
Repudiable Ring Signature: Stronger Security
and Logarithmic-Size

Hao Lin1,2 , Mingqiang Wang1,2

1. School of Mathematics and System Sciences, Shandong University, Jinan,
Shandong 250100, PR China;

lhao17@mail.sdu.edu.cn, wangmingqiang@sdu.edu.cn

2. China Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education.

Abstract. Ring signatures allow a person to generate a signature on
behalf of an ad hoc group, and can hide the true identity of the signer
among the group. Repudiable ring signatures are the more strongly de-
fined ring signatures, which can allow every non-signer to prove to others
that the signature was not generated by himself.

This paper has two main areas of focus. First, we propose a new
requirement for repudiable ring signatures, which is that no one can forge
a valid repudiation for others. Second, we present the first logarithmic-
size repudiable ring signatures which do not rely on a trusted setup or
the random oracle model. Specifically, our scheme can be instantiated
from standard assumptions and the size of signatures and repudiations
only grows logarithmically in the number of ring members.

Keywords: ring signatures, repudiable ring signatures, logarithmic-size

1 Introduction

Ring signature, introduced by [19], is a variant of digital signature, which can
certify that one among a particular set of parties has signed a particular message,
without reveal who is the signer. And this particular set is called a ‘ring’. More
specifically, the signing algorithm of a ring signature scheme takes as additional
input a list of verification keys R and outputs a signature. Such a signature can
be verified produced by one among R. The interesting feature of ring signatures
is that given such a signature, no one can tell which key was used to compute this
signature. Ring signatures are useful, for example, to certify that certain leaked
information comes from a privileged set of government officials without revealing
the identity of the whistleblower, to issue important orders or directives without
setting up the signer to be a scapegoat for repercussions, or to enable untraceable
transactions in cryptocurrencies (such as Monero [16]). In terms of security two
properties are required in ring signatures: unforgeability and anonymity. The
first property requires that an efficient adversary should not be able to forge a
signature on behalf of an honest ring of signers. And anonymity requires that
signatures do not give away by which member they were created.



2 Hao Lin , Mingqiang Wang

The notion of repudiable ring signatures [18] is an extension of the concept
of ring signatures which can allow every non-signer to prove to others that the
signature was not generated by himself. More specifically, the repudiable ring
signature scheme is a ring signature scheme equipped with an additional pair of
algorithms (Repudiate, VerRepud), where Repudiate is an algorithm which can
create a repudiation ξ of any signature σ for any non-signer, and VerRepud can
verify whether ξ is a valid repudiation.

The repudiability of ring signatures is a necessary property in some situation.
For example, we can cite an example from [18] to illustrate the importance of
repudiability. Let us consider a hypothetical case, wherein two candidates Alice
and Bob are running for president in the land of Oz. Oz is notorious for its petty
partisan politics and its tendency to prefer whomever appears friendlier in a se-
ries of nationally televised grinning contests between the main-party candidates.
At the peak of election season, a disgruntled citizen Eve decides to help out her
preferred candidate Bob by publishing the following message, which goes viral
on the social networks of Bob supporters:

I created a notorious terrorist group and laundered lots of money!

Signed: Alice or Eve or Alice’s campaign chairman.

Of course, the virally publicized message does not actually incriminate Alice at
all, since any one of the signatories could have produced it. However, perhaps
there is nothing that Alice can do to allay the doubt in the minds of her suspicious
detractors.

The reason for this is that ring signatures are deliberately designed to allow
anyone to attach anyone else’s identity to a signature, without the latter’s con-
sent. And just like in the example above, these ring signatures provide protection
for malicious people who try to damage the reputation of others. Therefore, we
need to use repudiable ring signatures in these situations.

1.1 Our Contributions

In this paper, we focus on both definitions and constructions. We summarize our
results in each of these areas, and relate them to prior work.

Definitions of security. Prior work on repudiable ring signature scheme provides
definitions of security seem (to us) unnaturally weak, in that they do not address
what seem to be valid security concerns. One example is that they did not
consider the unforgeability of repudiation. Although at first glance, this property
seems to be included in anonymity, it actually requires more in some aspects
than anonymity. Because repudiation unforgeability requires that the adversary
cannot forge a repudiable of signature σ for others even if he knows the signing
key corresponding to the signature σ.

This property is useful in many cases. For example, let us consider the fol-
lowing situation. A company is in trouble and its employees are asked to come



Repudiable Ring Signature: Stronger Security and Logarithmic-Size 3

up with a solution. Bob is an employee of this company, he thinks of a seem-
ingly feasible solution, but he is afraid of being made a scapegoat by his boss if
his solution failed. So he uses a repudiable ring signature to sign his plan, and
publishes it. In the end, the plan works and Bob wants to be rewarded by the
company alone, so he can forge repudiations for everyone others in his ring. In
this case, the ring member can only share the risk but not the reward, which is
obviously unfair to the ring members.

The reason for this is that repudiable ring signatures do not satisfy repudia-
tion unforgeability. Therefore, we need repudiation unforgeability in these situ-
ations. So in this paper, we formalize the property of repudiation-unforgeability,
and give the first construction that satisfies this property.

Constructions. In this paper, we present the first construction of logarithmic-
size repudiable ring signatures which do not rely on a trusted setup or the
random oracle model. Specifically, our scheme can be instantiated from standard
assumptions and our scheme has signatures and repudiations of size log(n) ·
poly(λ), whereas the size of the signatures and repudiations of construction
in [18] is square in the ring size n.

There are two major obstacles in making the size of the signatures and re-
pudiations sublinear in [18] :

1. The signatures and repudiatons contain all witnesses;

2. The witness for the validity of statement is also size linear in n.

Our first modification is that for signature we can just use NIWI to produce
a witness, and do not produce witnesses π for every party, and since NIWI has
witness indistinguishable, we also have our signature has anonymity. Our second
modification is that we first hash the ring R into a succinct digest h, and then
use h in the NIWI. Here we use SPB hashing function, which can also prove the
membership of VKi in the ring R. This hash function was first used by [1].

Besides, the size of keys of our construction has been reduced by at least half
compared to scheme in [18].

Other Contributions. We find there are some mistakes in [18]. In [18] they use the
notation adaptive anonymity against adversarially chosen keys, but we find their
construction cannot satisfy this property they proposed, we can find an attack
for their construction. The attack algorithm is in the appendix. To rule out
such attack, we need to limit the ability of adversary slightly. Our modification
is that, we do not allow an adversary to ask its oracle OR(·) for (·,m,R, ·)
after the adversary gives challenge information (j0, j1,m,R) to experiment. Their
repudiable ring signatures satisfy this modified anonymity, so do our scheme.
And we think this limitation is necessary.

Besides, if we only use the first three algorithms of our repudiable ring sig-
nature, it is also a secure ring signature scheme and the size of signatures also
grows only logarithmically in the number of ring members. And this is also a
new construction of standard ring signatures with logarithmic-size signatures .



4 Hao Lin , Mingqiang Wang

1.2 Related Work

After the initial work of Rivest, Shamir and Tauman [19], a number of works
provided constructions under various computational hardness assumptions. The
scheme of Dodis et al. [6] was the first to achieve sublinear size signatures in
the ROM. Libert et al. [12] constructed a scheme with logarithmic size ring
signature from DDH in the ROM. And recently, Backes et al. [1] provided a
standard model construction with signatures of size log(n).

And since the original proposal of ring signatures, various variant definitions
have been proposed. For example, linkable ring signatures [13] allow identifica-
tion of signatures that were produced by the same signer, without compromising
the anonymity of the signer within the ring. Another notion called traceable ring
signature [9] considers a setting where signatures are generated with respect to
“tags” and each member may sign at most a single message with respect to
a particular tag, or else his identity will be revealed. Accountable ring signa-
tures [4,20] allow a signer to assign the power to deanonymize his signature to a
specific publicly identified party. And recently, Park and Sealfon proposed four
new notations which are repudiable, unrepudiable, claimable and unclaimable
ring signature in [18].

2 Preliminaries

Throughout the paper, we let λ denote the security parameter and negl(λ) denote
the negligible function. We denote by y ← A(x; r) the execution of algorithm
that A output y, on input x and random coins r. We write y ← A(x), if the
specific random coins used are not important. And we denote by y = A(x), if
the algorithm is deterministic. Let r ← S denote that r is chosen uniformly at
random from the set S. We use [n] to denote the set {1, . . . , n}.

Next, we briefly review some building blocks, which include non-interactive
witness-indistinguishable proof system, verifiable random function and some-
where perfectly binding hash function. They will be used in our scheme later.

2.1 Non-Interactive Witness-Indistinguishable Proof System

Let R be an efficiently computable binary relation, where for (x,w) ∈ R we call
x is a statement and w is a witness of x. Moreover, let LR denote the language
consisting of all statements in R, i.e. LR = {x | ∃w : (x,w) ∈ R}.

Definition 1 (NIWI). A non-interactive witness-indistinguishable proof sys-
tem NIWI for language LR consists of two PPT algorithms (Prove, Verify) with
the following syntax.

Prove (1λ, x, w): takes as input a security parameter 1λ, a statement x and a
witness w, and outputs either a proof π or ⊥.

Verify (x, π): takes as input a statement x and a proof π, outputs either 0 or 1.

We require it satisfies the following properties.



Repudiable Ring Signature: Stronger Security and Logarithmic-Size 5

Completeness: for every λ and every (x,w) ∈ R, we have

Pr[Verify(x, π) = 1 | π ← Prove(1λ, x, w)] = 1,

where the probability is taken over the randomness of Prove and Verify al-
gorithms.

Soundness: for every λ, every x /∈ LR and every π ∈ {0, 1}∗, we have

Pr[Verify(x, π) = 1] ≤ negl(λ),

where the probability is taken over the randomness of Verify algorithm.

