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ABSTRACT
Since its invention by McEliece in 1978, cryptography based on
Error Correcting Codes (ECC) has suffered from the reputation
of not being suitable for constrained devices. Indeed, McEliece’s
scheme and its variants have large public keys and relatively long
ciphertexts.

Recent works on these downsides explored the possible use of
ECC based on rank metric instead of Hamming metric. These codes
were introduced in the late 80’s to eliminate errors with repeating
patterns, regardless of their Hamming weight. Numerous proposals
for the NIST Post-Quantum Cryptography (PQC) competition rely
on these codes.

It has been proven that lattice-based cryptography and even hash-
based signatures can run on lightweight devices, but the question
remains for code-based cryptography.

In this work, we demonstrate that this is actually possible for
rank metric: we have implemented the encryption operation of 5
schemes based on ECC in rank metric and made them run on an
Arm Cortex-M0 processor, the smallest Arm processor available.
We describe the technical difficulties of porting rank-based cryptog-
raphy to a resource-constrained device while maintaining decent
performance and a suitable level of security against side-channel
attacks, especially timing attacks.
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1 INTRODUCTION
The Internet of Things (IoT) is regarded to as a large network of
physical devices with the ability to communicate with each other.
The communication flow in IoT is asymmetric given that one part
of the network is focused on capturing or measuring data that is lat-
terly sent to a recipient hub or central server. Over the last decade,
IoT has been gaining world-wide attention from a broad number of
industries. Some IoT applications support critical infrastructures
and strategic services, as well as generate enormous amounts of
sensitive data about health or financial status. Therefore, it is of
paramount importance for the IoT ecosystem to provide security
and protect its end-users privacy [20]. The devices comprising the
IoT are computationally constrained and consequently traditional
cryptography has to be adapted in order to be run on such condi-
tions.

Substantial advances in quantum computing in the past decade
have re-assured researchers about the necessity to build quantum-
resistant cryptosystems [8]. The announcement by the National
Institute of Standards and Technology (NIST) to define new stan-
dards for Public-Key Encryption (PKE), digital signatures and Key-
Encapsulation Mechanism (KEM) schemes [27] has augmented
the attention of the scientific community towards Post-Quantum
Cryptography (PQC) in general, and cryptography based on Error
Correction Codes (ECC) in particular, due to the fact that ECC
represents the most conservative approach for PKE and KEM.

Cryptography based on ECC traces back to McEliece’s proposal
in 1978 [23]. At the time, the RSA cryptosystem [33] was preferred
over McEliece’s for a simple reason: McEliece’s public-key and
ciphertext were too large to be practical and allow a widespread
deployment. Nevertheless, while Shor’s quantum algorithm [36]
makes RSA’s underlying mathematical problem solvable in polyno-
mial time, the best quantum attacks against McEliece are still expo-
nential in the length of the used ECC [19]. On top of it, McEliece
benefits from an impressive 40 years long unsuccessful cryptanaly-
sis effort, increasing strongly the confidence in the scheme.

Progress on the aforementioned McEliece’s scheme drawbacks
have mainly been obtained by replacing the Goppa codes used in
the McEliece’s original cryptosystem. Nonetheless, such attempts
have often been broken by cryptanalysis efforts: see for example
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the QC-MDPC scheme [26] and the reaction attack proposed in
[16] breaking 80-bits of security instances in minutes.

Another direction of research considered the use of ECC based
on rank metric instead of the classical Hamming distance. The
notion of error correcting codes in rank metric was introduced by
Gabidulin in [10] and used for the first time in cryptography by the
Gabidulin, Paramonov, Tretjakov (GPT) cryptosystem [11]. Given
that the complexity of decoding a random code in the rank metric is
higher than decoding a random code using Hamming distance, it is
possible to design cryptosystems with smaller keys and ciphertexts.
However, the GPT scheme and its successors were broken by the
cryptanalysis framework introduced by Overbeck [30, 31] (see also
[9] and the structural attack proposed in [13]).

The lessons learned in the design of schemes based on rank
metric, as well as the attacks targeting such schemes, made cryp-
tographers confident enough to submit new code-based cryptogra-
phy schemes to the NIST PQC standardization process. Although
these schemes provide appealing performances and key and cipher-
text sizes, are they small enough to allow large-scale deployments
including resource-constrained devices for IoT?

