ𝑑−1] + Pr [ℰ𝑑−1] ≤ Pr [ℰ𝑑|¬ℰ𝑑−1] + 𝑘𝑑−1 · 2𝜆! · 2−𝑚𝜆

where the right inequality follows from the law of conditional probability and the induction hypothesis. We
now analyze Pr [ℰ𝑑|¬ℰ𝑑−1]. Let 𝑣 be a node in level 𝜆 − 𝑑 < 𝜆, let 𝑦 denote the label of its parent node 𝑢,
and let 𝑖 denote the label of the edge 𝑢→ 𝑣. Let 𝑣′ ̸= 𝑣 be any other node in the tree. If 𝑣′ is the root then
we have already proven in the base case that its label collides with the label of 𝑣 only with probability 2−𝑚𝜆 .
Otherwise, let 𝑦′ be the label of the parent node 𝑢′ of 𝑣′, and let 𝑖′ denote the label of the edge 𝑢′ → 𝑣′.
Then the labels of 𝑣 and 𝑣′ collide only if 𝐻 (𝑠′𝑖, 𝑦) = 𝐻 (𝑠′𝑖′ , 𝑦′). Since we have conditioned on ¬ℰ𝑑−1, 𝑦′ ̸= 𝑦.
Moreover, since we have conditioned on ¬ℰ , 𝑠′𝑖 ̸= 𝑠′𝑖′ so Pr [𝐻 (𝑠′𝑖, 𝑦) = 𝐻 (𝑠′𝑖′ , 𝑦′)] ≤ 2−𝑚𝜆 because 𝐻 is a
random function. Therefore, the probability that the label of any node 𝑣′ ̸= 𝑣 (including the root) collides
with the label of 𝑣 is at most 2−𝑚𝜆 . Taking the union bound over the (at most) 2𝜆! nodes in the tree, the
probability that the label of 𝑣 collides with any other node in the tree is at most 2𝜆! · 2−𝑚𝜆 . Taking a union
bound over the 𝑘𝑑 − 𝑘𝑑−1 nodes in level 𝜆 − 𝑑, Pr [ℰ𝑑|¬ℰ𝑑−1] ≤ (𝑘𝑑 − 𝑘𝑑−1) · 2𝜆! · 2−𝑚𝜆 , which proves the
induction step.

Remark 4.6 (Collision probability for multiple samples). The collision probability of node labels re-
mains negligible even when 𝒜 is given 𝑡 = poly (𝜆) samples from its challenger. This will be useful later when
proving Proposition 4.3. To see why this holds, notice that in this case there are 𝑡 permutation trees (one per
samples). Let Collide* be the event that there exist two nodes 𝑣, 𝑣′ in two permutation trees T𝑥,𝐻𝜆

, T𝑥′,𝐻𝜆
re-

spectively (possibly with 𝑥 = 𝑥′) that have the same label. Then except with probability 𝑡2 ·𝜆2 ·2−𝜆 = negl (𝜆)
no pair of the seeds collide (across all 𝑡 trees). Conditioned on this event, let ℰ*𝑑 be the event that the label
of some node in levels 𝜆, 𝜆−1, . . . , 𝜆−𝑑 in one of the permutation trees collides with the label of some other
node in one of the trees. Then similarly to the proof of Lemma 4.5, Pr [ℰ𝑑] ≤ 𝑡2 · 𝑘𝑑 · 2𝜆! · 2−𝑚𝜆 , and so
Pr [Collide*] = negl (𝜆) because 𝑡 = poly (𝜆). Indeed, the proof is by induction on 𝑑, and we only describe
the changes from the proof described above. In the base case, we have 𝑡 root nodes, and for each of them
we take a union bound over the (at most) 𝑡 · 2𝜆! nodes in all trees, so Pr [ℰ*0] ≤ 𝑡2 · 𝑘0 · 2𝜆! · 2−𝑚𝜆 . As for the
step, condition on ¬ℰ*𝑑−1, and consider a node 𝑣 in level 𝜆− 𝑑 < 𝜆 and some other node 𝑣′ ̸= 𝑣 in some tree.
Then the labels of 𝑣 and 𝑣′ collide only with 2−𝑚𝜆 probability as in the proof of Lemma 4.5. Taking a union
bound over the (at most) 𝑡 · 2𝜆! nodes in all trees, and then another union bound over the 𝑡 · (𝑘𝑑 − 𝑘𝑑−1)
nodes in level 𝜆− 𝑑 in all trees, we get that Pr [ℰ*𝑑] ≤ 𝑡2 · 𝑘𝑑 · 2𝜆! · 2−𝑚𝜆 .

The following lemma will be used to bound the probability that PrevQ occurs.

Lemma 4.7. Conditioned on ¬Collide, if a node 𝑣 in T𝑥0,𝐻𝜆
is unreachable then its label is uniformly random

in {0, 1}𝑚𝜆 ∖ Labels (𝑇𝑥0,𝐻 ,𝒬), even conditioned on the entire adversarial view.

Proof. Let (𝑒1, . . . , 𝑒𝑘) be the path from the root 𝑣0 to node 𝑣 in the tree, where 𝑣0, 𝑣1, . . . , 𝑣𝑘 = 𝑣 are
the nodes on the path, and 𝑦0 = 𝑥0, 𝑦1, . . . , 𝑦𝑘−1, 𝑦𝑘 = 𝑦 are the corresponding node labels. Since we
have conditioned on ¬Collide, these labels are unique and appear nowhere else in the tree. Moreover, 𝑣
is unreachable so there exists an 1 ≤ 𝑙 ≤ 𝑘 such that (𝑒𝑙, 𝑦𝑙−1) /∈ 𝒬. Let 𝑙* be the largest such 𝑙. Then
𝑦𝑙* is uniformly distributed in {0, 1}𝑚𝜆 ∖ Labels (𝑇𝑥0,𝐻 ,𝒬), even conditioned on the entire adversarial view,
because 𝑦𝑙* is unique. Moreover, it uniquely determines the label 𝑦, so 𝑦 is also uniformly distributed in
{0, 1}𝑚𝜆 ∖ Labels (𝑇𝑥0,𝐻 ,𝒬) because 𝐻𝜆 is a random function and we have conditioned on ¬Collide.

Lemma 4.8. Pr [PrevQ|¬Collide] = negl (𝜆).

Proof. Let 𝑣 be an unreachable node in the tree, and let 𝑦 be its label. Since we have conditioned on ¬Collide
then all node labels in the tree T𝑥0,𝐻𝜆

are unique, so 𝑦 appears nowhere else in the tree. Therefore, because
𝑣 is unreachable then Lemma 4.7 guarantees that 𝑦 is uniformly distributed in {0, 1}𝑚𝜆 ∖ Labels (𝑇𝑥0,𝐻 ,𝒬)
even when conditioned on the entire adversarial view. Therefore, the probability that a single query of 𝒜 is
of the form (𝑖, 𝑦) for some 𝑖 is 𝜆

2𝑚𝜆−2𝜆! , and using the union bound the probability that one of 𝒜’s queries

20

is of the form (𝑖, 𝑦) is at most |𝒬|·𝜆
2𝑚𝜆−2𝜆! . Taking a union bound over the (at most) 2𝜆! nodes in the tree,

Pr [PrevQ|¬Collide] ≤ 2𝜆! · |𝒬| · 𝜆2𝑚𝜆 − 2𝜆! ≤ 2
√

2𝜋𝑒𝜆 ·
(︂

𝜆

𝑒

)︂𝜆

· |𝒬| · 𝜆 · 1
𝜆2(𝜆+1) − 2𝜆!

= negl (𝜆)

where against we used the fact that 𝑛! <
√

2𝜋𝑒𝑛
(︀

𝑛
𝑒

)︀𝑛, and the rightmost equality holds because |𝒬| =
poly (𝜆).

Indistinguishability of adversarial views conditioned on the events. Let V0, V1 denote the view
of 𝒜 when the challenger in the distinguishing game of Definition 3.7 chooses 𝑏 = 0, 𝑏 = 1, respectively. We
show that the views are indistinguishable, conditioned on none of the events discussed above occurring.

Lemma 4.9. Conditioned on (¬Collide ∧ ¬PrevQ ∧ ¬Reach), then 𝑑TV (V0, V1) = negl (𝜆).

Proof. The adversarial view V⋆ for ⋆ ∈ {0, 1} consists of three parts. First, it includes the sample. Second, it
includes the restriction of 𝐻𝜆’s “truth” table to the queries in 𝒬. Third, it contains a partial view of the tree
T𝑥0,𝐻𝜆

, which includes the tree structure and the edge labels, as well as the node labels which correspond to
queries 𝒜 made to 𝐻𝜆. That is, if node 𝑢 in T𝑥0,𝐻𝜆

has label 𝑦, the edge 𝑢→ 𝑣 has label 𝑖, and (𝑖, 𝑦) ∈ 𝒬,
then 𝑣’s label also appears in the partial view of the tree. We denote this tree with partial node labels by
𝑇 ′𝑥,𝐻𝜆

. Notice that if 𝑥𝜆 is removed from V0, V1 then the views are identical.
Conditioned on ¬Collide ∧ ¬PrevQ, only reachable nodes have labels in T′𝑥0,𝐻𝜆

. Conditioned on ¬Reach,
the special leaf is unreachable so its label does not appear in T′𝑥0,𝐻𝜆

. Conditioned on ¬Collide, this label
appears nowhere else in the tree. Therefore, 𝑥𝜆 is uniformly random in V1, and uniformly distributed over
a set of size 2𝑚𝜆 − 2𝜆! in V0, so 𝑑TV (V0, V1) = negl (𝜆).

Bounding the adversarial advantage through permutation guessing. Assume that 𝒜 has a no-
ticeable advantage in guessing 𝑏 in the distinguishing game of Definition 3.7. Then Lemma 4.9 guarantees
that at least one of the events Collide, PrevQ, Reach occur with noticeable probability. Combining this with
Lemmas 4.5 and 4.8, if 𝒜 has a noticeable advantage then Reach happens with some noticeable probability
𝑝 (both when 𝑏 = 0 and when 𝑏 = 1). We now derive a contradiction by showing that 𝒜 can be used to
guess a uniformly random permutation with probability 𝑝, which is impossible. We proceed to formalize
this intuition. We define a permutation guessing game in which, roughly, the adversarial goal is to guess a
random permutation on which it has no information.

Definition 4.10 (Permutation Guessing Game). The permutation guessing game is parameterized by a
security parameter 𝜆, and run between an adversary 𝒜𝑝 and a challenger 𝒞𝑝:

∙ 𝒞𝑝 picks a random permutation 𝜋 ∈ 𝑆𝜆, and sends “Init” to 𝒜𝑝.

∙ The game proceeds for poly (𝜆) rounds, where in each round 𝒜𝑝 sends a permutation 𝜋′′ ∈ 𝑆𝜆 to 𝒞𝑝.

∙ 𝒜𝑝 wins if in one of the rounds 𝜋′′ = 𝜋.

Clearly, any (even computationally unbounded) adversary wins the permutation guessing same only with
negl (𝜆) probability.

Lemma 4.11. Conditioned on ¬Collide ∧ ¬PrevQ, there exists an adversary 𝒜𝑝 that wins the permutation
guessing game with probability at least Pr [Reach].

Proof. We describe the adversary 𝒜𝑝, which runs 𝒜 as a sub-routine. 𝒜𝑝 chooses 𝑠1, . . . , 𝑠𝜆, 𝑥0, 𝑥𝜆 ∈𝑅

{0, 1}𝑚𝜆 . It sends ((𝑠1, SEED) , . . . , (𝑠𝜆, SEED) , (𝑥0, INPUT) , (𝑥𝜆, OUTPUT)) to 𝒜 as the sample. It answers all
of 𝒜’s queries to 𝐻𝜆 randomly but consistently. That is, 𝒜𝑝 records a table of past queries of 𝒜 to the
oracle. Given a query (𝑖, 𝑦), if it already appears in the table then 𝒜𝑝 returns the value written in that entry.
Otherwise, 𝒜𝑝 picks the answer uniformly at random, and records the query in the table. Additionally, 𝒜𝑝

21

maintains the partial permutation tree T′𝑥0,𝐻* (here, we use 𝐻* to denote the oracle which 𝒜𝑝 simulates
for 𝒜). Whenever a leaf 𝑣 in the tree becomes reachable, 𝒜𝑝 asks its challenger about the permutation 𝜋′′

defined by the path (𝑒1, . . . , 𝑒𝜆) to 𝑣, namely 𝜋′′ (𝑖) = 𝑒𝑖 for every 𝑖 ∈ [𝜆]. Notice that if Reach happens
then 𝒜𝑝 wins (here, we think of the random permutation 𝜋 as being both the permutation chosen by the
challenger, and the permutation underlying 𝒟𝐻𝜆

𝜆,0 ; this is possible since both are uniformly random in 𝑆𝜆).
Conditioned on ¬Collide ∧ ¬PrevQ, 𝒜’s view in the reduction is identical to V1, so Reach occurs with the
same probability as in V1.