Witness-Indistinguishability: for any sequence

I = {(x,w0, w1) : (x,w0), (x,w1) ∈ R},

we have

{Prove(1λ, x, w0)}(x,w0,w1)∈I
c
≈ {Prove(1λ, x, w1)}(x,w0,w1)∈I .

Just like [1], we also require the size of proof π satisfies |π| = |Cx| · poly(λ),
where Cx is a verification circuit for the statement x.

NIWI can be constructed from NIZK proofs derandomization assumptions
[2, 8], from indistinguishability obfuscation and one-way permutations [3] and
from bilinear pairings [10].

To avoid confusion, we will write N.Prove, N.Verify to denote the Prove and
Verify algorithms belonging to NIWI.

2.2 Verifiable Random Function

Let a : N→ N∪{∗} and b : N→ N be any two functions such that a(λ), b(λ) are
both computable in time poly(λ), and they are both bounded by a polynomial
in λ (expect when a(λ) takes on the value ∗).1

Definition 2 (VRF). A verifiable random function VRF with input length
a(λ), output length b(λ) consists of a tuple of polynomial-time algorithms (Gen,
Eval,Prove,Verify) with the following syntax.

Gen (1λ): takes as input a security parameter 1λ, and outputs a pair of keys
(pk, sk), this algorithm is probabilistic.

Eval (sk, x): takes as input a secret key sk and x ∈ {0, 1}a(λ), and outputs
y ∈ {0, 1}b(λ), this algorithm is deterministic.

Prove (sk, x): takes as input a secret key sk and x ∈ {0, 1}a(λ), and outputs a
proof π, this algorithm is deterministic.

Verify (pk, x, y, π): takes as input a public key pk, x ∈ {0, 1}a(λ), y ∈ {0, 1}b(λ),
and a proof π, and outputs either 0 or 1, this algorithm is probabilistic.

1 When a(λ) takes the value of ∗, it means the VRF is defined for inputs of all length.



6 Hao Lin , Mingqiang Wang

We require it satisfies the following properties.

Completeness: for every λ and every x ∈ {0, 1}a(λ), we have

Pr

Verify(pk, x, y, π) = 1
(pk, sk)← Gen(1λ);
y = Eval(sk, x);
π = Prove(sk, x).

 = 1,

where the probability is taken over the randomness of Gen and Verify algo-
rithms.

Uniqueness: for every pk, x, y0, π0 and y1, π1 such that y0 6= y1, the following
holds for either i = 0 or i = 1 :

Pr[Verify(pk, x, yi, πi) = 1] < negl(λ),

where the probability is taken over the randomness of Verify algorithm.

Pseudorandomness: for any PPT adversary A = (A1,A2) we have

Pr

 b′ = b ∧ x /∈ Q

(pk, sk)← Gen(1λ);

x← AEval(sk,·),Prove(sk,·)
1 (1λ, pk);

y0 = Eval(sk, x), y1 ← {0, 1}b(λ), b← {0, 1};
b′ ← AEval(sk,·),Prove(sk,·)

2 (1λ, pk, x, yb).

 ≤ 1

2
+negl(λ),

where Q is the set of oracle queries made by A.

For simplicity, we assume that Eval takes inputs x of any length, i.e. a(λ)
takes the value of ∗.

The notation of verifiable random function (VRF) was introduced by Micali,
Rabin, and Vadhan [15]. Known constructions of VRFs are due to [15] based on
strong RSA, [14] based on a strong version of the Diffie-Hellman assumption in
bilinear groups, [5] based on the sum-free generalized DDH assumption, and [7]
based on the bilinear Diffie-Hellman inversion assumption.

To avoid confusion, we will write V.Gen, V.Eval, V.Prove, V.Verify to denote
the Gen, Eval, Prove and Verify algorithms belonging to VRF.

2.3 Somewhere Perfectly Binding Hash Function

The notation of somewhere perfectly binding hash function(SPB)2 was intro-
duced by [1], which can be used to create a short digest h = Hhk(x) of some
long input x = (x[1], . . . , x[L]) ∈ ΣL, where Σ is some alphabet. The hashing
key (hk, shk)← Gen(i) can be generated by providing a special “binding index”
i and this ensures that the hash h = Hhk(x) is perfectly binding for the i’th
symbol. In other words, even though h has many other preimages x′ such that
Hhk(x′) = h, all of these preimages agree in the i’th symbol x′[i] = x[i]. More-
over, we will be interested in SPB hash function with a ‘private local opening’
property that allow us to prove that i’th symbol of x takes on some particular
value x[i] = u by providing a short opening π. The definition is below.

2 This is a stronger notion, compare with SSB in [11].



Repudiable Ring Signature: Stronger Security and Logarithmic-Size 7

Definition 3 (SPB). A somewhere perfectly binding hash family with private
local opening SPB is given by a tuple of algorithms (Gen,Hash,Open,Verify)
with the following syntax:

Gen(1λ, n, i): 3 Takes as input a security parameter 1λ, a database size n and
an index i, and outputs a hashing key hk and a private key shk.

Hash(hk, x): Takes as input a hashing key hk and a database x and outputs a
digest h.

Open(hk, shk, x, j): Takes as input a hashing key hk, a private key shk, a
database x and an index j and outputs a witness π.

Verify(hk, h, j, u, π) Takes as input a hashing key hk, a digest h, an index j,
an alphabet u and a witness π, and outputs either 0 or 1.

We require the following properties for the SPB:

Correctness: for every security parameter λ, every n = poly(λ), every database
x of size n and every index i ∈ [n], we have

Pr

Verify(hk, h, i, x[i], π) = 1
(hk, shk)← Gen(1λ, n, i);
h = Hash(hk, x);
π ← Open(hk, shk, x, i).

 = 1.

where the probability is taken over the randomness of Gen, Open and Verify
algorithm.

Somewhere Perfectly Binding: for every security parameter λ, every n =
poly(λ), every database x of size n, every index i ∈ [n], every alphabet value
u and every witness π, we have

Pr

[
i = ind, u = x[ind]

h = Hash(hk, x);
Verify(hk, h, i, u, π) = 1.

]
= 1.

where the hash key hk is generated by Gen(1λ, n, ind).

Index Hiding: for any PPT adversary A = (A1,A2) we have

Pr

 b′ = b
(n, i0, i1)← A1(1λ);
(hk, shk)← Gen(1λ, n, ib), b← {0, 1};
b′ ← A2(1λ, (hk, shk)).

 ≤ 1

2
+ negl(λ),

Remark 1. We can input any j ∈ [n] into Open algorithm, but the only j that
was used to generate hashing key can produce a valid witness.

Just like [1], we also require the size of hash key hk and the witness π are
log(n) · poly(λ). Moreover, Verify(hk, shk, i, x, π) can be computed by a circuit
of size log(n) · poly(λ).

To simplify notation, we will not provide the block size of databases as an in-
put to SPB.Gen but rather assume that the block size for the specific application
context is hardwired.
3 Where we need i ∈ [n], the same thing has to be true for the following j.



8 Hao Lin , Mingqiang Wang

The notation of somewhere perfectly binding hash family with private local
opening (SPB) was introduced by [1]. In that work, they give a simple black-box
transformation from any SPB hash family to a SPB with private local opening.
They also show that the DDH-based SSB construction of [17] can be proofed to
be SPB hash family.

To avoid confusion, we will write S.Gen, S.Hash, S.Open, S.Verify to denote
the Gen, Hash, Open and Verify algorithms belonging to SPB.

3 Definition of Repudiable Ring Signature

In this section, we provide definitions related to repudiable ring signature, which
has a stronger security compared with [18]. Specifically, we require no one can
forge a valid repudiation for others, which we call repudiation unforgeability,
this is a new requirement we proposed.

Definition 4 (RRS). A repudiable ring signature scheme is a tuple of PPT
algorithms RRS = (Gen,Sign,Verify,Repudiate,VerRepud), satisfying correct-
ness, anonymity, unforgeability, repudiability, repudiation unforgeability. The
syntax of RRS follows:

Gen(1λ): takes as input a security parameter 1λ, and outputs a pair (VK,SK)
of verification and signing keys.

Sign(SK, m, R): takes as input a signing key SK, a message m, and a set of
verification keys R = (VK1, . . . ,VKn), and outputs a signature σ. The set
R is also known as a ‘ring’.

Verify(m, R, σ): takes as input a message m, a set of verification keys R =
(VK1, . . . ,VKn), and a signature σ, and outputs either 0 or 1.

Repudiate(SK, m, R, σ): takes as input a signing key SK, a message m, a set
of verification keys R = (VK1, . . . ,VKn), and a signature σ, and outputs a
repudiation ξ.

VerRepud(VK, m, R, σ, ξ ): takes as input a verification key VK, a message
m, a set of verification keys R = (VK1, . . . ,VKn), a signature σ, and a
repudiation ξ, and outputs either 0 or 1.

A repudiable ring signature requires five conditions, expressed by definition
5, 6, 7, 8 and 9 below. Informally, 8 requires that non-signer can repudiate and
signer cannot repudiate, 9 requires that no one can forge a valid repudiation for
others. To give the formal definition of these properties, we need to introduce
three oracles first:

– Corruption oracle: For a RRS scheme, the oracle OC(VK1,SK1),...,(VKl,SKl)

is defined to take as input i ∈ [l], and outputs (VKi,SKi).
– Signing oracle: For a RRS scheme, the oracle OS(VK1,SK1),...,(VKl,SKl) is

defined to take as input i ∈ [l], a message m, and a ring R4, and output
Sign(SKi,m,R).

4 We allow that the ring R may contain maliciously chosen verification keys that were
not included in {VK1, . . . ,VKl}. The same thing holds for the ring in the OR.



Repudiable Ring Signature: Stronger Security and Logarithmic-Size 9

– Repudiation oracle: For a RRS scheme, the oracle OR(VK1,SK1),...,(VKl,SKl)

is defined to take as input j ∈ [l], a message m, a ring R, and a signature σ,
and output Repudiate(SKj ,m,R, σ).