In this work, we give a positive answer by porting the encryption
operation of 5 rank metric cryptosystems to the Arm Cortex-M0
processor, the smallest Arm processor available, demonstrating
the possibility to run them on resource-constrained devices. The
schemes we have selected are dRANKula [1, 21] and the NIST PQC
candidates LAKE, LOCKER, Rank-Ouroboros (which have recently
been merged into ROLLO [24]) and RQC [25]. We have selected the
first scheme because it is the scheme using rank metric which is the
closest rank metric analogue of the original McEliece proposal. The
latter four have been chosen because they offer different trade-offs
between performance and key and ciphertext sizes.

In our implementation, we have considered only the encryption
or encapsulation operations for PKE and KEM schemes, respec-
tively. This is due to the fact that in IoT, lightweight devices are
mostly going to initiate the communication to send the information
to the recipient. We have taken into account the scheme variants
for a classical level of security of 128 bits because it is the mini-
mum security level that NIST is recommending in the Symmetric
Lightweight Cryptography competition [28].

In addition, we have kept in mind that Side-Channel Attacks
(SCA) are a concern in this context, as these thin devices might
be out in the field and reachable by an attacker, and we developed
a constant-time implementation for each cryptosystem in order
to protect against timing attacks. It is important to note that the
overall objective of this work is not to compare the cryptosystems
between themselves as they are achieving different security notions
ranging from an IND-CCA KEM to IND-CPA PKE, but to prove to
the community that rank-based cryptography can be considered
for resource-constrained devices.

The paper is structured as follows. We first recall mathematical
notions necessary to understand the cryptosystems and describe
them. We then discuss the key points and major difficulties we
encountered during our implementation work. Next, we present the
platform-specific optimization we carried out and the performance
of the different schemes. We conclude by enumerating the strengths
of the schemes as well as their bottlenecks, hoping to give insights

to the community when it comes to parameters selection for rank
metric schemes in IoT.

2 ERROR CORRECTING CODES IN RANK
METRIC

The development of ECC is due to Richard W. Hamming in 1947.
A description of Hamming’s code appeared in Claude Shannon’s
A Mathematical Theory of Communication [35] and was quickly
generalized by Marcel J. E. Golay [14].

The general principle of ECC theory is to add more information
to the message, which we refer to as redundancy, in order to be able
to detect and correct errors that occurred during the transmission.
We call the fact of adding redundancy to the message the encoding
step and the result of the encoding a codeword. The mechanism
to recover the original message from the codeword which might
contain errors is called the decoding step. These two operations and
the full collection of codewords form a so-called code.

The most common type of codes are linear codes. For those codes,
the encoding step is simply the multiplication of the message by a
matrix, called generator matrix of the code. Note that as the code
is defined as the image of a matrix multiplication it is a vectorial
subspace. Precisely, a [n,k]-code C over a finite field F is a vector
subspace of Fn of dimension k , where n is called the length, and k
the dimension of the code. A generator matrix for an [n,k] code C
is thus any k ×n matrixG whose rows form a basis forC . In general
there are many generator matrices for a code. Because a linear
code is a subspace of a vector space, it is the kernel of some linear
transformation. In particular, there is an (n−k)×n matrixH , called
a parity check matrix for the [n,k] code C , defined by C = {x ∈

Fn |HxT = 0}. In general, there are also several possible parity check
matrices for C . The decoding algorithm depends on the structure
of the code but will always output the "closest" codeword to the
received message if it is within the range of the error capacity. For
a comprehensive introduction to the topic, see [22]. To define how
"close" two vectors are, we need to define a metric. The more natural
choice is usually the Hamming metric. In this metric the distance of
two vectors is given by the number of different coordinates between
the two. There exists also other metrics. Another popular example
is the rank metric. To define it, we first need to explain the notion
of rank weight.

Definition 2.1. Let q be a prime power and let Fq be the only
finite field (up to isomorphism) with q elements. Let e ∈ Fnqm be
written as (e1, . . . , en ). Denote by ei, j the j-th component of ei seen
as a vector in Fmq . Then rk(e) is defined as

rk(e) = rk
©­­«
e1,1 . . . en, 1
...