The following is a direct corollary of Lemma 4.11 because the permutation guessing game can be won
only with negligible probability.

Corollary 4.12. Pr [Reach|¬Collide ∧ ¬PrevQ] = negl (𝜆).

The following is a direct corollary of Corollary 4.12 and Lemmas 4.5, 4.8 and 4.9.

Corollary 4.13. Any adversary 𝒜 in the distinguishing game of Definition 3.7 that obtains a single sample
from its challenger has only a negligible advantage in guessing 𝑏.

Proof sketch for Proposition 4.3. We now prove Proposition 4.3.

Proof sketch for Proposition 4.3. Notice first that 𝒫 is computationally easy, even given a single sample.
Indeed, given a sample ((𝑠1, SEED) , . . . , (𝑠𝜆, SEED) , (𝑥0, INPUT) , (𝑥𝜆, OUTPUT)) an adversary can sequentially
call the oracle to compute 𝑥𝑖 = 𝐻𝜆

(︀
𝑠′𝑖−1, 𝑥𝑖−1

)︀
and check whether the outcome of the 𝜆’th call is 𝑥𝜆. This

will hold with probability 1 for a sample from 𝒟0, but will only hold with probability 2−𝑚𝜆 ≤ 2−𝜆 for
samples from 𝒟1.

To show statistical hardness of Perm (𝒫), we describe how to extend the argument described above to hold
for an adversary who receives 𝑡 = poly (𝜆) samples from its challenger. In this case, we have 𝑡 permutation
trees - one for every sample received from the challenger, each with its own special leaf.

∙ Recall that Collide* is the event that there exist two nodes 𝑣, 𝑣′ in two permutation trees T𝑥,𝐻𝜆
, T𝑥′,𝐻𝜆

respectively (possibly with 𝑥 = 𝑥′) that have the same label. Then as discussed in Remark 4.6,
Pr [Collide*] = negl (𝜆).

∙ Lemma 4.7 now holds (with a similar proof) when conditioning on ¬Collide* and the entire adversarial
view (which includes all samples).

∙ Let PrevQ* be the event that in some tree T𝑥,𝐻𝜆
there exists a node 𝑣 with label 𝑦 such that 𝑣 is not

reachable, but 𝒜 queried 𝐻𝜆 about (𝑖, 𝑦) for some 𝑖 ∈ [𝜆]. A similar proof to the proof of Lemma 4.8
shows that Pr [PrevQ*|¬Collide*] = negl (𝜆). (The only difference is that the bound now increases by a
multiplicative factor of 𝑡 due to the larger number of nodes over all permutation trees; since 𝑡 = poly (𝜆)
the upper bound is still negl (𝜆).)

∙ Let Reach* be the event that the special leaf of some tree T𝑥,𝐻𝜆
is reachable at the end of the game.

We can now prove that conditioned on (¬Collide* ∧ ¬PrevQ* ∧ ¬Reach*), it holds that 𝑑TV (V0, V1) =
negl (𝜆). The proof is similar to the proof of Lemma 4.9, where the adversarial view now includes 𝑡
samples and 𝑡 partial permutation trees, and we note that if the special leaves in all of these permutation
trees are removed then the views are identical. Similarly to the proof of Lemma 4.9, conditioning on
(¬Collide* ∧ ¬PrevQ* ∧ ¬Reach*) guarantees that none of these special leaves appear in the views.

∙ Finally, we can prove, similarly to the proof of Lemma 4.11, that conditioned on ¬Collide* ∧ ¬PrevQ*,
there exists an 𝒜𝑝 that wins the permutation guessing game with probability at least Reach*, which
means Pr [Reach*|¬Collide* ∧ ¬PrevQ*] = negl (𝜆). The adversary 𝒜𝑝 answers all sample queries of 𝒜
as in the proof of Lemma 4.11, maintains a permutation tree for each sample, and whenever a leaf in
any of the trees becomes reachable it asks its challenger about the corresponding permutation. We
conclude from the discussion above that Pr [¬Collide* ∧ ¬PrevQ* ∧ ¬Reach*] ≥ 1 − negl (𝜆), so V0, V1
are statistically close.

22

5 Hard Permuted Puzzles in the Plain Model
In this section we discuss permuted puzzle problems based on hidden permuted kernels. At a high level,
these puzzles have the following structure. First, the distributions 𝒟0,𝒟1 are associated with a group 𝐺 with
generator 𝑔, and a uniformly random public “constraint vector” �⃗�. Samples from 𝒟0 and 𝒟1 are vectors in
𝐺𝑚, of the form 𝑔�⃗�. Specifically, 𝒟1 samples a uniformly random vector in 𝐺𝑚, whereas 𝒟0 samples a vector
�⃗� that is uniformly random subject to being orthogonal to �⃗�. Intuitively, since 𝒟1 is uniformly random, weak
computational hardness of the permuted puzzle problem implies computational hardness by Lemma 3.16.
Remark 5.1 (An alternative formulation of the problem). In the high-level blueprint of a permuted
puzzle problem described above, the constraint vector �⃗� is given “in the clear” (namely, we assume it is public,
and indistinguishability does not rely on the secrecy of �⃗�), and the samples �⃗� are permuted according to a
random permutation 𝜋 ∈ 𝑆𝑛, namely, the adversary obtains 𝜋 (�⃗�) (recall that 𝜋 (�⃗�) =

(︀
𝑥𝜋−1(1), . . . , 𝑥𝜋−1(𝑛)

)︀
Let 𝒞 denote the set of “good” vectors �⃗�, i.e., vectors that satisfy the requirement, and let 𝐺𝑛 denote
the domain over which 𝒟0,𝒟1 are defined. Let 𝒟′𝑏

def=
(︁

�⃗�, (𝜋 (�⃗�𝑖))𝑖∈[𝑞]

)︁
�⃗�←𝒞,𝜋←𝑆𝑛,�⃗�𝑖←𝒟𝑏

denote the dis-
tribution over the adversary’s view in the simplified distinguishing game of Definition 3.12, where 𝑏 is
the challenge bit, and 𝑞 is the number of samples the adversary receives from the challenger. Denote
𝒟′′𝑏

def=
(︁

𝜋 (�⃗�) , (�⃗�𝑖)𝑖∈[𝑞]

)︁
�⃗�←𝒞,𝜋←𝑆𝑛,�⃗�𝑖←𝒟𝑏

. The permuted puzzle problems described in this section will have
the property that 𝒟′𝑏 ≈ 𝒟′′𝑏 for 𝑏 ∈ {0, 1}, which will be used in the security proofs.

5.1 Permuted Puzzles and the Learning Parity With Noise (LPN) Assumption
We now describe how to cast the Learning Parity with Noise (LPN) assumption as a permuted puzzle.

Notation. For 𝑛 ∈ N, let ℛ𝑛 denote the distribution that outputs a uniformly random �⃗� ← F𝑛
2 . For a

fixed �⃗� ∈ F𝑛
2 , and 𝛾 ∈ (0, 1), let 𝒟LPN,�⃗�,𝛾 denote the distribution over F𝑛

2 that with probability 𝛾 outputs a
uniformly random �⃗� ← F𝑛

2 , and otherwise (with probability 1 − 𝛾) outputs a uniformly random element of
the set {�⃗� ∈ F𝑛

2 : �⃗� · �⃗� = 0}.

Assumption 5.2 (Learning Parity with Noise (LPN)). Let 𝛾 ∈ (0, 1). The 𝛾-Learning Parity with Noise
(𝛾-LPN) assumption conjectures that for every polynomial-sized oracle circuit ensemble 𝒜 = {𝒜𝜆}𝜆 there
exists a negligible function 𝜖 (𝜆) such that for every 𝜆,

AdvLPN
𝒜 (𝜆) def=

⃒⃒⃒⃒
⃒ Pr
�⃗�←F𝜆

2

[︀
𝒜𝒟LPN,�⃗�,𝛾 (1𝜆) = 1

]︀
− Pr

[︀
𝒜ℛ𝜆(1𝜆) = 1

]︀⃒⃒⃒⃒⃒ ≤ 𝜖 (𝜆) .

Remark 5.3 (Equivalence to standard LPN formulation). Recall that the standard LPN assumption
states that for all 0 < 𝛾 < 1

2 , any polynomial-time adversary obtains only a negligible advantage in distin-
guishing between (polynomially many samples from) the following distributions:

∙ (⃗𝑎𝑖, ⟨⃗𝑎𝑖, �⃗�⟩ + 𝑒𝑖)𝑚
𝑖=1, where for every 𝑖, �⃗�𝑖 ← F𝑛

2 and 𝑒𝑖 is sampled from a Bernoulli distribution with
Pr[𝑒𝑖 = 1] = 𝛾; vs.

∙ (⃗𝑎𝑖, 𝑢𝑖)𝑚
𝑖=1, where each (⃗𝑎𝑖, 𝑢𝑖) is sampled uniformly at random from F𝑛+1

2 .

We now show that if the standard LPN assumption holds with parameters 𝜆− 1, 𝛾/2, then Assumption 5.2
holds with parameters 𝜆, 𝛾, where the distinguishing advantage increases by at most 2−𝜆. To see why, notice
that in Assumption 5.2 if �⃗� = 0 then 𝒟LPN,�⃗�,𝛾 and ℛ𝜆 are identically distributed, whereas in the standard
LPN formulation they might be distinguishable (with some advantage ≤ 1). Conditioned on �⃗� ̸= 0, in 5.2
there exists at least one coordinate 𝑖 ∈ [𝜆] such that the 𝑖’th coordinate of a sample from 𝒟LPN,�⃗�,𝛾 is a noisy
linear function of the other coordinates. Moreover, since �⃗� is uniformly random over non-zero vectors, 𝑖 is
uniformly distributed in [𝜆]. In contrast, in the standard LPN formulation this “special” coordinate is the
last one. Now, assume Assumption 5.2 does not hold, and let D be the corresponding distinguisher. We use

23

D to break the standard LPN assumption with parameters 𝜆− 1, 𝛾/2. The distinguisher D′ for LPN picks
a random 𝑖 ← [𝜆], and then emulates D. Whenever D asks for a sample, D′ obtains a sample �⃗�, 𝑏 from its
oracle, and forwards 𝑎1, . . . , 𝑎𝑖−1, 𝑏, 𝑎𝑖, . . . , 𝑎𝜆−1 to D. If the oracle of D′ is the uniform distribution, then so
is the oracle it simulates for D. Otherwise, the location of the “special” coordinate in samples provided to D
is distributed as in samples from 𝒟LPN,�⃗�,𝛾 . Moreover, for every sample, with probability 1−𝛾, the error term
𝑒 = 0, in which case the sample provided to D is orthogonal to �⃗�; and with the remaining 𝛾 probability, 𝑒 is
uniformly random, in which case the sample provided to D is uniformly random. Therefore, D′ perfectly
simulates 𝒟LPN,�⃗�,𝛾 for D, and obtains the same distinguishing advantage.

We now describe how to view Assumption 5.2 as assuming that Perm(𝒫) is computationally hard for
some computationally easy puzzle 𝒫. For 𝑖 ∈ [𝑛], we denote by v⃗𝑛,𝑖 the string 1𝑖 ·0𝑛−𝑖 (i.e., a canonical 𝑛-bit
string of Hamming weight 𝑖).

Construction 5.4 (Permuted puzzle problem from LPN). For a noise parameter 𝛾 ∈ (0, 1/2), we define a
puzzle problem 𝒫 =

{︀
(𝒦𝜆, {Π𝑘}𝑘∈𝒦𝜆

)
}︀

by the following KeyGen and Samp algorithms:

∙ KeyGen
(︀
1𝜆
)︀

samples a weight w according to the binomial distribution over [𝑛]. It outputs w as the
secret key (there is no public key).
For a key 𝑘 generated by KeyGen

(︀
1𝜆
)︀
, the corresponding string-distinguishing problem Π𝑘 =(︀

𝑛, Σ,𝒟0,𝒟1
)︀

has string length 𝑛 = 𝜆 and alphabet Σ = F2.

∙ Samp (w, 𝑏) outputs a sample from 𝒟𝜆,𝑏, where 𝒟𝜆,0 = 𝒟LPN,⃗v𝜆,w,𝛾 , and 𝒟𝜆,1 = ℛ𝜆.