Definition 5 (Correctness). We say that a RRS scheme satisfies correctness,
if for every security parameter λ, every n = poly(λ), every j ∈ [n], every message
m, we have

Pr

Verify(m,R, σ) = 1
(VKi1 ,SKi1), . . . , (VKin ,SKin)← Gen(1λ);
R = {VKi1 , . . . ,VKin};
σ = Sign(SKij ,m,R).

 = 1.

where the probability is taken over the randomness of Gen, Sign and Verify al-
gorithm.

In this paper, we refer to adaptive anonymity against adversarially chosen
keys, which is slightly different from the previous one in [18]. We require the
adversary cannot queries its OC(·) oracle at (·,m,R, ·), where m and R are the
challenge message and ring in the following experiment. In fact, the RRS scheme
in [18] only satisfies our anonymity definition and do not satisfies the definition
they proposed.

Definition 6 (Anonymity). We say that a RRS scheme satisfies adaptive
anonymity against adversarially chosen keys, if for every security parameter λ,
every PPT adversary A, every l = poly(λ), it holds that A has at most negligible
advantage in the following experiment.

ExpAno(A):

1. For all i ∈ [l], the experiment generates the key pairs (VKi,SKi)← Gen(λ).
2. A is given input 1λ, VK1, . . . ,VKl, and oracle access to OC(·), OS(·), OR(·),

and then provides a tuple (m,R, j0, j1) to experiment, with j0, j1 ∈ [l], and
VKj0 ,VKj1 ∈ R.

3. The experiment chooses a random bit b ← {0, 1}, and computes σ ← Sign
(SKjb ,m,R), then gives σ to A.

4. A continues to have oracle access to OC(·), OS(·) and OR(·) except that A
can not query OR(·) with (·,m,R, ·). Finally A outputs a guess b′. Let QOC

denote the set of all queries that A asked its oracle OC.
5. The experiment outputs 1, if j0, j1 /∈ QOC, otherwise, outputs 0.

The advantage of A is defined by AdvAno(A) = Pr[ExpAno(A) = 1]− 1
2 .

Remark 2. We allow that ring R chosen by adversary A in step 2 may contain
maliciously chosen verification keys that were not generated by challenger.

Definition 7 (Unforgeability). We say that a RRS scheme is unforgeable
with respect to insider corruption, if for every security parameter λ, every PPT
adversary A, every l = poly(λ), it holds that A has at most negligible advantage
in the following experiment.

ExpUnf(A):



10 Hao Lin , Mingqiang Wang

1. For all i ∈ [l], the experiment generates the key pairs (VKi,SKi)← Gen(λ).
2. A is given input 1λ, VK1, . . . ,VKl, and oracle access to OC(·), OS(·), OR(·),

and then outputs (m,R, σ). Let QOC denote the set of all queries that A asked
its oracle OC, and QOS denote the set of all queries that A asked its oracle
OS.

3. The experiment outputs 1, if it satisfies that Verify(m,R, σ) = 1, R ⊂
{VK1, . . . ,VKl} \ QOC, (·,m,R) /∈ QOS. Otherwise, the experiment outputs
0.

The advantage of A is defined by AdvUnf(A) = Pr[ExpUnf(A) = 1].

Repudiability requires two condition, which expressed by the following two
experiments ExpRep1 and ExpRep2. Intuitively, ExpRep1 captures the requirement
that for any signature, a non signer can produce a valid repudiation; ExpRep2

captures the requirement that the signer cannot produce a valid repudaition.
This requirement was proposed by [18] first.

Definition 8 (Repudiability). We say that a RRS scheme is repudiable with
respect to insider corruption, if for every security parameter λ, every PPT ad-
versary A, every l = poly(λ), it holds that A has at most negligible advantage
in the following two experiments.

ExpRep1(A) (Non-signer can repudiate):

1. For all i ∈ [l], the experiment generates the key pairs (VKi,SKi)← Gen(λ).
2. A is given input 1λ, VK1, . . . ,VKl, and oracle access to OC(·), OS(·), OR(·).

Then A outputs (m,R, σ) with R ⊂ {VK1, . . . , VKl}. Let QOC denote the set
of all queries that A asked its oracle OC, QOS denote the set of all queries
that A asked its oracle OS, and QOR denote the set of all queries that A
asked its oracle OR.

3. For all VKj ∈ R\QOC, the experiment computes ξj = Repudiate(SKj ,m,R, σ),
and bj = VerRepud(VKj ,m,R, σ, ξj).

4. The experiment outputs 1, if it satisfies that (·,m,R) /∈ QOS, (·,m,R, ·) /∈
QOR, Verify(m,R, σ) = 1, R \ QOC 6= ∅,

∧
VKj∈R\QOC

bj = 0. Otherwise, the

experiment outputs 0.

The advantage of A is defined by AdvRep1(A) = Pr[ExpRep1(A) = 1].

ExpRep2(A)(Signer cannot repudiate):

1. For all i ∈ [l], the experiment generates the key pairs (VKi,SKi)← Gen(λ).
2. A is given input 1λ, VK1, . . . ,VKl, and oracle access to OC(·), OS(·), OR(·).

Then A outputs (m,R, σ, {ξik}VKik
∈QOC∩R) with R ⊂ {VK1, . . . ,VKl}. Where

QOC is the set of all queries that A asked its oracle OC, and let QOS denote
the set of all queries that A asked its oracle OS.

3. The experiment compute bik = VerRepud(VKik ,m,R, σ, ξik) for all VKik ∈
QOC ∩ R.



Repudiable Ring Signature: Stronger Security and Logarithmic-Size 11

4. The experiment outputs 1, if it satisfies that (·,m,R) /∈ QOS, Verify(m,R, σ) =
1, QOC ∩ R 6= ∅,

∧
VKj∈QOC∩R

bj = 1. Otherwise, the experiment outputs 0.

The advantage of A is defined by AdvRep2(A) = Pr[ExpRep2(A) = 1].

Furthermore, we also need that no one can produce a valid repudiation for
others, even if he is signer. We call this requirement repudiation unforgeabili-
ty, and this is a new requirement we proposed. Repudiation unforgeability re-
quires two conditions, which expressed by the following two experiment ExpReun1

and ExpReun2. Intuitively, ExpReun1 captures the requirement that signer cannot
forge repudiation for others; ExpReun2 captures the requirement that non-signer
also cannot forge repudiation for others.

Definition 9 (Repudiation-Unforgeability). We say that a RRS scheme
satisfies repudiation unforgeability, if for every security parameter λ, every PPT
adversary A, every l = poly(λ), it holds that A has at most negligible advantage
in the following two experiments.

ExpReun1(A)(Signer cannot forge repudiation for others):

1. For all i ∈ [l], the experiment generates the key pairs (VKi,SKi)← Gen(λ).
2. A is given input 1λ, VK1, . . . ,VKl, and oracle access to OC(·), OS(·), OR(·).

Then A outputs (m,R, σ, ξ, j) with R ⊂ {VK1, · · · ,VKl}, VKj ∈ R. Let
QOC denote the set of all queries that A asked its oracle OC, QOS denote
the set of all queries that A asked its oracle OS, and QOR denote the set of
all queries that A asked its oracle OR.

3. The experiment outputs 1, if it satisfies that (·,m,R) /∈ QOS, Verify(m,R, σ) =
1, j /∈ QOC, (j,m,R, ·) /∈ QOR, VerRepud(VKj ,m,R, σ, ξ) = 1. Otherwise,
the experiment outputs 0.

The advantage of A is defined by AdvReun2(A) = Pr[ExpReun1(A) = 1].

ExpReun2(A)(Non-signer cannot forge repudiation for others):

1. For all i ∈ [l], the experiment generates the key pairs (VKi,SKi)← Gen(λ).
2. A is given input 1λ, VK1, . . . ,VKl, and oracle access to OC(·), OS(·), OR(·).

Then A outputs a tuple (m,R, i) to experiment, with i ∈ [l], and VKi ∈ R.
3. The experiment computes σ ← Sign(SKi,m,R), then give σ to A.
4. A continues to have oracle access to OC(·), OS(·). Then A outputs (j, ξ).

Let QOC denote the set of all queries that A asked its oracle OC.
5. The experiment outputs 1, if it satisfies that VerRepud(VKj ,m,R, σ, ξ) = 1,

j /∈ QOC. Otherwise, the experiment outputs 0.

The advantage of A is defined by AdvReun2(A) = Pr[ExpReun2(A) = 1].

Remark 3. In the experiment ExpReun2, we consider a stronger requirement that
the adversary can even know the signing key of signature , i.e. i ∈ QOCthey still
cannot forge a valid repudiation.



12 Hao Lin , Mingqiang Wang

4 Construction of Repudiable Ring Signatures

We now describe our construction of a repudiable ring signature scheme that
satisfies a stronger of our proposed definitions, has logarithmic-size signature and
reputation, and is based on general assumptions. Let (S.Gen, S.Hash, S.Open,
S.Verify) be a somewhere perfectly binding hash function with private local
opening, let (V.Gen, V.Eval, V.Prove, V.Verify) be a verifiable random function
with input domain {0, 1}∗, output range {0, 1}α(λ), and let (N.Prove, N.Verify)
be a NIWI-proof system for an NP-language L (that will become clear once we
describe the scheme). In the rest of the section, we use the following convention
to parse a ring R, write R = {VKi1 , . . . ,VKin}, and we use R[k] denote k’th
verification key VKik in R.

The idea underlying our construction is the following. Each user has two VRF
key pairs (pk0, sk0), (pk1, sk1). To generate a ring signature with a signing key
SKij , the signer first generates two hashing keys hk0 and hk1 which are binding
at position j and computes the hash of R = {VKi1 , . . . ,VKin} under both hk0

and hk1, obtaining hash values h0 and h1. Next, the signer computes evaluations
y00 and y10 on (h0,m; r) using sk0 and sk1 separately. The evaluations y01 and
y11 are chosen uniformly random. Finally, the signer computes a NIWI proof π
which proves that either (hk0, h0) bind to a key VKij and that y00 and y10 are
evaluations of (h0,m; r) for sk0 and sk1 or (hk1, h1) bind to a key VKij and
that y01 and y11 are evaluations of (h0,m; r) for sk0 and sk1.