...

e1,m . . . en,m

ª®®¬
and is called the rank weight of e . The rank distance between two
vectors e, f ∈ Fnqm is defined by rk(e − f ).

The rank metric was introduced by Gabidulin in [10] in order to
introduce codes which can correct errors with repeating patterns,
regardless of their Hamming weight.



2.1 Classes of codes needed
Here we present the definition of the codes on which the proposals
of Section 3 are based on.

We begin with the definition of a circulant matrix.

Definition 2.2 (Circulant Matrix). A square matrix of size n ×n is
said to be circulant if it is of the form:

©­­­­«
m0 m1 . . . mn−1

mn−1 m0 . . . mn−2
...

...
. . .

...

m1 m2 . . . m0

ª®®®®¬
The following classes of codes will be used to define the schemes

we have implemented in this work:

Definition 2.3 (Double Circulant (2-Quasi-Cyclic) Codes). A [2n,n]qm
code C is a double circulant code if it has a generator matrix of the
form (A|B) where A and B are two circulant matrices of size n.

Definition 2.4 (Ideal Codes). Let P(X ) ∈ Fq [X ] be a polynomial of
degree n and д1,д2 ∈ Fnqm . Let G1(X ) =

∑n−1
i=0 д1,iX i and G2(X ) =∑n−1

i=0 д2,iX i the polynomials associated to д1 and д2.
We define the [2n,n]qm ideal code C of generator (д1,д2) as the

code with generator matrix

©­­­­«
G1(X ) mod P G2(X ) mod P
XG1(X ) mod P XG2(X ) mod P

...
...

Xn−1G1(X ) mod P Xn−1G2(X ) mod P

ª®®®®¬
.

If д1 is invertible, C can be written with generator (x ,x · д−11 д2
mod P).

LetMk (R) be the set of k × k matrices over the ring R.

Definition 2.5 (LRPC codes). Let H ∈ M(n−k )×n (Fqm ) be a full
rank matrix such that its coefficients generate an Fq -subspace F of
small dimension d .

F =< hi, j >Fq .

The code C of parity check matrix H is called an LRPC code of
weight d.

Definition 2.6 (Ideal LRPC codes). Let F be a Fq -subspace of di-
mension d of Fqm , (h1,h2) two vectors of Fnqm with support in F

and P ∈ Fq [X ] a polynomial of degree n. Let H1 and H2 be two
matrices defined by

H1 =

©­­­­«
h1

Xh1 mod P
...

Xn−1h1 mod P

ª®®®®¬
, H2 =

©­­­­«
h2

Xh2 mod P
...

Xn−1h2 mod P

ª®®®®¬
.

The code C with parity check matrix (H1 |H2) is called an ideal
LRPC code of type [2n,n]qm .

Definition 2.7 (Gabidulin codes). Let k < n ≤ m be non-negative
integers and let {д1, . . . ,дn } ∈ F2m , be linearly independent over
F2. Let [i] = 2i such that x → x [i] is the ith power of the Frobenius
automorphism x → x2. The [n,k] Gabidulin code Gabk,n (g), is the

[n,k] linear code with generator matrix

G =


д1 · · · дn

д
[1]
1 · · · д

[1]
n

...
. . .

...

д
[k−1]
1 · · · д

[k−1]
n


that is:

Gabk,n (g) = {xG|x ∈ Fk2m }.

3 THE SCHEMES
This section describes the code-based schemes considered in this
work.

3.1 dRANKula
McEliece cryptosystem is based on the so called Goppa codes [15].
This codes are subfield subcodes of generalized Reed-Solomon codes
[32]. Instead, dRANKula, a scheme first proposed in [21] and imple-
mented in [1], is based on Gabidulin codes, which are considered
as the analogs of Reed-Solomon codes in rank metric. In particular,
dRANKula uses a special subspace for the entries of the scram-
bling matrix which transforms the private key into the public key.
Another essential difference from the traditional McEliece instantia-
tions is that, instead of XORing the encoded plaintext with an error
of a given Hamming weight, XOR in dRANKula is done with an
error of a specific rank weight. Note that the original scheme and its
implementation only provide One-Way security (OW-CPA) mean-
while the other schemes are at least proposing IND-CPA security.
Hence, we have implemented dRANKula with the SXY transform
used to transform the McEliece cryptosystem into a DPKE [34,
Appendix D] for a fair comparison. Its KEM algorithm is detailed
below:

• Alice selects a Gabidulin code over Fqm of length n, dimen-
sion k with generator matrixG . She then generates a random
non-singular matrix S ∈ Mk (Fqm ), a random vectorial sub-
space V ⊂ Fqm of dimension λ and a random non-singular
matrix P ∈ Mn (V ).