Proposition 5.5. For any constant 𝛾 ∈ (0, 1/2), the 𝛾-LPN assumption is equivalent to the computational
hardness of the permuted puzzle problem Perm (𝒫𝛾) of Construction 5.4.

Proof. Now observe that the permuted distribution 𝒟′𝜆,0 of the permuted puzzle is exactly 𝒟LPN,�⃗�,𝛾 , where
�⃗� = 𝜋 (⃗v𝜆,w) for a uniformly random 𝜋 ∈ 𝑆𝜆, and a weight w ∈ [𝜆] which was sampled according to
the binomial distribution, so �⃗� is uniformly random in F𝑛

2 . Therefore, the distinguishing advantage in
the distinguishing game of the permuted puzzle corresponds exactly to the 𝛾-LPN assumption (because
additionally 𝒟′𝜆,1 = ℛ𝜆).

Remark 5.6 ((Unpermuted) puzzle problem is computationally easy). We note that the (unper-
muted) puzzle problem of Construction 5.4 is computationally easy. Indeed, in the unpermuted puzzle
problem there are only 𝜆 possible “secret” vectors (i.e., v⃗𝜆,1, . . . , v⃗𝜆,𝜆). Given a polynomial number of sam-
ples from 𝒟𝜆,0 the adversary can determine, with overwhelming probability, which of these is the secret
vector used in 𝒟𝜆,0, and can then determine (with constant advantage) whether the challenge sample is from
𝒟𝜆,0 or 𝒟𝜆,1.

5.2 Permuted Puzzles Based on DDH
In this section we describe a permuted puzzle problem based on the DDH assumption. We first recall the
standard DDH assumption, and describe an equivalent formulation which we use.

Definition 5.7 (Group Samplers). A group sampler is a probabilistic polynomial-time algorithm 𝒢 that
on input 1𝜆 outputs a pair (𝐺, 𝑔), where 𝐺 is a multiplicative cyclic group of order 𝑝 = Θ(2𝜆), and 𝑔 is a
generator of 𝐺. We assume that 𝑝 is included in the group description 𝐺, and that there exists an efficient
algorithm that given 𝐺 and descriptions of group elements 𝑔1, 𝑔2 outputs a description of 𝑔1 · 𝑔2.

Definition 5.8 (DDH assumption). For any cyclic group 𝐺 of order 𝑝 with generator 𝑔, define the following
distributions:

∙ 𝒟DDH(𝐺, 𝑔) is uniform over the set
{︀

(𝑔𝑥, 𝑔𝑦, 𝑔𝑥𝑦) : 𝑥, 𝑦 ∈ Z𝑝

}︀
.

∙ ℛDDH(𝐺, 𝑔) is uniform over 𝐺3.

24

For a group sampler 𝒢, the DDH assumption over 𝒢 conjectures that for any polynomial-sized circuit
family 𝒜 = {𝒜𝜆}𝜆 there exists a negligible function 𝜖 (𝜆) such that for every 𝜆:

AdvDDH(𝒢)
𝒜 (𝜆) def=

⃒⃒⃒⃒
⃒⃒⃒ Pr

(𝐺,𝑔)←𝒢(1𝜆)
𝑣←𝒟DDH(𝐺,𝑔)

[𝒜𝜆 (𝑣) = 1]− Pr
(𝐺,𝑔)←𝒢(1𝜆)
𝑣←ℛDDH(𝐺,𝑔)

[𝒜𝜆 (𝑣) = 1]

⃒⃒⃒⃒
⃒⃒⃒ ≤ 𝜖 (𝜆) .

We will use the matrix version of DDH, defined next. Informally, in matrix DDH the adversary is
given many vectors of the form (𝑔𝑥1 , . . . , 𝑔𝑥𝑛), and the conjecture is that no polynomial-time adversary
can distinguish between the case that the (𝑥1, . . . 𝑥𝑛) are sampled uniformly from Z𝑛

𝑝 , and the case that
(𝑥1, . . . , 𝑥𝑛) are sampled from a random 1-dimensional subspace of Z𝑛

𝑝 .

Definition 5.9 (Matrix DDH assumption). For a cyclic group 𝐺 of order 𝑝, and 𝑛, 𝑞 ∈ N, define

Rk𝑖

(︀
𝐺𝑞×𝑛

)︀
=
{︁

𝑔𝐴 = (𝑔𝑎𝑖𝑗)𝑖∈[𝑞],𝑗∈[𝑛] : 𝐴 ∈ Z𝑞×𝑛
𝑝 , rank (𝐴) = 𝑖

}︁
.

Let 𝒢 be as in Definition 5.8, and let 𝑛 = 𝑛 (𝜆) , 𝑞 = 𝑞 (𝜆) be polynomials such that 𝑞 (𝜆) ≥ 𝑛 (𝜆) for every
𝜆. The matrix DDH assumption over 𝒢 conjectures that for any polynomial-sized circuit family 𝒜 = {𝒜𝜆}𝜆

there exists a negligible function 𝜖 (𝜆) such that for every 𝜆:

AdvM-DDH(𝒢)
𝒜 (𝜆) def=

⃒⃒⃒⃒
⃒⃒⃒⃒ Pr

(𝐺,𝑔)←𝒢(1𝜆)
𝑣←Rk𝑛(𝐺𝑞×𝑛)

[𝒜𝜆 (𝑣) = 1]− Pr
(𝐺,𝑔)←𝒢(1𝜆)

𝑣←Rk1(𝐺𝑞×𝑛)

[𝒜𝜆 (𝑣) = 1]

⃒⃒⃒⃒
⃒⃒⃒⃒ ≤ 𝜖 (𝜆) .

Boneh et al. proved [BHHO08, Lemma 1] that the DDH assumption over 𝒢 implies the matrix DDH
assumption over 𝒢:

Imported Theorem 5.10 (DDH implies matrix-DDH [BHHO08]). Let 𝜆 be a security parameter, let 𝒢 be
as in Definition 5.8, and let 𝑛 = 𝑛 (𝜆) , 𝑞 = 𝑞 (𝜆) be polynomials. Then for any polynomial-sized adversary
circuit 𝒜M-DDH there exists an adversary 𝒜DDH of size |𝒜M-DDH| + poly (𝑞, 𝑛) such that AdvM-DDH(𝒢)

𝒜M-DDH
(𝜆) ≤

(𝑛− 1) · AdvDDH(𝒢)
𝒜DDH

(𝜆).

We are now ready to define the permuted puzzle problem based on DDH.

Construction 5.11 (Permuted puzzle problem from DDH). Let 𝒢 be as in Definition 5.8. We define a
puzzle problem 𝒫 =

{︀
(𝒦𝜆, {Π𝑘}𝑘∈𝒦𝜆

)
}︀

by the following KeyGen and Samp algorithms:

∙ KeyGen on input 1𝜆 samples (𝐺, 𝑔)← 𝒢(1𝜆), where 𝒢 is the group sampling algorithm of Definition 5.8.
Let 𝑝 denote the order of 𝐺. Then, KeyGen samples a uniformly random vector �⃗� ∈ Z𝑛

𝑝 for 𝑛 = 𝜆2 and
outputs (𝐺, 𝑔, �⃗�) as a public key (there is no secret key).
We note that for any 𝑘 = (𝐺, 𝑔, �⃗�), the corresponding string distinguishing problem Π𝑘 = (𝑛, Σ,𝒟0,𝒟1)
has alphabet Σ = 𝐺.

∙ Samp (𝑘, 𝑏) for 𝑘 = (𝑛, Σ,𝒟0,𝒟1) outputs a sample from 𝒟𝑏, where:

– 𝒟0 is uniform over
{︀

𝑔�⃗� ∈ 𝐺𝑛 : �⃗� · �⃗� = 0
}︀

.
– 𝒟1 is uniform over 𝐺𝑛.

Proposition 5.12. The puzzle problem 𝒫 of Construction 5.11 is computationally easy. Moreover, if 𝒢 is
an ensemble of groups in which the matrix DDH assumption of Definition 5.9 holds, then the corresponding
permuted puzzle problem Perm(𝒫) is computationally hard.

We note that 𝒫 is computationally easy in an extremely strong sense: a polynomial-sized adversary can
obtain advantage 1− negl (𝜆) in the distinguishing game.

25

Proof. We first show that 𝒫 is computationally easy, even given only the challenge sample (𝑔𝑥1 , . . . , 𝑔𝑥𝑛).
Indeed, for every 𝑖 ∈ [𝑛] the adversary computes ℎ𝑖 = (𝑔𝑥𝑖)𝑢𝑖 , and outputs 1 if and only if

∏︀𝑛
𝑖=1 ℎ𝑖 = id,

where id is the identity of the group. If (𝑔𝑥1 , . . . , 𝑔𝑥𝑛) was sampled from 𝒟0 then the adversary outputs
1 with probability 1, otherwise he outputs 1 with probability 1/𝑝 = 2−Ω(𝜆) (he outputs 1 only if 𝑥𝑛 =
−𝑢−1

𝑛 ·
∑︀𝑛−1

𝑖=1 𝑥𝑖𝑢𝑖, and 𝑥𝑛 is random in Z𝑝). Therefore, the adversary’s advantage in the distinguishing game
of Definition 3.7 is 1− 2−Ω(𝜆).

We now prove that Perm(𝒫) is computationally hard. For any key 𝑘, the distribution 𝒟1 is permutation-
invariant (because it is random) and can be sampled from without the secret key (because there is no secret
key). Therefore, it suffices to prove weak computational hardness because by Lemma 3.16 this implies
computational hardness. We proceed to prove weak computational hardness.

To prove weak computational hardness, we need to show that the view of an adversary in the simplified
distinguishing game of Definition 3.12 when 𝑏 = 0 is computationally indistinguishable from the view when
𝑏 = 1. Without loss of generality, suppose that there is a polynomial 𝑞(𝜆) ≥ 𝑛 so that on every input, the
adversary makes exactly 𝑞(𝜆) queries. In this case, the adversary’s view is (𝐺, 𝑔, 𝑔𝜋(�⃗�1), . . . , 𝑔𝜋(�⃗�𝑞)), where
𝑔�⃗�1 , . . . , 𝑔�⃗�𝑞 are sampled independently from 𝒟𝑏 and 𝜋 is a uniformly random permutation of [𝑛].

We will prove the indistinguishability of the cases 𝑏 = 0 and 𝑏 = 1 with a hybrid argument. We define
ensembles of hybrid distributions {ℋ𝑖

𝜆}𝜆∈Z+ for each 𝑖 ∈ [4]. To obtain a sample from ℋ𝑖
𝜆:

1. Sample (𝐺, 𝑔)← 𝒢(1𝜆). Let 𝑝 denote the order of 𝐺.

2. Sample a vector �⃗� uniformly at random from Z𝑛
𝑝 , and sample 𝜋 ← 𝑆𝑛 where 𝑛 = 𝜆2. Let �⃗� denote

𝜋(�⃗�).

3. Choose a subspace 𝑉 ⊆ 𝑍𝑛
𝑝 in a way that depends on 𝑖 (described in Table 1 below).

4. Sample �⃗�1, . . . , �⃗�𝑞 independently and uniformly from 𝑉 .

5. Output (𝐺, 𝑔, �⃗�, 𝑔�⃗�1 , . . . , 𝑔�⃗�𝑞).

Table 1: The subspaces from which the group exponents (�⃗�𝑗)𝑗∈[𝑞] are sampled in each hybrid distribution.
Hybrid 𝑉
ℋ1

𝜆 {�⃗� : �⃗� · �⃗� = 0}
ℋ2

𝜆 {𝛼�⃗� : 𝛼 ∈ Z𝑝} for random �⃗� ∈ Z𝑛
𝑝 s.t. �⃗� · �⃗� = 0

ℋ3
𝜆 {𝛼�⃗� : 𝛼 ∈ Z𝑝} for random �⃗� ∈ Z𝑛

𝑝

ℋ4
𝜆 Z𝑛

𝑝

We will show in Claims 5.13 and 5.14 below that ℋ1
𝜆 is identically distributed to the view of an adversary

in the simplified distinguishing game of Definition 3.12 when 𝑏 = 0, and similarlyℋ4
𝜆 is identically distributed

to the view when 𝑏 = 1. In Claim 5.15, we show that if the DDH assumption on 𝒢 holds, then the ensembles
{ℋ1

𝜆} and {ℋ2
𝜆} are computationally indistinguishable, and so too are {ℋ3

𝜆} and {ℋ4
𝜆}. Finally, in Claim 5.16,

we show that {ℋ2
𝜆} and {ℋ3

𝜆} are statistically close.

Claim 5.13. For any 𝜆 ∈ N, ℋ1
𝜆 is identically distributed to the view of an adversary in the simplified

distinguishing game of Definition 3.12 when 𝑏 = 0.