To generate a repudiation for a signature σ with a signing key SKij , the
denier first computes the hash of R = {VKi1 , . . . ,VKin} under both hk0 and
hk1, obtaining hash values h̃0 and h̃1. Next, the denier computes evaluations
y0 and y1 on (h̃0,m; r) and (h̃1,m; r) using sk1 separately, and then computes
evaluations z0 and z1 on y0 and y1 using sk1 separately. Finally, the denier
computes a NIWI proof π′ which proves that z0 and z1 are evaluations of y0 and
y1 for sk1, and y0 and y1 are evaluations of (h̃0,m; r) and (h̃1,m; r) for sk1, and
y0 6= y10 , y1 6= y11 , where y10 and y11 come from σ.

Toward a formal description, let L1 denote the NP language:

(m, r, y00 , y
1
0 , y

0
1 , y

1
1 ,hk0,hk1, h0, h1) ∈ L1 ⇔

∃ VK, i, η, τ0, τ1, j ∈ {0, 1} s.t. S.Verify(hkj , hj , i,VK, η) = 1∧

V.Verify(pk0, (hj ,m; r), y0j , τ
0) = 1 ∧V.Verify(pk1, (hj ,m; r), y1j , τ

1) = 1.

i.e. (m,ϕ, y00 , y
1
0 , y

0
1 , y

1
1 ,hk0,hk1, h0, h1) ∈ L1 iff either (hk0, h0) bind to a key

VK, y00 and y10 are evaluations of (h0,m; r) for sk0 and sk1 or (hk1, h1) bind
to a key VK, y01 and y11 are evaluations of (h0,m; r) for sk0 and sk1. This NP
language is used to produce ring signature.

And we let L2 denote the NP language:

(VK,m, r, y10 , y
1
1 , h̃0, h̃1, z0, z1) ∈ L2 ⇔

∃y0, y1, τ00, τ01, τ10, τ11 s.t. (y0 6= y10) ∧ (y1 6= y11)∧



Repudiable Ring Signature: Stronger Security and Logarithmic-Size 13

V.Verify(pk1, (h̃0,m; r), y0, τ00) = 1 ∧V.Verify(pk1, y0, z0, τ01) = 1∧

V.Verify(pk1, (h̃1,m; r), y1, τ10) = 1 ∧V.Verify(pk1, y1, z1, τ11) = 1.

i.e. (VK,m, r, y10 , y
1
1 , h̃0, h̃1, z0, z1) ∈ L2 iff z0 and z1 are evaluations of y0 and y1

for sk1, where y0 and y1 are evaluations of (h̃0,m; r) and (h̃1,m; r) for sk1, and
y0 6= y10 , y1 6= y11 . This NP language is used to produce repudiation.

4.1 Construction

Our repudiable ring signature schemes RRS = (Gen, Sign, Verify, Repudiate,
VerRepud) is given as follows.

– RRS.Gen(1λ):
1. Generate VRF key pairs (pk0, sk0), (pk1, sk1)← V.Gen(1λ).
2. Output the public key VK = (pk0, pk1), and the secret key SK = (sk0, sk1,VK).5

– RRS.Sign(SK, m, R):
1. Parse R as described above and SK=(sk0, sk1, VK), if VK /∈ R, output ⊥

and halt, else define i∗ ∈ [N ] such that R[i∗] = VK.
2. Generate SPB key pairs (hk0, shk0), (hk1, shk1) ← S.Gen(1λ, |R|, i∗), and

compute h0 = S.Hash(hk0,R), h1 = S.Hash(hk1,R), and then compute η ←
S.Open(hk0, shk0,R, i

∗).
3. Choose random bit string r ← {0, 1}λ, and compute y00 = V.Eval(sk0,

(h0,m; r)), y10 = V.Eval(sk1, (h0,m; r)), and then compute proofs τ0 =
V.Prove(sk0, (h0,m; r)), τ1 = V.Prove(sk1, (h0,m; r)).

4. Choose random bit strings y01 ← {0, 1}α(λ), y11 ← {0, 1}α(λ).
5. Set x = (m, r, y00 , y

1
0 , y

0
1 , y

1
1 ,hk0,hk1, h0, h1) and w = (VK, i∗, η, τ0, τ1, 0),

and then compute the proof π ← N.ProveL1
(x,w).

6. The ring signature is σ = (r, y00 , y
1
0 , y

0
1 , y

1
1 ,hk0,hk1, π).

– RRS.Verify(m,R, σ):
1. Parse R as above and σ = (r, y00 , y

1
0 , y

0
1 , y

1
1 ,hk0,hk1, π).

2. Compute h′0 = S.Hash(hk0,R), h′1 = S.Hash(hk1,R).
3. Output N.VerifyL1

((m, r, y00 , y
1
0 , y

0
1 , y

1
1 ,hk0,hk1, h

′
0, h
′
1), π).

The above is our ring signature algorithm, this algorithm can be used as a
general ring signature system alone. Now we proceed to describe the repudiation
algorithms for RRS.

– RRS.Repudiate(SK, m, R, σ):
1. Parse R as above, SK= (sk0, sk1, VK), and σ = (r, y00 , y

1
0 , y

0
1 , y

1
1 ,hk0,hk1, π),

if VK /∈ R, output ⊥ and halt. Else compute b = RRS.Verify(m,R, σ), if
b = 0 output ⊥ and halt.

2. Compute h̃0 = S.Hash(hk0,R), h̃1 = S.Hash(hk1,R).

5 We include the verification key VK in SK so that the Sign procedure can identify
the verification key in the ring corresponding to the signing key.



14 Hao Lin , Mingqiang Wang

3. Compute y0 = V.Eval(sk1, (h̃0,m; r)) and y1 = V.Eval(sk1, (h̃1,m; r)). If
y0 = y10 or y1 = y11 , output ⊥ and halt.

4. Compute z0 = V.Eval(sk1, y0), z1 = V.Eval(sk1, y1), and then compute
proofs τ00 = V.Prove(sk1, (h̃0,m; r)), τ10 = V.Prove(sk1, (h̃1,m; r)), and
τ01 = V.Prove(sk1, y0), τ11 = V.Prove(sk1, y1).

5. Set x = (VK,m, r, y10 , y
1
1 , h̃0, h̃1, z0, z1) and w = (y0, y1, τ00, τ01, τ10, τ11), and

then compute the proof π′ ← N.ProveL2(x,w).
6. The reputation is ξ = (z0, z1, π

′).

– RRS.VerRepud(VK, m, R, σ, ξ):
1. Parse R as above, σ = (r, y00 , y

1
0 , y

0
1 , y

1
1 ,hk0,hk1, π), and ξ = (z0, z1, π

′).
2. If VK /∈ R, output 1 and halt. Compute b = RRS.Verify(m,R, σ), if b = 0

output 1 and halt.
3. Compute h̃′0 = S.Hash(hk0,R), h̃′1 = S.Hash(hk1,R).
4. Output N.VerifyL2

((VK,m, r, y10 , y
1
1 , h̃
′
0, h̃
′
1, z0, z1), π′).

4.2 Signature and Repudiation Size

We will first show that our scheme has only logarithmic-size signatures and
repudiations. For a signature σ = (r, y00 , y

1
0 , y

0
1 , y

1
1 ,hk0,hk1, π), the size of r, y00 ,

y10 , y01 , y11 is poly(λ) and independent of the ring-size n. Since SPB is efficient, we
have hk0,hk1 is bounded by log(n)·poly(λ). Also by the efficiency of SPB the size
of the witness τ is log(n) ·poly(λ) and the SPB verification function S.Verify can
be computed by a circuit of size log(n)·poly(λ). Therefore, the verification circuit
Cx for the language L1 and statement x = (m, r, y00 , y

1
0 , y

0
1 , y

1
1 ,hk0,hk1, h0, h1)

has size log(n) · poly(λ). By the proof-size property of the NIWI proof it holds
that |π| = |Cx| · poly(λ) = log(n) · poly(λ). Consequently, the size of signatures
σ is log(n) · poly(λ).

For a repudiation ξ = (z0, z1, π
′), the size of z0, z1 is poly(λ) and independent

of the ring-size n. Using the same analysis we can also get that the size of proof
π′ is log(n) · poly(λ). Consequently, the size of repudiations ξ is log(n) · poly(λ).

4.3 Correctness

We now show that our scheme satisfies correctness.

Theorem 1. The repudiable ring signature scheme RRS is correct, given that
NIWI has completeness, VRF has completeness, and SPB has correctness.

Proof. Assume that (VK, SK) were generated by RRS.Gen(1λ), and signature
σ = (r, y00 , y

1
0 , y

0
1 , y

1
1 ,hk0,hk1, π) is the output of RRS.Sign(SK,m,R), where

R = (VK1, . . .VKn) is a ring generated by RRS.Gen(1λ), and R[i] = VK. We
will show that it holds RRS.Verify(m,R, σ) = 1. First note that since S.Hash
is a deterministic algorithm, it holds h′0 = h0 and h′1 = h1. According to the
RRS.Sign algorithm and the correctness of SPB, we have there is a η, such that
it holds that S.Verify(hk0, h0, i,VK, η) = 1. Moreover, by the completeness of



Repudiable Ring Signature: Stronger Security and Logarithmic-Size 15

VRF, there are τ0, τ1 such that it holds V.Verify(pk0, (h0,m; r), y00 , τ
0) = 1 and

V.Verify(pk1, (h0,m; r), y10 , τ
1) = 1.

