
MatRiCT: Efficient, Scalable and Post-Quantum Blockchain
Confidential Transactions Protocol∗

Muhammed F. Esgin

Monash University & Data61, CSIRO

Australia

Muhammed.Esgin@monash.edu

Raymond K. Zhao

Monash University

Australia

Raymond.Zhao@monash.edu

Ron Steinfeld

Monash University

Australia

Ron.Steinfeld@monash.edu

Joseph K. Liu

Monash University

Australia

Joseph.Liu@monash.edu

Dongxi Liu

Data61, CSIRO

Australia

Dongxi.Liu@data61.csiro.au

ABSTRACT
We introduce MatRiCT, an efficient RingCT protocol for blockchain

confidential transactions, whose security is based on “post-quantum”

(module) lattice assumptions. The proof length of the protocol is

around two orders of magnitude shorter than the existing post-

quantum proposal, and scales efficiently to large anonymity sets,

unlike the existing proposal. Further, we provide the first full im-

plementation of a post-quantum RingCT, demonstrating the prac-

ticality of our scheme. In particular, a typical transaction can be

generated in a fraction of a second and verified in about 23 ms on a

standard PC. Moreover, we show how our scheme can be extended

to provide auditability, where a user can select a particular author-

ity from a set of authorities to reveal her identity. The user also has

the ability to select no auditing and all these auditing options may

co-exist in the same environment.

The key ingredients, introduced in this work, of MatRiCT are

1) the shortest to date scalable ring signature from standard lat-

tice assumptions with no Gaussian sampling required, 2) a novel

balance zero-knowledge proof and 3) a novel extractable commit-

ment scheme from (module) lattices. We believe these ingredients

to be of independent interest for other privacy-preserving applica-

tions such as secure e-voting. Despite allowing 64-bit precision for

transaction amounts, our new balance proof, and thus our protocol,

does not require a range proof on a wide range (such as 32- or

64-bit ranges), which has been a major obstacle against efficient

lattice-based solutions.

Further, we provide new formal definitions for RingCT-like pro-

tocols, where the real-world blockchain setting is captured more

closely. The definitions are applicable in a generic setting, and thus

are believed to contribute to the development of future confidential

transaction protocols in general (not only in the lattice setting).

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols.

KEYWORDS
Lattice, Zero-Knowledge, RingCT, Post-Quantum, Ring Signature,

Group Signature

∗
This is the full version of an article published in the proceedings of 2019 ACM SIGSAC

Conference on Computer and Communications Security (CCS ’19).

https://doi.org/10.1145/3319535.3354200

1 INTRODUCTION
Zero-knowledge proofs (ZKP) are a fundamental tool used in nu-

merous privacy-preserving applications, and they have recently

become a crucial part of privacy-aware blockchain-based applica-

tions such as private/anonymous cryptocurrencies, e.g., Monero

and Zcash. When coupled with commitments, they allow users to

prove useful statements without leaking private information. For

example, Monero uses the RingCT protocol [25] to realize confiden-

tial transactions. However, the currently deployed solutions in these

systems do not provide post-quantum security. As stated in Zcash’s

FAQ page [31], the developers “plan to monitor developments in

postquantum-secure components, and if/when they are mature

and practical, update the Zcash protocol to use them.” Therefore,

there is an evident need to design quantum-secure alternatives of

currently deployed privacy-preserving protocols. Our main goal in

this paper is to introduce an efficient and post-quantum1
RingCT

protocol based on computational lattice problems (in particular,

M-SIS and M-LWE), accompanied by a full implementation.

Overview of RingCT protocol. In a blockchain environment, the two

main entities for the purposes of our work are spenders, who create
a transaction and its proof of validity, and verifiers, who check the

validity of a transaction and its proof. There are also recipients of the
transactions, but they do not play a central role in RingCT system.

A RingCT protocol allows users to create confidential transac-
tions on blockchain so that the spender’s identity as well as the

transaction amount is hidden from the outside world. Additionally,

the protocol must guarantee that the transaction is a valid spend-

ing. This is mainly captured by a fundamental property, balance,
which requires that the total amount being spent by the spender is

exactly equal to the total amount received by the recipients where

no double-spending or negative amount spending occurs.

Previous RingCT protocols, e.g. [25, 30, 32, 34], make use of

three core ingredients: 1) a homomorphic commitment scheme,

allowing one to hide some secret with the ability to later reveal it

while ensuring that the secret committed in the first place and the

opened one are the same, 2) a linkable ring signature [18, 27] (or one-

out-of-many proof), allowing one to prove knowledge of a secret

key corresponding to an (undisclosed) element in a set of public

1
Post-quantum security referred in this work does not necessarily involve a security

proof in the quantum random oracle model (even if random oracle model is used). This

is in the same spirit as in, e.g., [6–8, 15].

1

https://doi.org/10.1145/3319535.3354200


Table 1: Proof length comparison (in KB) of “post-quantum”
RingCT proposals, supporting multiple inputs/outputs.

Anonymity level 1/10 1/100

#inputs→ #outputs 1→ 2 2→ 2 1→ 2 2→ 2

LRCT v2.0 [32] >8000 >10000 >50000 >70000

MatRiCT: Our Work 93 110 103 120
LRCT v2.0 [32] PK Size: 100 KB Modulus: ≈ 2

196

MatRiCT: Our Work PK Size: 4 KB Modulus: < 2
53

keys, and 3) a range proof, showing that a secret committed value

falls within a certain range. In RingCT protocol, the transaction

amount is hidden via the use of the commitment scheme
2
, and the

spender’s identity is hidden via the use of the ring signature. The

main purpose of the range proof is for guaranteeing the validity of

a transaction by proving that the real transaction amount hidden

in a commitment is in a valid (positive) range.

Monero cryptocurrency is currently the most prominent appli-

cation that heavily relies on RingCT protocol to provide privacy-

preserving solutions. It also uses stealth addresses to allow the users

to hide the recipient’s identity. The general idea for the stealth

address is to enable the spender derive new public keys (i.e., output

addresses) from a long-term public key so that the newly generated

keys (still owned by the recipient) cannot be linked together.

When one is interested in post-quantum solutions, the cost of

all aforementioned tools increase significantly in comparison to,

e.g., discrete logarithm (DL) based schemes. Taking lattice-based

solutions as promising post-quantum cryptography candidates, the

lattice-based analogues of these tools each require at least an order

ofmagnitudemore storage. For example, a single lattice-based range

proof on a 64-bit range in [7] costs about 100KB and also does not

allow efficient aggregation of multiple proofs in the way required in

a RingCT system.
3
Moreover, in this case, one is inherently required

to use a modulus of size more than 64 bits to make the proof work,

whichmeans the computational efficiencywill significantly degrade

as the values will not fit into 64-bit registers.

1.1 Our Contribution
Improved ring signature.Our first contribution in this work is to
introduce the shortest ring signature to date from standard lattice

assumptions, namely M-SIS and M-LWE. In particular, we intro-

duce several improvements on the sublinear-sized ring signature

in [7]. Our construction, unlike the one in [7], does not require

any (discrete) Gaussian sampling, and therefore it is much easier

to protect against side-channel attacks. To get an advantageous

use of the uniform distribution, we introduce a new technique for

the application of rejection sampling on binary secrets with fixed

Hamming weight (see Section 1.3).

A novel post-quantum RingCT. Our main contribution in this

work is the design of a novel RingCT protocol, named MatRiCT,

that is efficient, scalable and post-quantum. The main technical

2
For the purposes of this paper, a commitment scheme is always considered to be

homomorphic, thus we omit saying “homomorphic”.

3
The range proof in [7] allows efficient aggregation onlywhen the values are committed

all together in a single commitment. In RingCT, however, the amounts are committed

separately as they will be transferred to distinct addresses.

Table 2: Running times (in ms) of MatRiCT at 3 GHz.

Anon. level 1/10 1/100 1/1000

#in’s→ #out’s 1→ 2 2→ 2 1→ 2 2→ 2 1→ 2 2→ 2

Key Gen. 2 2 2 2 2 2

Transact. Gen. 242 375 360 620 1858 3514

Verification 20 23 31 40 146 223

novelties of MatRiCT are sketched in Section 1.3. As shown in

Table 1, in comparison to the only existing post-quantum RingCT

protocol supporting multiple inputs and outputs, we achieve a

dramatic improvement in transaction size, which is the main metric

in determining transaction fees. Our scheme is also very efficient

in terms of computational complexity even for an anonymity set as

large as 1000 as shown in Table 2.

As a bonus feature, we show in Section 6 that MatRiCT eas-

ily extends to provide auditability (i.e., the ability of an authority

to trace real spenders) in a way that does not require significant

modifications to the system. Auditability is an important feature

to prevent illegal use of a cryptocurrency, and is desired, e.g., for

regulatory or financial enterprise applications.

Novel extractable commitment.We introduce a novel extractable
commitment scheme from lattices, which extends the commonly

used Hashed-Message Commitment (HMC) (see Section 2.2). An

extractable commitment has an additionalCExtract function that al-
lows a party to recover the message stored in a commitment using a

(secret) trapdoor. Without knowledge of the trapdoor, however, the

message remains hidden. Therefore, extractable commitments are

ideal tools for privacy-preserving applications where accountability,

e.g., in case of misbehaviour is desired.

The main advantage of our primitive is that it can be realized

with almost the same parameters as HMC, and does not mandate

very aggressive parameters. To illustrate, for an n ×m commitment

matrix over a ring with modulus q, the GPV trapdoor [11] (see

also the improved constructions and Figure 1 in [23]) requires

m = O(n logq) whereas, for the same trapdoor norm level, we only

requirem = O(n) as in standard HMC. The extraction works when

the input message space is not too large (i.e., it is feasible to iterate

over all messages).

Efficient group signature for moderate-sized groups. Combi-

nation of our ring signature with the extractable commitment re-

sults in a group signature (or an accountable ring signature), which

shares the same efficiency features as the ring signature. The signa-

ture length of our ring/group signature is very short and compared

to the state-of-the-art post-quantum proposals in Table 3. More

discussion on the ring/group signature is provided in Appendix A.

New formal definitions for RingCT-like protocols. Further,
we introduce new rigorous security definitions for RingCT-like

protocols. Our goal in introducing a new set of definitions is to

provide an easy-to-understand model that captures the real-world

scenario more closely than the previous attempts [30, 34].

Related Work. The current state-of-the-art ring signature from stan-

dard lattice assumptions (in the random oracle model) is due to

Esgin et al. [7], which uses the same blueprint in [8], but the under-

lying ZKP reaches a convincing soundness level at a single protocol

2



Table 3: Comparison of signature lengths (in KB) of “post-
quantum” ring/group signatures. The last column repre-
sents whether ring or group signature is supported. “?” indi-
cates that the signature length cannot be approximated us-
ing the results of the respective reference.

Ring/Group Size N : 2 8 64 4096 2
21

Ring/Group

[6] 581 581 581 581 581 Group

[15] ? ? 250 456 ? Ring&Group

[7] 36 41 58 103 256 Ring

This Work 18 19 31 59 148 Ring

This Work 28 29 34 60 148 Group

iteration unlike the case in [8]. The signature length growth of the

proposal in [7] is very slow, and is in particular poly-logarithmic in

the ring size and quasi-linear in the security parameter. Therefore,

the ring signature in [7] is a very attractive choice for scalable ap-

plications. We overview our improvements over this ring signature

construction in Section 1.3.

The first RingCT protocol was introduced in [25] (called RingCT

1.0, hereafter), and more formal definitions were then provided

in [30] (called RingCT 2.0, hereafter). Both of these solutions are

in the DL setting and the latter requires a trusted setup, which

undermines the idea of a blockchain environment where there is

no particular trusted authority. Very recently, another DL-based

RingCT is proposed in [34] (called RingCT 3.0, hereafter), where

the security model is also improved over RingCT 2.0. The RingCT

correctness and security models defined in RingCT 2.0 and 3.0

have some unsatisfactory aspects. In particular, they are (in our

view) complicated to understand, and do not capture the inherent

stateful nature of a blockchain system. Therefore, there are gaps in

some definitions. For example, our balance definition is stronger

than the one in RingCT 3.0, which requires all input accounts to
be uncorrupted. Also, we provide an indistinguishability-based

anonymity definition, unlike RingCT 3.0. We further observe that

the non-slanderability definition in RingCT 2.0 and 3.0 does not

seem to be a crucial property in the RingCT environment (though

it may be in other applications of linkable ring signatures). A more

detailed comparison of our formal definitions to the prior ones is

provided in Section 3 after the introduction of our definitions.

In this work, we focus on guaranteeing the confidentiality of

the transaction amount and spender anonymity (not recipient

anonymity) and, in common with prior formal RingCT models

[30, 34], do not capture the use of stealth addresses and the recipi-

ent anonymity in our formal security model.
4
As done in Monero,

our tools can be extended to provide recipient anonymity through

the use of stealth addresses, which we leave as a future work.

In the post-quantum world, an initial attempt to design a lattice-

based RingCT was done by Torres et al. in [33] (called LRCT v1.0,

hereafter). This protocol is restricted to the single-input single-

output wallets, i.e., the user spends a single account to a single

output address, and therefore the balance property is easy to satisfy.

Moreover, it does not involve a range proof to make sure that

4
In a concurrent and independent work [16] published on IACR’s ePrint archive after

the submission of this work, the use of stealth addresses is included in the formal

RingCT model.

the amount being spent is positive. Very recently, LRCT v1.0 is

extended to support multiple-input and multiple-output wallets in

[32] (called LRCT v2.0, hereafter), where a range proof is used to

prove balance. However, the concrete efficiency of this scheme is far

behind practical expectations (see Table 1). Two crucial advantages

of MatRiCT over LRCT v2.0 are that 1) the underlying ZKPs of

MatRiCT reach a convincing soundness level in a single execution,

and thus no protocol repetition is required, and 2) MatRiCT does

not require a range proof on a 64-bit range even though 64-bit

amounts are allowed (recall that a single 64-bit range proof from

lattices alone costs at least about 100 KB currently).

Another project to design a post-quantum privacy-preserving

cryptocurrency has been initiated in [9], where lattice-based tech-

niques are to be used. Though there is currently no concrete scheme

available, the authors mention that they aim to design a ring sig-

nature of size less than 400 KB for rings of 2
15

users and that the

range proof is expected to cost a few hundred KB. Our results are

far ahead of these goals (see Tables 1 and 3).

Organization of the paper. We provide an overview of our RingCT

protocol in Section 1.2, followed by a sketch of our techniques in

Section 1.3. Preliminaries are gathered in Section 2, and our formal

definitions for RingCT-like protocols are covered in Section 3. In

Section 4, we describe MatRiCT, our lattice-based RingCT protocol,

in detail and then provide rigorous security proofs in Section 5. We

discuss how MatRiCT can be extended to provide auditability in

Section 6, where the extractable commitment is also introduced.

Some related technical lemmas, some lemma proofs and further

discussions are given in the appendices.

1.2 Overview of MatRiCT
One of themost important features ofMatRiCT is that nowide range
proof is required. The general structure of the whole system is as

follows. We work over two cyclotomic rings Rq = Zq [X ]/(X
d + 1)

and Rq̂ = Zq̂ [X ]/(X
d + 1) where q is a small modulus (of about

31 bits) and q̂ is large modulus (of about 53 bits). Note that both

moduli are much smaller than 64 bits in bit-length even though we

allow the transaction amount to be of 64 bits.

A user secret key sk is a random short vector over Rq and the

user’s public key is generated by using sk as the randomness of a

commitment to zero. When minting a coin to represent an amount

without revealing its value, we do not commit to the integer amount,

but instead commit to the bits of the amount over Rq . Therefore, a
standard argument stating that the sum of input coins equals the

sum of output coins is not sufficient for the balance property as

the addition is done over Zq . Instead, we introduce a new balance

proof as sketched in Section 1.3.

To spend some of her accounts, each of which is a pair of a

public key and a coin, a user Alice proceeds as follows. She mints

her coins and computes some “corrector” values to be used in the

balance proof. These corrector values help Alice prove that the sum

of input amounts equals the sum of output amounts, and they are

binary when there is one input account and at most two output

accounts. For simplicity, let us assume that is the case for now. To

hide her identity, Alice gathers other accounts to be used in a ring

signature. Suppose Alice wants to spendM of her accounts while

hiding herself among N users, in which case she gathers M · N

3



accounts (including those of her own), seen as an M × N matrix.

Then, she chooses an index ℓ ∈ [0,N − 1] and places her own

accounts on the ℓ-th column.