• Alice defines pk = Gpub = S ·G · P−1 and sk = (G, S, P).
• Bob chooses a random vector e ∈ Fnqm of rank weight t :=

⌊(n − k)/(2λ)⌋ and computes y = m ·Gpub +e , for a message
m ∈ Fkqm . The shared secret is H (e,m) where H is a hash
function.

• Alice computes y · P = m′ · S ·G + e · P and recovers m′ · S
by decoding. Finally, she gets m′ from m′ · S multiplying
it by S−1. From m′, she computes e ′ and derives the secret
H (e ′,m′).

Its parameters for 128 bits of classical security are detailed in
Table 1.

3.2 ROLLO
ROLLO is the merge of three initial propositions to the NIST-
PQC competition: LAKE, LOCKER and Rank-Ouroboros. The three
schemes are detailed in the rest of this section.



q n m k λ t

2 60 64 30 3 5
failure rate pk size ct size Sec. lev.

0 14400B 480B 128b
Table 1: Parameters for dRANKula-128

3.2.1 LAKE. LAKE is an IND-CPA KEM running for standard-
ization to NIST’s competition. LAKE follows the approach inau-
gurated by the public key encryption protocol NTRU in 1998 [18].
The main idea behind the protocol is that the secret key consists in
the knowledge of a small Euclidean weight vector, which is used to
derive a double circulant matrix. This matrix is then seen as a dual
matrix of an associated lattice and a specific decoding algorithm
based on the knowledge of this small weight dual matrix is used
for decryption.

This idea of having as a trapdoor a small weight dual matrix
(with a specific associated decoding algorithm) can naturally be
generalized to other metrics. It was done in 2013 with MDPC [26]
for Hamming metric and also in 2013 for Rank metric with LRPC
codes [12]. These three protocols derive from the same basic main
idea, adapted for different metrics, which have different properties
in terms of efficiency, size of parameters and security reduction.

LAKE is a small variation of the LRPC rank metric approach, by
introducing Ideal-LRPC codes, and proposes an IND-CPA KEM for
Key Exchange, efficient in terms of size of parameters and compu-
tational complexity which benefits from the nice properties of rank
metric. The scheme has a failure probability, but this probability is
well understood and made very low.

The LAKE KEM algorithm works as follow:
• Alice chooses an irreducible polynomial P ∈ Fq [X ] of degree
n.

• Alice chooses a random vectorial subspace F of Fqm of di-
mension d and samples a couple of vectors (x ,y) ∈ Fn × Fn

such that x is invertible mod P .
• Alice computes h = x−1y mod P .
• Alice defines pk = (h, P) and sk = (x ,y).
• Bob chooses uniformly at random a subspace E of Fqm of
dimension r and samples a couple of vectors (e1, e2) ∈ En ×

En .
• Bob computes c = e1 + e2h mod P and K = G(E) where
G(E) is a hash function and outputs the ciphertext c .

• Alice computes xc = xe1 + ye2 mod P and recovers E by
decoding, to finally get K = G(E).

LAKE exists in three variants. We have chosen to implement the
variant labeled as LAKE-I whose parameters are recalled in Table 2.

q n m d r P

2 47 67 6 5 X 47 + X 5 + 1
failure rate pk size ct size Sec. lev.

2−30 394B 394B 128b
Table 2: LAKE-I parameters

3.2.2 LOCKER. The LOCKER PKE proposal is very similar to
the LAKE KEM but adapted with parameters supporting very low
decryption probability failures. It is proven to be IND-CPA. The
scheme is efficient in terms of size of parameters and has a failure
probability but this probability is well understood and made very
low from 2−64 to 2−128.