Therefore, (m, r, y00 , y
1
0 , y

0
1 , y

1
1 ,hk0,hk1, h0, h1) ∈ L1 and (VK, i, η, τ0, τ1, 0) is

a witness for the membership. Thus, by the correctness of NIWI it holds that

N.VerifyL1
((m, r, y00 , y

1
0 , y

0
1 , y

1
1 ,hk0,hk1, h0, h1), π) = 1.

and consequently RRS.Verify(m,R, σ) = 1.

Remark 4. Definition 5 considers only for honestly generated keys. We can also
consider a stronger requirement that verify be successful for honestly generated
signatures with respect to rings containing adversarial keys. And we can easily
proof that our construction also satisfy this stronger requirement by the same
way.

4.4 Repudiation unforgeability

We will turn to show that our RRS scheme is repudiation unforgeability.

Theorem 2. The repudiable ring signature scheme RRS satisfies repudiation
unforgeability, given that NIWI has soundness, VRF has completeness, unique-
ness, and pseudorandomness.

The main idea of the proof is that, if A can forge a valid repudiation for
other member, then by the soundness of NIWI, there must be y0, τ00, τ01, s.t.
V.Verify(pk1, (h0,m; r), y0, τ00) = 1 and V.Verify(pk1, y0, z0, τ01) = 1. Since the
VRF has completeness and uniqueness, we have y0 = V.Eval(sk1, (h0,m; r)),
and z0 = V.Eval(sk1, y0), and by this we can attack the pseudorandomness of
VRF.

Proof. We will prove each of the desired security properties in turn.

Signer cannot forge repudiations for others: Assume there exists a PPT ad-
versary A that breaks our RRS scheme (in the sense of ExpReun1) with non-
negligible probability. We will construct an adversary B that breaks the pseudo-
randomness of the underlying VRF scheme with non-negligible probability. The
reduction is given as follows.

Adversary B: given input 1λ, pk, and access to oracle Eval(sk, ·), Prove(sk, ·).

1. B runs RRS.Gen(1λ) to generate l pairs of keys, then chooses a random index
i∗ ∈ [l], and set VKi∗ = (pk0i∗ , pk). Then B gives 1λ and VK1, . . . ,VKl to A.

2. B proceeds to simulate the oracle queries of A in the natural way:

– If A queries its corruption oracle OC(·) on a user i 6= i∗, B faithfully
answers SKi to A. If A makes a corruption query for i∗, then B simply
aborts.



16 Hao Lin , Mingqiang Wang

– If A queries its signing oracle OS(·) on (i,m,R), where i 6= i∗, B faith-
fully answers RRS.Sign(SKi,m,R) to A. If A makes a signing query for
(i∗,m,R), then B runs the honest signing algorithm RRS.Sign with the
following modification: in step 3, instead of using sk to generate y10 and
τ1, B generates these by invoking its VRF oracle.

– If A queries its repudiation oracle OR(·) on (i,m,R, σ), where i 6= i∗,
B faithfully answers RRS.Repudiate(SKi,m,R, σ) to A. If A makes a
repudiation query for (i∗,m,R, σ), then B runs the honest repudiating
algorithm RRS.Repudiate with the following modification: in step 3, step
4, instead of using sk to generate y0, y1, τ00, τ10, z0, z1, and τ01, τ11, B
generates these by invoking its VRF oracle.

3. Finally A outputs (m,R, σ, ξ, j). If j 6= i∗, then B simply aborts. If j = i∗,
then B parse σ = (r, y00 , y

1
0 , y

0
1 , y

1
1 ,hk0,hk1, π) and ξ = (z0, z1, π

′), and do:
– Compute h0 = SPB.Hash(hk0,R);
– B queries its oracle Eval(·) on (h0,m; r) and get x.
– B submits x to the VRF challenger and then receives responses y. If
y = z0, B outputs 0. Otherwise, B outputs a random bit.

It remains to show that the adversary B has non-negligible advantage to
attack the pseudorandomness of VRF. First note that the distribution (i.e.,
verification keys and oracle responses) of the view of A is unaffected by B’s
choice of i∗, until the point at which A submits an oracle query to oracle OC
for input i∗. Since i∗ is chosen at random by B, it follows that with probability
at least 1

l the adversary A does not trigger this abort. And, conditioned that
A does not ask to corrupt i∗, from the view of A the index i∗ is distributed
uniformly random, so it holds that j = i∗ with probability at least 1

l .
Now, we assume that no abort happened andA wins the experiment ExpReun1.

Then ξ will be a valid repudiation of i∗ respect to σ, i.e.

RRS.VerRepud(VKi∗ ,m,R, σ, ξ) = 1.

Therefore, by the soundness of NIWI, there must exist y0, and τ00, τ01, s.t. we
have V.Verify(pk, (h0,m; r), y0, τ00) = 1 and V.Verify(pk, y0, z0, τ01) = 1. And
since VRF has completeness and uniqueness, we have y0 = V.Eval(sk, (h0,m; r))
and z0 = V.Eval(sk, y0).

In this case, if the VRF challenger’s bit b = 0, then we have y = z0. Recall
that this is the trigger condition for B to output 0. If the VRF challenger’s bit
b = 1, then y is truly random strings. Thus, by the definition of B, B outputs a
random bit with overwhelm probability.

Furthermore, let us consider the probability that B queries oracle Eval(sk, ·)
or Prove(sk, ·) for input x = VRF.Eval(sk, (h0,m; r)). B queries its oracle only
when A queries oracle respect input i∗. Since when A wins the experiment
ExpReun, A cannot query its signing oracle OS(·) on (·,m,R), and cannot query
its repudiation oracle on (i∗,m,R, ·), there is only a negligible probability such
that B queries oracle Eval(sk, ·) or Prove(sk, ·) for input x.

All together, we can conclude that

AdvVRF(B) ≥ 1

4l2
·AdvReun1(A).



Repudiable Ring Signature: Stronger Security and Logarithmic-Size 17

This concludes the proof of signer cannot forge repudiations for others.

Non-signer cannot forge reputations for others: Assume there exists a PPT ad-
versary A that breaks our RRS scheme (in the sense of ExpReun2) with non-
negligible probability. We will construct an adversary B that breaks the pseudo-
randomness of the underlying VRF scheme with non-negligible probability. The
reduction is given as follows.

Adversary B: given input 1λ, pk, and access to oracle Eval(sk, ·), Prove(sk, ·).

1. B runs RRS.Gen(1λ) to generate l pairs of keys, then chooses a random index
i∗ ∈ [l], and set VKi∗ = (pk0i∗ , pk). Then B gives 1λ and VK1, . . . ,VKl to A.

2. B proceeds to simulate the oracle queries of A in the natural way:
– If A queries its corruption oracle OC(·) on a user i 6= i∗, B faithfully

answers SKi to A. If A makes a corruption query for i∗, then B simply
aborts.

– If A queries its signing oracle OS(·) on (i,m,R), where i 6= i∗, B faith-
fully answers RRS.Sign(SKi,m,R) to A. If A makes a signing query for
(i∗,m,R), then B runs the honest signing algorithm RRS.Sign with the
following modification: in step 3, instead of using sk to generate y10 and
τ1, B generates these by invoking its VRF oracle.

– If A queries its repudiation oracle OR(·) on (i,m,R, σ), where i 6= i∗,
B faithfully answers RRS.Repudiate(SKi,m,R, σ) to A. If A makes a
repudiation query for (i∗,m,R, σ), then B runs the honest repudiating
algorithm RRS.Repudiate with the following modification: in step 3, step
4, instead of using sk to generate y0, y1, τ00, τ10, z0, z1, and τ01, τ11, B
generates these by invoking its VRF oracle.

3. Then A outputs (m,R, i), If i = i∗, then B simply aborts. Else, B runs the
honest signing algorithm RRS.Sign and outputs RRS.Sign(SKi,m,R) to A;

4. A continues to query OC(·) and OS(·), and B answers queries in the same
way described above.

5. Finally A outputs (j, ξ). If j 6= i∗, then B simply aborts. Else B parses
σ = (r, y00 , y

1
0 , y

0
1 , y

1
1 ,hk0,hk1, π) and ξ = (z0, z1, π

′), and do:
– Compute h0 = S.Hash(hk0,R);
– B queries its oracle Eval(·) on (h0,m; r) and get x.
– B submits x to the VRF challenger and then receives responses y. If
y = z0, B outputs 0. Otherwise, B outputs a random bit.

It remains to show that the adversary B has non-negligible advantage to
attack the pseudorandomness of VRF. First note that the distribution (i.e.,
verification keys and oracle responses) of the view of A is unaffected by B’s
choice of i∗, until the point at which A submits an oracle query to oracle OC
for input i∗. Since i∗ is chosen at random by B, it follows that with probability
at least 1

l the adversary A does not trigger this abort. And, conditioned that
A does not ask to corrupt i∗, from the view of A the index i∗ is distributed
uniformly random, so it holds that i 6= i∗ with probability at least 1

l . Also by
the randomness of i∗, we also have that j = i∗ with probability at least 1

l .



18 Hao Lin , Mingqiang Wang

Now, we assume that no abort happened andA wins the experiment ExpReun2.
Then ξ will be a valid repudiation of i∗ respect to σ, i.e.

RRS.VerRepud(VKi∗ ,m,R, σ, ξ) = 1.

Therefore, by the soundness of NIWI, there must exist y0, and τ00, τ01, s.t. we
have V.Verify(pk, (h0,m; r), y0, τ00) = 1 and V.Verify(pk, y0, z0, τ01) = 1. And
since VRF has completeness and uniqueness, we have y0 = V.Eval(sk, (h0,m; r))
and z0 = V.Eval(sk, y0).

In this case, if the VRF challenger’s bit b = 0, then we have y = z0. Recall
that this is the trigger condition for B to output 0. If the VRF challenger’s bit
b = 1, then y is truly random strings. Thus, by the definition of B, B outputs a
random bit with overwhelm probability.