After this initial setting, Alice computes an aggregated binary

proof over Rq̂ where she proves that 1) all minted output coins are

commitment to bits, 2) her index ℓ is properly encoded by some bits

in some ring elements, and 3) the “corrector” values are properly

encoded as bits in some ring elements. Here, our scheme crucially

benefits from this efficient aggregation. Alice then providesM ring

signatures for her accounts to be spent, and also proves that the “cor-

rector” commitment is of a special form such that the commitment

does not contain any value (i.e., the committed message represents

zero). Finally, she runs another ring signature on commitments

P0, . . . , PN−1 where

Pi =
∑
(output coins) −

∑ (
input coins in

i-th column

)
+ (“corrector” com.).

Observe that Alice knows all the secret values that constructs Pℓ ,
and the corrector commitment is constructed in a way that Pℓ is
a commitment to zero over Rq when the sum of input (integer)

amounts equals the sum of output (integer) amounts. Recall that

Alice also proves corrector commitment contains no value. Finally,

she computes serial numbers as commitments to her secret keys

used under a new commitment key and proves that this is indeed

the case. This step is to prevent Alice from double-spending.

For auditability, we allow the auditor to extract Alice’s index

since she already proves that her index ℓ is properly encoded in

some commitment. For this, we require an extra tool: an extractable

commitment compatible with our construction (see Section 6).

An important feature of our auditable RingCT system is that

users can choose a specific auditor from a set of possible auditors

or can even choose to have no auditors, all within the same envi-

ronment. Therefore, the user chooses an auditing option i , where
i = 0 indicates no auditor (i.e., full anonymity) and i > 0 indicates

auditing by the i-th authority (i.e., conditional anonymity).

1.3 Our Techniques
Improved ring signature.The ring signature in [7] consistsmainly

of two parts: 1) a binary proof on the signer’s index, and 2) a one-

out-of-many proof on the set of public keys. We show that the two

verification equations in the binary proof can be batched together,

which reduces the number of commitments and the randomnesses

to be communicated by half and thus the binary proof’s cost al-

most by half. The general idea for the binary proof in the works

[5, 7, 8, 13] is as follows.

Suppose that we want to show b is a bit. Let B = Com(b; ∗),

A = Com(a; ∗) and f = x · b + a for some masking value a and

a challenge x where Com is homomorphic commitment.
5
Then,

one verification equation shows that f is well-formed by checking

xB +A = Com(f ; ∗). The other equation proves that the coefficient

of x2
in the product f · (x − f ) = x2 [b(1 − b)] + x [a(1 − 2b)] − a2

is zero by checking Com(f · (x − f ); ∗) = xC + D where C =
Com(a(1 − 2b); ∗) and D = Com(−a2

; ∗) are set by the prover.

Thus, the latter verification equation proves that b(1 − b) = 0,

which implies (under certain conditions) that b is binary.

5
In the real proof, multiple binary proofs are batched by committing to all the bits bi ’s
together as B = Com(b0, b1, . . . ; ∗), which we ignore here for simplicity.

In the ring signature, we do not make use of the commitments

A,B,C,D, other than for showing that f “encodes” a bitb. Therefore,
the prover can set B = Com(b,a(1−2b); ∗) andA = Com(a,−a2

; ∗),

and the verifier can equivalently checkxB+A = Com(f , f (x−f ); ∗).
That is, since both verification equations are effectively linear in x ,
they can be batched together. This ensures again that f = xb+a and
that the coefficient of x2

in the product f · (x− f ) is zero. Nowwe do

not need to have the commitmentsC,D at all, and also do not need

to communicate a masked randomness for a second verification.

The gain in the communication cost follows from here. This idea

works both in the DL setting (and thus applies to all protocols using

the proof systems from [5, 13]), and in the lattice setting as we do

not exploit any special property of the commitment scheme other

than the standard binding property.

Second, we show that by using two sets of compatible parameters

for the two parts of the ring signature, one can significantly reduce

the signature length. Here, it is important to choose the parameters

carefully as the two parts are not completely independent. In our

setting, the binary proof requires a much bigger modulus than

the one-out-of-many proof. This is due to both the hardness of

the underlying M-SIS problem and also to make the binary proof

go through in a ring Rq̂ with zero divisors where b(1 − b) = 0

may not imply b ∈ {0, 1} (unlike in the field Zq ). Therefore, we
use a large modulus q̂ for the binary proof, and a small modulus

q for the one-out-of-many proof (and also the other parts of the

protocol). In addition to reducing the proof length, this also reduces

the user public key size. Since public keys play a central role in the

whole blockchain system, the overall advantage is two-fold. Our

binary proof additionally has the advantage that the condition on

the modulus to make the binary proof go through in the ring Rq̂ is

much weaker than the one in [7]. Using the soundness proof in [7],

one would need to set q̂ to be of more than 70 bits.

Efficient rejection sampling for a secret vector of fixed Ham-
ming weight. Recall that the prover’s binary secrets are encoded

as f = x · b + a where b is a secret bit, a ∈ Rq̂ is a masking el-

ement and x ∈ Rq̂ is a challenge received (computed) after a is

sampled. For our commitment scheme to be binding, f needs to

be of small norm and thus we cannot choose a randomly from Rq̂ .
In this case, a standard technique to make sure that f does not

reveal information about the secret is using rejection sampling [19].

Suppose that we sample a ← {−Ba , . . . ,Ba }
d
and ∥x ·b∥

∞
≤ p for

all possible x and b values where Ba ≫ p ∈ Z+. The idea for the
rejection sampling in [19] is to make the distribution of f uniform

in a box by aborting the interactive protocol (or starting over in

the non-interactive case) if the maximum absolute coefficient of f
is greater than Ba − p.

Now, when b = 0, we know independent of the challenge x
that f will be equal to a. Therefore, in this case, one may sample a

directly from {−(Ba − p), . . . ,Ba − p}
d
in the first place to make

sure that f = x · b + a is not rejected. Still, the distribution of f
conditioned on passing the rejection sampling check is identical

to the uniform distribution on {−(Ba − p), . . . ,Ba − p}d , thus
simulation-based security aspects remain untouched. However, the

number of zero secrets affects the overall acceptance probability

and thus such a rejection sampling leaks side-channel information.

For example, proving knowledge of secret bits 1, 1, 1, 1, 1 is likely

4



to take longer than proving knowledge of secret bits 0, 0, 0, 0, 0 as

the latter is never rejected while the former is rejected with some

non-negligible probability.

In our protocol, the user index is represented in unary, i.e., the

bit sequence representing the user index has a fixed number of

zeros and ones. Therefore, the above technique of sampling the

masking value from the accepted distribution in advance does not

leak additional information as the prover’s goal is to prove that

there are exactly k ones in the secret bit sequence for some publicly

known k ∈ Z+. Hence, the technique is applicable and allows us

to increase the acceptance rate significantly without needing to

sample these components from a wider interval. To illustrate, when

N = 200, the bit sequence representing the user index ℓ is the ℓ-th

unit vector, i.e., has 199 zeros and a single one. Therefore, if the

acceptance probability for a single secret bit is P , then the overall

acceptance probability using our technique is still P instead of P200
,

which would be the case using the previous standard technique.

We also note that the technique trivially extends to the case

where the secret sequence has a fixed number of zeros and some

other elements (which may not be binary) as we do not make use

of the fact that nonzero secrets are equal to 1.

Novel balance proof. Suppose we want to prove that

M−1∑
i=0

ain,i =
S−1∑
i=0

aout,i (1)

for some input amounts ain,0, . . . ,ain,M−1 and output amounts

aout,0, . . . ,aout,S−1 where M, S ∈ Z+. The general idea to prove

(1) while hiding the amounts is to commit to each amount value

using a homomorphic commitment scheme, and then show that 1)

each committed value is in a valid positive range, and 2) the sum

of output commitments minus the sum of the input commitments

is a commitment to zero. For the lattice-based schemes, there does

not exist a range proof that is significantly shorter than the generic

approach: first, prove that some masked values encode bits, and

then that these bits construct the committed integer. One important

detail that especially has an effect for the lattice-based schemes is

that (1) must hold over Z, not just Zq .
Now, let us see how our balance proof works. Assume we want

to work in base β ≥ 2 and the amounts are represented by r digits.
Then, we can write a =

∑r−1

j=0
β ja[j] for any amount a with the

digits a[j]’s. Hence, we get

M−1∑
i=0

ain,i =
S−1∑
i=0

aout,i ⇐⇒
M−1∑
i=0

r−1∑
j=0

β jain,i [j] =
S−1∑
i=0

r−1∑
j=0

β jaout,i [j],

⇐⇒

r−1∑
j=0

β j
M−1∑
i=0

ain,i [j] =
r−1∑
j=0

β j
S−1∑
i=0

aout,i [j],

⇐⇒ 0 =

r−1∑
j=0

β j
(
S−1∑
i=0

aout,i [j] −
M−1∑
i=0

ain,i [j]

)
, (2)

⇐⇒ 0 =

r−1∑
j=0

β j
(
S−1∑
i=0

aout,i [j] −
M−1∑
i=0

ain,i [j] + c j − βc j+1

)
, (3)

for c0 = cr = 0 and any “corrector values” c1, . . . , cr−1 ∈ Z. There-
fore, instead of using the general idea that mandates a very large

modulus, we can proceed as follows. Setting β = 2, for each amount,

we commit to its bits as

Cin,i = Com(ain,i [0], . . . ,ain,i [r − 1]; ∗),

Cout,i = Com(aout,i [0], . . . ,aout,i [r − 1]; ∗).

Then, we also create a “corrector” commitment C = Com(c0 −

2c1, . . . , cr−1 − 2cr ; ∗) with c0 = cr = 0. Finally, we prove that

1) Cin,i ’s and Cout,i ’s are commitments to bits, 2)

∑S−1

i=0
Cout,i −∑M−1

i=0
Cin,i +C is a commitment to zero, and 3) C is well-formed

as above. These guarantee that 1) the opening message for any

commitment to an amount represents a unique value in a positive

range [0, 2r − 1], 2)

0 =

S−1∑
i=0

aout,i [j] −
M−1∑
i=0

ain,i [j] + c j − 2c j+1 (4)

for any j ∈ {0, . . . , r − 1}, and 3) C does not add any value in this

representation. Therefore, we prove (3) and equivalently (1). Since a

range proof already decomposes a value to its bits, from a practical

perspective, we replace the reconstruction part of the range proof

by the proof that shows C is well-formed. Importantly, though, we

do not need to use a very large modulus since the modulus just

needs to be large enough to guarantee that (4) holds over Z, which
is a very weak condition in a practical RingCT system.

The reason why we cannot simply use (2) is that, when amounts

are represented by commitments to their bits, the addition of the

commitments adds the corresponding bits over Zq where q ≫ 2.

Therefore, for Bits(a) denoting the bits of a positive integer a,

Com(Bits(a1); ∗) + Com(Bits(a2); ∗) , Com(Bits(a1 + a2); ∗),

and hence the proof does not work without the corrector C .
New extractable commitment.Our extractable commitment can

be seen as a bridge between an LWE-based encryption, and a SIS-

based commitment scheme with a “full trapdoor”, i.e., the commit-

ment matrix A is constructed in a way that a trusted party knows

a matrixG such thatG ·A = 0 mod q. The disadvantage of an en-

cryption scheme is that it does not allow compression (since there

is unique decryption). As a result, it is inefficient to encrypt long

messages whereas we want to have a compact commitment to long

message vectors, i.e., we require a compressing commitment. The

most promising candidate for this task is HMC, which can be seen

as a commitment to the hash of the message while still preserving

the algebraic structure. Now, if one puts a full trapdoor to HMC,

then the recovered information via annihilating the randomness

part with the trapdoor would be only the hash of the message,

not the message itself. Then, one still has to recover the original

message from here. Further, putting a full trapdoor often requires

more aggressive parameters than those sufficient for the system

without the trapdoor.

These bring us to our idea of using a “mini trapdoor”. Suppose

that C = Ar + Bm is a commitment to a message vectorm with a

randomness vector r and a uniformly random matrix B. The idea
now works as follows. We construct A as an LWE matrix such that

A =

[
A′

t⊤

]
where t = A′⊤s + e for some secret s and error e

known only to the message extractor and A′ is uniformly random.

To extract a message from C , the extractor computes ⟨(s,−1),C⟩,
which is equal to −⟨e,r ⟩ + ⟨b,m⟩ for b = (s,−1)⊤B. Then, the idea
is to let the extractor iterate through all the possible messagesm′

5



and compute ⟨(s,−1),C⟩ − ⟨b,m′⟩. For the correct message, the

result will be e ′ = −⟨e,r ⟩, and for an incorrect message, it will

be a random element in the ring Rq since B is an independent

uniformly random matrix andm −m′ , 0. Therefore, we can set

the parameters so that ∥⟨(s,−1),C⟩− ⟨b,m′⟩∥
∞
is small only for the

correct message with an overwhelming probability, which allows

the extractor to recover the message. Furthermore, from M-LWE

problem, A is computationally indistinguishable from random, and

thus hiding property of HMC can still be used.

2 PRELIMINARIES
We denote the ring of integers modulo q by Zq = Z/qZ, which is

represented by the range

[
−
q−1

2
,
q−1

2

]
for an odd integer q. Bold-

face lower-case letters such as a and bold-face capital letters such

as A are used to denote column vectors and matrices, respectively.

(a,b) denotes combining the vectors a and b to form a single longer

vector. For a vector v = (v0, . . . ,vn−1), the norms are defined as

∥v ∥ =

√∑n−1

i=0
v2

i , ∥v ∥∞ = maxi |vi | and ∥v ∥1 =
∑n−1

i=0
|vi |. The

corresponding norms for a polynomial f are defined analogously

on the coefficient vector of f . For a vector f = (f0, . . . , fs−1) of

polynomials, ∥ f ∥ =
√∑s−1

i=0
∥ fi ∥

2
, ∥ f ∥

1
=

∑s−1

i=0
∥ fi ∥1 , ∥ f ∥∞ =

maxi ∥ fi ∥∞ . Uniform distribution on a set S is denoted byU(S). We

use a ← S to denote sampling a from a distributionS, or uniformly

sampling from a set S. [a,b] = {a, . . . ,b}, [a,b) = {a, . . . ,b − 1}

for a < b ∈ Z and logarithms are base 2 unless specified otherwise.

We denote a commitment by a capital letter such as C (even

though it is mostly a vector). We write Sd ·m to indicate that a

total of md coefficients from a set S are sampled to generate m

polynomials in R = Z[X ]/(Xd + 1) of degree d . UB denotes the set

of polynomials in R with infinity norm at most B ∈ Z+. HW(f )
denotes the Hamming weight of the (whole) coefficient vector of

f . We use S[i] to denote either the i-th element of an ordered set

S or the i-th bit of an integer S . If an algorithm F is run on all the

elements of a set S such that oi ← F (si ) for all si ∈ S , we write
O ← F (S) where O = {o0,o1, . . .}.

2.1 Module-SIS and Module-LWE problems
We define below the hard computational problems, Module-SIS

(M-SIS) and Module-LWE (M-LWE) [17].

Definition 2.1 (M-SISn,m,q,βSIS ). Given A← Rn×mq , the problem

asks to find z ∈ Rmq such that Az = 0 over Rq and 0 < ∥z∥ ≤ βSIS.

We define M-LWE such that both the secret and the randomness

are sampled from UB . This variant is commonly used in practical

lattice schemes, e.g., [2, 6–8].

Definition 2.2 (M-LWEn,m,q,B ). Let s ← UnB be a secret key.

Define LWEq,s as the distribution obtained by outputting (a, ⟨a, s⟩+
e) for a ← Rnq , e ← UB . The problem asks to distinguish between

m given samples from either LWEq,s orU(Rnq ,Rq ).

2.2 Commitment Scheme
Hashed-Message Commitment (HMC) allows commitment to long

message vectors without significantly increasing the commitment

size (see, e.g., [2, 8]). Suppose that we commit to v-dimensional

Table 4: Notations for the RingCT formal model.

S the blockchain state

act = (pk, cn) an account comprised of a public key and a coin

M, S ≥ 1 # of spender’s input and output accounts, resp.

N ≥ 2 # of accounts to hide a single input account

Rin set of spender’s real accounts

Kin = (SKin,
CKin,Amtin)

set of spender’s account secret keys ask = (sk,
cnk, amt) with a secret key, coin key & amount

Ain
set of all input accounts arranged as aM × N
matrix where the i-th row contains Rin[i]

PKout set of output public keys with |PKout | = S

CNout set of output coins with |PKout | = S

Amtout set of output amounts with |Amtout | = S

CKout set of output coin keys with |CKout | = S

Aout set of output accounts with |Aout | = S

Π the proof output

SN set of serial numbers

tx a transaction tx = (Ain,PKout,CNout,Π, SN)
V set of all valid amounts

vectors over Rq for v ≥ 1. For positive integers n,m,B,q with

m > n, the instantiation of the commitment scheme is as follows.