Proof. The distributions that we need to show equivalent are those of (𝐺, 𝑔, �⃗�, 𝑔𝜋(�⃗�1), . . . , 𝑔𝜋(�⃗�𝑞)) and(︀
𝐺, 𝑔, 𝜋(�⃗�), 𝑔�⃗�1 , . . . , 𝑔�⃗�𝑞

)︀
, when sampling

(𝐺, 𝑔)← 𝒢(1𝜆)
�⃗�← Z𝑛

𝑝 , where 𝑝 = |𝐺|
𝜋 ← 𝑆𝑛

For 𝑖 = 1, . . . , 𝑞:
�⃗�𝑖 ←

{︀
�⃗� : �⃗� · �⃗� = 0

}︀
.

(3)

26

This follows from the following observations.

∙ Conditioned on any 𝐺 and 𝑔, the distributions of (�⃗�, 𝜋) and of
(︀
𝜋(�⃗�), 𝜋

)︀
are identical. This follows

from the fact that �⃗� is uniformly random, so for any permutation 𝜋, the distribution of 𝜋(�⃗�) is uniform
on Z𝑛

𝑝 , even conditioned on 𝜋.

∙ Consequently:

– Conditioned on any (𝐺, 𝑔, �⃗�), the distribution of
(︀
𝜋(�⃗�1), . . . , 𝜋(�⃗�𝑞)

)︀
can be sampled as follows:

Sample 𝜋 ← 𝑆𝑛 (this is identical to the distribution of 𝜋 in (3) conditioned on (𝐺, 𝑔, �⃗�))
For 𝑖 = 1, . . . , 𝑞:

Sample �⃗�𝑖 ←
{︀

�⃗� : �⃗� · �⃗� = 0
}︀

.
Output

(︀
𝜋(�⃗�1), . . . , 𝜋(�⃗�𝑞)

)︀
.

(4)

– Conditioned on any
(︀
𝐺, 𝑔, 𝜋(�⃗�)

)︀
, the distribution of �⃗�1, . . . , �⃗�𝑞 can be sampled as follows:

Sample �̄� ← 𝑆𝑛 (this is identical to the distribution of 𝜋−1 in (3) conditioned on
(︀
𝐺, 𝑔, 𝜋(�⃗�)

)︀
)

For 𝑖 = 1, . . . , 𝑞:
Sample �⃗�𝑖 ←

{︀
�⃗� : �⃗� · �̄�

(︀
𝜋(�⃗�)

)︀
= 0
}︀

.
Output (�⃗�1, . . . , �⃗�𝑞).

(5)

∙ The inner product operation is permutation-symmetric, i.e. for any permutation 𝜋 ∈ 𝑆𝑛 and any
vectors �⃗� and �⃗�, it holds that �⃗� · �⃗� = 𝜋(�⃗�) ·𝜋(�⃗�). Applying this to (5) above (with �̄�−1, �⃗�, and �̄�(𝜋(�⃗�)),
we obtain that the sampling procedure from (5) is equivalent to the following procedure:

Sample �̄� ← 𝑆𝑛

For 𝑖 = 1, . . . , 𝑞:
Sample �⃗�𝑖 ←

{︀
�⃗� : �̄�−1(�⃗�) · 𝜋(�⃗�) = 0

}︀
.

Output (�⃗�1, . . . , �⃗�𝑞).

(6)

But this is equivalent to:
Sample �̄� ← 𝑆𝑛

For 𝑖 = 1, . . . , 𝑞:
Sample �⃗�𝑖 ←

{︀
�⃗� : �⃗� · 𝜋(�⃗�) = 0

}︀
.

Output
(︀
�̄�(�⃗�1), . . . , �̄�(�⃗�𝑞)

)︀
,

(7)

which is clearly equivalent to the sampling procedure in (4) above (for the vector 𝜋(�⃗�)).

The following claim can be proved similarly to Claim 5.13.

Claim 5.14. For any 𝜆 ∈ N, ℋ4
𝜆 is identically distributed to the view of an adversary in the simplified

distinguishing game of Definition 3.12 when 𝑏 = 1.

Claim 5.15. Assume that the DDH assumption holds in 𝒢. Then:

1. The distribution ensembles {ℋ1
𝜆} and {ℋ2

𝜆} are computationally indistinguishable

2. The distribution ensembles {ℋ3
𝜆} and {ℋ4

𝜆} are computationally indistinguishable.

Proof. We show that (1) holds by reduction to the matrix-DDH problem over matrices of dimension 𝑞 ×
(𝑛− 1). The argument for (2) is similar.

Suppose for contradiction that there is a non-uniform polynomial time algorithm 𝒜 that makes 𝑞 oracle
queries and obtains a non-negligible advantage 𝜖 = 𝜖 (𝜆) in distinguishing samples from ℋ1

𝜆 vs. ℋ2
𝜆, for

every 𝜆. We construct a polynomial time adversary 𝒜M-DDH such that AdvM-DDH
𝒜M-DDH

(𝜆) = 𝜖 (𝜆), which is a
contradiction to the DDH assumption by Imported Theorem 5.10.
𝒜M-DDH on input a security parameter 1𝜆, a group 𝐺 with generator 𝑔 and order 𝑝, and matrix 𝐴 ∈

𝐺𝑞×(𝑛−1) (either from Rk𝑛−1
(︀
𝐺𝑞×(𝑛−1))︀ or Rk1

(︀
𝐺𝑞×(𝑛−1))︀) operates as follows:

27

1. Samples �⃗� ∈ Z𝑛
𝑝 exactly as it is chosen in ℋ1

𝜆, and samples a random permutation 𝜋 ← 𝑆𝜆.

2. Constructs the 𝑞×𝑛 matrix 𝐴′ which is obtained from 𝐴 by appending to each row (𝑔𝑥1 , . . . , 𝑔𝑥𝑛−1) the
group element 𝑔−𝑢−1

𝑛 ·
∑︀𝑛−1

𝑖=1
𝑥𝑖𝑢𝑖 . (Notice that this gives �⃗� = (𝑥1, . . . , 𝑥𝑛), for 𝑥𝑛

def= −𝑢−1
𝑛 ·

∑︀𝑛−1
𝑖=1 𝑥𝑖𝑢𝑖,

which satisfies �⃗� · �⃗� = 0.) Let 𝑔�⃗�𝑖 denote the 𝑖𝑡ℎ row of 𝐴′.

3. Invokes 𝒜 on input
(︀
𝐺, 𝑔, 𝜋(�⃗�), 𝑔�⃗�1 , . . . , 𝑔�⃗�𝑞

)︀
.

𝒜M-DDH runs in polynomial time because 𝒜 does, because generating 𝐴′ from 𝐴 only requires a polynomial
number of exponentiations and multiplications in 𝐺 as well as computing the multiplicative inverse of a
polynomial number of field elements. Moreover, if 𝐴 ∈ Rk𝑛−1

(︀
𝐺𝑞×(𝑛−1))︀ then the samples provided to

𝒜 are distributed as in ℋ1
𝜆, whereas if 𝐴 ∈ Rk1

(︀
𝐺𝑞×(𝑛−1))︀ then the samples are distributed as in ℋ2

𝜆, so
AdvM-DDH

𝒜M-DDH
(𝜆) = 𝜖 (𝜆).

Claim 5.16. The distribution ensembles {ℋ2
𝜆} and {ℋ3

𝜆} are statistically 𝑒−Ω(𝜆)-close.

Proof. Recall the differences between ℋ2
𝜆 and ℋ3

𝜆. They are defined as the output of the following procedure
(with variations in step 3 depending on whether we are in ℋ2

𝜆 or ℋ3
𝜆):

1. Sample (𝐺, 𝑔)← 𝒢(1𝜆). Let 𝑝 denote the order of 𝐺.

2. Sample a vector �⃗� uniformly at random from Z𝑛
𝑝 , and sample 𝜋 ← 𝑆𝑛 where 𝑛 = 𝜆2.

3. In ℋ2
𝜆, let �⃗� be uniformly random in Z𝑛

𝑝 conditioned on �⃗� · �⃗� = 0.
In ℋ3

𝜆, let �⃗� be uniformly random in Z𝑛
𝑝 .

4. Sample 𝛼1, . . . , 𝛼𝑞 independently from Z𝑝.

5. Output (𝐺, 𝑔, 𝜋(�⃗�), 𝑔𝛼1�⃗�, . . . , 𝑔𝛼𝑞 �⃗�).

Conditioned on any (𝐺, 𝑔) with |𝐺| = 𝑝, it clearly holds in ℋ3
𝜆 that the distribution of

(︀
𝜋(�⃗�), �⃗�

)︀
is uniform

on Z𝑛
𝑝 × Z𝑛

𝑝 . We will show that in ℋ2
𝜆, the distribution of

(︀
𝜋(�⃗�), �⃗�

)︀
is statistically close to uniform on

Z𝑛
𝑝 × Z𝑛

𝑝 . This will imply Claim 5.16 because the distribution of (𝐺, 𝑔, 𝜋(�⃗�), 𝑔𝛼1�⃗�, . . . , 𝑔𝛼𝑞 �⃗�) conditioned on
any (𝐺, 𝑔, 𝜋(�⃗�), �⃗�) is the same in both ℋ2

𝜆 and ℋ3
𝜆.

To see the statistical closeness of
(︀
𝜋(�⃗�), �⃗�

)︀
to uniform, we will consider the following equivalent rejection

sampling procedure for sampling
(︀
𝜋(�⃗�), �⃗�

)︀
:

1. A candidate �⃗�′ for 𝜋(�⃗�) is sampled uniformly at random from Z𝑛
𝑝 .

2. A candidate �⃗� is sampled uniformly at random from Z𝑛
𝑝 .

3. A candidate permutation 𝜋 is sampled uniformly at random from 𝑆𝑛.

4. If 𝜋−1(�⃗�′) · �⃗� = 0, then we output (�⃗�′, �⃗�). Otherwise, we start over from step 1.

Claim 5.17. With all but 𝑒−Ω(𝜆2) probability over the choice of �⃗�′, the distribution of (�⃗�, 𝜋−1(�⃗�′) · �⃗�) con-
ditioned on �⃗�′ is 𝑒−Ω(𝜆2)-close to uniform over Z𝑛

𝑝 × Z𝑝.

Proof. We show that the distributions are close when 𝜋(�⃗�′) has high min entropy even conditioned on �⃗�′,
and show that the min entropy is high with overwhelming probability.

We claim first that for almost all �⃗�′, the distribution of 𝜋(�⃗�′) conditioned on �⃗�′ has high min-entropy.
Indeed, with all but 𝑒−Ω(𝜆2) probability, 𝑢′2𝑖 ̸= 𝑢′2𝑖+1 for at least 𝑛/3 values of 𝑖 ∈ [𝑛/2], in which case the
min entropy of 𝜋 (�⃗�′) is at least 𝑛/3 even conditioned on �⃗�′ (this min-entropy lower bound is easiest to see
when conditioning on the unordered sets {𝜋(2𝑖), 𝜋(2𝑖 + 1)} for all such 𝑖).

View �⃗� as a seed for the pairwise-independent hash family {ℎ�⃗�}, where ℎ�⃗�(�⃗�) = �⃗� · �⃗�. (That is, for
every �⃗�′ ̸= �⃗�, Pr�⃗�←Z𝑛

𝑝
[ℎ�⃗� (�⃗�′) = ℎ�⃗� (�⃗�)] = 1/𝑝.) The leftover hash lemma (see Imported Theorem 5.18

below) states that for these �⃗�′, the distribution of (�⃗�, 𝜋−1(�⃗�′) · �⃗�) conditioned on �⃗�′ is 𝜖-close to uniform for
𝜖 = 2Ω(log 𝑝−𝑛) ≤ 𝑒−Ω(𝜆2), which implies the claim.

28

Imported Theorem 5.18 (Leftover hash lemma). Let ℋ =
{︀

ℎ𝛼 : Z𝑛
𝑝 → Z𝑝

}︀
𝛼

be a family of pairwise
independent hash function (i.e., for every 𝑥, 𝑥′ ∈ Z𝑛

𝑝 , Prℎ𝛼←ℋ [ℎ𝛼 (𝑥) = ℎ𝛼 (𝑥′)] = 1/𝑝). Let 𝑋 be distributed
over Z𝑛

𝑝 with min entropy 𝑘. Then for a uniformly random 𝛼, 𝑑TV ((𝛼, ℎ𝛼 (𝑋)) , (𝛼, 𝑈)) ≤ 2−Ω(𝑘−log 𝑝), where
𝑈 is the uniform distribution over Z𝑝.