Furthermore, let us consider when E2 occurs, the probability that B queries o-
racle Eval(sk, ·) or Prove(sk, ·) for input x = VRF.Eval(sk, (h0,m, ϕ)). B queries
its oracle only when A queries oracle respect input i∗. When A queries its sig-
nature oracle, B will chooses a random strings ϕ, so there is only negligible
probability such that B meets x. And since σ is generated by B, and after sig-
nature produced A cannot query its repudiation oracle, there is only negligible
probability such that A queries a repudiation oracle with a signature which in-
clude ϕ. Therefore, there is only a negligible probability such that B queries
oracle Eval(sk, ·) or Prove(sk, ·) for input x.

All together, we can conclude that

AdvVRF(B) ≥ 1

4l3
·AdvReun2(A).

This concludes the proof.

4.5 Anonymity

We will now turn to establish the anonymity of our RRS scheme.

Theorem 3. The repudiable ring signature scheme RRS satisfies anonymity
against adversarially chosen keys, given that NIWI has soundness and witness
indistinguishablity, VRF has commpletenss, uniqueness, and pseudorandomness,
and SPB has index hiding.

The main idea of the proof is that, first move the index of hk1 from j0 to
j1 and argue indistinguishability via the index-hiding property of SPB. Nex-
t we switch y01 , y11 to the evaluation of (h1,m; r) and (h1,m; r), where h1 is
the digest of R for new key hk1. This modification will not be detected due to
the pseudorandom property of VRF. Now, we can switch the NIWI witness to
(VKj1 , ind1, η1, τ

0
1 , τ

1
1 , 1), and by witness indistinguishability of NIWI, this sig-

nature also satisfies indistinguishability. Next, we perform the first two changes
above for hk0 and y00 , y

1
0 , switch the witness back to the witness for j = 0, and

finally replace y01 , y
1
1 with a random string. The signature in the last experiment

is now a real signature of m under VKj1 .



Repudiable Ring Signature: Stronger Security and Logarithmic-Size 19

Proof. Let A be a PPT adversary against the anonymity of RRS. Assume that
A makes at most q = poly(λ) queries for any oracle. Let in the following ind0 be
the index of VKj0 in R, and ind1 be the index of VKj1 in R, where (m,R, j0, j1)
is the challenge query of A. Now, consider the following hybrids:

Hybrid 1: This is the real experiment with challenge bit b = 0.
Hybrid 2: Same as Hybrid 1, except that in σ, we compute hk1 by (hk1, shk1)
← S.Gen(1λ, |R|, ind1).

Hybrid 1 and Hybrid 2 are computationally indistinguishable, given that SPB
is index hiding. More specifically, there exists a reduction R1 such that

AdvIndex−Hiding(RA1 ) = AdvH1,H2(A).

We will provide an informal description ofR1. TheR1 simulates H1 faithfully,
until A outputs a challenger query (m,R, j0, j1). Then R1 gives (|R|, ind0, ind1)
to the index hiding experiment and receives a hashing key hk∗. R1 continues
the simulation of H1 faithfully, except that in the challenge signature it sets
hk1 = hk∗. In the end, R1 outputs the output of A.

Clearly, if the challenge bit of the index hiding experiment is 0 then R1 simu-
lates Hybrid 1 perfectly. And if the challenge bit of the index hiding experiment
is 1 then R1 simulates Hybrid 2 perfectly. Therefore, Hybrid 1 and Hybrid 2 are
computationally indistinguishable.

Hybrid 3: Same as Hybrid 2, except that we compute y11 by y11 = V.Eval
(sk1j1 , (h1,m; r)).

Hybrid 2 and Hybrid 3 are computationally indistinguishable, given that the
VRF is pseudorandom. More specifically, there exists a reduction R2 such that

AdvVRF(RA2 ) = AdvH2,H3
(A) · poly(λ).

The proof is very similar with the proof of Theorem 2. We only provide an
informal description of R2. The reduction R2 receives as input a public key pk.
The R2 simulates H2 faithfully, except for the following. Before the simulation
stars, R2 chooses a random index i∗ and sets VKi∗ = (pk0i∗ , pk), where pk0i∗ is
generated as in H2 and pk is the input of R2. R2 continues the simulation of H2

6

until A announces (j0, j1,m,R). If it holds j1 6= i∗, R2 outputs ⊥. Otherwise, R2

continues the simulation of H2 faithfully, except that in the challenge signature
it sets y11 = y, where y is the outputs of challenger when B gives it (h1,m, ϕ).
Finally, R2 continues the simulation and outputs whatever A outputs.

Clearly, if the challenge bit of the VRF experiment is 0 then R1 simulates
Hybrid 2 perfectly. And if the challenge bit of the index hiding experiment is
1 then R1 simulates Hybrid 3 perfectly. And since we require A can not query
OR(·) with (·,m,R, ·), after he has received a challenge signature, A can not get
any advantage from his repudiation oracle. Therefore, Hybrid 2 and Hybrid 3
are computationally indistinguishable.

6 When A queries its oracle, the answer of R2 is same as B’s answer in Theorem 2.



20 Hao Lin , Mingqiang Wang

Hybrid 4: Same as Hybrid 3, except that we compute y01 by y01 = V.Eval
(sk0j1 , (h1,m; r)).

Hybrid 3 and Hybrid 4 are computationally indistinguishable, given that the
VRF is pseudorandom. More specifically, there exists a reduction R3 such that

AdvVRF(RA3 ) = AdvH3,H4
(A) · poly(λ).

The proof is very similar to the above, except that we set VKi∗ = (pk, pk1i∗),
where pk1i∗ is generated as in H3 and pk is the input of R3.

Hybrid 5: Same as Hybrid 4, except that we compute witness by
– η ← S.Open(hk1, shk1,R, ind1),
– τ0 ← V.Prove(sk0j1 , (h1,m; r)), τ1 ← VRF.Prove(sk1j1 , (h1,m; r)),

and use the witness w = (VKj1 , ind1, η, τ
0, τ1, 1) to compute π.

Hybrid 4 and Hybrid 5 are computationally indistinguishable, give that NIWI
is computationally witness indistinguishable. More specifically, there exists a
reduction R4 against the witness indistinguishability of NIWI such that

AdvWI(RA4 ) = AdvH4,H5(A).

The reduction R4 simulates H4 faithfully, until the challenge signature is
computed. Instead of computing the proof π itself, R4 sends the statement
x = (m, r, y00 , y

1
0 , y

0
1 , y

1
1 ,hk0,hk1, h0, h1) and the witness w0 = (VKj0 , ind0, η0, τ

0
0 ,

τ10 , 0) and w1 = (VKj1 , ind1, η1, τ
0
1 , τ

1
1 , 1) to the witness indistinguishability ex-

periment. The experiment returns a proof π∗, and R4 use the proof π∗ in the
challenge signature. R4 continues the simulation of H4 faithfully and outputs
whatever the simulated A outputs.

Clearly, if the challenge bit of the witness indistinguishability experiment
is 0, then R4 simulates H4 perfectly. On the other hand, if the challenge bit
is 1, then R4 simulates H5 perfectly. Therefore, Hybrid 4 and Hybrid 5 are
computationally indistinguishable.

Next, we perform the similar changes as following.

Hybrid 6: Same as Hybrid 5, except that we compute y00 by y00 ← {0, 1}α(λ).
Hybrid 7: Same as Hybrid 6, except that we compute y10 by y10 ← {0, 1}α(λ).
Hybrid 8: Same as Hybrid 7, except that in σ, we compute hk0 by (hk0, shk0)
← SPB.Gen(1λ, |R|, ind1).

Hybrid 9: Same as Hybrid 8, except that we compute y00 by y00 = V.Eval
(sk0j1 , (h0,m; r)).

Hybrid 10: Same as Hybrid 9, except that we compute y10 by y10 = V.Eval
(sk1j1 , (h0,m; r)).

Hybrid 11: Same as Hybrid 10, except that we compute witness by
– η ← SPB.Open(hk0, shk0,R, ind1),
– τ0 ← VRF.Prove(sk0j1 , (h0,m, ϕ)), τ1 ← VRF.Prove(sk1j1 , (h0,m, ϕ)),

and use the witness w = (VKj1 , ind1, η, τ
0, τ1, 0) to compute π.

Hybrid 12: The same as hybrid 11, except that we compute y01 and y11 by
y01 , y

1
1 ← {0, 1}α(λ). This is identical to the real experiment with b = 1.

These hybrids are also indistinguishability, the proof is analogous, and we
omit it. Therefore, RRS satisfies anonymity against adversarially chosen keys.



Repudiable Ring Signature: Stronger Security and Logarithmic-Size 21

4.6 Unforgeability

We will now turn to show that our RRS scheme is unforgeable.

Theorem 4. The repudiable ring signature scheme RRS is unforgeable, given
that NIWI has soundness, VRF has completeness, uniqueness, and pseudoran-
domness, and SPB has somewhere perfectly binding.

The main idea of the proof is that, if A can forge a valid signature, then
since NIWI has soundness, it must has VK, i ∈ [N ], η, τ0, τ1, and j ∈ {0, 1} s.t.
we have S.Verify(hkj , hj , i,VK, η) = 1, V.Verify(pk0, (hj ,m; r), y0j , τ

0) = 1, and

V.Verify(pk1, (hj ,m; r), y1j , τ
1) = 1. Since SPB has somewhere perfectly binding,

we have VK = R[i]. And by the completeness and uniqueness of the VRF, we
have y0j = V.Eval(pk0, (hj ,m, r)), and y1j = V.Eval(pk1, (hj ,m, r)), and by this
we can attack the pseudorandomness of VRF.

Proof. Assume there exists a PPT adversary A that breaks our RRS scheme (in
the sense of Definition 7) with non-negligible probability. We will construct an
adversary B that breaks the pseudorandomness of the underlying VRF scheme
with non-negligible probability. The reduction is given as follows.

Adversary B: given input 1λ, pk, and access to oracle Eval(sk, ·), Prove(sk, ·).