• CKeygen(1λ) : Sample A ← Rn×mq and B ← Rn×vq . Output

ck = G = [A ∥ B ] ∈ Rn×(m+v)q .

• Commitck (m) : Sample r ← {−B, . . . ,B}d ·m . Output

Comck (m; r ) = G · (r ,m) = A · r + B ·m.

• COpenck (C, (y,m
′,r ′)) : If Comck (m

′
; r ′) = yC and ∥(r ′,m′)∥ ≤

γcom, return 1. Otherwise, return 0.

In common with similar lattice-based schemes, e.g., [2, 4, 6], the

opening algorithm COpen does not simply check if the message-

randomness pair commits to C , but rather checks whether yC =
Comck (m

′
; r ′) for some relaxation factor y ∈ Rq . This is required

for efficient lattice-based zero-knowledge proofs and the commit-

ment scheme is still hiding and binding as below. It is also easy to

see that the commitment scheme is additively homomorphic.

Lemma 2.3. For a (large) set of appropriately chosen parameters,
HMC defined above is
• computationally hiding if M-LWEm−n,m,q,B problem is hard, and
• computationally strong γcom-binding with respect to the same re-
laxation factor y if M-SISn,m+v,q,2γcom is hard.

In [7, 8], a variant of Lemma 2.3 has been shown to hold when

the matrixG is in “Hermite normal form”, i.e., the first n × n part

ofG is the identity matrix. The result extends in a similar way to

our case and we discuss more on the security properties of the

commitment scheme in Appendix C.

3 FORMAL DEFINITIONS FOR RINGCT-LIKE
CRYPTOCURRENCY PROTOCOLS

In this section, we describe our formal definitions for RingCT-like

protocols. First, we introduce the notation used specifically for the

security model in Table 4. The blockchain state S consists of two

6



lists: 1) a list of registered accounts act = (pk, cn), indicating a

public key pk is paired with a coin cn, and 2) a list of all verified

transactions. We assume that S is properly updated among all users

at all times.
6
The following tuple of polynomial time algorithms

define RingCT protocol.

• pp ← Setup(1λ) : given the security parameter λ, output the
system parameters pp, which is assumed to be an implicit input

to all the remaining functions.

• (pk, sk) ← KeyGen() : output a public-secret key pair (pk, sk).
• s ← SerialGen(sk) : on input a secret key sk, output a serial

number s associated to sk.
• (cn, cnk)/⊥← Mint(amt) : on input an amount amt, if amt ∈ V,
output a coin cn and its coin key cnk. Otherwise, output ⊥. If
cnk is given as an input, then Mint computes a deterministic

function such that cn = Mint(amt, cnk).
• (act,S) ← AccountGen(pk, cn,S) : on input a public key pk and
a coin cn, register an account act = (pk, cn) to the blockchain

state S. Output act and updated state S.
• 0/1 ← CheckAct(pk, cn,S) : on input a public key pk, a coin
cn and the blockchain state S, output 1 if (pk, cn) is a registered
account in S. Otherwise, output 0. In the case that the input has

a set of pairs of (pk, cn), then output 1 if all (pk, cn) pairs are
registered accounts in S. Otherwise, output 0.
• (tx,CKout)←Spend(Ain,Rin,Kin,PKout,Amtout) : on input Ain,
Rin,Kin,PKout,Amtout as in Table 4, mint output coins by run-

ning (CNout,CKout) ← Mint(Amtout). Generate the serial num-

bers by running SN← SerialGen(SKin) and a proof Π. Output
(tx,CKout)= ((Ain,PKout,CNout,Π, SN),CKout).7

• 0/1← IsSpent(SN,S) : on input a set SN of serial numbers and

the blockchain state S, if there is a collision in SN or if a serial

number appears both in SN and S, output 1. Otherwise, output 0.
• ∅/(Aout,S) ← Verify(tx,S) : on input a transaction tx as in

Table 4, if IsSpent(SN,S) = 1 or CheckAct(Ain,S) = 0, out-

put ∅. Check the proof Π and output ∅ if not valid. Otherwise,

run (Aout,S) ← AccountGen(PKout,CNout,S) and add tx to S.
Output Aout , ∅ and updated S.

One of the most important differences of our definitions to

RingCT 2.0 and 3.0 is that some of the functions take the blockchain

state S as an input to capture the inherent stateful nature of a

blockchain environment. However, this important piece is com-

pletely missing in RingCT 2.0 and 3.0, and sometimes used implic-

itly in the definitions without having it as an input. For the tuple

of algorithms that define the protocol, we additionally have the

functions SerialGen,CheckAct and IsSpent, which do not exist

in RingCT 2.0 or 3.0. Therefore, in the correctness definitions of

RingCT 2.0 and 3.0, there is no restriction on input accounts be-

ing unspent whereas there should be such a restriction (see our

correctness definition further below).

We consider an account as a registered public key and coin pair

on blockchain. Therefore, our Spend algorithm does not output

accounts as the transaction would not have been validated at that

point yet. Hence, Verify takes public key and coin pairs as inputs,

and outputs the accounts if the input transaction is valid. On the

6
In practice, this is managed by a consensus algorithm, which is outside the scope of

this work.

7CKout along with the output amounts are delivered to the recipient(s) privately.

Table 5: Structure of the list L used in the security model.

L : pk sk s (serial #) cn cnk amt IsCrpt

other hand, Spend algorithms in RingCT 2.0 and 3.0 directly output

accounts. Also, Mint algorithm in RingCT 2.0 and 3.0 take a public

key as an input, but does not make use of it.

3.1 Security Definitions
Towards getting a “cleaner” model, we only use the single list L in

Table 5 instead of five lists as in RingCT 2.0 and 3.0. The list L is

seen as a database for which any of the following can be used as a

unique identifier of a row: a public key, a secret key, a serial number,

a coin or a coin key. Retrieving a row in L is denoted, for example,

by L[pk] for some public key pk. Then, L[pk].cnk denotes the

coin key associated with the public key pk. IsCrpt denotes the “is
corrupted” tag.

Oracles. The oracles accessed by an adversaryA are defined below.

• PkGen(i) : on the i-th query, run (pki , ski ) ← KeyGen(), s ←
SerialGen(ski ) and output pki . Add (pki , ski , s) to L where

IsCrpt tag is set to zero and the remaining fields are left empty.

• Mint(amt) : run (cn, cnk) ← Mint(amt), and output cn.
• ActGen(pk, amt,S) : run (cn, cnk) ← Mint(amt) and (act,S) ←
AccountGen(pk, cn,S). Insert (cn, cnk, amt) to L[pk] and out-

put (act,S).
• Corrupt(act) : For act = (pk, cn), if L[pk] cannot be found,

return ⊥, indicating failure. Otherwise, update L[pk].IsCrpt to 1,
and output L[pk].sk, L[pk].cnk and L[pk].amt. Alternatively,
the input may be either pk alone or cn alone. In the former

case, only L[pk].sk is returned, and in the latter, L[cn].cnk and

L[cn].amt are returned.
• Spend(Ain,Rin,PKout,Amtout) : Retrieve from L all ac-

count secret keys Kin associated to Rin. Run (tx,CKout) ←
Spend(Ain,Rin,Kin,PKout,Amtout) and B ← Verify(tx,S). If
B = ∅ (i.e., the verification fails), return ⊥. Otherwise, return

tx and, for each 1 ≤ i ≤ |PKout |, update the coin, coin key and

amount information in L[PKout[i]] with CNout[i], CKout[i] and
Amtout[i], respectively.

We let Orc denote the set of all oracles defined above together

with the random oracle. With respect to the positioning of the

accounts in Rin inside Ain, we define two flavours of properties

for RingCT: 1) with shuffling and 2) without shuffling. In the latter

case, all the accounts in Rin are restricted to be in the same column,

which provides a somewhat weaker level of anonymity as described

in [34]. We give our definitions for the former case, and it is trivial

to get the latter by imposing the aforementioned restriction on Rin.

Correctness. Informally, correctness requires that any user is able

to spend any of her honestly generated unspent accounts, which
has honestly generated keys and coins with a valid amount.

A RingCT protocol is said to be ϵ-correct if the fol-

lowing holds for any pp ← Setup(1λ), any M,N , S ∈

Z+, (pk
0
, sk0), . . . , (pkM−1

, skM−1) ← KeyGen(pp) such that

IsSpent(SerialGen(ski )) = 0 for all i = 0, . . . ,M − 1,

any amt0, . . . , amtM−1, amtout,0, . . . , amtout,S−1 ∈ V such that∑M−1

i=0
amti =

∑S−1

i=0
amtout,i , any set PKout of arbitrarily generated

7



output public keys and any set Ain \ Rin of arbitrarily generated

decoy accounts,

Pr

[
Verify(tx,S) , ∅ :

(tx,CKout) ← Spend(Ain,Rin,Kin,PKout,Amtout)

]
≥ 1 − ϵ

where cni = Mint(amti , cnki ) for some cnki ’s in the

domain of coin keys, acti ← AccountGen(pki , cni ) for

i = 0, . . . ,M − 1, Rin = {act0, . . . , actM−1}, Amtout =

{amtout,0, . . . , amtout,S−1}, Ain and tx are as in Table 4, and Kin =
{(sk0, cnk0, amt0), . . . , (skM−1, cnkM−1, amtM−1)}. If ϵ = 0, then

the protocol is said to be perfectly correct. If ϵ = negl(λ), then it is

said to be statistically correct.
Observe from the above correctness definition that the spent in-

put coins may not be generated honestly, but the input amounts and

coin keys are in the correct domains. Indeed, the input coins spent

by a user, say Alice, are the output coins of a previous transaction

and thus are generated by another user, say Bob. Therefore, Alice

cannot guarantee that Bob generated the coins honestly. However,

Alice also receives the coin keys and amounts for these coins and

can easily check if they are in the correct domains and whether the

coins can be spent. Therefore, the correctness property alone does

not guarantee that any received coins can be spent. This aspect can

be captured in a security property (such as availability), which could

require any coin output by a verified transaction to be “spendable”.

As in prior models RingCT 2.0 and 3.0, our model does not include

such an availability property.

In the correctness definition of RingCT 3.0, the amounts are

randomly sampled from Zp . However, in our case, the correctness

requires any amount in the valid range V to be able to be spent.

Anonymity. Informally, anonymity requires that the real spender’s

accounts are hidden among the uncorrupted (i.e., never been queried

to Corrupt) accounts as long as there are at least two sets of un-

corrupted input accounts that can be successfully spent.

A RingCT protocol is said to be anonymous if the following holds
for all PPT adversaries A and pp ← Setup(1λ)

Pr [A wins the game Exp:Anonymity] ≤ 1/2 + negl(λ),

where Exp:Anonymity is defined as follows.

(1) (Ain,PKout,Amtout,R0

in
,R1

in
, st) ← AOrc(pp) : A is given pp

and access to all oracles, and then outputs two target sets of

accounts to be spent as (Ain,PKout,Amtout,R0

in
,R1

in
, st) where

• st is some state information to be used byA in the next stage,

• Ain,PKout and Amtout are as in Table 4,

• R0

in
,R1

in
⊂ Ain such that both R0

in
and R1

in
contain exactly one

account from each row of Ain.
(2) (txi ,CKi

out
) ← Spend(Ain,Ri

in
,Ki

in
,PKout,Amtout) for i = 0, 1 :

Both sets R0

in
and R1

in
of real input accounts are spent with the

arguments specified by A where

• Ki
in
is the set of account secret keys of the accounts in Ri

in

retrieved from L for i = 0, 1.

If Verify(txi ,S) = ∅ for some i ∈ {0, 1}, then set tx0 = tx1 =⊥.

(3) b ← {0, 1}
(4) b ′ ← AOrc(txb ,CK

b
out
,Amt0

in
,Amt1

in
, st) :A is given access to

all the oracles, the state st, one of the Spend outputs, and the

input amounts in K0

in
and K1

in
. Then, A outputs a guess for the

real input of the Spend output provided.

A wins the game Exp:Anonymity if the following holds

• all public keys and coins in R0

in
and R1

in
are generated by PkGen

and Mint, respectively, and all accounts in R0

in
and R1

in
are gen-

erated by ActGen,

• all public keys in PKout are generated by PkGen,

• tx0 ,⊥ and tx1 ,⊥,
• no account (including its public key and coin) in R0

in
or R1

in
has

been corrupted (i.e., queried to Corrupt),

• (·,Ri
in
·, ·) has never been queried to Spend for i = 0, 1,

• b ′ = b.

Note that the adversary is restricted to corrupting at most N −
2 accounts in any row of Ain by making sure that R0

in
and R1

in

have all uncorrupted accounts. Further, instead of having two sub-

definitions as in RingCT 3.0, we define a single anonymity experi-

ment that covers different attack scenarios. Our definition is based

on an indistinguishability argument, which makes it easier to ex-

tend the anonymity proofs of the ring signature used as a building

block. Moreover, in our anonymity definition, only the accounts in

Rin are assumed to be honestly generated, not all those in Ain.

Balance. Informally, balance requires that no adversary can spend

a set A of accounts under his control such that the sum of output

amounts is more than the sum of the amounts in A.
A RingCT protocol is said to be balanced if the following holds

for all PPT adversaries A and pp ← Setup(1λ)

Pr [A wins the game Exp:Balance] ≤ negl(λ),

where Exp:Balance is defined as follows.

(1) (tx1,Amt1
out
,CK1

out
), · · · , (txt ,Amtt

out
,CKt

out
) ← AOrc(pp) :

The adversaryA is given access to all the oracles Orc together

with pp, and outputs a set of t transactions where
• txi = (Ai

in
,PKi

out
,CNi

out
,Πi , SNi ) for i = 1, . . . , t ,

• Amti
out

’s and CKi
out

’s are sets of output amounts and coin

keys, respectively, for uncorrupted output public keys with

|CKi
out
| = |Amti

out
| ≤ |PKi

out
| = |CNi

out
| for all i ∈ {1, . . . , t}.

(2) Bi ← Verify(txi ,S) for i = 1, . . . , t .

A wins the game Exp:Balance if the following holds

• for all i ∈ {1, . . . , t}, all public keys and coins inAi
in
are generated

by PkGen and Mint, respectively, and all accounts in Ai
in

are

generated by ActGen,

•
⋂t
i=1

SNi = ∅,

• Bi , ∅ for all i = 1, . . . , t ,

• there exists a j∗ ∈ [1, t] such that

S ′−1∑
i=0

Amtj
∗

out
[i] >

M−1∑
i=0

amtin,i

where S ′ = |Amtj
∗

out
|, M = |SNj∗ |, amtin,i = L[si ].amt for all

si ∈ SNj∗ if si ∈ L and L[si ].IsCrpt = 1, and amtin,i = 0

otherwise,

• for any i ∈ [1, t] and 0 ≤ j < |PKi
out
|, if L[pki, j ].IsCrpt = 0

for pki, j = PKi
out
[j], then CKi

out
[j] = L[pki, j ].cnk, Amti

out
[j] =

L[pki, j ].amt and CNi
out
[j] = Mint(Amti

out
[j],CKi

out
[j]).8 That

is, for all uncorrupted output public keys, the corresponding

output coin key, output amount and output coin provided by the

adversary are correct.

8
Without loss of generality, we assume that the indices for corrupted public keys are

the last ones so that the indexing matches.

8



In Exp:Balance, the output of the adversary does not include

information about the output coin key or output amount for the

corrupted output public keys. The reason that the adversary needs

to output such information for uncorrupted output public keys is

that the honest recipient checks whether the output coin key and

output amount are in the correct domains and construct the coin.

Clearly, the adversary may corrupt all the output public keys, in

which case, he would not need to output CKout or Amtout.
Attack scenarios of the balance model.

(1) Forgery: The attacker tries to create a valid proof where (at

least) one of the real spent accounts is not corrupted. This is

captured by setting an input amount to zero if no corruption

occurs with respect to a certain serial number.

(2) Unbalanced input and output amounts: The attacker tries
to create a transaction where the sum of input amounts be-

ing spent does not match the sum of output amounts. This is

captured by letting the attacker corrupt all the input accounts.

(3) Double spending: The attacker tries to spend an account twice
with distinct serial numbers. This is captured by setting an input

amount to zero if the respective serial number is not in L.

Our balance definition is presented as a single experiment rather

than having sub-definitions. For example, RingCT 3.0 has three

sub-cases of balance: unforgeability, equivalence and linkability.