Claim 5.19. In the rejection sampling procedure, the number of trials is at most 2𝑝𝜆2 with all but 𝑒−Ω(𝜆2)

probability.

Proof. Each trial is the last one with probability at least 1
𝑝 − 𝑒−Ω(𝜆2) ≥ 1

2𝑝 . Thus, the probability that there

are more than 2𝑝𝜆2 trials is bounded by
(︁

1− 1
2𝑝

)︁2𝑝𝜆2

≤ 𝑒−𝜆2 .

Thus, the rejection sampling procedure described is statistically 2𝑝𝜆2 · 𝑒−Ω(𝜆2)-close to the following:

1. A candidate �⃗�′ for 𝜋(�⃗�) is sampled uniformly at random from Z𝑛
𝑝 .

2. A candidate �⃗� is sampled uniformly at random from Z𝑛
𝑝 .

3. A candidate permutation 𝜋 is sampled uniformly at random from 𝑆𝑛.

4. With probability 1
𝑝 , output (�⃗�′, �⃗�). Otherwise, we start over from step 1, up to 2𝑝𝜆2 times in total. If

the repetition limit is reached, output ⊥.

But clearly the output of this procedure is 𝑒−Ω(𝜆2)-close to uniform on Z𝑛
𝑝 × Z𝑝. Claim 5.16 follows.

Proposition 5.12 now follows from the definition of the hybrids, Lemma 3.16, and Claims 5.13 to 5.16
using a standard hybrid argument.

6 Statistical Query Lower Bound
In this section we discuss a specific permuted puzzle toy problem introduced by [BIPW17], and study its
hardness against a large class of potential adversarial algorithms called statistical-query algorithms. We first
define this class of algorithms in Section 6.1, then present the toy problem in Section 6.2 and prove it is
secure against such algorithms. We prove some useful relevant lemmas in Appendix A.

6.1 Statistical Query Algorithms
Definition 6.1 (Statistical Query Algorithms). Let 𝒫 = (𝒦, {Π𝑘}𝑘∈𝒦) be a puzzle problem. A statistical
𝑞-query algorithm for 𝒢dist,𝑠[𝒫] is a stateful adversary 𝒜 using an “inner adversary” 𝒜SQ as follows.

1. Upon receiving the public key pk, 𝒜 forwards it to 𝒜SQ.
Recall that pk is part of the key 𝑘, and denote Π𝑘 = (𝑛, Σ,𝒟0,𝒟1).

2. The following is repeated 𝑞 times:

(a) 𝒜SQ outputs a boolean-valued function 𝑓 .5

(b) 𝒜 requests a sample 𝑥← 𝒟𝑏 from the challenger (where 𝑏 ∈ {0, 1} is the challenger’s secret bit),
computes 𝑓(𝑥) (this is a single bit), and forwards 𝑓(𝑥) to 𝒜SQ.

3. When 𝒜SQ outputs a “guess” bit 𝑏′, 𝒜 forwards 𝑏′ to the challenger.

Remark 6.2. We consider only statistical query algorithms for the simplified distinguishing game 𝒢dist,𝑠 of
Definition 3.12 because our lower bounds (proven in Section 6.2) hold for puzzle problems in which weak
computational hardness (i.e., hardness of 𝒢dist,𝑠) is equivalent to computational hardness (i.e., hardness of
the more standard distinguishing game 𝒢dist of Definition 3.7) by Lemma 3.16.

5We do not assume any bound on the description size or complexity of 𝑓 , which will not matter for our lower bounds.

29

Statistical Query (SQ) algorithms constitute a broad class of distinguishing algorithms, that is incom-
parable in power to polynomial-time algorithms. For example, an SQ algorithm can distinguish between
a PRG output and a uniformly random string with a single query. On the other hand, SQ algorithms
cannot distinguish between a distribution that is uniform on {0, 1}𝑛 and one that is uniform on a random
high-dimensional subspace of {0, 1}𝑛. These distributions can be distinguished (given many samples) in
polynomial time by a simple rank computation.

Still, in the context of distinguishing problems, SQ algorithms seem to be a powerful class of adversarial
algorithms. In fact, except for the aforementioned examples of algorithms which exploit algebraic structure,
we are not aware of any natural distinguishing algorithms that cannot be simulated by statistical query
algorithms. A challenging and important open problem, which we leave for future work, is to formalize a
class of algorithms that use algebraic structure (or even only linear algebra), possibly together with statistical
queries, and to prove lower bounds against this class.

6.2 The Toy Problem and Lower Bound
The works [CHR17, BIPW17] base the security of their DE-PIR schemes on the PermRM conjecture, for
which they also discuss different variants (e.g., noisy versions). Boyle et al. [BIPW17] also put forth a toy
version of the problem, for which we will prove a lower bound against SQ algorithms. We first recall the
PermRM conjecture and its toy version.

Conjecture 1 (PermRM, Conjecture 4.2 in [BIPW17]). Let 𝑚 ∈ N be a dimension parameter, let 𝜆 ∈ N be
a security parameter, let 𝑑 = 𝑑𝑚 (𝑛) be the minimal integer such that 𝑛 ≥

(︀
𝑚+𝑑

𝑑

)︀
, and let F be a finite field

satisfying |F| > 𝑑𝜆 + 1. Define a probabilistic algorithm Samp (𝑏, 𝜋, 𝑣) that operates as follows:

∙ If 𝑏 = 0:

1. Select 𝑚 random degree-𝜆 polynomial 𝑝1, . . . , 𝑝𝑚 ← F[𝑋] such that for every 1 ≤ 𝑖 ≤ 𝜆, 𝑝𝑖(0) = 𝑣.
Notice that these polynomials determine a curve 𝛾 (𝑡) in F𝑚, given by {(𝑝1(𝑡), . . . , 𝑝𝑚(𝑡)) : 𝑡 ∈ F}.

2. Sample 𝑑𝜆 + 1 distinct points on the curve 𝛾 (𝑡), determined by non-zero parameters 𝑡0, . . . , 𝑡𝑑𝜆 ←
F.

3. Output the points, in order, where each point is permuted according to 𝜋 : F𝑚 → F𝑚, namely
output

(𝜋 (𝑝1(𝑡𝑖), . . . , 𝑝𝑚(𝑡𝑖)))𝑑𝜆
𝑖=0 ∈ (F𝑚)𝑑𝜆+1

.

∙ If 𝑏 = 1: sample 𝑑𝜆 + 1 random points in F𝑚 (𝑤0, . . . , 𝑤𝑑𝜆)← (F𝑚)𝑑𝜆+1, and output (𝑤0, . . . , 𝑤𝑑𝜆).

The PermRM conjecture is that for every efficient non-uniform 𝒜 = (𝒜1,𝒜2) there exists a negligible
function 𝜇(𝜆) = negl (𝜆) such that:

Pr

⎡⎣
(︀
1𝑛, 1|F|, aux

)︀
← 𝒜1

(︀
1𝜆
)︀

𝜋 ← 𝑆(F𝑚); 𝑏← {0, 1}
𝑏′ ← 𝒜Samp(𝑏,𝜋,·)

2 (1𝑛, aux)
: 𝑏′ = 𝑏

⎤⎦ ≤ 1/2 + 𝜇 (𝜆)

Let F = {F𝜆}𝜆∈Z+ denote an ensemble of finite fields with |F𝜆| = Θ(𝜆2). Let 𝑞 = 𝑞𝜆 denote |F𝜆|.
For a function 𝑓 : 𝑋 → 𝑌 , we define Graph(𝑓) : 𝑋 × 𝑌 → {0, 1} such that

Graph(𝑓)(𝑥, 𝑦) =
{︃

1 if 𝑦 = 𝑓(𝑥)
0 otherwise.

Define the puzzle problem Π𝜆 = (𝑛, {0, 1},𝒟0,𝒟1), where 𝑛 = 𝑞2, and 𝒟0 and 𝒟1 are defined as follows.

∙ A sample from 𝒟0 is Graph(𝛾), where 𝛾 : F→ F is a uniformly random degree-𝜆 polynomial.

∙ A sample from 𝒟1 is Graph(𝑈), where 𝑈 : F→ F is a uniformly random function.

30

Conjecture 2 ([BIPW17]). The permuted puzzle problem 𝒫 def= Perm({Π𝜆}𝜆∈Z+) is computationally hard.

Theorem 6.3. The simplified distinguishing game 𝒢dist,𝑠[𝒫] is hard for statistical-query algorithms. That
is, for all polynomially bounded 𝑞(·), the advantage of any statistical 𝑞(𝜆)-query adversary in 𝒢dist,𝑠[𝒫] is at
most 𝑒−Ω(𝜆).

Proof. We will show that even if we give the statistical query adversary additional information about 𝜋, it
cannot distinguish permuted samples from 𝒟0 from permuted samples from 𝒟1. Specifically, we will give
the adversary (for free) the unordered partition Φ1 ∪ · · · ∪ Φ𝑞 of F× F, where Φ𝑖 = 𝜋({𝑖} × F). (Intuitively,
Φ𝑖 is the image under 𝜋 of all points in which the 𝑋 coordinate equals 𝑖. In particular, 𝜋 (Graph (𝑓)) takes
value “1” at exactly one coordinate in Φ𝑖.) Note that it is indeed possible for a statistical query adversary
to learn Φ def= {Φ1, . . . , Φ𝑞}: if (𝑥, 𝑦) and (𝑥′, 𝑦′) belong to the same Φ𝑖, then for a random sample 𝑧 ← 𝒟𝑏,
it is never the case that 𝜋(𝑧)(𝑥,𝑦) = 𝜋(𝑧)(𝑥′,𝑦′) = 1. However, if (𝑥, 𝑦) and (𝑥′, 𝑦′) do not belong to the same
Φ𝑖, then 𝜋(𝑧)(𝑥,𝑦) = 𝜋(𝑧)(𝑥′,𝑦′) = 1 with probability at least 1

𝑞2 .
We say that a permutation 𝜋 respects a partition Φ = {Φ1, . . . , Φ𝑞} if {𝜋({𝑖}×F)}𝑖 = Φ. For any partition

Φ, we will write PrΦ to denote the probability space in which a permutation 𝜋 is sampled uniformly at random
from the set of permutations that respect Φ. Similarly, we will write EΦ to denote expectations in PrΦ, and
we write VarΦ to denote variances in PrΦ.

We will show that there is some negligible function 𝜈 : Z+ → R such that for any function 𝑓 : {0, 1}𝑛 →
{0, 1} and any partition Φ, there exists some 𝑝𝑓,Φ ∈ [0, 1] such that for every 𝑏 ∈ {0, 1}, it holds that

Pr
Φ

[︂
E

𝑥←𝒟𝑏

[︀
𝑓(𝜋(𝑥))]− 𝑝𝑓,Φ

⃒⃒
≥ 𝜈(𝜆)

]︂
≤ 𝜈(𝜆).

Crucially, 𝑝𝑓,Φ is independent of the challenge bit 𝑏, the specific sample 𝑥, and the secret permutation 𝜋
(except for its dependence on Φ). Thus, the answer to a query 𝑓 can be simulated by computing 𝑝𝑓,Φ.

The following two observations are at the core of our proof. Recall that Δ denotes the Hamming distance.
For a pair of functions 𝑔, 𝑔′ : 𝑋 → 𝑌 , we denote Δ (𝑔, 𝑔′) = |{𝑥 ∈ 𝑋 : 𝑔 (𝑥) ̸= 𝑔′ (𝑥)}|.

Claim 6.4. For any partition Φ, any function 𝑔 : F→ F, and any fixed permutation 𝜋* that respects Φ, the
distribution of 𝜋(Graph(𝑔)) under PrΦ is identical to the distribution of 𝜋*(Graph(𝑢)) when 𝑢 : F → F is a
uniformly random function.

Proof. To sample a random permutation 𝜋 conditioned on
{︀

𝜋({𝑖} × F)
}︀

𝑖
= Φ def= {Φ1, . . . , Φ𝑞}, one can

sample a uniformly random permutation 𝜎 : F → F and 𝑞 independent bijections 𝜋𝑖 : F → Φ𝜎(𝑖), and then
define 𝜋(𝑗, 𝑘) = 𝜋𝑗(𝑘).

𝜋(Graph(𝑔)) is defined by the set of points {𝜋(𝑗, 𝑔(𝑗))}𝑗∈F = {𝜋𝑗(𝑔(𝑗))}. It is clear that sampling 𝑔
uniformly at random corresponds to independently picking each 𝑔(𝑗) at random, which produces an identical
distribution of 𝜋(Graph(𝑔)) as picking the bijections {𝜋𝑗} independently and uniformly at random. Thus,
𝜋*(Graph(𝑢)) for a fixed 𝜋* which respects the partition Φ, and a random 𝑢, is distributed identically to
𝜋(Graph(𝑔)) for a fixed 𝑔 and a random 𝜋 that respects Φ.