The LOCKER PKE algorithm works as follow:
• Alice chooses an irreducible polynomial P ∈ Fq [X ] of degree
n.

• Alice chooses a random vectorial subspace F of Fqm of di-
mension d and samples a couple of vectors (x ,y) ∈ Fn × Fn

such that x is invertible mod P .
• Alice computes h = x−1y mod P .
• Alice defines pk = (h, P) and sk = (x ,y).
• Bob chooses uniformly at random a subspace E of Fqm of
dimension r and samples a couple of vectors (e1, e2) ∈ En ×

En .
• Bob computes c = e1 + e2h mod P and cipher = m ⊕

G(E) where G is a hash function and outputs the ciphertext
(c, cipher ).

• Alice computes xc = xe1 + ye2 mod P and recovers E to
finally recover m.

LOCKER exists in nine variants. We have chosen to implement
the variant LOCKER-I as it is the most suitable candidate for light-
weight devices, see Table 3 for the actual parameters.

q n m d r P

2 83 71 7 5 X 83 + X 7 + X 4 + X 2 + 1
failure rate pk size ct size Sec. lev.

2−64 737B (737 + |m|)B 128b
Table 3: LOCKER-I parameters

3.2.3 Rank-Ouroboros. Rank-Ouroboros is an adaptation for
rank metric of the Hamming metric based key exchange Ouroboros
[7]. Both Ouroboros, which is now part of the BIKE proposal, and
Rank-Ouroboros uses the same approach than the two aforemen-
tioned schemes, but having at the same time a reduction to decoding
random quasi-cyclic codes, rather than a more specific code. How-
ever, this comes at a cost: doubling the size of the ciphertext. The
resulting scheme benefits from the features of NTRU-like schemes
but has also a reduction to a generic problem, at the cost of doubling
the size of the ciphertext. In addition, as all associated decoding
algorithm for the NTRU-like family of schemes, there is a decryp-
tion failure, but in the case of rank metric, this decryption failure is
low and perfectly estimated. The Rank-Ouroboros IND-CPA KEM
is explained below:

• Alice samples a random seed and derives a vector h ∈ Fnqm

from it. She then samples a pair (x ,y) of random vector in
Sn1,w (Fqm ) which stands for the space of vectors of length
n of rank weightw such that their support contains 1. She
then computes s = x + y. Her public key is (h, s) and her
private key is F , the support of x and y.

• Bob chooses a random vectorial subspace F of Fqm of di-
mensionw and samples vectors r1, r2, er ∈ Fn and keeps E,



the support of (r1, r2, er ). He then sends sr = r1 + hr2 and
se = sr2 + er .

• Upon receiving (sr , se ), Alice computes ec = s+e−sry, from
which she can easily recover the support E of (r1, r2, er )
through an efficient decoding algorithm.

• The shared secret is H (E).

We have chosen to implement the variant Rank Ouroboros-I
whose parameters are described in Table 4.

q n m w wr
2 53 89 5 6
failure rate pk size ct size Sec. lev.

2−36 1180B 1180B 128b
Table 4: Rank-Ouroboros-I parameters

3.3 Rank Quasi Cyclic (RQC)
Rank Quasi Cyclic (RQC) is running for standardization to NIST’s
post quantum competition and is currently under revision for publi-
cation in IEEE Transactions on Information Theory. RQC provides
both a KEM and a PKE scheme and uses two types of codes: a [n,k]
Gabidulin codeC , generated byG ∈ Mk×n (Fqm ) and which can cor-
rect

⌊
n−k
2

⌋
errors via an efficient algorithm and a random double

circulant [2n,n] code, of parity check matrix (1,h). The polynomial-
time algorithms constituting the KEM and the PKE are described
below:

• Alice samples at random h and the generator matrix G of
a Gabidulin code C . The secret key will be a pair of two
random vectors (x ,y) of weightw and the public key will be
(h, s = x + h · y)

• Bob generates a triplet of random vectors (e, r1, r2) of given
weight. Then he computesu = r1+H ·r2 andv = mG+s ·r2+e
and sends c = (u,v).

• To decrypt, Alice simply decodes v − u · y.

In this study we have implemented the RQC-I KEM variant. To go
from the PKE variant to the KEM, the messagem is simply sampled
at random and the shared secret is the hash ofm.