Further, the unforgeability definition in RingCT 3.0 requires all
input accounts in Ain to be uncorrupted. However, in this case,

a natural forgery attack where the attacker has control over a

single input account (which may not even be the real spent one) is

excluded from the model. In our balance definition, on the other

hand, the adversary wins the game -among other cases- if there is

only a single uncorrupted account for which a valid serial number

is generated by the adversary. Further, our balance definition allows

an adversary to output a set of transactions (where one transaction

can possibly be an input to the other), while only the linkability

definition in RingCT 3.0 allows just two transactions to be output.

In RingCT 2.0/3.0 formal models (and also in LRCT v2.0), there is

an additional property, non-slanderability. It states “it is infeasible
for any malicious user to produce a valid spending that shares at

least one serial number with a previously generated honest spend-
ing” [30]. Although non-slanderability could be a requirement in

some applications of a linkable ring signature where the users are

punished if a signature is detected to be generated twice using the

same secret, we do not believe that is the case in the RingCT setting.

The reason is that if someone generates a spending that has the

same serial number with a previously generated one, then simply

the second spending does not verify and thus ignored with no pun-

ishment in regards to the first spending. Hence, even if an attacker

succeeds in winning the above non-slanderability game, there is

no harm to honest users nor is there any gain for the attacker.

In our formal definitions, we aimed to explicitly state our assump-

tions so that the model can further be easily strengthened in future

by removing some of them. For example, a potential extension is

to remove the assumption in Exp:Balance that the input coins

are generated honestly. This would require using the soundness of

the preceding transaction proofs (in addition to the “current” one),

complicating the balance analysis even further. Thus, in this work,

such an assumption is included as in RingCT 2.0 and 3.0.

Table 6: Identifiers for MatRiCT.

Rq , Rq̂
Cyclotomic rings

of degree d
:

Rq = Zq [X ]/(X
d + 1)

Rq̂ = Zq̂ [X ]/(X
d + 1)

n, n̂ height of commitment matrices in Rq and Rq̂ , resp

m,m̂ randomness vector dimensions in Rq and Rq̂ , resp

N = βk ring size of ring signature (and anonymity set size)

ℓ spender’s column index with 0 ≤ ℓ < N

r bit-length of an amount, i.e., amt ∈ V = [0, 2r − 1]

B max. absolute coefficient of initial randomness

4 MatRiCT: LATTICE-BASED RINGCT
We describe the full details of MatRiCT in this section. We spec-

ify the functions Setup, KeyGen, SerialGen, Mint, Spend and

Verify. To simplify presentation, the part concerning the corrector

values in Spend is shown for the case (M, S) = (1, 2) in Algorithm

8 and we discuss in the text how the general case can be easily

accomplished. Let us go over the description of each algorithm

one-by-one and fix the notation in Table 6. We assume that r -bit
precision is always sufficient for the amounts (even when they are

summed)
9
and that valid amounts are used to call the functions. It

is trivial to return an error when that is not the case.

In general, there are 3 commitment keysG, Ĝ and H used in the

system whereH (defined over Rq ) is used only in the serial number

generation, Ĝ is used for the commitments over Rq̂ in binary proof

andG is used elsewhere for the commitments over Rq .

Algorithm 1 SamMat(ρ ′,v,q′,n′,m′, str)

INPUT: ρ ′ for some seed ρ ′ ∈ {0, 1}256
; v,q′,n′,m′ ∈ Z+; str

is an optional auxiliary input string.

1: G ← Sam(ρ ′, str) whereG ∈ Rn
′×(m′+v)

q′

2: returnG ▷G can be output in the NTT domain.

Algorithm 1 generates a random matrix from a small seed ρ
using an extendable output function Sam (modelled as a random

oracle in the security analysis). It also has an auxiliary input string

str so that different matrices from the same seed can be generated.

Calling the function with the same seed ρ and same string str results

in the generation of the same entries. For example, running A←
SamMat(ρ,v1,q,n1,m1, str) andB ← SamMat(ρ,v2,q,n2,m2, str)

with n1 ≤ n2,m1 +v1 ≤ m2 +v2 results in two matrices A and B
where A is a sub-matrix of B.

Algorithm 2 sets the system parameters. Here, for ease of pre-

sentation, we assume the ring size to be fixed to some N . The range

of the hash function is defined as the following challenge space

Cdw,p = {x ∈ Z[X ] : deg(x) = d − 1 ∧ HW(x) = w ∧ ∥x ∥
∞
= p}.

9
Wedo not assume here that summingmultiple amounts of, say, 2

64−1 is impossible. To

bemore explicit, r can be set as the smallest integer such thatMAXamt ·MAXio ≤ 2
r −1

whereMAXamt is the maximum amount possible andMAXio is the maximum number

of input/output accounts allowed. But, the amount is still represented in r bits. Recall

that our protocol does not have the disadvantage of requiring a modulus greater than

2
r − 1 and a few more bits of precision can be added at almost no cost.

9



Algorithm 2 Setup(1λ) λ is the security parameter

1: Choose int. params k, β , r ,n,m, n̂,m̂,d,q, q̂ such that N = βk

2: Setw,p such that |Cdw,p | > 2
256

3: ρ ← {0, 1}256

4: Pick a hash functionH : {0, 1}∗ → Cdw,p
5: return pp = (ρ,H ,k, β , r ,n,m, n̂,m̂,ns ,d,w,p,q, q̂)

Algorithm 3 KeyGen(pp)

1: G ← SamMat(ρ, 0,q,n,m, “G”)
2: r ← {−B, . . . ,B}d ·m

3: c = G · r in Rnq ▷ Com. to zero under ck = G
4: return (pk, sk) = (c,r ) ▷ Can be output in the NTT domain

This is the same set defined in [7] and |Cdw,p | =
(d
w
)
(2p)w . Thus,

given d , one can easily set (w,p) such that |Cdw,p | > 2
256

.

Algorithm 3 generates a public-secret key pair. The secret key is

random vector over Rq with infinity norm B, and the public key is

a commitment to zero with the secret key used as the randomness.

Algorithm 4 generates a serial number for a given secret key.

The serial number is a commitment to zero using the secret key as

the randomness under the commitment key H . Observe that the

height of the commitment matrix here is set to ns .
Algorithm 5 implements minting a coin, which is computed as a

commitment to the bits of an input amount. The commitment key

used here is the same as the one in KeyGen.
Since Spend algorithm is very long, we split it into multiple

parts, Algorithms 6, 7, 8 and 9. Spend starts by setting some pa-

rameters in Algorithm 8. These settings are done to accommodate

different parameters while keeping the acceptance rate of the rejec-

tion sampling similar. In Step 7, we compute the corrector values ci
where the division by two is always exact by the following lemma.

Lemma 4.1. Let A,B be two sets of non-negative integers and a =
(a[0], . . . ,a[r − 1]) be the representation of a non-negative integer a
in base β ≥ 2. If

∑
a∈A a =

∑
b ∈B b, then for any β ≥ 2, there exists

c0, . . . , cr ∈ [−(|B | − 1), |A| − 1] with c0 = 0 such that∑
a∈A

a[i] −
∑
b ∈B

b[i] = βci+1 − ci .

Further, cr = 0 if the result of the sum is of at most r digits in base β .

Proof of Lemma 4.1. Let β ≥ 2. For any set A of non-negative

integers and any 0 ≤ i < r where r is the maximum number of

digits needed to represent elements in A, we can write(∑
a∈A

a

)
[i] − ci + βci+1 =

∑
a∈A

a[i] (5)

for the carries c1, . . . , cr and c0 = 0 since there is no carry for

the least significant bit. Now, fix A,B as two sets of non-negative

integers where the sum over A equals the sum over B. Clearly, the
following holds (∑

a∈A
a

)
[i] =

(∑
b ∈B

b

)
[i] (6)

Algorithm 4 SerialGen(sk) for a secret key sk ∈ Rmq

1: H ← SamMat(ρ, 0,q,ns ,m, “H”)
2: c = H · r in Rnsq where r = sk ∈ Rmq ▷ Com. to zero under H
3: return s = c ▷ s can be output in the NTT domain

Algorithm 5 Mint(amt) for amt ∈ [0, 2r − 1]

1: G ← SamMat(ρ, r ,q,n,m, “G”)
2: r ← {−B, . . . ,B}d ·m , (b0, . . . ,br−1) ← Bits(amt)
3: C = Comck (b0, . . . ,br−1; r ) in Rnq where ck = G
4: return (cn, cnk) = (C,r )

for any 0 ≤ i < r . Using (5) and (6), for any 0 ≤ i < r , we get∑
a∈A

a[i] −
∑
b ∈B

b[i]=

(∑
a∈A

a

)
[i] − c ′′i +βc

′′
i+1
−

(∑
b ∈B

b

)
[i] + c ′i − βc

′
i+1

= −(c ′′i − c
′
i ) + β(c

′′
i+1
− c ′i+1

),

for some carries c ′
0
, c ′′

0
, . . . , c ′r , c

′′
r where c ′

0
= c ′′

0
= 0. Defining

ci := c ′′i − c
′
i with c0 = 0 concludes the first part. Note that due to

c ′′i , c
′
i being carry values, c ′′i ∈ [0, |A| − 1] and c ′i ∈ [0, |B | − 1], and

thus ci ∈ [−(|B | − 1), |A| − 1]. When neither of the sums exceed r
digits, c ′r = c

′′
r = 0, and thus cr = 0. □

After computation of the corrector values, the spender mints

the output coins, and runs an aggregated binary proof using Algo-

rithm 6. The idea for the binary proof is the same as in [7], but we

apply our efficient rejection sampling technique for binary secrets

of fixed Hamming weight and our binary proof proves a slightly

different relation given in Lemma 5.5. In general, Algorithm 6 takes

t sequences of bits where each sequence has sj elements, and the

masking values for each sequence is sampled from UBj . Also, each

sequence has a flag Boolj to indicate whether the sequence has a

fixed Hamming weight, in which case the masking values for zero

bits are sampled directly from the accepted distribution of rejection

sampling. Note that for the case of Hamming weight equal to 1,

there is always exactly one element in {a
(j)
1
, . . . ,a

(j)
sj } not sampled

from the accepted distribution.

Defining δi, j as the Kronecker’s delta, Step 14 of Algorithm 8

computes the unary representation of the spender’s index ℓ in base

β , which has a fixed Hamming weight. Therefore, the flag Boolj is

set to True for these sequences. Then, we also add the corrector

values and the output amount bits to the array b, which is then

input to the binary proof. The most common cases for the number

of input/output accounts are (M, S) = (1, 2) and (M, S) = (2, 2). For
the former case, the corrector values are binary as they are simply

the carries in the sum of two output amounts. Therefore, the steps

given in Algorithm 8 are sufficient. In the latter case, we can prove

that the corrector values are differences of some bits cin,i , cout,i ,
which are the carries from the sum of two inputs and the sum of

two outputs, respectively.

In general, however, the corrector values can fall in a larger

interval [−(M − 1), S − 1], and in that case, one needs to prove that

they are indeed in that interval. This can be done using a standard

range proof, where the range width is only M + S − 1, which is

expected to be very small. In fact, we do not need to prove that they

10



Algorithm 6 BinaryCommit ▷ Commitment Step of Binary Proof

INPUT: t ∈ Z+; {(sj ,Boolj , (b
(j)
0
, . . . ,b

(j)
sj−1
),Bj )}

t−1

j=0
where

sj ∈ Z
+,Boolj ∈ {True, False},b

(j)
i ∈ {0, 1}; B,

ˆB
big
∈ Z+.

OUTPUT: (ra ,rb ), (A,B), {(a
(j)
0
, . . . ,a

(j)
sj−1
)}t−1

j=0
where

ra ,rb ∈ R
m̂
q̂ , A,B ∈ Rn̂q̂ and a

(j)
i ∈ Rq̂ .

1: ck = Ĝ ← SamMat(ρ,v, q̂, n̂,m̂, “Gbig”) for v = 2 ·

(∑t−1

j=0
sj

)
2: rb ← {−B, . . . ,B}

d ·m̂
and ra ← {− ˆB

big
, . . . , ˆB

big
}d ·m̂

3: for j = 0, . . . , t − 1 do ▷ Iterate over each bit sequence

4: if Boolj = True then ▷ The case of HW being 1.

5: if b(j)
0
= 0, then i∗ = −1 ▷ Out of [1, sj − 1]

6: else i∗ ← {1, . . . , sj − 1} and a
(j)
i∗ ← {−Bj , . . . ,Bj }

d

7: for i = 1, . . . , sj − 1 and i , i∗ do ▷ i starts from 1.

8: if b(j)i = 0, then a
(j)
i ← {−(Bj − p), . . . ,Bj − p}

d

9: else a
(j)
i ← {−Bj , . . . ,Bj }

d

10: end for
11: a

(j)
0
= −

∑sj−1

i=1
a
(j)
i

12: else
13: for i = 0, . . . , sj − 1 do ▷ i starts from 0.

14: a
(j)
i ← {−Bj , . . . ,Bj }

d

15: end for
16: end if
17: end for
18: b =

(
b
(0)

0
, . . . ,b

(t−1)

st−1−1

)
, a =

(
a
(0)

0
, . . . ,a

(t−1)

st−1−1

)
19: c =

(
a
(0)

0
(1 − 2b

(0)

0
), . . . ,a

(t−1)

st−1−1
(1 − 2b

(t−1)

st−1−1
)

)
20: d =

(
−(a
(0)

0
)2, . . . ,−(a

(t−1)

st−1−1
)2

)
21: B = Comck (b,c; rb ), A = Comck (a,d ; ra ) in Rn̂q̂ with ck = Ĝ

22: return (ra ,rb ), (A,B), {(a
(j)
0
, . . . ,a

(j)
sj−1
)}t−1

j=0

fall exactly in [−(M − 1), S − 1], but can alternatively prove that

they are in a range of width 2
l
for l = ⌈log(M + S − 1)⌉. There are

standard methods to “shift” the range at no cost (see, e.g., [7]). As

mentioned in Section 1.3, as long as (4) is ensured to hold over Z,
the corrector values can be set freely. The final part of Algorithm 6

is committing to all the values as outlined in Section 1.3.

Steps 26 and 27 of Algorithm 8 are used to prove that the corrector

commitmentC is well-formed, i.e., does not contain any value with

respect to the representation of the amounts. After that, the spender

runs M ring signatures to prove ownership of an account from

each row of Ain. Here, she also computes a serial number for each

account spent. Finally, another ring signature is run to prove that the

balance is preserved by showing

∑S−1

i=0
cnout,i −

∑M−1

i=0
cni, ℓ +C is a

commitment to zero for the same index ℓ ∈ [0,N − 1]. Note that all

ring signatures are run using the same vectorp, and thus the indices
of the spender’s accounts are the same in all rows (notice also that

Verify, Algorithm 10, uses the same fj,i ’s in the verification of the

ring signatures at Steps 22 and 28).

The main part of the ring signature is summarized in Algorithm

7, which follows the same blueprint as the one-out-of-many proof in

[7], but again proves a slightly different relation given in Lemma 5.6.

Algorithm 7 RingCommit ▷ Commitment Step of Ring Sign.

INPUT:GenSerial ∈ {True, False}; (P0, . . . , PN−1)where Pi ∈
Rnq ; (p0,0, . . . ,pN−1,k−1

) where pi, j ∈ Rq ; B,Bbig,k ∈ Z
+
.

OUTPUT: (ρ
0
, . . . , ρk−1

), (E0, F0, . . . ,Ek−1
, Fk−1

) where

ρ j ∈ Rmq , Ej ∈ Rnq and Fj ∈ Rnsq . Fj ’s are omitted when

GenSerial = False.

1: ck = G ← SamMat(ρ, 0,q,n,m, “G”)
2: if GenSerial = True, then H ← SamMat(ρ, 0,q,ns ,m, “H”)
3: ρ

0
← {−B

big,k
, . . . ,B

big,k
}d ·m

4: for j = 0, . . . ,k − 1 do
5: ρ j ← {−B, . . . ,B}

d ·m if j , 0

6: Rj = Comck (0; ρ j ) in Rnq
7: Ej =

∑N−1

i=0
pi, jPi + Rj in Rnq

8: if GenSerial = True, then Fj = H · ρ j in Rnsq
9: end for
10: if GenSerial = True, then

return (ρ
0
, . . . , ρk−1

), (E0, F0, . . . ,Ek−1
, Fk−1

)

11: return (ρ
0
, . . . , ρk−1

), (E0, . . . ,Ek−1
)

Additionally, when the ring signature is used to prove knowledge

of a user secret key, Algorithm 7 also outputs elements F0, . . . , Fk−1

to be used in verification of the serial number. pi, j ∈ p input to

Algorithm 7 are defined as in Equation (28) of [7] and their exact

computation for k ∈ {1, 2} is given in Algorithm 12 in the appen-

dices. The final step of Algorithm 8 is hashing all the information

up to that step where the hash function is modelled as a random

oracle.