Claim 6.5. For any partition Φ, any functions 𝑔, 𝑔′ : F → F, and any fixed permutation 𝜋* that
respects Φ, the distribution of

(︀
𝜋(Graph(𝑔)), 𝜋(Graph(𝑔′))

)︀
under PrΦ is identical to the distribution of(︀

𝜋*(Graph(𝑢)), 𝜋*(Graph(𝑢′))
)︀
, where 𝑢, 𝑢′ : F → F are jointly uniformly random conditioned on Δ(𝑢, 𝑢′) =

Δ(𝑔, 𝑔′).

Proof. We first consider the distribution under PrΦ of (𝑥, 𝑥′) =
(︀
𝜋(Graph(𝑔)), 𝜋(Graph(𝑔′))

)︀
, where 𝑔 and 𝑔′

are fixed. Because 𝑔 and 𝑔′ are functions, both 𝑥 and 𝑥′ will consist mostly of zeros, but for each 𝑗 ∈ F, they
will contain a 1 in exactly one position in Φ𝑗 . Recall from the proof of Claim 6.4 that 𝜋 can be sampled
by sampling a uniformly random permutation 𝜎 : F → F and 𝑞 independent bijections 𝜋𝑖 : F → Φ𝜎(𝑖),
and defining 𝜋(𝑗, 𝑘) = 𝜋𝑗(𝑘). Therefore, for any 𝑗 ∈ F if 𝑔(𝑗) = 𝑔′(𝑗) then 𝑥 and 𝑥′ will agree on the
position within Φ𝜎(𝑗) at which they contain a 1 entry. Otherwise, they will disagree. Other than that, the

31

positions are uniformly random within Φ𝜎(𝑗) because 𝜋𝑗 is a random bijection. Moreover, since 𝜎 is a random
permutation, the set of Φ𝑖’s for which 𝑥, 𝑥′ agree on the 1-entry is a random subset of size Δ (𝑔, 𝑔′).

Now consider the distribution of (𝑦, 𝑦′) =
(︀
𝜋*(Graph(𝑢)), 𝜋*(Graph(𝑢′))

)︀
where 𝜋* is fixed and defined by

𝜎* and {𝜋*𝑖 }𝑖∈F. The same arguments show that for every 𝑗 ∈ F, 𝑦, 𝑦′ agree on the positions within Φ𝜎*(𝑗)
at which they contain a 1 if and only if 𝑢(𝑗) = 𝑢′(𝑗). Since 𝑢, 𝑢′ are random and independent, the positions
in Φ𝜎*(𝑗) in which 𝑦, 𝑦′ have a 1 are otherwise random because these positions are 𝜋*𝑗 (𝑢(𝑗)) and 𝜋*𝑗 (𝑢′(𝑗)),
respectively. Additionally, the Φ𝑖’s for which 𝑦, 𝑦′ agree on the position of the 1 entry is a uniformly random
subset of size Δ (𝑔, 𝑔′) = Δ (𝑢, 𝑢′), because this set is {𝜎*(𝑗) : 𝑢(𝑗) = 𝑢′(𝑗)}, and 𝑢, 𝑢′ are random and
independent.

Claim 6.6. If 𝑔0, 𝑔1 : F → F are two independent uniformly random degree-𝜆 polynomials, then Δ (𝑔0, 𝑔1)
is 𝑒−Ω(𝜆)-close to Δ (𝑔′0, 𝑔′1) for uniformly random 𝑔′0, 𝑔′1 : F→ F.

Proof. For 𝑖 ∈ F, let 𝑋𝑖 (respectively, 𝑌𝑖) be indicator of the event that 𝑔0(𝑖) = 𝑔1(𝑖) (respectively, 𝑔′0(𝑖) =
𝑔′1(𝑖)). Then 𝑋𝑖, 𝑌𝑖 are 𝜆-wise independent with E[𝑋𝑖] = E[𝑌𝑖] = |F|−1. The claim now follows from
Lemma A.4 (Page 37) for 𝑛 = |F|.

Now, we will show that E𝑥←𝒟0 [𝑓(𝜋(𝑥))] and E𝑥←𝒟1 [𝑓(𝜋(𝑥))], viewed as random variables that depend
on 𝜋, have the same expectation and also have very small (negligible) variance.

Claim 6.7. For any 𝑓 : {0, 1}𝑛 → {0, 1} and any partition Φ,

E
Φ

[︁
E

𝑥←𝒟0
[𝑓(𝜋(𝑥))]

]︁
= E

Φ

[︁
E

𝑥←𝒟1
[𝑓(𝜋(𝑥))]

]︁
.

Proof. Consider any 𝑓 : {0, 1}𝑛 → {0, 1} and any partition Φ. By Claim 6.4, there is a distribution 𝒰 that
is equal to the distribution (in PrΦ) of 𝜋(Graph(𝑔)) for all functions 𝑔 : F → F. Let 𝜇 denote E𝑥′←𝒰 [𝑓(𝑥′)].
Let 𝑃𝑏 denote the probability mass function of 𝒟𝑏. Then for any 𝑏 ∈ {0, 1},

E
Φ

[︂
E

𝑥←𝒟𝑏

[𝑓(𝜋(𝑥))]
]︂

= E
Φ

[︃∑︁
𝑥

𝑃𝑏(𝑥) · 𝑓(𝜋(𝑥))
]︃

=
∑︁

𝑥

𝑃𝑏(𝑥) · E
Φ

[𝑓(𝜋(𝑥))]

=
∑︁

𝑥

𝑃𝑏(𝑥) · 𝜇

= 𝜇,

which does not depend on 𝑏.

Now we analyze the variance. Recall that our goal is to show that VarΦ
[︀
E𝑥←𝒟𝑏

[𝑓(𝜋(𝑥))]
]︀

is negligible
for 𝑏 ∈ {0, 1}. Because of Claim 6.6, this follows from the following more general claim.

Claim 6.8. Let 𝒟 be any distribution on functions mapping F to F. Suppose that when 𝑔 and 𝑔′ are sampled
independently from 𝒟 and 𝑢, 𝑢′ : F → F are independent uniformly random functions, the distribution of
Δ(𝑔, 𝑔′) is statistically 𝜖-close to that of Δ(𝑢, 𝑢′).

Then, for any 𝑓 : {0, 1}𝑛 → {0, 1}, any partition Φ,

Var
Φ

[︁
E

𝑔←𝒟

[︀
𝑓
(︀
𝜋(Graph(𝑔))

)︀]︀]︁
≤ 𝜖.

Proof. Let 𝑃 denote the probability mass function of 𝒟, and let 𝜋* be an arbitrary permutation in 𝑆𝑛 such
that {𝜋*({𝑖} × F)}𝑖 = Φ. By the definition of variance,

Var
Φ

[︂
E

𝑔←𝒟
[𝑓(𝜋(Graph(𝑔)))]

]︂
= E

Φ

[︂
E

𝑔←𝒟
[𝑓(𝜋(Graph(𝑔)))]2

]︂
− E

Φ

[︂
E

𝑔←𝒟
[𝑓(𝜋(Graph(𝑔)))]

]︂2
.

32

For the first term, we have

E
Φ

[E
𝑔←𝒟

[𝑓(𝜋(Graph(𝑔)))]2] = E
Φ

⎡⎣(︃∑︁
𝑔

𝑃 (𝑔) · 𝑓(𝜋(Graph(𝑔)))
)︃2
⎤⎦

=
∑︁
𝑔,ℎ

𝑃 (𝑔) · 𝑃 (ℎ) · E
Φ

[𝑓(𝜋(Graph(𝑔))) · 𝑓(𝜋(Graph(ℎ)))] (Claim 6.5)

= E
𝑔,ℎ←𝒟

⎡⎣ E
𝑢,𝑣:F→F

Δ(𝑢,𝑣)=Δ(𝑔,ℎ)

[︀
𝑓(𝜋*(Graph(𝑢))) · 𝑓(𝜋*(Graph(𝑣)))

]︀⎤⎦ .

For the second term, we have

E
Φ

[︂
E

𝑔←𝒟
[𝑓(𝜋(Graph(𝑔)))]

]︂2

=
(︃∑︁

𝑔

𝑃 (𝑔) · E
Φ

[︀
𝑓(𝜋(Graph(𝑔)))

]︀)︃2

=
(︃∑︁

𝑔

𝑃 (𝑔) · E
𝑢:F→F

[︀
𝑓(𝜋*(Graph(𝑢)))

]︀)︃2

(Claim 6.4)

= E
𝑢:F→F

[︀
𝑓(𝜋*(Graph(𝑢)))

]︀2
= E

𝑢,𝑣:F→F

[︀
𝑓(𝜋*(Graph(𝑢))) · 𝑓(𝜋*(Graph(𝑣)))

]︀
= E

𝑔,ℎ:F→F

⎡⎣ E
𝑢,𝑣:F→F

Δ(𝑢,𝑣)=Δ(𝑔,ℎ)

[︀
𝑓(𝜋*(Graph(𝑢))) · 𝑓(𝜋*(Graph(𝑣)))

]︀⎤⎦ (law of total expectation).

The difference between these two expressions is only in the distribution of 𝑔 and ℎ over which the (outer)
expectation is taken. Furthermore, the value whose expectation is computed lies in [0, 1] and depends only
on the Hamming distance between 𝑔 and ℎ. The claim follows.

Theorem 6.3 follows from Claims 6.6 to 6.8 and Chebyshev’s inquality.

Acknowledgments
We thank Yuval Ishai for many useful discussions. We thank Fermi Ma for helpful discussions, in particular
for pointing out that the blueprint of the DDH-based permuted puzzle extends also to the LPN setting, for
simplifying our proof of Claim 5.17 (which we had previously proved using Fourier analysis), and for allowing
us to include these observations in the current work. We thank the anonymous TCC reviewers for helpful
comments.

This work was supported in part by ISF grant 1861/16, AFOSR Award FA9550-17-1-0069, and the Simons
Collaboration on Algorithms and Geometry and National Science Foundation grant No. CCF-1714779.

References
[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In Proceed-

ings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia,
Pennsylvania, USA, May 22-24, 1996, pages 99–108, 1996.

33

[Ale03] Michael Alekhnovich. More on average case vs approximation complexity. In 44th Symposium
on Foundations of Computer Science (FOCS 2003), 11-14 October 2003, Cambridge, MA, USA,
Proceedings, pages 298–307, 2003.

[BCC+17] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad Rubinstein,
and Eran Tromer. The hunting of the SNARK. J. Cryptology, 30(4):989–1066, 2017.

[BFKL93] Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton. Cryptographic primi-
tives based on hard learning problems. In Advances in Cryptology - CRYPTO ’93, 13th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 22-26, 1993, Pro-
ceedings, pages 278–291, 1993.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. In Advances in Cryptology -
CRYPTO 2001, 21st Annual International Cryptology Conference, Santa Barbara, California,
USA, August 19-23, 2001, Proceedings, pages 1–18, 2001.

[BHHO08] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-secure encryption
from decision Diffie-Hellman. In Advances in Cryptology - CRYPTO 2008, 28th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2008. Proceedings, pages
108–125, 2008.

[BIM00] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the servers computation in private infor-
mation retrieval: PIR with preprocessing. In Advances in Cryptology - CRYPTO 2000, 20th
Annual International Cryptology Conference, Santa Barbara, California, USA, August 20-24,
2000, Proceedings, pages 55–73, 2000.

[BIPW17] Elette Boyle, Yuval Ishai, Rafael Pass, and Mary Wootters. Can we access a database both
locally and privately? In TCC (2), volume 10678 of Lecture Notes in Computer Science, pages
662–693. Springer, 2017.

[BKW00] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem, and
the statistical query model. In Proceedings of the Thirty-Second Annual ACM Symposium on
Theory of Computing, May 21-23, 2000, Portland, OR, USA, pages 435–440, 2000.

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of finding a Nash
equilibrium. In IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015,
Berkeley, CA, USA, 17-20 October, 2015, pages 1480–1498, 2015.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (stan-
dard) LWE. ECCC 2011, 18:109, 2011.

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Rothblum Guy N, Ron D. Rothblum,
and Daniel WIchs. Fiat-Shamir: From practice to theory. In STOC, 2019.

[CCRR18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. Fiat-Shamir and correlation
intractability from strong KDM-secure encryption. In Advances in Cryptology - EUROCRYPT
2018 - 37th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part I, pages 91–122, 2018.

[CGKS95] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information retrieval.
In 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, USA,
23-25 October 1995, pages 41–50, 1995.