1. B runs RRS.Gen(1λ) to generate l pairs of keys, then chooses a random index
i∗ ∈ [l], and set VKi∗ = (pk, pk1i∗). Then B gives 1λ and VK1, . . . ,VKl to A.

2. B proceeds to simulate the oracle queries of A in the natural way:

– If A queries its corruption oracle OC(·) on a user i 6= i∗, B faithfully
answers SKi to A. If A makes a corruption query for i∗, then B simply
aborts.

– If A queries its signing oracle OS(·) on (i,m,R), where i 6= i∗, B faith-
fully answers RRS.Sign(SKi,m,R) to A. If A makes a signing query for
(i∗,m,R), then B runs the honest signing algorithm RRS.Sign with the
following modification: in step 3, instead of using sk to generate y00 and
τ0, B generates these by invoking its VRF oracle.

– If A queries its repudiation oracle OR(·) on (j,m,R, σ), B faithfully
answers RRS.Repudiate(SKi,m,R, σ) to A. 7

3. Finally A outputs (m,R, σ). Then B computes t = RRS.Verify(m,R, σ). If
t = 0, B simply aborts. Else B parses σ = (r, y00 , y

1
0 , y

0
1 , y

1
1 ,hk0,hk1, π), and

do :

– Compute h0 = S.Hash(hk0,R), h1 = S.Hash(hk1,R);

– Choose a random bit k ← {0, 1}.
– B submits (hk,m; r) to the VRF challenger and then receive responses
y. If y = y0k, B outputs 0. Otherwise, B outputs a random bit.

7 Since sk is not used by RRS.Repudiate, B does not need to invoke the VRF oracle
here.



22 Hao Lin , Mingqiang Wang

It remains to show that the adversary B has non-negligible advantage to
attack the pseudorandomness of VRF. First note that the distribution (i.e.,
verification keys and oracle responses) of the view of A is unaffected by B’s
choice of i∗, until the point at which A submits an oracle query to oracle OC
for input i∗. Since i∗ is chosen at random by B, it follows that with probability
at least 1

l the adversary A does not trigger this abort.
Now, we assume that A does not query corruption oracle on i∗ and A wins

the experiment ExpReun. Then σ is a valid signature of m with respect to R, i.e.

RRS.Verify(m,R, σ) = 1.

Therefore, by the soundness of NIWI, there exists VK, i, η, τ0, τ1, and j ∈ {0, 1}
s.t. it holds S.Verify(hkj , hj , i,VK, η) = 1, V.Verify(pk0, (hj ,m; r), y0j , τ

0) = 1

and V.Verify(pk1, (hj ,m; r), y1j , τ
1) = 1. Since SPB has somewhere perfectly

binding, we have VK = R[i]. And by the completeness and uniqueness of the
VRF, we have y0j = V.Eval(sk0, (hj ,m; r)), and y1j = V.Eval(sk1, (hj ,m; r)).

And when i = i∗, and j = k, happened, we have y0k = V.Eval(sk, (hk,m; r)).
In this case, if the VRF challenger’s bit b = 0, then we have y = y0k. Recall that
this is the trigger condition for B to output 0. If the VRF challenger’s bit b = 1,
then y is turly random strings. Thus, by the definition of B, B outputs a random
bit with overwhelm probability.

Now let us consider the probability that i = i∗ and j = k occurs condition
on no abort happened. As also observed above, the distribution of the view of
A is unaffected by B’s choice of i∗, until the point at which A submits an oracle
query to oracle OC for input i∗. Since i∗ is chosen at random by B, it follows
that with probability at least 1

l , i = i∗ occurs. And since k is chosen at random
by B, it follows that with probability at least 1

2 , j = k occurs.
Furthermore, let us consider the probability that B queries oracle Eval(sk, ·)

or Prove(sk, ·) for input (hk,m; r). B queries its oracle only when A queries his
signing oracle respect input i∗. Since when A wins the experiment ExpReun, A
cannot query its signing oracle OS(·) on (·,m,R), there is only a negligible prob-
ability such that B queries oracle Eval(sk, ·) or Prove(sk, ·) for input (hk,m; r).

All together, we can conclude that

AdvVRF(B) ≥ 1

8l2
·AdvUnf(A).

This concludes the proof.

4.7 Repudiability

We will now turn to show that our scheme is repudiable.

Theorem 5. The repudiable ring signature scheme RRS is repudiable, given
that NIWI has completeness, soundness, VRF has completeness, uniqueness,
pseudorandomness, and SPB has somewhere perfectly binding and index hiding.



Repudiable Ring Signature: Stronger Security and Logarithmic-Size 23

The main idea of the proof is that, by the definition of repudiability, we need
to proof non-signer can repudiate and signer cannot repudiate separately. The
proof of non-signer can repudiate is that, if there is an honeset non-signer cannot
repudiate, then by the soundness of NIWI, we have y0 = y10 or y1 = y11 hold, and
by this we can attack the pseudorandomness of VRF. The proof of signer cannot
repudiate is that, if A can produce a valid repudiation, then by the soundness of
NIWI, we have that A forges a valid signature for others, and so we can attack
the pseudorandomess of VRF.

Proof. We will prove each of the desired security properties in turn.

Non-signer can repudiate: Assume there exists a PPT adversary A that breaks
our RRS scheme (in the sense of ExpRep1) with non-negligible probability. We
will construct an adversary B that breaks the pseudorandomness of the under-
lying VRF scheme with non-negligible probability. The reduction is given as
follows.

Adversary B: given input 1λ, pk, and access to oracle Eval(sk, ·), Prove(sk, ·).

1. B runs RRS.Gen(1λ) to generate l pairs of keys, then chooses a random index
i∗ ∈ [l], and set VKi∗ = (pk0i∗ , pk). Then B gives 1λ and VK1, . . . ,VKl to A.

2. B proceeds to simulate the oracle queries of A in the natural way:
– If A queries its corruption oracle OC(·) on a user i 6= i∗, B faithfully

answers SKi to A. If A makes a corruption query for i∗, then B simply
aborts.

– If A queries its signing oracle OS(·) on (i,m,R), where i 6= i∗, B faith-
fully answers RRS.Sign(SKi,m,R) to A. If A makes a signing query for
(i∗,m,R), then B runs the honest signing algorithm RRS.Sign with the
following modification: in step 3, instead of using sk to generate y10 and
τ1, B generates these by invoking its VRF oracle.

– If A queries its repudiation oracle OR(·) on (i,m,R, σ), where i 6= i∗,
B faithfully answers RRS.Repudiate(SKi,m,R, σ) to A. If A makes a
repudiation query for (i∗,m,R, σ), then B runs the honest repudiating
algorithm RRS.Repudiate with the following modification: in step 3, step
4, instead of using sk to generate y0, y1, τ00, τ10, z0, z1, and τ01, τ11, B
generates these by invoking its VRF oracle.

3. Finally A outputs (m,R, σ). Then B parse σ = (r, y00 , y
1
0 , y

0
1 , y

1
1 ,hk0,hk1, π),

and do:
– Compute h0 = S.Hash(hk0,R), h1 = S.Hash(hk1,R);
– Choose a random bit k ← {0, 1}.
– B submits (hk,m; r) to the VRF challenger and then receive responses
y. If y = y1k, B outputs 0. Otherwise, B outputs a random bit.

It remains to show that the adversary B has non-negligible advantage to
attack the pseudorandomness of VRF. First note that the distribution (i.e.,
verification keys and oracle responses) of the view of A is unaffected by B’s
choice of i∗, until the point at which A submits an oracle query to oracle OC



24 Hao Lin , Mingqiang Wang

for input i∗. Since i∗ is chosen at random by B, it follows that with probability
at least 1

l the adversary A does not trigger this abort.
Now, we assume that A does not query corruption oracle on i∗ and A wins

the experiment ExpRep1. Then by the definition of experiment ExpRep1, we have
RRS.VerRepud will reject on an honestly generated repudiation ξi, generated
with respect to VKi, i.e. ∃i ∈ R \ QOC, s.t.

VerRepud(VKi,m,R, σ, ξi) = 0, where ξi ← Repudiate(SKi,m,R, σ).

Since ξi is honestly generated with respect to VKi, and by the definition of
RRS.Repudiate and RRS.VerRepud, we have there exist j ∈ {0, 1} s.t. yj = y1j ,

where yj = V.Eval(sk1i , (h̃j ,m; r)). Since if the above formula are not true, then
by the completeness of the NIWI and the completeness of the VRF, we have
VerRepud(VKi,m,R, σ, ξi) = 1.

And when i = i∗, and j = k happens, we have y1k = V.Eval(sk, (hk,m; r)).
In this case, if the VRF challenger’s bit b = 0, then we have y = y1k. Recall that
this is the trigger condition for B to output 0. If the VRF challenger’s bit b = 1,
then y is turly random strings. Thus, by the definition of B, B outputs a random
bit with overwhelm probability.

Now let us consider the probability that i = i∗ and j = k occurs condition
on no abort happened. As also observed above, the distribution of the view of
A is unaffected by B’s choice of i∗, until the point at which A submits an oracle
query to oracle OC for input i∗. Since i∗ is chosen at random by B, it follows
that with probability at least 1

l , i = i∗ occurs. And since k is chosen at random
by B, it follows that with probability at least 1

2 , j = k occurs.
Furthermore, let us consider the probability that B queries oracle Eval(sk, ·)

or Prove(sk, ·) for input (hk,m, r). B queries its oracle only when A queries
oracle respect input i∗. Since when A wins the experiment ExpReun, A cannot
query its signing oracle OS(·) on (·,m,R), and cannot query its repudiation
oracle on (·,m,R, ·), there is only a negligible probability such that B queries
oracle Eval(sk, ·) or Prove(sk, ·) for input (hk,m, r).

All together, we can conclude that

AdvVRF(B) ≥ 1

8l2
·AdvRep1(A).

This concludes the proof of non-signer can repudiate.