The second part of Spend (Algorithm 9) is comprised of the

spender’s masked responses of the underlying ZKP. Each bit input

to the binary proof is masked by the corresponding a ∈ Rq̂ , and
the rejection sampling technique from [19] is applied. The general

idea works as follows. If we have a vector y = s +v where s is the
secret-dependent part and v ← {−B, . . . ,B}t for some B, t ∈ Z+,
then rejection happens when ∥y∥

∞
> B − ∥s ∥

∞
. To have a small

rejection probability, we set B = c · ∥s ∥
∞
· t for some constant c .

Additionally, Spend also restarts if the norm of some fj,0 or д
is “unexpectedly large”. This is done in order to use tighter bounds

when computing M-SIS hardness. The bound on fj,0 comes from

the fact that aj,0 is the sum of uniformly sampled elements and thus

its distribution converges to a Gaussian distribution. It is hard to

formally bound the probability of having a rejection due to Step 20,

and thus the bound Tд on ∥д∥ is computed experimentally so that

the chance of restarting due to Step 20 is less than 1%.
10

However,

this does not raise a security concern as the same bound is also

checked by the verifier and thus ensured to hold for any accepting

transcript. The masked randomnesses are similarly computed as in

the one-out-of-many proof of [7] and the same rejection sampling

idea as above is used. The output part CKout of Algorithm 9 is

transmitted to the recipient privately along with the corresponding

output amounts and is not revealed publicly.

The verification (Algorithm 10) of a proof performs the same

norm checks as in Algorithm 9, computes the “missing” components

10
Observe here thatTд is a factor 4d smaller than the theoretical bound in Lemma 5.2.

11



Algorithm 8 Spend-I

INPUT: M, S ∈ Z+; Ain = (act0,0, . . . , actM−1,N−1) where

acti, j = (pki, j , cni, j ) is an account; ℓ ∈ [0,N − 1];

(ask
0, ℓ , . . . , askM−1, ℓ) where aski, ℓ = (r i, ℓ , cnki, ℓ , amtin,i ) ∈

Rmq ×R
m
q ×Z

+
; PKout = (pkout,0, . . . , pkout,S−1

)where pk
out,i ∈

Rnq ; (amtout,0, . . . , amtout,S−1) where amtout,i ∈ [0, 2r − 1].

1: Ba = ⌈20 · pkd⌉, Br = ⌈p(S + 1)rd⌉
2: Tд = d

3
(
B4

akβ(β + 1) + B4

r r (S + 1)
)
/(4d)

3: B
big
= ⌈1.2·(M+S+1)Bpwmd⌉, ˆB

big
= ⌈8·(M+S+1)Bpwm̂d⌉

4: B
big,k
= ⌈1.2 · (M + S + 1)B(pw)kmd⌉

5: B′
big,k
= ⌈2.4 · (M + S + 1)B(pw)kmd⌉

6: for i = 0, . . . , r − 2 do ▷ c0 = cr = 0

7: ci+1 =
(
ci +

∑S−1

j=0
amtout, j [i] −

∑M−1

j=0
amtin, j [i]

)
/2

8: end for
9: for i = 0, . . . , S − 1 do
10: (cnout,i , cnkout,i ) ← Mint(amtout,i )
11: end for
12: CNout = (cnout,0, . . . , cnout,S−1)

13: CKout = (cnkout,0, . . . , cnkout,S−1)

14: b = {(β ,True, (δℓj ,0, . . . ,δℓj ,β−1
),Ba )}

k−1

j=0

15: b = b ∪ (r − 1, False, (c1, . . . , cr−1),Br )

16: for j = 0, . . . , S − 1 do
17: b = b ∪ (r , False,Bits(amtout, j ),Br )
18: end for
19: ck = G ← SamMat(ρ, r ,q,n,m, “G”)
20: rc ← {−B, . . . ,B}d ·m , rd ← {−Bbig, . . . ,Bbig}

d ·m

21: (r a, r b ), (A, B), (a0,0, . . . , ak−1,β−1
, ac,1, . . . , ac,r−1, a

(0)

out,0, . . . , a
(S−1)

out,r−1
)

← BinaryCommit(k + 1 + S, b, B, ˆBbig) ▷ ac,0 = ac,r = 0

22: for i = 0, . . . , S − 1 do
23: r (i)д ← {−Bbig, . . . ,Bbig}

d ·m

24: Gi = Comck (a
(i)
out,0, . . . ,a

(i)
out,r−1

; r (i)д ) in Rnq
25: end for
26: C = Comck (c0 − 2c1, . . . , cr−1 − 2cr ; rc ) in Rnq
27: D = Comck (ac,0 − 2ac,1, . . . ,ac,r−1 − 2ac,r ; rd ) in Rnq
28: Compute p = (p0,0, . . . ,pN−1,k−1

) using Alg. 12 with

(ℓ,a0,0, . . . ,ak−1,β−1
)

29: for i = 0, . . . ,M − 1 do
30: si = SerialGen(r i, ℓ) ▷ Not recomputed if restarted

31: (ρ(i)
0
, . . . , ρ(i)k−1

), (E
(i)
0
, F
(i)
0
, . . . ,E

(i)
k−1
, F
(i)
k−1
) ←

RingCommit(True, (pki,0, . . . , pki,N−1
),p,B,B

big,k
)

32: end for
33: for j = 0, . . . ,N − 1 do
34: Pj =

∑S−1

i=0
cnout,i −

∑M−1

i=0
cni, j +C in Rnq

35: end for
36: (ρ(M )

0
, . . . , ρ(M )k−1

), (E
(M )
0
, . . . ,E

(M )
k−1
) ←

RingCommit(False, (P0, . . . , PN−1),p,B,B
′
big,k
)

37: x = H(A,B,C,D,E
(0)

0
, . . . ,E

(M )
k−1
, F
(0)

0
, . . . , F

(M )
k−1
,G0, . . . ,GS−1,

s0, . . . , sM−1,Ain,PKout,CNout)

not output by Spend and then checks whether the hash output

Algorithm 9 Spend-II ▷ No mod q or q̂ in this function!

OUTPUT:CKout,Ain,PKout,CNout, SN and Π as belowwhere

F
(0)

1
, . . . , F

(M )
k−1

∈ Rnsq ; B ∈ Rn̂q̂ ; C,E
(0)

1
, . . . ,E

(M )
k−1

∈ Rnq ;

x ∈ Cdw,p ; f
1
∈ R

k (β−1)
q ; f r ∈ Rr−1+Sr

q ; zb ∈ Rm̂q̂ ;

zc ,zout,0, . . . ,zout,S−1,z
(0), . . . ,z(M ) ∈ Rmq

1: for j = 0, . . . ,k − 1 and i = 0, . . . , β − 1 do
2: fj,i = xδℓj ,i + aj,i ▷ masked spender index repr.

3: end for
4: for i = 1, . . . , r − 1 do
5: fc,i = xci + ac,i ▷ masked corrector values

6: end for
7: for j = 0, . . . , S − 1 and i = 0, . . . , r − 1 do
8: f

(j)
out,i = x · amtout, j [i] + a

(j)
out,i ▷ masked out. amt. bits

9: end for
10: f

1
= (f0,1, . . . , fk−1,β−1

) ▷ fj,0’s are excluded

11: if ∥ f
1
∥
∞
> Ba − p, then Go to Step 20 of Alg. 8

12: f r =
(
fc,1, . . . , fc,r−1, f

(0)

out,0, . . . , f
(S−1)

out,r−1

)
13: if ∥ f r ∥∞ > Br − p, then Go to Step 20 of Alg. 8

14: for j = 0, . . . ,k − 1 do
15: if ∥ fj,0∥ > Ba

√
d(β − 1), then Go to Step 20 of Alg. 8

16: end for
17: д =

(
f0,0(x − f0,0), . . . , fk−1,β−1

(x − fk−1,β−1
)

)
18: д = д ∪

(
fc,1(x − fc,1), . . . , fc,r−1(x − fc,r−1)

)
19: д = д ∪

(
f
(0)

out,0(x − f
(0)

out,0), . . . , f
(S−1)

out,r−1
(x − f

(S−1)

out,r−1
)

)
20: if ∥д∥ >

√
Tд , then Go to Step 20 of Alg. 8

21: zb = xrb + ra ▷ m̂-dimensional

22: if ∥zb ∥∞ > ˆB
big
− Bpw , then Go to Step 20 of Alg. 8

23: zc = xrc + rd
24: for i = 0, . . . , S − 1 do
25: zout,i = xrout,i + r

(i)
д where rout,i = cnkout,i

26: end for
27: if ∥(zc ,zout,0, . . . ,zout,S−1)∥∞ > Bbig −Bpw , then Go to Step

20 of Alg. 8

28: for i = 0, . . . ,M − 1 do
29: z(i) = xkr i, ℓ −

∑k−1

j=0
x jρ(i)j

30: if ∥z(i)∥
∞
> B

big,k
− B(pw)k , then Go to Step 20 of Alg. 8

31: end for
32: z(M ) = xkrM, ℓ −

∑k−1

j=0
x jρ(M )j

where rM, ℓ =
∑S−1

i=0
rout,i −

∑M−1

i=0
cnki, ℓ + rc

33: if ∥z(M )∥
∞
> B′

big,k
− (M + S + 1)B(pw)k , then Go to Step 20

of Alg. 8

34: return CKout,Ain,PKout,CNout, SN = (s0, . . . , sM−1) and

Π = (B,C,E
(0)

1
, . . . ,E

(M )
k−1
, F
(0)

1
, . . . , F

(M )
k−1
,x , f

1
, f r ,zb ,zc ,

z(0), . . . ,z(M ),zout,0, . . . ,zout,S−1)

matches. The missing components are those that are uniquely de-

termined by the rest and thus need not be transferred.

We remark that for our concrete parameters, f
1
, fj,0’s and f r

remain exactly the same whether we see them as elements in Rq̂
12



Algorithm 10 Verify

INPUT: M, S ∈ Z+; Ain = (act0,0, . . . , actM−1,N−1)

where acti, j = (pki, j , cni, j ) is an account; PKout =

(pk
out,0, . . . , pkout,S−1

); CNout = (cnout,0, . . . , cnout,S−1);

Π = (B,C,E
(0)

1
, . . . ,E

(M )
k−1
, F
(0)

1
, . . . , F

(M )
k−1
,x , f

1
, f r ,zb ,zc ,

z(0), . . . ,z(M ),zout,0, . . . ,zout,S−1); SN = (s0, . . . , sM−1).

OUTPUT: True/False

1: if ∥ f
1
∥
∞
> Ba − p, then return False

2: if ∥ f r ∥∞ > Br − p, then return False

3: Parse f
1
= (f0,1, . . . , fk−1,β−1

) as in Alg. 9

4: Parse f r = (fc,1, . . . , fc,r−1, f
(0)

out,0, . . . , f
(S−1)

out,r−1
) as in Alg. 9

5: for j = 0, . . . ,k − 1 do
6: fj,0 = x −

∑β−1

i=1
fj,i

7: if ∥ fj,0∥ > Ba
√
d(β − 1), then return False

8: end for
9: Compute д as in Alg. 9

10: if ∥д∥ >
√
Tд , then return False

11: if ∥zb ∥∞ > ˆB
big
− Bpw , then return False

12: if ∥(zc ,zout,0, . . . ,zout,S−1)∥∞>Bbig−Bpw , then return False

13: if ∥(z(0), . . . ,z(M−1))∥
∞
> B

big,k
−B(pw)k , then return False

14: if ∥z(M )∥
∞
> B′

big,k
− (M + S + 1)B(pw)k , then return False

15: f = (f0,0, . . . , fk−1,β−1
) ∪ f r ▷ fj,0’s are included.

16: A = Comck (f ,д; zb ) − xB in Rn̂q̂ for ck = Ĝ

17: D = Comck (fc,0 − 2fc,1, . . . , fc,r−1 − 2fc,r ; zc ) − xC in Rnq
where fc,0 = fc,r = 0 and ck = G here and in the rest

18: for i = 0, . . . , S − 1 do
19: Gi = Comck (f

(i)
out,0, . . . , f

(i)
out,r−1

; zout,i ) − xcnout,i in Rnq
20: end for
21: for l = 0, . . . ,M − 1 do
22: E (l )

0
=

[∑N−1

i=0

(∏k−1

j=0
fj,ij

)
pkl,i

]
−Comck (0; z (l ))−

∑k−1

j=1
E (l )j x j in Rnq

where i = (i0, . . . , ik−1
) in base β

23: F
(l )
0
= xk sl −H · z

(l ) −
∑k−1

j=1
F
(l )
j x j in Rnsq

24: end for
25: for j = 0, . . . ,N − 1 do
26: Pj =

∑S−1

i=0
cnout,i −

∑M−1

i=0
cni, j +C in Rnq

27: end for
28: E (M )

0
=

[∑N−1

i=0

(∏k−1

j=0
fj,ij

)
Pi

]
− Comck (0; z (M )) −

∑k−1

j=1
E (M )j x j in Rnq

29: if x ,H(A,B,C,D,E(0)
0
, . . . ,E

(M )
k−1
, F
(0)

0
, . . . , F

(M )
k−1
,G0, . . . ,GS−1,

s0, . . . , sM−1,Ain,PKout,CNout), then return False

30: return True

or Rq since their infinity norm is smaller than q/2 < q̂/2. Rigorous
security proofs of MatRiCT are given in Section 5.

In common with RingCT 1.0 and 2.0, MatRiCT follows the par-

adigm that all real spent accounts are in the same column of Ain.

Our protocol could be modified to support anonymity with shuf-

fling (i.e., allowing spent accounts to be in different columns) using

techniques from RingCT 3.0. In particular, one would need to re-

randomize the input coins, add another balance proof component

and include these re-randomized coins and proof elements in the

proof output, which would come at the cost of longer transactions.

4.1 Implementation and Parameters
In our implementation, we target any anonymity level 1/N for

N ≤ 1000, 64-bit precision for amounts (i.e., r = 64) and the

most common transaction settings where there are at most two

input/output accounts (i.e., M, S ≤ 2). For all these settings, the

following parameters are sufficient: B = 1, (d,w,p) = (64, 56, 8),

q = 2
31−2

18+2
3+1, q̂ = (227−2

11+1) · (226−2
12+1), k = 1, ns = 1,

(n,m) = (18, 38) and (n̂,m̂) = (32, 65). With these parameters, a

single public costs 4.36 KB and a single serial number costs 248

bytes. The rationale behind the parameter setting is as follows.

First, our experimental analysis shows that d = 64 is the best

choice to optimize the proof length. Having set d = 64, we get

(w,p) = (56, 8) to have about 256-bit H output. To measure the

practical security of our scheme, we follow the same methodology

in [7] and aim for a “root Hermite factor” of δ ≈ 1.0045 for both M-

LWE and M-SIS. For M-LWE security, we use the commonly used

“LWE estimator” in [1], which tells us that δ ≈ 1.0045 provides 128-

bit post-quantum security. The choice of B = 1 is also commonly

practiced in recent lattice-based constructions, e.g., [2, 6–8].

From our security assumption M-LWEm−n−ns ,m,q,B in Section

5, we can see that the efficiency of our scheme degrades with in-

creasing ns as M-LWE gets easier. Indeed, having a small ns does
not affect the anonymity or balance properties. Therefore, we can

simply set ns = 1. We discuss the implications of this choice in Ap-

pendix B. Then, we set the remaining parameters to ensure M-LWE

and M-SIS requirements in Section 5 are satisfied.

q is chosen to allow Rq to split into 4 factors while having y =

x − x ′ (challenge differences) invertible in Rq for any x ,x ′ ∈ Cdw,p .

This follows from the results of [21] as recalled in Lemma D.2. The

other modulus q̂ is chosen to have two “NTT-friendly” prime factors

p1 and p2 so that both Rp1
and Rp2

fully splits, allowing efficient

polynomial multiplication using NTT. All these primes p1,p2 and q

are chosen to have a form similar to 2
k1 −2

k2 +1, which enables the

fast modulo reduction technique in [29] for the input smaller than

2
k1−k2

times the modulus. By using this technique, we only apply

one modulo reduction at the end when computing

∑
xi , xi ∈ Rq or

xi ∈ Rq̂ , such as in the commitments.

To reduce the number of NTT transformations, SamMat samples

uniformly at random directly from the NTT domain
11
. Also, all

commitment outputs (including pk and cn) are in the NTT domain

(i.e., without any inverse NTT during commitment computations).