[CHK+19] Arka Rai Choudhuri, Pavel Hubávcek, Chethan Kamath, Krzysztof Pietrzak, Alon Rosen, and
Guy N. Rothblum. Finding a Nash equilibrium is no easier than breaking Fiat-Shamir. IACR
Cryptology ePrint Archive, 2019:158, 2019.

34

[CHR17] Ran Canetti, Justin Holmgren, and Silas Richelson. Towards doubly efficient private information
retrieval. In TCC (2), volume 10678 of Lecture Notes in Computer Science, pages 694–726.
Springer, 2017.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans. Informa-
tion Theory, 22(6):644–654, 1976.

[FKM+18] Jean-Charles Faugère, Eliane Koussa, Gilles Macario-Rat, Jacques Patarin, and Ludovic Perret.
PKP-based signature scheme. IACR Cryptology ePrint Archive, 2018:714, 2018.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC 2009, Proceedings,
pages 169–178. ACM, 2009.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October,
2013, Berkeley, CA, USA, pages 40–49, 2013.

[GJ02] Michael R Garey and David S Johnson. Computers and intractability, volume 29. wh freeman
New York, 2002.

[GK16] Shafi Goldwasser and Yael Tauman Kalai. Cryptographic assumptions: A position paper. In
TCC (A1), volume 9562 of Lecture Notes in Computer Science, pages 505–522. Springer, 2016.

[GKL88] Oded Goldreich, Hugo Krawczyk, and Michael Luby. On the existence of pseudorandom gen-
erators (extended abstract). In 29th Annual Symposium on Foundations of Computer Science,
White Plains, New York, USA, 24-26 October 1988, pages 12–24, 1988.

[Gol90] Oded Goldreich. A note on computational indistinguishability. Inf. Process. Lett., 34(6):277–281,
1990.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifiable
assumptions. In STOC, pages 99–108. ACM, 2011.

[HL18] Justin Holmgren and Alex Lombardi. Cryptographic hashing from strong one-way functions (or:
One-way product functions and their applications). In 2018 IEEE 59th Annual Symposium on
Foundations of Computer Science (FOCS), pages 850–858. IEEE, 2018.

[HY17] Pavel Hubávcek and Eylon Yogev. Hardness of continuous local search: Query complexity and
cryptographic lower bounds. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages
1352–1371, 2017.

[KMP19] Eliane Koussa, Gilles Macario-Rat, and Jacques Patarin. On the complexity of the permuted
kernel problem. IACR Cryptology ePrint Archive, 2019:412, 2019.

[KO97] Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT needed: SINGLE database,
computationally-private information retrieval. In 38th Annual Symposium on Foundations of
Computer Science, FOCS ’97, Miami Beach, Florida, USA, October 19-22, 1997, pages 364–
373, 1997.

[KRR17] Yael Tauman Kalai, Guy N. Rothblum, and Ron D. Rothblum. From obfuscation to the security of
Fiat-Shamir for proofs. In Advances in Cryptology - CRYPTO 2017 - 37th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part II,
pages 224–251, 2017.

[LL14] Nathan Linial and Zur Luria. Chernoff’s inequality - a very elementary proof, 2014.

35

[LP12] Rodolphe Lampe and Jacques Patarin. Analysis of some natural variants of the PKP algorithm.
In SECRYPT 2012 - Proceedings of the International Conference on Security and Cryptography,
Rome, Italy, 24-27 July, 2012, SECRYPT is part of ICETE - The International Joint Conference
on e-Business and Telecommunications, pages 209–214, 2012.

[Mul54] David E. Muller. Application of boolean algebra to switching circuit design and to error detection.
Trans. I.R.E. Prof. Group on Electronic Computers, 3(3):6–12, 1954.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In CRYPTO, volume 2729 of Lecture
Notes in Computer Science, pages 96–109. Springer, 2003.

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain) learning
with errors. IACR Cryptology ePrint Archive, 2019:158, 2019.

[Rab79] Michael O. Rabin. Digitalized signatures and public-key functions as intractable as factorization.
Technical Report, MIT Laboratory for Computer Science, 1979.

[RAD78] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On data banks and privacy homo-
morphisms. Foundations of secure computation, Academia Press, 1978.

[Ree54] Irving S. Reed. A class of multiple-error-correcting codes and the decoding scheme. Trans. of
the IRE Professional Group on Information Theory (TIT), 4:38–49, 1954.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD,
USA, May 22-24, 2005, pages 84–93, 2005.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital signa-
tures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[Sha89] Adi Shamir. An efficient identification scheme based on permuted kernels (extended abstract). In
Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 20-24, 1989, Proceedings, pages 606–609, 1989.

A Useful Lemmas
In this section, we will routinely use the following standard binomial coefficient bounds: For any 𝑛, 𝑘,(︁𝑛

𝑘

)︁𝑘

≤
(︂

𝑛

𝑘

)︂
≤
(︁𝑒𝑛

𝑘

)︁𝑘

.

We will also use the following fact.

Fact A.1. For all constants 0 < 𝜖 < 1, there exists a constant 𝛿 > 0 such that for any 𝑛 and any 𝑡 ≤ (1−𝜖)𝑛,(︂
𝑛

𝑡

)︂
≤ (1 + 𝜖)𝑡 ·

(︂
(1− 𝛿)𝑛

𝑡

)︂
.

Proof. For any 0 < 𝛿 < 𝜖, we have (︀
𝑛
𝑡

)︀(︀(1−𝛿)𝑛
𝑡

)︀ =
𝑡−1∏︁
𝑖=0

𝑛− 𝑖

(1− 𝛿)𝑛− 𝑖

≤
(︂

𝑛− 𝑡

(1− 𝛿)𝑛− 𝑡

)︂𝑡

=
(︂ 1− 𝑡

𝑛

1− 𝛿 − 𝑡
𝑛

)︂𝑡

,

36

where in the second step we have used the fact that 𝑛−1
𝑘−1 ≥

𝑛
𝑘 if 𝑛 ≥ 𝑘 > 1. The last expression is bounded

by (1 + 𝜖)𝑡 for sufficiently small 𝛿 > 0.

We will rely on the following theorem.

Imported Theorem A.2 ([LL14]). Let 𝑋1, . . . , 𝑋𝑛 be {0, 1}-valued random variables, let 0 < 𝛽 < 1, and
let 0 < 𝑡 < 𝛽𝑛. Then

Pr
[︃

𝑛∑︁
𝑖=1

𝑋𝑖 ≥ 𝛽𝑛

]︃
≤ 1(︀

𝛽𝑛
𝑡

)︀ · ∑︁
𝐴⊆[𝑛]
|𝐴|=𝑡

E

[︃∏︁
𝑖∈𝐴

𝑋𝑖

]︃
.

In applying Imported Theorem A.2, we will need to bound quantities of the form
∑︀

𝐴⊆[𝑛]
|𝐴|=𝑡

∏︀
𝑖∈𝐴 𝑝𝑖. We

will do so with the following claim:

Claim A.3. For any 𝑝1, . . . , 𝑝𝑛 ≥ 0, it holds that∑︁
𝐴⊆[𝑛]
|𝐴|=𝑡

∏︁
𝑖∈𝐴

𝑝𝑖 ≤
(𝑝𝑛)𝑡

𝑡! ≤
(︁𝑒𝑝𝑛

𝑡

)︁𝑡

,

where 𝑝
def= 1

𝑛 ·
∑︀

𝑖 𝑝𝑖.

Proof. We have ∑︁
𝐴⊆[𝑛]
|𝐴|=𝑡

=
∑︁

𝑖1<···<𝑖𝑡∈[𝑛]

∏︁
𝑗∈[𝑡]

𝑝𝑖𝑗

= 1
𝑡! ·

∑︁
distinct

𝑖1,...,𝑖𝑡∈[𝑛]

∏︁
𝑗∈[𝑡]

𝑝𝑖𝑗

≤ 1
𝑡! ·

∑︁
𝑖1,...,𝑖𝑡

∏︁
𝑗∈[𝑡]

𝑝𝑖𝑗 because each 𝑝𝑖 ≥ 0

= 1
𝑡! ·
(︁∑︁

𝑗

𝑝𝑗

)︁𝑡

= (𝑝𝑛)𝑡

𝑡! .

The second inequality of the claim follows from Stirling’s approximation, which states that ln(𝑡!) ≥ 𝑡 ln 𝑡− 𝑡,
so ln(𝑡

√
𝑡!) ≥ ln 𝑡− 1 and thus 𝑡! ≥

(︀
𝑡
𝑒

)︀𝑡.

Lemma A.4. Let 𝑋 = (𝑋1, . . . , 𝑋𝑛) and 𝑌 = (𝑌1, . . . , 𝑌𝑛) be 𝑡-wise independent {0, 1}-valued random
variables such that for all 𝑖 ∈ [𝑛], E[𝑌𝑖] = E[𝑋𝑖]

def= 𝑝𝑖, let 𝑝 denote 1
𝑛 ·
∑︀

𝑖 𝑝𝑖, and suppose that 𝑝 < 𝑡
2𝑒𝑛 .

Then the total variation distance 𝑑TV(𝑋, 𝑌) is at most(︂
2𝑒𝑝𝑛

𝑡

)︂𝑡/2
·

(︃
𝑛 + 𝑡

𝑡−2𝑒𝑝𝑛∏︀
𝑖∈[𝑛](1− 𝑝𝑖)

+ 2
)︃

Proof. Without loss of generality, suppose that 𝑌1, . . . , 𝑌𝑛 are mutually independent (moving to the general
case incurs only a factor of two loss in the obtained bound).

Let |𝑋| denote the number of 𝑖 ∈ [𝑛] for which 𝑋𝑖 = 1. We first establish a high-probability upper bound
on 𝑋.

37

Claim A.5.

Pr[|𝑋| ≥ 𝑡

2] ≤
(︂

2𝑒𝑝𝑛

𝑡

)︂𝑡/2
.

Proof. |𝑋| ≥ 𝑡
2 only if for some 𝑆 ⊆ [𝑛] with |𝑆| = 𝑡

2 , it holds that 𝑋𝑆 = 1⃗. By a union bound and
𝑡-wise independence, this holds with probability at most

∑︀
|𝑆|=𝑡/2

∏︀
𝑖∈𝑆 𝑝𝑖. The claim then follows from

Claim A.3.

We now bound
⃒⃒⃒

Pr[𝑋=𝑧]
Pr[𝑌 =𝑧] − 1

⃒⃒⃒
. We first consider the case that 𝑧 is 0𝑛.

Lemma A.6. Let 𝑋 = (𝑋1, . . . , 𝑋𝑛) be 𝑡-wise independent {0, 1}-valued random variables, and denote
𝑝

def= 1
𝑛 ·
∑︀

𝑖 E[𝑋𝑖]. Suppose that 𝑝 < 𝑡
𝑒𝑛 . Then⃒⃒⃒

Pr[𝑋 = 0⃗]−
𝑛∏︁

𝑖=1
Pr[𝑋𝑖 = 0]

⃒⃒⃒
≤
(︂

𝑛 + 𝑡

𝑡− 𝑒𝑝𝑛

)︂
·
(︁𝑒𝑝𝑛

𝑡

)︁𝑡

Proof. Let 𝑝𝑗 denote Pr[𝑋𝑗 = 1]. Using this notation, we need to bound⃒⃒⃒⃒
⃒⃒Pr[𝑋 = 0⃗]−

𝑛∏︁
𝑗=1

(1− 𝑝𝑗)

⃒⃒⃒⃒
⃒⃒ .

By the inclusion-exclusion principle,

Pr[𝑋 = 0⃗] =
𝑛∑︁

𝑖=0
(−1)𝑖 ·

∑︁
𝑆⊆[𝑛]
|𝑆|=𝑖

Pr[𝑋𝑆 = 1⃗].

Since 𝑋 is 𝑡-wise independent, this is equal to
𝑡∑︁

𝑖=0
(−1)𝑖 ·

∑︁
𝑆⊆[𝑛]
|𝑆|=𝑖

∏︁
𝑗∈𝑆

𝑝𝑗 +
𝑛∑︁

𝑖=𝑡+1
(−1)𝑖 ·

∑︁
𝑆⊆[𝑛]
|𝑆|=𝑖

Pr[𝑋𝑆 = 1⃗]

=
𝑛∏︁

𝑗=1
(1− 𝑝𝑗)−

⎛⎜⎜⎝ ∑︁
𝑆⊆[𝑛]
|𝑆|≥𝑡+1

(−1)|𝑆| ·
∏︁
𝑖∈𝑆

𝑝𝑖

⎞⎟⎟⎠+
𝑛∑︁

𝑖=𝑡+1
(−1)𝑖 ·

∑︁
𝑆⊆[𝑛]
|𝑆|=𝑖

Pr[𝑋𝑆 = 1⃗].