Signer cannot repudiate: Assume there exists a PPT adversaryA that breaks our
RRS scheme (in the sense of ExpRep2) with non-negligible probability. We will
construct an adversary B that breaks the pseudorandomness of the underlying
VRF scheme with non-negligible probability. The reduction is given as follows.

Adversary B: given input 1λ, pk, and access to oracle Eval(sk, ·), Prove(sk, ·).

1. B runs RRS.Gen(1λ) to generate l pairs of keys, then chooses a random index
i∗ ∈ [l], and set VKi∗ = (pk, pk1i∗). Then B gives 1λ and VK1, . . . ,VKl to A.

2. B proceeds to simulate the oracle queries of A in the natural way:



Repudiable Ring Signature: Stronger Security and Logarithmic-Size 25

– If A queries its corruption oracle OC(·) on a user i 6= i∗, B faithfully
answers SKi to A. If A makes a corruption query for i∗, then B simply
aborts.

– If A queries its signing oracle OS(·) on (i,m,R), where i 6= i∗, B faith-
fully answers RRS.Sign(SKi,m,R) to A. If A makes a signing query for
(i∗,m,R), then B runs the honest signing algorithm RRS.Sign with the
following modification: in step 3, instead of using sk to generate y00 and
τ0, B generates these by invoking its VRF oracle.

– If A queries its repudiation oracle OR(·) on (j,m,R, σ), B faithfully
answers RRS.Repudiate(SKi,m,R, σ) to A.

3. Finally A outputs (m,R, σ, {ξik}VKik
∈QOC∩R). B runs the honest verifying

algorithm RRS.Verify on (m,R, σ). If RRS.Verify(m, R, σ) = 0, B simply
aborts. Then B runs the honest verrepud algorithm RRS.VerRepud, bik =
RRS.VerRepud(VKik ,m,R, σ, ξik) for all VKik ∈ QOC ∩ R. If there exists a
bik = 0, B also simply aborts. Else B parse σ = (r, y00 , y

1
0 , y

0
1 , y

1
1 ,hk0,hk1, π),

and do :
– Compute h0 = S.Hash(hk0,R), h1 = S.Hash(hk1,R);
– Choose a random bit k ← {0, 1}.
– B submits (hk,m; r) to the VRF challenger and then receive responses
y. If y = y0k, B outputs 0. Otherwise, B outputs a random bit.

It remains to show that the adversary B has non-negligible advantage to at-
tack the pseudorandomness of VRF. First we note that, if A queries all keys,
then we have R ⊂ QOC , in this situation we can proof A cannot win the
game ExpRep2. Since in this case, if A wins the game, then σ will be a valid
signature for m with respect to R. By soundness of NIWI, there exist VK,
i ∈ [N ], η, τ0, τ1, and j ∈ {0, 1} s.t. it holds S.Verify(hkj , hj , i,VK, η) = 1 and
V.Verify(pk0, (hj ,m; r), y0j , τ

0) = 1, and V.Verify(pk1, (hj ,m; r), y1j , τ
1) = 1. By

somewhere perfectly binding of SPB, we have VK = R[i]. And by the complete-
ness and uniqueness of the VRF, we have y0j = V.Eval(sk0, (hj ,m; r)), and y1j =

V.Eval(sk1, (hj ,m; r)). Now, let us consider the repudiation of VK, if ξ is a valid
repudiation. Then by soundness of NIWI, there exist y0, y1 τ00, τ01, τ10, τ11, s.t.
it holds V.Verify(pk1, (h0,m; r), y0, τ00) = 1, and V.Verify(pk1, y′0, z0, τ01) = 1,
V.Verify(pk1, (h1,m; r), y1, τ10) = 1, and VRF.Verify(pk1, y1, z1, τ11) = 1. Since
VRF has completeness and uniqueness, we have y0 = V.Eval(pk1, (h0,m; t)), and
z0 = V.Eval(pk1, y0), y1 = V.Eval(pk1, (h1,m; r)), and z1 = V.Eval(pk1, y1).
Therefore, by the uniqueness of VRF, we have (y0 = y10) ∨ (y1 = y11) = 1 with
overwhelm probability. And this is contradictory.

So when A wins the game, he must leave one or more keys uncorrupted in
R. Since the distribution (i.e., verification keys and oracle responses) of the view
of A is unaffected by B’s choice of i∗, until the point at which A submits an
oracle query to oracle OC for input i∗. And Since i∗ is chosen at random by B,
it follows that with probability at least 1

l the adversary A does not trigger this
abort.

Now, we assume thatA does not query corruption oracle on i∗ andA wins the
experiment ExpRep2. Then by the definition of experiment ExpRep2, we have σ is



26 Hao Lin , Mingqiang Wang

a valid signature of m with respect to R and ξik are all valid repudiation. Then
by soundness of NIWI, somewhere perfectly binding of SPB and completeness
and uniqueness of VRF, we have there exist VK, i, and j ∈ {0, 1} such that
VK = R[i], y0j = V.Eval(pk0, (hj ,m; r)), and y1j = V.Eval(pk1, (hj ,m; r)). And
according to the above discussion, we have VK /∈ QOC .

And when i = i∗, and j = k happens, we have y0k = V.Eval(sk, (hk,m; r)).
In this case, if the VRF challenger’s bit b = 0, then we have y = y0k. Recall that
this is the trigger condition for B to output 0. If the VRF challenger’s bit b = 1,
then y is turly random strings. Thus, by the definition of B, B outputs a random
bit with overwhelm probability. 8

Now let us consider the probability that i = i∗ and j = k occurs condition
on no abort happened. As also observed above, the distribution of the view of
A is unaffected by B’s choice of i∗, until the point at which A submits an oracle
query to oracle OC for input i∗. Since i∗ is chosen at random by B, it follows
that with probability at least 1

l , i = i∗ occurs. And since k is chosen at random
by B, it follows that with probability at least 1

2 , j = k occurs.
All together, we can conclude that

AdvVRF(B) ≥ 1

8l2
·AdvRep2(A).

This concludes the proof of signer cannot repudiate.

5 Conclusions

Ring signature is a well-studied cryptographic primitive with many applications.
Repudiable ring signature is a more stronger cryptographic primitive than ring
signature, which can allow non-signer repudiate a signature that was not pro-
duced by him. In this paper we improved the security definition of repudiable
ring signature, and proposed a new requirement repudiation unforgeability. Be-
side, we also proposed a new scheme satisfied our definiton. This scheme has
that signature and repudiation size is logarithmic in the number of ring mem-
bers, while at the same time relying on standard assumptions and not requiring
a trusted setup.

References

1. Backes, M., Döttling, N., Hanzlik, L., Kluczniak, K., Schneider, J.: Ring signatures:
Logarithmic-size, no setupfrom standard assumptions. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques. pp. 281–
311. Springer (2019)

2. Barak, B., Ong, S.J., Vadhan, S.: Derandomization in cryptography. In: Annual
International Cryptology Conference. pp. 299–315. Springer (2003)

8 Besides, in this case, the probability that B queries its oracle on (hk,m, ϕ) is negli-
gible.



Repudiable Ring Signature: Stronger Security and Logarithmic-Size 27

3. Bitansky, N., Paneth, O.: Zaps and non-interactive witness indistinguishability
from indistinguishability obfuscation. In: Theory of Cryptography Conference. pp.
401–427. Springer (2015)

4. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short ac-
countable ring signatures based on ddh. In: European Symposium on Research in
Computer Security. pp. 243–265. Springer (2015)

5. Dodis, Y.: Efficient construction of (distributed) verifiable random functions. In:
International Workshop on Public Key Cryptography. pp. 1–17. Springer (2003)

6. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc
groups. In: International Conference on the Theory and Applications of Crypto-
graphic Techniques. pp. 609–626. Springer (2004)

7. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys.
In: International Workshop on Public Key Cryptography. pp. 416–431. Springer
(2005)

8. Dwork, C., Naor, M.: Zaps and their applications. In: Proceedings 41st Annual
Symposium on Foundations of Computer Science. pp. 283–293. IEEE (2000)

9. Fujisaki, E., Suzuki, K.: Traceable ring signature. In: International Workshop on
Public Key Cryptography. pp. 181–200. Springer (2007)

10. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. Journal of the ACM (JACM) 59(3), 11 (2012)

11. Hubacek, P., Wichs, D.: On the communication complexity of secure function e-
valuation with long output. In: Proceedings of the 2015 Conference on Innovations
in Theoretical Computer Science. pp. 163–172. ACM (2015)

12. Libert, B., Peters, T., Qian, C.: Logarithmic-size ring signatures with tight security
from the ddh assumption. In: European Symposium on Research in Computer
Security. pp. 288–308. Springer (2018)

13. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signa-
ture for ad hoc groups. In: Australasian Conference on Information Security and
Privacy. pp. 325–335. Springer (2004)

14. Lysyanskaya, A.: Unique signatures and verifiable random functions from the dh-
ddh separation. In: Annual International Cryptology Conference. pp. 597–612.
Springer (2002)

15. Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: 40th Annual
Symposium on Foundations of Computer Science (Cat. No. 99CB37039). pp. 120–
130. IEEE (1999)

16. Noether, S.: Ring signature confidential transactions for monero. IACR Cryptology
ePrint Archive 2015, 1098 (2015)

17. Okamoto, T., Pietrzak, K., Waters, B., Wichs, D.: New realizations of somewhere
statistically binding hashing and positional accumulators. In: International Con-
ference on the Theory and Application of Cryptology and Information Security.
pp. 121–145. Springer (2015)

18. Park, S., Sealfon, A.: It wasnt me! In: Annual International Cryptology Conference.
pp. 159–190. Springer (2019)

19. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: International
Conference on the Theory and Application of Cryptology and Information Security.
pp. 552–565. Springer (2001)

20. Xu, S., Yung, M.: Accountable ring signatures: a smart card approach. In: Smart
Card Research and Advanced Applications VI, pp. 271–286. Springer (2004)


	Repudiable Ring Signature: Stronger Security and Logarithmic-Size