However, since the secrets (notably a, r , and ρ) are involved in the

norm checks of Spend in Algorithm 9, and norm checks are also

required for the output f and z of Spend during Verify, we keep
these elements in their normal domain and performNTTwhen com-

puting the commitments. Therefore, only forward NTT is needed

and we eliminate all the inverse NTT from the implementation.

To accelerate the norm checks and avoid unnecessary overhead

during the rejection of Spend in Algorithm 9, we adapt the early-

evaluation rejection technique in [26]. In particular, we check the

infinity or Euclidean norm and restart immediately during each ring

element computation of f r , д, and all z’s. However, for f 1
, we need

11
What we mean by NTT domain for Rq is the four factors it splits into.

13



0 5 10 15 20 25 30

0

100

200

300

400

500

600

700

800

900

Figure 1: Proof length growth (including the cost of serial
numbers) with anonymity set (ring) size.

to hide what index may give a rejection due to the application of

our rejection sampling technique for fixed Hamming weight binary

secrets. Therefore, a restart happens only after f
1
is completely

iterated over. In addition, since Tд is larger than 64 bits, we use the

GMP library [12] to compute ∥д∥ and make the comparison.

To implement the NTT efficiently, we adapt the techniques dis-

cussed in [28] for both factors Rp1
and Rp2

of Rq̂ during the NTT

butterfly computations, notably the lazy Montgomery reduction.

However, for multiplication in Rq , since the input would be reduced
to [0, 2q − 1] in the lazy reduction, the intermediate value during

multiplication reduction may exceed 64 bits for the input less than

4q2
. Thus, we use the full Montgomery reduction for Rq instead. In

addition, we also adapt the constant-time comparison techniques

similar to [28] in our NTT implementation and uniform samplers

(e.g., {−B, . . . ,B} or {−B
big
, . . . ,B

big
}) for the secrets.

In our implementation, we use the AES-NI hardware instructions

on Intel CPUs [14] to implement the pseudorandom generator and

use the SHAKE-256 [24] to implement the hash function H . We

compile our implementation by using GCC 8.3.0 with the compiler

switch -O3 -march=native during the benchmarks.

The computational evaluation of our construction is given in

Table 2 in Section 1, where the running times are the average

number of cycles in 1000 runs divided by 3 · 10
6
. Asymptotically,

the proof generation and verification times are O(M · N ) as M
ring signatures are run, each with O(N ) computation. Further, we

show in Figure 1 that MatRiCT proof length scales very slowly

with anonymity set size. The proof length scales linearly with the

number of input accounts as shown in Figure 2. Asymptotically,

the proof length grows poly-logarithmically in N (due to the use of

an improved variant of the ring signature from [7]) and linear in

M , i.e., |Π | = O(M · log
c N ) for a small constant c . We refer to [7]

for more details on the ring signature length growth.

5 SECURITY PROOFS
The correctness of MatRiCT follows from the completeness of the

underlying ZKP, and MatRiCT is perfectly correct. The settings of

0 20 40 60 80 100

0

200

400

600

800

1000

1200

Figure 2: Proof length growth with the number of input ac-
counts. Proof length also includes the cost of serial numbers.

A,D,E
(l )
0
, F
(l )
0
,E
(M )
0

for all 0 ≤ l ≤ M − 1 are all done analogous

to the one-out-of-many proof in [7]. All the norm checks will be

successful as they are all also done in Spend algorithm. Also, the

underlying one-out-of-many proof allows decoy public commit-

ments not to be well-formed as in [7, 8], and therefore the given

correctness requirements are satisfied.

5.1 Anonymity
Lemma 5.1. (Anonymity) Let A be a PPT adversary, Adv

LWE
A

be

the advantage ofA over solvingM-LWEm−n−ns ,m,q,B andAdv
LWE2

A
be the advantage of A over solving M-LWEm̂−n̂,m̂,q̂,B . The advan-
tage of A against Exp:Anonymity without shuffling is at most

Adv
Ano
A ≤ Adv

LWE2

A
+ k(M + 1) · Adv

LWE
A .

Proof of Lemma 5.1. The proof uses the simulation of the un-

derlying ZKP of our construction where the indistinguishability is

either due to an M-LWE assumption or rejection sampling. We use

the following succession of games.

Game0 : This is identical to Exp:Anonymity without shuffling.

Game1 : First, the challenger simulates the response where the re-

jection sampling is applied. In Algorithm 9, it replaces all the coordi-

nates of f
1
by uniformly random elements inUBa−p , all the coordi-

nates of zb by uniformly random elements inU
ˆBbig−Bpw

, all the co-

ordinates of zc by uniformly random elements inUBbig−Bpw , all the

coordinates of z(i) by uniformly random elements inUBbig,k−B(pw )k

for all 0 ≤ i ≤ M − 1, and all the coordinates of z(M ) by uniformly

random elements in UB′
big,k
−(M+S+1)B(pw )k . This game is perfectly

indistinguishable from the previous game due to rejection sampling.

Adv
Game0

A
− Adv

Game1

A
= 0.

Game2 : In Algorithm 6, the challenger replaces B by a uniformly

random element in Rn̂q̂ . This game is computationally indistinguish-

able from the previous game by M-LWEm̂−n̂,m̂,q̂,B hardness as in

14



the hiding property of the commitment scheme.���Adv
Game1

A
− Adv

Game2

A

��� ≤ Adv
LWE2

A
.

Game3 : In Algorithm 8, the challenger replaces C by a uniformly

random element in Rnq . This game is computationally indistinguish-

able from the previous game by M-LWEm−n,m,q,B hardness.���Adv
Game2

A
− Adv

Game3

A

��� ≤ Adv
LWE

A .

Game4 : In Algorithm 4, the challenger replaces serial number

si ’s by a uniformly random element in Rnsq and the public keys

pki, ℓ ’s in Rin (i.e., the ℓ-th column of Ain) by a uniformly random

element in Rnq for i = 0, . . . ,M − 1. This game is computationally

indistinguishable from the previous game byM-LWEm−n−ns ,m,q,B
hardness due to the following observation.

Let G ′ :=

(
G
H

)
. We have

(
pki, ℓ
si

)
= G ′ · r i, ℓ where r i, ℓ is

the secret key corresponding to the public key pki, ℓ . SinceG
′
has

the same distribution as a commitment key ck output by CKeygen,
the hiding property argument for the commitment also holds with

respect to the combined matrixG ′ ∈ R(n+ns )×mq . Also, note that no

Corrupt or Spend is allowed to be queried for these public keys,

and the distribution of the secret keys r i, ℓ is identical to that in

M-LWE definition since the public keys in Rin are assumed to be

generated honestly by querying PkGen.���Adv
Game3

A
− Adv

Game4

A

��� ≤ M · Adv
LWE

A .

Game5 : In Algorithm 7, the challenger replaces Rj by a uniformly

random element in Rnq , and Fj by a uniformly random element in

Rnsq for all 1 ≤ j ≤ k − 1 (if GenSerial = False, then only Rj is re-
placed and the argument still works). This game is computationally

indistinguishable from the previous game byM-LWEm−n−ns ,m,q,B
hardness due to a similar discussion as above.���Adv

Game4

A
− Adv

Game5

A

��� ≤ (M + 1)(k − 1) · Adv
LWE

A .

Game6 : In Algorithm 7, the challenger replaces Ej by a uniformly

random element in Rnq for all 1 ≤ j ≤ k − 1. This game is perfectly

indistinguishable from the previous game asRj is uniformly random

in Rnq and independent of the summation in Step 7 of Algorithm 7.���Adv
Game5

A
− Adv

Game6

A

��� = 0.

Note that Mint is completely independent of all the inputs to

Spend except for output amounts, which is already known to A.

Also, output coin keys CKout are always generated independently

and uniformly at random. Therefore, inGame6, the output of Spend
is independent of Rin, Kin and Amtin, and thus also independent of

b. Hence,A has probability 1/2 of outputting b ′ = b in Game6. □

5.2 Balance
To calculate the binding requirements of the commitment scheme,

the norms of some proof components are bounded in the following

sequences of lemmas, whose proofs are provided in Appendix F.

Lemma 5.2. The vector д defined in Algorithms 9 and 10 satisfies
the following

∥д∥2 ≤ d3

(
B4

akβ(β + 1) + B4

r r (S + 1)

)
.

Lemma 5.3. The extracted opening (â, r̂a ) of A for A defined in
Algorithms 8 and 10 satisfies the following

∥(â, r̂a )∥ ≤ 2p
√
dw

(
Tд + ˆB2

bigm̂d
)

1/2
.

Lemma 5.4. The extracted opening (ĉ, r̂c ) of C for C defined in
Algorithms 8 and 10 satisfies the following

∥(ĉ, r̂c )∥ ≤ 2

(
9rB2

rd + B
2

bigmd
)

1/2
.

Further, the same bound as above also holds for the Euclidean norm
of an extracted opening of cnout,i for any 0 ≤ i ≤ S − 1.

We then summarize the relations proved by our binary ZKP and

one-out-of-many ZKP. An improved soundness proof for the binary

ZKP is given in Appendix E.

Lemma 5.5. Assume that the following holds

• q̂/2 > max

{
2pwdBf (p + Bf ), 2pwB

2

adβ
}
forBf = max{Ba ,Br },

• HMC is γ
bin

-binding for γ
bin
= 2p
√
dw

(
Tд + ˆB2

bigm̂d
)

1/2
.

For an input commitmentB ∈ Rn̂q̂ , a commitment key ck and proof out-
put (A,x , f

1
, f r ,zb ), our binary proof proves knowledge of (y,b, ĉ, r̂ )

such that

• y ∈ ∆Cdw,p ; b, ĉ ∈ R
kβ+Sr+r−1

q̂ ; r̂ ∈ Rm̂q̂
• yB = Comck (yb, ĉ; r̂ ),
• All coordinates bi of b are in {0, 1},
• ĉ is uniquely determined by y, f

1
, f r ,x and b,

• For the first kβ coordinates b0,0, . . . ,bk−1,β−1
of b,

∑β−1

i=0
bj,i = 1,

i.e., there is only a single 1 in {bi,0, . . . ,bi,β−1
} for all 0 ≤ i ≤ k−1,

• ∥(yb, ĉ, r̂ )∥ ≤ γB for

γB =
(
(2pw)2 d

(
kB2

aβ(β + 1) + B2

r r (S + 1)
)
+ 4

ˆB2

bigm̂d
)

1/2
.

Lemma 5.6. Assume that q > (2p
√
K)K and q ≡ 2K + 1 mod 4K

for some 1 < K ≤ d where K is a power of 2. On input a commitment
key ck and a set of commitments (P0, . . . , PN−1), the underlying one-
out-of-many proof of our ring signature proves knowledge of (y, ℓ, r̂ )
such that

• ℓ ∈ {0, . . . ,N − 1},
• yPℓ = Comck (0; r̂ ),
• y is a product of κ elements in ∆Cdw,p for κ = k(k + 1)/2, and

∥y∥ ≤
√
d · (2p)κwκ−1,

• ∥r̂ ∥ ≤ (k + 1) · d · (2p)κ
′

wκ
′−1

√
md ·max{Bbig,k,B

′
big,k}.

Further, the proof is k ′-special sound where k ′ = max{k + 1, 3}.

Proof. The first three properties and the fact that one-out-of-

many proof is k ′-special sound directly follow from the results of

[7], and the remaining property is shown in Lemma F.1. □

Lemma 5.7. (Balance) Assume that q >
(
2p
√
K
)K

and q ≡ 2K +

1 mod 4K for some 1 < K ≤ d where K is a power of 2. Let κ =
k(k + 1)/2 and θ be a positive real number such that the Euclidean
norm of any product of κ − 1 elements in ∆Cdw,p is at most θ . If
M-LWEm−n−ns ,m,q,B , M-SISn,m+r,q,2γ and M-SISn̂,m̂+v,q̂,2γbin are

15



hard where v = 2 (k(β − 1) + r − 1 + Sr ),

γ
bin
= 2p
√
dw

(
Tд + ˆB2

bigm̂d
)

1/2
and

γ = max


(k + 1) · d · (2p)κ

′

wκ
′−1

√
md ·max{Bbig,k,B

′
big,k},

θ
√
d · (S + 1) · 2

(
9rB2

rd + B
2

bigmd
)

1/2

 ,
then no PPT adversary can win Exp:Balance without shuffling with
non-negligible probability.

Proof of Lemma 5.7. First, due to the M-SIS assumptions, HMC

is γ -binding when instantiated with parameters n,m,q,B and γ
bin

-

binding when instantiated with parameters n̂,m̂, q̂,B. We separate

the proof into three cases.

Case 1 (forgery): Let E
forge

be the event that A wins the game

in a way that there exists si∗ ∈ SNj∗ with 0 ≤ i∗ ≤ M − 1 and

1 ≤ j∗ ≤ t such that si∗ ∈ L and L[si∗ ].IsCrpt = 0. In this case, the

proof follows as in the unforgeability proof of the ring signature in

[7], which is sketched below (see also the proof of Theorem 3 in

[8] for more details).

A ′ creates an invalid public key pkℓ for PkGen(ℓ) query such

that pkℓ = Comck (1, 0, . . . , 0; r ) for r ← {−B, . . . ,B}d ·m . pkℓ
is computationally indistinguishable from a valid public key by

M-LWEm−n,m,q,B hardness assumption. A ′ runs A until E
forge

occurs k ′ = max{k + 1, 3} times in total with respect to distinctH

outputs and the sameH inputs where

• the indices j∗ and i∗ are the same for all k ′ E
forge

events,

• pkℓ ∈ A
j∗
in
and it is not corrupted.

k ′-special soundness of the underlying one-out-of-many proof

holds when HMC is γ - and γ
bin

-binding, which is satisfied if M-

SISn,m+r,q,2γ and M-SISn̂,m̂+v,q̂,2γbin are hard. Therefore, there

exists a PPT extractor that recovers an opening (0, s) of a public
key pkψ in the i∗ row of Aj

∗

in
such thaty ·pkψ = Comck (0; s)where

y ∈ ∆Cdw,p is some relaxation factor with ∥y∥ =
√
d(2p)κwκ−1 ≪ γ

and ∥s ∥ ≤ γ by Lemma 5.6. With probability 1/(M ·N ), pkℓ = pkψ .
Hence, y · pkℓ = Comck (y, 0, . . . , 0; yr ) = Comck (0; s) = y · pkψ .
Since (y, 0, . . . , 0,yr ) , (0, s), this violates the γ -binding prop-

erty of the commitment scheme and also gives a solution to M-

SISn,m,q,2γ , which gives a contradiction.

Case 2 (double-spend): Let E
2xspend

be the event that A wins

the game in a way that there exists si∗ ∈ SNj∗ with 0 ≤ i∗ ≤ M − 1

and 1 ≤ j∗ ≤ t such that si∗ < L. Assume that the assumptions in

the statement of the lemma hold and E
2xspend

happens. We show

that this gives a contradiction. Since the transactions output by A

are valid, we have from Algorithm 10

G · z(i
∗) =

N∑
i=0

©­«
k−1∏
j=0

fj,i j
ª®¬ pki∗,i −

k−1∑
j=0

E
(i∗)
j x j , (7)

H · z(i
∗) = xk si∗ −

k−1∑
j=0

F
(i∗)
j x j , (8)

where pki∗,i is an honestly generated public key for all i ∈ [0,N −1].

Again using the extractor of the underlying ZKP as in Case 1, A ′,

who runs A multiple times, obtains a witness s such that

y · pki∗, ℓ = G · s, (9)

y · si∗ = H · s, (10)

for some 0 ≤ ℓ ≤ N − 1 where y is a product of κ elements in

∆Cdw,p with ∥y∥ ≪ γ and ∥s ∥ ≤ γ by Lemma 5.6. Since pki∗, ℓ is an
honestly generated public key, we also have

pki∗, ℓ = G · r ℓ
sℓ = H · r ℓ

=⇒ y · pki∗, ℓ = G · yr ℓ (11)

for some r ℓ ∈ R
m
q with ∥r ℓ ∥∞ = B where sℓ = L[pki∗, ℓ].s. Using

(9), right side of (11) and γ -binding of HMC with respect toG, we

get s = yr ℓ . Then, from (10), we get

y · si∗ = H · yr ℓ =⇒ si∗ = H · r ℓ (12)

since y is invertible because all its factors are invertible by the

assumption onq and LemmaD.2. From right side of (12) and left side

of (11), we conclude that si∗ = sℓ ∈ L, which gives a contradiction.

Case 3 (unbalanced amounts): Let E
unbalanced

be the event

thatA wins the game in a way that for all si ∈ SNj∗ where 0 ≤ i ≤
M − 1, si ∈ L and L[si ].IsCrpt = 1. Assume that the assumptions

in the statement of the lemma hold and there exists a PPT A ′ who

runs A.