We now bound the two error terms separately. For the first error term,⃒⃒⃒⃒
⃒⃒⃒⃒ ∑︁

𝑆⊆[𝑛]
|𝑆|≥𝑡+1

(−1)|𝑆| ·
∏︁
𝑖∈𝑆

𝑝𝑖

⃒⃒⃒⃒
⃒⃒⃒⃒ ≤ 𝑛∑︁

𝑖=𝑡+1

∑︁
𝑆⊆[𝑛]
|𝑆|=𝑖

∏︁
𝑖∈𝑆

𝑝𝑖

≤
𝑛∑︁

𝑖=𝑡+1

(︁𝑒𝑝𝑛

𝑖

)︁𝑖

(By Claim A.3)

≤
𝑛∑︁

𝑖=𝑡

(︁𝑒𝑝𝑛

𝑡

)︁𝑖

≤
∞∑︁

𝑖=𝑡

(︁𝑒𝑝𝑛

𝑡

)︁𝑖

= 𝑡

𝑡− 𝑒𝑝𝑛
·
(︁𝑒𝑝𝑛

𝑡

)︁𝑡

(because 𝑒𝑝𝑛 < 𝑡).

38

To bound the second term, we first rewrite it (noticing that each outcome where |𝑋| = 𝑤 is an outcome in
which 𝑋𝑆 = 1⃗ for exactly

(︀
𝑤
𝑖

)︀
choices of 𝑆 ⊆ [𝑛] with |𝑆| = 𝑖) as:

𝑛∑︁
𝑖=𝑡+1

(−1)𝑖 ·
∑︁

𝑆⊆[𝑛]
|𝑆|=𝑖

Pr[𝑋𝑆 = 1⃗] =
𝑛∑︁

𝑤=𝑡+1
Pr[|𝑋| = 𝑤] ·

𝑤∑︁
𝑖=𝑡+1

(−1)𝑖 ·
(︂

𝑤

𝑖

)︂
.

Using Imported Theorem A.2 and 𝑡-wise independence,⃒⃒⃒⃒
⃒

𝑛∑︁
𝑤=𝑡+1

Pr[|𝑋| = 𝑤] ·
𝑤∑︁

𝑖=𝑡+1
(−1)𝑖 ·

(︂
𝑤

𝑖

)︂⃒⃒⃒⃒
⃒ ≤

𝑛∑︁
𝑤=𝑡+1

⃒⃒⃒⃒
⃒Pr[|𝑋| ≥ 𝑤] ·

𝑤∑︁
𝑖=𝑡+1

(−1)𝑖 ·
(︂

𝑤

𝑖

)︂⃒⃒⃒⃒
⃒

≤
𝑛∑︁

𝑤=𝑡+1

(︂
𝑤

𝑡

)︂−1
·

⎛⎜⎜⎝ ∑︁
𝐴⊆[𝑛]
|𝐴|=𝑡

∏︁
𝑗∈𝐴

𝑝𝑗

⎞⎟⎟⎠ ·
⃒⃒⃒⃒
⃒

𝑤∑︁
𝑖=𝑡+1

(−1)𝑖 ·
(︂

𝑤

𝑖

)︂⃒⃒⃒⃒
⃒ . (8)

By Claim A.3, it holds that
∑︀

𝐴⊆[𝑛]
|𝐴|=𝑡

∏︀
𝑗∈𝐴 𝑝𝑗 is at most

(︀
𝑒𝑝𝑛

𝑡

)︀𝑡.

We prove that ⃒⃒⃒⃒
⃒

𝑤∑︁
𝑖=𝑡+1

(−1)𝑖 ·
(︂

𝑤

𝑖

)︂⃒⃒⃒⃒
⃒ ≤

(︂
𝑤

𝑡

)︂
as follows: If 𝑡 ≥ 𝑤/2, then the summation consists of summands that decrease monotonically in absolutely
value, and have alternating signs. Thus the sum is less (in absolute value) than the first term

(︀
𝑤

𝑡+1
)︀
, which

is less than
(︀

𝑤
𝑡

)︀
. On the other hand, if 𝑡 < 𝑤/2 then we can use the identity 0 = (1− 1)𝑤 =

∑︀𝑤
𝑖=0(−1)𝑖 ·

(︀
𝑤
𝑖

)︀
to rewrite it as ⃒⃒⃒⃒

⃒
𝑡∑︁

𝑖=0
(−1)𝑖 ·

(︂
𝑤

𝑖

)︂⃒⃒⃒⃒
⃒ ,

in which case the summation consists of terms that increase monotonically in absolute value and alternate
in sign; hence the summation is bounded (in absolute value) by the last term

(︀
𝑤
𝑡

)︀
.

Thus, we can bound Eq. (8) by
𝑛∑︁

𝑤=𝑡+1

(︁𝑒𝑝𝑛

𝑡

)︁𝑡

≤ 𝑛 ·
(︁𝑒𝑝𝑛

𝑡

)︁𝑡

.

Finally, we bound the statistical distance between 𝑋 and 𝑌 . Let 𝐺 denote the set of 𝑧 ∈ {0, 1}𝑛 with
|𝑧| < 𝑡/2.

𝑑TV(𝑋, 𝑌) = 1
2

∑︁
𝑧∈{0,1}𝑛

⃒⃒⃒
Pr[𝑋 = 𝑧]− Pr[𝑌 = 𝑧]

⃒⃒⃒
= 1

2
∑︁
𝑧 /∈𝐺

⃒⃒⃒
Pr[𝑋 = 𝑧]− Pr[𝑌 = 𝑧]

⃒⃒⃒
+ 1

2
∑︁
𝑧∈𝐺

⃒⃒⃒
Pr[𝑋 = 𝑧]− Pr[𝑌 = 𝑧]

⃒⃒⃒
≤ 1

2 ·
(︀

Pr[𝑋 /∈ 𝐺] + Pr[𝑌 /∈ 𝐺]
)︀

+ 1
2
∑︁
𝑧∈𝐺

⃒⃒⃒
Pr[𝑋 = 𝑧]− Pr[𝑌 = 𝑧]

⃒⃒⃒

39

Using Claim A.5, this is at most(︂
2𝑒𝑝𝑛

𝑡

)︂𝑡/2
+ 1

2
∑︁
𝑧∈𝐺

⃒⃒⃒
Pr[𝑋 = 𝑧]− Pr[𝑌 = 𝑧]

⃒⃒⃒
=
(︂

2𝑒𝑝𝑛

𝑡

)︂𝑡/2
+ 1

2
∑︁
𝑧∈𝐺

Pr[𝑌 = 𝑧] ·
⃒⃒⃒⃒
Pr[𝑋 = 𝑧]
Pr[𝑌 = 𝑧] − 1

⃒⃒⃒⃒

≤
(︂

2𝑒𝑝𝑛

𝑡

)︂𝑡/2
+ 1

2 max
𝑧∈𝐺

⃒⃒⃒⃒
Pr[𝑋 = 𝑧]
Pr[𝑌 = 𝑧] − 1

⃒⃒⃒⃒
.

Take any 𝑧 ∈ 𝐺, let 𝑆 denote the set of 𝑖’s for which 𝑧𝑖 = 1, and let 𝑆 denote the complement of 𝑆. Note
that conditioned on 𝑋𝑆 = 1⃗, the distribution of 𝑋𝑆 is 𝑡/2-wise independent, because 𝑋 is 𝑡-wise independent
and |𝑆| ≤ 𝑡/2. In particular, for all 𝑖 /∈ 𝑆, Pr

[︀
𝑋𝑖 = 1

⃒⃒
𝑋𝑆 = 1⃗

]︀
= Pr

[︀
𝑋𝑖 = 1

]︀
= 𝑝𝑖. Therefore,⃒⃒⃒⃒

Pr[𝑋 = 𝑧]
Pr[𝑌 = 𝑧] − 1

⃒⃒⃒⃒
=

⃒⃒⃒⃒
⃒1− Pr[𝑋𝑆 = 1⃗] · Pr

[︀
𝑋𝑆 = 0⃗

⃒⃒
𝑋𝑆 = 1⃗

]︀
Pr[𝑌𝑆 = 1⃗] · Pr

[︀
𝑌𝑆 = 0⃗

⃒⃒
𝑌𝑆 = 1⃗

]︀ ⃒⃒⃒⃒⃒
Using the fact that Pr[𝑋𝑆 = 1⃗] = Pr[𝑌𝑆 = 1⃗] (which holds because 𝑋, 𝑌 are 𝑡-wise independent and
E[𝑌𝑖] = E[𝑋𝑖] for every 𝑖 ∈ [𝑛]) this is equal to⃒⃒⃒⃒

⃒1− Pr
[︀
𝑋𝑆 = 0⃗

⃒⃒
𝑋𝑆 = 1⃗

]︀
Pr
[︀
𝑌𝑆 = 0⃗

⃒⃒
𝑌𝑆 = 1⃗

]︀ ⃒⃒⃒⃒⃒
which, since 𝑌 is mutually independent, is equal to⃒⃒⃒⃒

⃒1− Pr
[︀
𝑋𝑆 = 0⃗

⃒⃒
𝑋𝑆 = 1⃗

]︀∏︀
𝑖∈𝑆 Pr

[︀
𝑌𝑖 = 0

]︀ ⃒⃒⃒⃒
⃒

=

⃒⃒⃒⃒
⃒1− Pr

[︀
𝑋𝑆 = 0⃗

⃒⃒
𝑋𝑆 = 1⃗

]︀∏︀
𝑖∈𝑆(1− 𝑝𝑖)

⃒⃒⃒⃒
⃒

Using Lemma A.6 for 𝑋𝑆

⃒⃒
𝑋𝑆 = 1⃗ (which is 𝑡/2-wise independent), this is at most

(𝑛 + 𝑡
𝑡−2𝑒𝑝𝑛) · (2𝑒𝑝𝑛/𝑡)𝑡/2∏︀

𝑖∈𝑆(1− 𝑝𝑖)
≤

(𝑛 + 𝑡
𝑡−2𝑒𝑝𝑛) · (2𝑒𝑝𝑛/𝑡)𝑡/2∏︀

𝑖∈[𝑛](1− 𝑝𝑖)

Thus,

𝑑TV(𝑋, 𝑌) ≤
(︂

2𝑒𝑝𝑛

𝑡

)︂𝑡/2
+ 1

2 ·
(𝑛 + 𝑡

𝑡−2𝑒𝑝𝑛) · (2𝑒𝑝𝑛/𝑡)𝑡/2∏︀
𝑖∈[𝑛](1− 𝑝𝑖)

=
(︂

2𝑒𝑝𝑛

𝑡

)︂𝑡/2
·

(︃
𝑛 + 𝑡

𝑡−2𝑒𝑝𝑛

2 ·
∏︀

𝑖∈[𝑛](1− 𝑝𝑖)
+ 1
)︃

.

Recall that we assumed 𝑌1, . . . , 𝑌𝑛 were mutually independent. To handle general 𝑌 , let 𝑈 = (𝑈1, . . . , 𝑈𝑛)
denote independent {0, 1}-valued random variables where E[𝑈𝑖] = E[𝑋𝑖](= E[𝑌𝑖]). Then

𝑑TV(𝑋, 𝑌) ≤ 𝑑TV(𝑋, 𝑈) + 𝑑TV(𝑈, 𝑌) ≤
(︂

2𝑒𝑝𝑛

𝑡

)︂𝑡/2
·

(︃
𝑛 + 𝑡

𝑡−2𝑒𝑝𝑛∏︀
𝑖∈[𝑛](1− 𝑝𝑖)

+ 2
)︃

,

which proves the lemma.

40

	Introduction
	Our Results
	Other Instances of Hardness from Random Permutations
	Techniques
	Defining Permuted Puzzles
	Hard Permuted Puzzle in the Random Oracle (RO) Model
	Hard Permuted Puzzles in the Plain Model
	Statistical-Query Lower Bound
	Open Problems and Future Research Directions

	Preliminaries
	Distinguishing Problems and Permuted Puzzles
	String-Distinguishing Problems
	Distinguishing Games and Hardness
	Permuted Puzzles and a Related Indistinguishability Notion

	Hard Permuted Puzzles in the Random Oracle Model
	Hard Permuted Puzzles in the Plain Model
	Permuted Puzzles and the Learning Parity With Noise (LPN) Assumption
	Permuted Puzzles Based on DDH

	Statistical Query Lower Bound
	Statistical Query Algorithms
	The Toy Problem and Lower Bound

	Useful Lemmas