Notice that the generator matrix G of the code C is publicly
known, so the security of the scheme and the ability to decrypt
do not rely on the knowledge of the error correcting code C being
used. The parameters of the variant we implemented are recalled
in Table 5.

q n m k w wr
2 67 89 7 6 5
failure rate pk size ct size Sec. lev.

0 1491B 1555B 128b
Table 5: RQC-I parameters

4 BINARY FIELD ARITHMETIC ON THE
ARM-CORTEX-M0

For this work, we have targeted the smallest Arm microprocessor
available. The Arm-Cortex M0 is a 32-bit microprocessor with an
ultra-low gate count based on the Armv6-M architecture [3] with
THUMB instructions set as well as a subset of THUMB-2 instruc-
tions set available [2]. More precisely, we have deployed our code
on a development board NXP LPC11u24 as showed on Figure 1. The
board runs at 48 MHz and has 8 KB of RAM and 32 KB of FLASH
memory. The full specification can be found on NXP’s website [29].
NXP’s Software Development Kit (SDK) and dedicated operating
system called “mbed” allows for very efficient and fast prototyp-
ing on such devices. The code was compiled on top of mbed OS
using arm-none-eabi-g++ version 6.3.1 and the -Os flag (surface
optimization).

Figure 1: NXP LPC11u24 board

Themain, and common, component of the schemes under scrutiny
is the binary field arithmetic. Indeed, all of our targeted cryptosys-
tems heavily rely on addition and multiplication in extensions of
F2 (also called binary fields). Hence, it is worth it to optimize these
operations to speed up the running time of the algorithms.

The Arm-Cortex M0 is a 32-bit processor. Since the bit size of a
field element is given by the parameterm, it is impossible to fit a
field element in one register for any of the schemes, forcing us to
use either two registers for dRANKula (m = 64) or three for LAKE
(m = 67), LOCKER (m = 71), Rank-Ouroboros (m = 89) and RQC
(m = 89). The addition in a binary fields is a simple XOR, hence the
addition algorithm is simply XORing each corresponding register
of the arrays of 32-bit registers. However, the multiplication is not
as straightforward.

The multiplication of two elements of a binary field is executed
in two steps: first perform a carry-less multiplication and, second,
perform a reduction. Let a,b ∈ F2m be two field elements and con-
sider their polynomial representation a(X ) =

∑m−1
i=0 aiX

i ,b(X ) =∑m−1
i=0 biX

i ,ai ,bi ∈ F2 in F2[X ]/P(X ) where P is an irreducible
polynomial of degreem, usually a trinomial or a pentanomial.

For the second step, the reduction, we use standard techniques,
e.g. as in [17, Section 2.3.5].

As far as it concern the first step, the carry-less multiplication
a ⊗ b is a standard polynomial multiplication

a ⊗ b � a(X )b(X ) =

m−1∑
i=0

ai

m−1∑
j=0

bjX
i+j ,

https://www.nxp.com/support/developer-resources/software-development-tools/lpc-developer-resources-/lpc-partner-evaluation-and-development-boards/arm-mbed-lpc11u24-board:OM13032


where the sum is performed in F2[X ] and which results in a polyno-
mial of degree at most 2m − 2. Now remark that Xm = P(X ) − Xm

in F2[X ]/P(X ) and use this relation in order to obtain a polynomial
of degreem − 1 (the reduction step). When ported on software, this
translate to the following algorithm:

Algorithm 1: Carry-less multiplication of a(X ) and
b(X )

c = 0
for i = 0 tom − 1 do

if ai = 1 then
c = c XOR bX i

return c

The only tricky point of the algorithm is the multiplication of
b(X ) byX i but it is actually a simple shift of b (left or right, depend-
ing on the internal representation choice).