As in Case 1,A ′ runsA until E
unbalanced

occurs k ′ = max{k+
1, 3} timeswith respect to distinctH outputs and the sameH inputs

where the index j∗ is the same for all k ′ events. Then, it uses the
extractor of the underlying ZKP of the j∗-th transaction to obtain

the following, for all i ∈ [0, S − 1],

x̄ ·C = Comck (x̄c0 − x̄2c1, . . . , x̄cr−1 − x̄2cr ; rc ), (13)

x̄ · cnout,i = Comck (x̄b
(i)
out,0, . . . , x̄b

(i)
out,r−1

; rout,i ), (14)

y · Pℓ = Comck (0; r ), for Pℓ =
S−1∑
j=0

cnout, j −
M−1∑
j=0

cnj, ℓ +C (15)

where

• c0 = cr = 0 and c1, . . . , cr−1 ∈ [−(M − 1), (S − 1)],12

• x̄ ∈ ∆Cdw,p ,

• y is a product of κ elements in ∆Cdw,p where one of its factors is

x̄ by Lemma 5.6,

• ∥r ∥ ≤ γ by Lemma 5.6,

• ∥(x̄c0 − x̄2c1, . . . , x̄cr−1 − x̄2cr ,rc )∥ ≤ γ/((S + 1)θ
√
d),

∥x̄b
(i)
out,0, . . . , x̄b

(i)
out,r−1

,rout,i ∥ ≤ γ/((S + 1)θ
√
d) by Lemma 5.4,

• b
(i)
out, j ∈ {0, 1} for all i ∈ {0, . . . , S − 1} and all j ∈ {0, . . . , r − 1}.

Multiplying (13) and (14) by y′ = y/x̄ , we get

y ·C = Comck (yc0 − y2c1, . . . ,ycr−1 − y2cr ; y′rc ), (16)

y · cnout,i = Comck (yb
(i)
out,0, . . . ,yb

(i)
out,r−1

; y′rout,i ), (17)

where ∥(yc0 − y2c1, . . . ,ycr−1 − y2cr ,y
′rc )∥ ≤ γ/(S + 1), and

∥yb
(i)
out,0, . . . ,yb

(i)
out,r−1

,y′rout,i ∥ ≤ γ/(S + 1).

Since the input coins are generated honestly, we also have

cni, ℓ = Comck (bi,0, . . . ,bi,r−1; r i ) (18)

12
Here, we assume the general case where the spender proves that ci ’s are in [−(M −

1), (S − 1)], and need not be necessarily binary.

16



where ∥r i ∥∞ = B and bi, j ∈ {0, 1} for all i ∈ {0, . . . ,M − 1} and all

j ∈ {0, . . . , r − 1}. Substituting (16), (17) and (18) into (15), we get

Comck (0; r ) =

S−1∑
i=0

(
Comck (yb

(i)
out,0, . . . ,yb

(i)
out,r−1

; y′rout,i )
)

−

M−1∑
i=0

(
Comck (ybi,0, . . . ,ybi,r−1; yr i )

)
+ Comck (yc0 − y2c1, . . . ,ycr−1 − y2cr ; y′rc ).

Observe that the input of the commitment on the left hand side has

Euclidean norm at most γ . Similarly, after using the homomorphic

properties of the commitment scheme, the input of the commitment

on the right hand side has norm at mostγ (here we neglect the norm

of (ybi,0, . . . ,ybi,r−1,yr i ) as that is much smaller in comparison).

Then, using γ -binding property of HMC, we get

0 = y
S−1∑
i=0

b
(i)
out, j − y

M−1∑
i=0

bi, j + yc j − y2c j+1 (19)

for all j ∈ {0, . . . , r − 1} with c0 = cr = 0. By the assumption on q
and Lemma D.2, y is invertible in Rq , and we have

13

0 =

S−1∑
i=0

b
(i)
out, j −

M−1∑
i=0

bi, j + c j − 2c j+1, (20)

where with c0 = cr = 0. Since HMC is γ -binding, we have q > γ ≫
max{4M, 4S}. Hence, (20) holds over R. Since all the values are just
integers, (20) in fact holds over Z.

By the definition of Exp:Balance, the sum of the amounts in

Amtj
∗

out
(i.e., the amounts corresponding to uncorrupted output

public keys) can be at most the sum of the amounts in all out-

put coins. Using this fact, we look at the following sum where

amtin,i = L[si ].amt for si = SNj∗ [i]

S ′−1∑
i=0

Amtj
∗

out
[i] −

M−1∑
i=0

amtin,i ≤
S−1∑
i=0

r−1∑
j=0

2
jb
(i)
out, j −

M−1∑
i=0

r−1∑
j=0

2
jbi, j

=

r−1∑
j=0

2
j

(S−1∑
i=0

b
(i)
out, j −

M−1∑
i=0

bi, j

)
=

r−1∑
j=0

2
j (

2c j+1 − c j
)

=

r−1∑
j=0

2
j+1c j+1 −

r−1∑
j=0

2
jc j = 2

r cr − c0 = 0, since c0 = cr = 0.

The above implies

∑S ′−1

i=0
Amtj

∗

out
[i] ≤

∑M−1

i=0
amtin,i , giving a con-

tradiction with the winning assumption ofA in Exp:Balance. □

Remark 1. Note that in Lemma 5.7, the factor θ
√
d can be taken

to be 1, when k = 1. This is due to fact that in this case, κ = 1, and
thus y = x̄ . Hence, there is no need to do cross multiplication to have
(13), (14) and (15) multiplied by the same relaxation factor y.

13
We note here that (20) can also be obtained without using invertibility of y . In that

case, one can argue that the infinity norm of the right-hand side of (19) is smaller than

q/2, which would be easily satisfied. That implies that (19) holds over R . Then, by
Lemma D.4, either y = 0 or (20) holds. Since y , 0, (20) must hold.

6 EXTENSION TO AUDITABLE RINGCT
6.1 Extractable Commitment Scheme
We extend HMC to allow message extraction. All the previous

algorithms, CKeygen, Commit and COpen, that define the commit-

ment remain the same, and we introduce how to put a trapdoor to

a commitment key.

• CAddTrapdoor(ck) : Let ck = [A ∥ B ] ∈ R
n×(m+v)
q where A =[

A′

a⊤

]
for A′ ∈ R

(n−1)×m
q and a ∈ Rmq . Sample s ′ ← Rn−1

q ,

e ← Um
Be
, and set Atd =

[
A′

t⊤

]
where t = A′⊤s ′ + e . Output

(cktd, td) = (Atd, (s,e)) where s = (s ′,−1).

We next introduce how the extraction works when the commit-

ted message comes from a relatively small set. Let ∆Cdw,p be the set

of differences of all challenges in Cdw,p except for the zero element.

When a commitment key with a trapdoor is used to generate a

proof, the ZKPs we use prove knowledge of an opening (y,m,r ) of
a commitment C such that

yC = Comck (ym; r ) = Atdr + Bym. (21)

From here, we can try to eliminate the randomness by multiplying

both sides by the secret key s . However, the message extractor does

not know what y is. For an honest user, we simply have y = 1 and

we restrict our discussion in this paper to this case. However, we

note that, for a similar Fiat-Shamir protocol, it has been shown in

[20] that a valid approach in general is actually trying random y ∈

∆Cdw,p , and the expected number of iterations until an acceptable

y is reached is the same as the number of random oracle queries

made to generate the proof. We believe that the same technique

(which is also used in [6]) and [20, Lemma 3.2] can be applied in

our case and we leave its detailed investigation to future work.

Now, suppose that y = 1. We can rewrite (21) asC = Atdr + Bm.

From here, the extraction proceeds as outlined in Section 1.3 and

the full procedure is provided in Algorithm 11.

We prove in Lemma 6.1 that, for a commitment C with a valid

zero-knowledge proof of opening, the message output by Algorithm

11 is the same as the one used to create the commitment C for

sufficiently large q.

Lemma 6.1. Let ck = G = [Atd ∥ B ] ∈ R
n×(m+v)
q be a commit-

ment key with a trapdoor td = (s,e) as in CAddTrapdoor. Assume
that (C, (m,r )) satisfy C = Comck (m; r ), ∥r ∥

∞
≤ Br andm ∈ M

with |M| = s , andm′ = CExtractSM(C, td). If q > 8BeBrmd , then
m =m′ except for a probability at most s · 2−d .

Proof of Lemma 6.1. It is easy to observe that s⊤ ·Atd = s ′⊤A′−
t⊤ = −e⊤. Let b = s⊤ · B. Since C = Comck (m; r ) for ck =

Algorithm 11 CExtractSM(C, td)

INPUT: C ∈ Rnq a commitment; td = (s,e) trapdoor

1: form′ ∈ M do ▷ where |M| = poly(λ)
2: e ′ = ⟨s,C⟩ − ⟨b,m′⟩ where b = s⊤B
3: if ∥e ′∥

∞
< q/8, then returnm′

4: end for

17



[Atd ∥ B ], we have

⟨s,C⟩ = ⟨−e,r ⟩ + s⊤ · B ·m = ⟨−e,r ⟩ + ⟨b,m⟩,

⇐⇒ ⟨b,m⟩ = ⟨s,C⟩ + ⟨e,r ⟩. (22)

Sincem′ is the output of CExtractSM(C, td), we further have e ′ =
⟨s,C⟩ − ⟨b,m′⟩ and ∥e ′∥

∞
< q/8. Now, consider the following

⟨b,m −m′⟩ = ⟨b,m⟩ − ⟨b,m′⟩ = ⟨s,C⟩ + ⟨e,r ⟩ − ⟨s,C⟩ + e ′

= ⟨e,r ⟩ + e ′.

Therefore, we have

∥⟨b,m −m′⟩∥
∞
= ∥⟨e,r ⟩ + e ′∥

∞
≤ ∥⟨e,r ⟩∥

∞
+ ∥e ′∥

∞

≤ BeBrmd + q/8 < q/8 + q/8 < q/4.

SinceB is chosen independently and uniformly at random,b = s⊤ ·B
is uniformly random, and thus whenm ,m′, ⟨b,m −m′⟩ is also
uniformly random in Rq . So, the above holds with probability about

2
−d

. Thus, using a union bound on allm ∈ M,m =m′ except for
a probability at most s · 2−d . □

6.2 Adding Auditability
From the tools developed so far, it is now easy to add auditability

to our RingCT construction. As part of Spend, the spender proves
knowledge of an index ℓ ∈ [0,N − 1] and the secret keys of the

accounts in the ℓ-th column of Ain. Further, as given in Lemma

5.5, the binary proof part proves knowledge of (y,b, ĉ, r̂ ) such that

y ∈ ∆Cdw,p , yB = Comck (yb, ĉ; r̂ ) ∈ Rn̂q̂ and the first kβ elements

of b represents an index ℓ ∈ [0,N − 1]. Hence, we know that

yB = Ar̂+B

(
yb
c

)
= Ar̂+B0ym+B1m̂ = [A ∥ B1 ]

(
r̂
m̂

)
+B0ym,

wherem is the part (the first kβ elements of b) we want to recover

and m̂ is the remaining part of the message opening. Therefore,

restricting to the case y = 1, we can put a trapdoor for the concate-

nated matrix [A ∥ B1 ] and use Algorithm 11 to extractm, which

reveals the real spender’s identity. The message space size here is

equal to the anonymity set size N . Therefore, the extraction time

(as in Spend) is linear in N . We know by Lemma 6.1 that for an

appropriately chosen q̂, the extracted index will be the same as the

one used in the proof. A formal definition of auditability, which

can be established similar to traceability in group signatures [3], is

left as a future work.

Note that multiple trapdoors can be put for the same matrix.

If no auditing is desired, the last row of the commitment matrix

remains as a uniformly random vector. If a user selects auditing

option i > 0, then a vector released by the i-th authority is used in

the last row of the commitment matrix.

ACKNOWLEDGMENTS
Ron Steinfeld and Joseph K. Liu were supported in part by ARC

Discovery Project grant DP180102199.

REFERENCES
[1] Martin R Albrecht, Rachel Player, and Sam Scott. 2015. On the concrete hardness

of learning with errors. Journal of Mathematical Cryptology 9, 3 (2015), 169–203.

[2] Carsten Baum, Ivan Damgård, Vadim Lyubashevsky, Sabine Oechsner, and Chris

Peikert. 2018. More efficient commitments from structured lattice assumptions.

In SCN. Springer, 368–385.
[3] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. 2003. Foundations of

Group Signatures: Formal Definitions, Simplified Requirements, and a Construc-

tion Based on General Assumptions. In EUROCRYPT (LNCS). Springer, 614–629.
[4] Fabrice Benhamouda, Stephan Krenn, Vadim Lyubashevsky, and Krzysztof

Pietrzak. 2015. Efficient zero-knowledge proofs for commitments from learning

with errors over rings. In ESORICS. Springer, 305–325.
[5] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens Groth,

and Christophe Petit. 2015. Short accountable ring signatures based on DDH. In

ESORICS. Springer, 243–265.
[6] Rafaël del Pino, Vadim Lyubashevsky, and Gregor Seiler. 2018. Lattice-Based

Group Signatures and Zero-Knowledge Proofs of Automorphism Stability. In

ACM CCS. ACM, 574–591.

[7] Muhammed F. Esgin, Ron Steinfeld, Joseph K. Liu, and Dongxi Liu. 2019. Lattice-

Based Zero-Knowledge Proofs: New Techniques for Shorter and Faster Construc-

tions and Applications. In CRYPTO (1) (LNCS), Vol. 11692. Springer, 115–146.
(Full version at https://eprint.iacr.org/2019/445).

[8] Muhammed F. Esgin, Ron Steinfeld, Amin Sakzad, Joseph K. Liu, and Dongxi

Liu. 2019. Short Lattice-Based One-out-of-Many Proofs and Applications to Ring

Signatures. In ACNS (LNCS). Springer, 67–88. (Full version at https://eprint.iacr.

org/2018/773).

[9] Abelian Foundation. 2018. Abelian Coin (ABE) – A Quantum-

Resistant Cryptocurrency Balancing Privacy and Accountability. (2018).

https://www.abelianfoundation.org/wp-content/uploads/2018/08/Abelian-

Whitepaper-CB20180615.pdf (June 15, 2018 version).

[10] Jason Fulman and Larry Goldstein. 2015. Stein’s method and the rank distribution

of random matrices over finite fields. The Annals of Probability 43, 3 (2015), 1274–

1314.

[11] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. 2008. Trapdoors for

hard lattices and new cryptographic constructions. In STOC. ACM, 197–206.

[12] Torbjrn Granlund and Gmp Development Team. 2015. GNU MP 6.0 Multiple
Precision Arithmetic Library. Samurai Media Limited, United Kingdom.

[13] Jens Groth and Markulf Kohlweiss. 2015. One-out-of-many proofs: Or how to

leak a secret and spend a coin. In EUROCRYPT. Springer, 253–280.
[14] Shay Gueron. 2009. Intel’s New AES Instructions for Enhanced Performance and

Security. In FSE (LNCS). Springer, 51–66.
[15] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. 2018. Improved Non-

Interactive Zero Knowledge with Applications to Post-Quantum Signatures. In

ACM CCS. ACM, 525–537.

[16] Russell W. F. Lai, Viktoria Ronge, Tim Ruffing, Dominique Schröder, Sri Ar-

avinda Krishnan Thyagarajan, and Jiafan Wang. 2019. Omniring: Scaling Up

Private Payments Without Trusted Setup - Formal Foundations and Construc-

tions of Ring Confidential Transactions with Log-size Proofs. Cryptology ePrint

Archive, Report 2019/580. (2019). https://eprint.iacr.org/2019/580.

[17] Adeline Langlois and Damien Stehlé. 2015. Worst-case to average-case reductions

for module lattices. Designs, Codes and Cryptography 75, 3 (2015), 565–599.

[18] Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. 2004. Linkable Spontaneous

Anonymous Group Signature for Ad Hoc Groups (Extended Abstract). In ACISP
(LNCS). Springer, 325–335.

[19] Vadim Lyubashevsky. 2009. Fiat-Shamir with aborts: Applications to lattice and

factoring-based signatures. In ASIACRYPT. Springer, 598–616.
[20] Vadim Lyubashevsky and Gregory Neven. 2017. One-shot verifiable encryption

from lattices. In EUROCRYPT. Springer, 293–323.
[21] Vadim Lyubashevsky and Gregor Seiler. 2018. Short, Invertible Elements in

Partially Splitting Cyclotomic Rings and Applications to Lattice-Based Zero-

Knowledge Proofs. In EUROCRYPT. Springer, 204–224.
[22] Daniele Micciancio and Petros Mol. 2011. Pseudorandom Knapsacks and the

Sample Complexity of LWE Search-to-Decision Reductions. In CRYPTO (LNCS).
Springer, 465–484. (Full version).