This algorithm is not asynchronous as the number of addition in
F2[X ] depends on the Hamming weight of a. Leaking this informa-
tion through timing measurement is clearly not suitable, especially
since in most of the cases, a will be the message that we are en-
crypting. A simple method to fix this issue is to use a mask which
depends on ai , more specifically we setmask = 0 − ai (the subtrac-
tion operation being the usual integer subtraction) at each step of
the algorithm. The mask will be equal to 0 if ai is 0, −1 otherwise.
The value −1 being represented as 0xFFFFFFFF in the Cortex-M0,
we can just apply a logical bit-wise AND to b ·X i before XORing it
to c . In definitive, we obtain the following algorithm:

Algorithm 2: Asynchronous carry-less multiplication
of a(X ) and b(X )

c = 0
for i = 0 tom − 1 do

mask = 0 − ai
c = c XOR (bX i ANDmask)

return c

This multiplication being the bottleneck of the cryptosystems
under consideration, we needed to optimize it. Indeed, the only non
trivial operations in the schemes are the hash functions and the
multiplication in the binary fields. There exist different methods
giving asymptotic improvement on the carry-less multiplication,
see [6] for a recent survey, but the complexity of these methods
make them not suitable for such a resource constrained target.

Thus, we focused on optimizing the only non-trivial part of
Algorithm 2: the shift. Indeed, we recall that none of the elements
we need to multiply fit in a single 32-bit register, hence the shift
has to take care of transferring the bits shifted out from the lower
register to the higher one. The usual method consists in using the
following algorithm:

The algorithm above takes a total of 2×array_length− 1 shifts
and array_length − 1 ORs. For the needs of our carry-less mul-
tiplication, one can note that we only need to shift the array rep-
resenting b by 1 at each step of the algorithm which allows us a
nice optimization using the carry flag at assembly level. In fact, the

Algorithm 3: Shift right an array of 32-bit registers
by r < 32
for i = array_length −1 to 1 do

array[i] = array[i] » r OR array[i − 1] « (32 − r )

array[0] = array[0] » r
return array

instruction LSLS (logical shift left) or LSRS (logical shift right) only
set the carry flag to 1 if the last bit shifted out was a 1. We can then
use the instruction ADCS which adds two registers plus the carry
flag to add the last bit shifted out from the first register to the next
register. This results in array_length shifts and array_length−1
additions. For the binary fields in consideration, we need to shift ar-
rays from two to four cells, hence we can save up to three shifts per
iteration of the for loop of Algorithm 2. The assembly code of the
left shift by one of an array of four cells is presented in Algorithm
4 as an example and we report the speeds of the implementation
with and without assembly optimization in Table 6. This function
takes as an argument R0 as the address of the first element of the
array representing our binary field element.

Algorithm 4: Shift left an array of 32-bit registers
by 1 using ADD with Carry
MOVS R3, #0
LDR R1, [R0]
LDR R2, [R0, #4]
LSLS R1, #1
LSLS R2, #1
ADCS R1, R1, R3
STR R1, [R0]
LDR R1, [R0, #8]
LSLS R1, #1
ADCS R2, R2, R3
STR R2, [R0, #4]
LDR R2, [R0, #12]
LSLS R2, #1
ADCS R1, R1, R3
STR R1, [R0, #8]
STR R2, [R0, #12]
BX LR

Field Non-opt. mul Opt. mul.
F289 177.04µs/op 173.38µs/op
F271 137.68µs/op 134.77µs/op
F267 126.13µs/op 123.38µs/op
F264 110.27µs/op 108.87µs/op

Table 6: Comparison of the speed of optimized and non-
optimized carry-less multiplications

Even though the gains are marginal (around 2%), it is still inter-
esting to obtain such gains as they reduce both the execution time
and the power consumption of the algorithms.



The last optimization that we perform is about the reduction step.
In each scheme, the finite field multiplication is only performed
within a matrix multiplication when performing the encryption /
encapsulation operation. One can opt for a strategy limiting the
number of reductions by performing it at the end of each scalar
product. Indeed, the result of a XOR operation has the same bit size
than the two addends meaning that we can perform the reduction
after having XORed the results of all the carry-less multiplications.
That is, for x ,y ∈ F2mn , the scalar product x · y is computed as

x · y = ((x1 ⊗ y1) XOR . . . XOR (xn ⊗ yn )) mod P

rather than

x · y = ((x1 ⊗ y1) mod P) XOR . . . XOR ((xn ⊗ yn ) mod P)

5 PERFORMANCE AND PRACTICAL
CONSIDERATIONS

In this section, we report the running time of each scheme on the
Arm-Cortex M0 with and without the constant-time carry-less mul-
tiplication. We bring to the attention of the reader the fact that the
microprocessor does not have enough memory to store the full pub-
lic key and keep the necessary state to perform the full encryption
operation of any of the cryptosystems we have implemented except
LAKE and LOCKER. We only detail the execution time without
counting the transfers of the necessary part of the public key from
external memory as the speed of those transfers highly depends on
the device in which the microprocessor will be embedded in. For
information, a maximum data transfer speed of up to 1MB/s can be
achieved. However, we describe the strategy we used to deal with
the issue of the public key and ciphertexts not fitting in memory.

All the schemes are using a hash function. We have chosen to use
BLAKE2s and the XOF BLAKE2X [4, 5] over SHA2 for performance
and over SHA3 for the fact that it is more suitable for a 32-bit
platform.

dRANKula is the scheme which has the largest public key of
all five. The obvious strategy to proceed to the encryption is to
transfer the columns of the public key one by one and perform the
scalar product between the column and the message and then add
an error to obtain one component of the ciphertext. The ciphertext
can be kept in memory until the end of the computation, there is
no need to send it component by component.

LAKE and LOCKER are the only two schemes whose public key
and ciphertext can fit entirely in the microprocessor memory during
the encryption. Hence, there is no need to adopt any strategy to
deal with any memory transfer.

For Rank-Ouroboros, we need to split the encryption operation
into two steps. The first consists into transferring h to the micro-
processor and compute sr . We then transfer s and computed se . The
computation of the shared secret can be performed afterwards.

For RQC, the encryption operation needs to be split into three
steps. The first consists into transferring h to the microprocessor
and compute u. We then transfer s and compute s · r2 + e . Finally,
we transfer G to compute v = m ·G + s · r2 + e .

The execution times are reported in Tables 7 and 8. As it can be
observed, a constant-time implementation can represent an over-
head of around 50% in the worst-case.

Scheme Time in µs per encryption operation
Constant-time Non constant-time

LOCKER 940,096 697,032
Table 7: Execution time of the PKE scheme on Arm-Cortex
M0

Scheme Time in µs per encapsulation operation
Constant-time Non constant-time

dRANKula 119,559 85,466
LAKE 277,430 206,382

Rank-Ouroboros 994,048 650,811
RQC 1,666,554 1,197,113

Table 8: Execution times of the four KEM schemes on Arm-
Cortex M0

Finally, in Table 9 we recall the performance of the reference
implementation of the schemes under scrutiny on Intel Core i7.
The exact reference of the benchmark platforms can be found in
[1, 24, 25]. By comparing Tables 7, 8 and 9 there are differences
worth noting. We highlight that the choice of the field on which
every scheme is based has an important impact when porting to
micro-controllers. Indeed, dRANKula is obviously not the fastest
option on PC but, because it only deals with field elements fitting on
2 machine words, it outperforms LAKE (the fastest on PC) on Arm-
Cortex M0. The significance of the base field is also striking when
one compares the ratio between LAKE and LOCKER performance
on Arm-Cortex M0 and on PC. With just 4 extra bits for each
element, LAKE becomes three times faster than LOCKER on a
resource-constrained device whereas it is only twice as fast on PC.

Scheme Time in µs per encoding operation
dRANKula 334.28
LAKE 85.71

LOCKER 157.14
Rank-Ouroboros 280.00

RQC 562.85
Table 9: Performance of the five schemes on Intel Core i7

6 CONCLUSIONS
At the light of our experiments, we show that porting the encryption
operation of rank metric schemes on resource-constrained devices
while maintaining correct performance and minimal protection
against side-channel attacks is possible. When compared to lattice-
based cryptography, rank-metric schemes are slower by a factor of
two at minimum (see [37]) but are still a viable option. Also, one can
note that implementing a constant-time carry-less multiplication
brings an overhead varying from 35% to 50% depending on the
scheme.

Between the five schemes under consideration, dRANKula is
clearly the fastest option. The second fastest option is LAKE but



it has the additional advantage of avoiding extra memory transfer
due to the size of the public key at the expense of a non-null failure
rate.

We leave as a future work the study of feasibility of key gener-
ation and decoding algorithms on thin devices as well as a more
in-depth analysis of possible side-channels of the schemes.
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