[23] Daniele Micciancio and Chris Peikert. 2012. Trapdoors for Lattices: Simpler,

Tighter, Faster, Smaller. In EUROCRYPT (LNCS). Springer, 700–718.
[24] NIST. 2015. SHA-3 Standard: Permutation-Based Hash and Extendable-Output

Functions. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf. (2015). Ac-

cessed: 2019-05-15.

[25] Shen Noether. 2015. Ring Signature Confidential Transactions for Monero. Cryp-

tology ePrint Archive, Report 2015/1098. (2015). https://eprint.iacr.org/2015/1098.

[26] Prasanna Ravi, Sourav Sen Gupta, Anupam Chattopadhyay, and Shivam Bhasin.

2019. Improving Speed of Dilithium’s Signing Procedure. Cryptology ePrint

Archive, Report 2019/420. (2019). https://eprint.iacr.org/2019/420.

[27] Ronald Rivest, Adi Shamir, and Yael Tauman. 2001. How to leak a secret. ASI-
ACRYPT (2001), 552–565.

[28] Michael Scott. 2017. A Note on the Implementation of the Number Theoretic

Transform. In IMACC (LNCS). Springer, 247–258.
[29] Gregor Seiler. 2018. Faster AVX2 optimized NTT multiplication for Ring-LWE

lattice cryptography. Cryptology ePrint Archive, Report 2018/039. (2018).

18

https://eprint.iacr.org/2019/445
https://eprint.iacr.org/2018/773
https://eprint.iacr.org/2018/773
https://www.abelianfoundation.org/wp-content/uploads/2018/08/Abelian-Whitepaper-CB20180615.pdf
https://www.abelianfoundation.org/wp-content/uploads/2018/08/Abelian-Whitepaper-CB20180615.pdf
https://eprint.iacr.org/2019/580
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://eprint.iacr.org/2015/1098
https://eprint.iacr.org/2019/420


[30] Shifeng Sun, Man Ho Au, Joseph K. Liu, and Tsz Hon Yuen. 2017. RingCT 2.0: A

Compact Accumulator-Based (Linkable Ring Signature) Protocol for Blockchain

Cryptocurrency Monero. In ESORICS (LNCS). Springer, 456–474.
[31] Zcash Team. 2019. Frequently Asked Questions. (2019). Retrieved April 23, 2019

from https://z.cash/support/faq/#quantum-computers

[32] Wilson Abel Alberto Torres, Veronika Kuchta, Ron Steinfeld, Amin Sakzad,

Joseph K. Liu, and Jacob Cheng. 2019. Lattice RingCT v2.0 with Multiple Input

and Multiple Output Wallets. In ACISP (LNCS). Springer, 156–175.
[33] Wilson Abel Alberto Torres, Ron Steinfeld, Amin Sakzad, Joseph K Liu, Veronika

Kuchta, Nandita Bhattacharjee, Man Ho Au, and Jacob Cheng. 2018. Post-

Quantum One-Time Linkable Ring Signature and Application to Ring Confi-

dential Transactions in Blockchain (Lattice RingCT v1. 0). In ACISP. Springer,
558–576.

[34] Tsz Hon Yuen, Shi feng Sun, Joseph K. Liu, Man Ho Au, Muhammed F. Esgin,

Qingzhao Zhang, and Dawu Gu. 2019. RingCT 3.0 for Blockchain Confidential

Transaction: Shorter Size and Stronger Security. Cryptology ePrint Archive,

Report 2019/508. (2019). https://eprint.iacr.org/2019/508.

Algorithm 12 Compute pi, j for k ∈ {1, 2}

INPUT: ℓ,a0,0, . . . ,ak−1,β−1

OUTPUT: p0,0, . . . ,pN−1,k−1
∈ Rq

1: if k = 1 then
2: for i = 0, . . . ,N − 1 do
3: pi,0 = a0,i0 ▷ i = (i0, . . . , ik−1

) in base β
4: end for
5: return (p0,0, . . . ,pN−1,0)

6: else if k = 2 then
7: for i = 0, . . . ,N − 1 do
8: pi,0 = a0,i0 · a1,i1
9: pi,1 = δℓ0,i0 · a1,i1 + δℓ1,i1 · a0,i0
10: end for
11: return (p0,0,p0,1, . . . ,pN−1,0,pN−1,1)

12: end if

A MORE ON RING/GROUP SIGNATURE
We describe the full ring/group signature signing procedure in

Algorithm 13. The verification works similar to Algorithm 10. In

particular, the verifier checks the same norm bounds as in Algo-

rithm 13, computes A and E0, and finally checks whether x =
H(A,B,E0, . . . ,Ek−1

) for x provided as part of the signature. The

opening algorithm for revealing user’s identity in the group signa-

ture is realized using Algorithm 11 in Section 6.1. Since the signer

proves knowledge of an index ℓ ∈ [0,N − 1], which is encoded

using fj,i ’s, and the secret key of the ℓ-th public key, the opener of

a group signature just needs to extract the index from the commit-

ment B.14 As there are only N possibilities
15
, the running time of

the opening algorithm of the group signature is in the same order

as the signing. Since signature generation is likely to occur much

more frequently than opening a group signature, this is completely

acceptable in our setting.

In Tables 7 and 8, example sets of concrete parameters for our

ring and group signature, respectively, are provided where we opti-

mize the proof length for a fixed ring dimension d . In the case of a

group signature, we also need to make sure that M-LWEn̂−1,m̂,q̂,Be

14
Note that the binary proof in this case includes only the proof for the index ℓ and

no additional bits.

15
Note here that even though the commitment B includes another vector c as a

committedmessage, we show in Lemma 5.5 that this second part is uniquely determined

by the information provided in the proof and recovered in Algorithm 11.

Table 7: Concrete parameters of our ring signature, opti-
mized for proof length. Signature and key sizes are in KB.
The hash output size (or challenge space size for the un-
derlying protocol) is at least 2

256. The root Hermite factor
of both M-SIS and M-LWE are about 1.0045. B = 1 and
(d,w,p) = (128, 66, 2) always. The signature length can some-
times be slightly further reduced by choosing varying d val-
ues. For example, the same parameters of the group signa-
ture for N = 2

21 in Table 8 also works for the ring signature.

N 2 8 64 1024 4096 2
21

(n, n̂) (8, 9) (8, 9) (8, 11) (13, 10) (13, 12) (21, 13)

(m,m̂) (17, 22) (17, 23) (17, 25) (27, 26) (27, 26) (42, 28)

(logq, log q̂) (27, 42) (27, 46) (27, 44) (45, 52) (45, 46) (69, 47)

(k, β) (1, 2) (1, 8) (1, 64) (2, 32) (2, 64) (3, 128)

Sign. Size 18 20 31 48 59 156

PK Size 3.38 3.38 3.38 9.14 9.14 22.64

SK Size 0.27 0.27 0.27 0.42 0.42 0.66

is hard in order to argue that a commitment key with a trapdoor is

indistinguishable from random. Therefore, the choice of parameters

for the group signature is more restrictive.

The two limitations of our group signature are that 1) the running

time of the opening algorithm as well as the signing and verification

is linear in the group size (the opening algorithm has linear time

also in [15]) and 2) the group public key length grows linearly in the

group size. These are as expected since the group signature builds

on a ring signature. However, the cost of the public key storage

can be amortized over many signatures as one would expect many

signatures to be generated by the same group. Consider a group of

1000 members generating 1000 signatures in total, the total storage

cost of all public keys and all signatures would be about 65 MB

using our group signature. In the case of the two state-of-the-art

post-quantum group signatures [15] and [6], this cost would exceed

400 MB. Therefore, in the settings where the number of group

members is not significantly greater than the number of signatures,

the overall cost is lower using our group signature.

Moreover, our group signature can be easily made dynamic in
that the group manager can add or remove members by appending

their individual public key to the group public key дpk or deleting it

from дpk . In this case, it is required that group signature is verified

using the group public key at the time of signature generation.

We also note that our constructions do not require any (discrete)

Gaussian sampling. Replacing some of the uniform samplings with

a discrete Gaussian in our schemes helps further reduce the signa-

ture length, but our goal in this work is to introduce an easy-to-

implement scheme.

B IMPLICATIONS OF HAVING SMALL
DIMENSIONAL SERIAL NUMBER

Recall that for the commitment matrixH ∈ Rns×mq , a serial number

is computed as s = ComH (0; sk)where sk is a secret key. Choosing
ns = 1 here with d = 64 actually makes M-SIS easy to solve with

respect to H . However, one can see from the balance proof (proof

of Lemma 5.7) that the adversary needs to find a witness either

19

https://z.cash/support/faq/#quantum-computers
https://eprint.iacr.org/2019/508


Algorithm 13 Signing of Ring/Group Signature

INPUT:M, (pk
0
, . . . , pkN−1

), ℓ, skwhereM is a message, sk =
r ∈ Rmq , ℓ ∈ [0,N − 1] and pki ∈ R

n
q for i = 0, . . . ,N − 1.

OUTPUT: Π = (B,E1, . . . ,Ek−1
,x , f

1
,zb ,z) where B ∈ Rn̂q̂ ;

E1, . . . ,Ek−1
∈ Rnq ; x ∈ C

d
w,p ; f 1

∈ R
k (β−1)

q̂ ; zb ∈ R
m̂
q̂ ; z ∈ Rmq .

1: Ba = ⌈2 · pkd⌉
2: Tд = d

3B4

akβ(β + 1)/(2d)

3:
ˆB
big
= ⌈1.5Bpwm̂d⌉

4: B
big,k
= ⌈1.5B(pw)kmd⌉

5: b = {(β ,True, (δℓj ,0, . . . ,δℓj ,β−1
),Ba )}

k−1

j=0

6: ck = G ← SamMat(ρ, r ,q,n,m, “G”)
7: (r a, r b ), (A, B), (a0,0, . . . , ak−1,β−1

) ← BinaryCommit(k, b, B, ˆBbig)

8: Compute p = (p0,0, . . . ,pN−1,k−1
) using Algorithm 12 with

the input (ℓ,a0,0, . . . ,ak−1,β−1
) when k ∈ {1, 2}

9: ρ
0
← {−B

big,k
, . . . ,B

big,k
}d ·m

10: for j = 0, . . . ,k − 1 do
11: ρ j ← {−B, . . . ,B}

d ·m if j , 0

12: Ej =
∑N−1

i=0
pi, jPi + Comck (0; ρ j ) in Rnq

13: end for

14: x = H(M,A,B,E0, . . . ,Ek−1
)

15: for j = 0, . . . ,k − 1 and i = 0, . . . , β − 1 do
16: fj,i = xδℓj ,i + aj,i
17: end for
18: f

1
= (f0,1, . . . , fk−1,β−1

) ▷ fj,0’s are excluded

19: if ∥ f
1
∥
∞
> Ba − p, then Restart

20: for j = 0, . . . ,k − 1 do
21: if ∥ fj,0∥ > Ba

√
d(β − 1), then Restart

22: end for
23: д =

(
f0,0(x − f0,0), . . . , fk−1,β−1

(x − fk−1,β−1
)

)
24: if ∥д∥ >

√
Tд , then Restart

25: zb = xrb + ra ▷ m̂-dimensional

26: if ∥zb ∥∞ > ˆB
big
− Bpw , then Restart

27: z = xkr −
∑k−1

j=0
x jρ j

28: if ∥z∥
∞
> B

big,k
− B(pw)k , then Restart

29: return Π = (B,E1, . . . ,Ek−1
,x , f

1
,zb ,z)

for (pk, s) together or for pk in order to break the balance property.

Since we make sure that the public key commitments are binding,

there is no issue in the balance proof. Similarly, from the anonymity

perspective, the serial number alone will clearly hide the secret key

as we show in the anonymity proof (proof of Lemma 5.1) that (pk, s)
together still hides the secret key. Moreover, even with ns = 1, the

output space of 1-dimensional commitments is sufficiently large (in

particular, qd ≈ 2
31·64

for our parameters) that there is a negligible

chance for two random secret keys to result in the same serial

number.

What may indeed happen is that, for a given s, an adversary can

find some short vector r ′ such that r ′ , sk and s = ComH (0; r ′).
In this case, it must hold that pk = ComG (0; sk) , ComG (0; r ′) as

Table 8: Concrete parameters of our group signature, opti-
mized for proof length. Signature and key sizes are in KB.
The hash output size (or challenge space size for the under-
lying protocol) is at least 2

256. The root Hermite factor of
both M-SIS and M-LWE are about 1.0045. B = 1, Be = 4 and
(d,w,p) = (64, 56, 8) always. PK Size given is per user and thus
the group public key size is equal to N×(PK Size).

N 2 8 64 1024 4096 2
21

(n, n̂) (17, 30) (17, 30) (17, 30) (29, 30) (29, 30) (47, 30)

(m,m̂) (36, 61) (36, 61) (36, 61) (60, 61) (60, 61) (96, 61)

(logq, log q̂) (29, 49) (29, 49) (29, 49) (49, 49) (49, 49) (79, 49)

(k, β) (1, 2) (1, 8) (1, 64) (2, 32) (2, 64) (3, 128)

Sign. Size 28 29 34 54 60 148

PK Size 3.85 3.85 3.85 11.10 11.10 29.01

SK Size 0.28 0.28 0.28 0.47 0.47 0.75

otherwise we would get a solution to M-SISn,m,q,2γ with respect to

G where γ = max{∥r ′∥ , ∥sk∥}. Hence, the adversary still cannot

create a valid transaction without having pk′ = ComG (0; r ′) as
one of the public keys of the real spent accounts in Rin. Therefore,
he first requires an account to be created with pk′ and then he

can spend that account with the serial number s. If he can succeed

in this before the honest user whose secret key commits to the

same serial number s, then this would prevent the honest user

from being able to spend her account. Note that the attack works

only when the attacker guesses/knows the serial number of an

unspent account, and only results in a violation of availability (as

the honest user can no longer spend her account). The chance of

a correct guess is negligibly small as the output space is too large,

which leaves knowledge of an account serial number before it is

ever spent as the only viable option for the attacker. This whole

attack scenario in general does not seem very likely to happen.

Nevertheless, stronger security against such an attack can be easily

accomplished by increasing ns so that M-SIS is hard with respect

to H , which requires increasingm, and possibly n and/or q.

C ON THE SECURITY PROPERTIES OF THE
COMMITMENT SCHEME

The “duality” between the knapsack problems and LWE has already

been noticed in cryptography (see, e.g., [2, 22]). Given (A,u) for
A← Rn×mq , the goal in the knapsack problem considered in this

work is to distinguish between the cases: 1) u ← Rnq and 2) u =

Ax for x ← UB for some B ∈ Z+. In Lemma 4.8 and Lemma

4.9 of [22], it is shown that this knapsack problem is as hard as

LWEm−n,m,q,B when one works over Zq . The result extends to
the ring case provided that the probability of A being singular is

negligible. We can argue this as follows.

A is non-singular if it is non-singular over all the fields the ring

Rq (for some q ∈ Z+) splits into. Let s be the number of such

fields Fp1
, . . . ,Fps and p = min{p1, . . . ,ps }. Then, the probabil-

ity that a random n ×m matrix A is full-rank over Fp is at least(
1 − 1/pm−n+1

)n
(see, e.g., [10] and the references therein). Then,

the probability that A is full-rank over all the s fields is at least(
1 − 1/pm−n+1

)n ·s
. In our setting, 1) m ≥ 2n, 2) p ≫ 2

20
and 3)

20



the modulus q has at most 2 prime factors and thus s is at most 2d

(note that the polynomial Xd + 1 can split into at most d factors).

From here, we can easily conclude that the probability of A being

singular over Rq is negligibly small in our setting.

Also note that the commitment scheme indeed satisfies a stronger

hiding property by M-LWE as a commitment is computationally in-

distinguishable from a uniformly random element in the respective

domain (either Rnq or Rn̂q̂ in our case). We make use of this stronger

property in the proofs.

The binding property of the commitment is obtained exactly as

in [7, 8] where the matrix is completely random in our case as in

the standard M-SIS definition.

For M-SISn,m,q,βSIS and M-LWEn,m,q,B , it is well known that 1)

the computational hardness of both problems increase with n, 2)
M-SIS gets harder as βSIS decreases, and 3) M-LWE gets harder as

B increases. Therefore, in our analysis, we explicitly refer to the

easiest cases of the problems and the assumptions for the harder

cases, which may sometimes be implicit, do not reduce the overall

security claims.

D TECHNICAL LEMMAS
Lemma D.1. For any a,b ∈ R = Z[X ]/(Xd + 1), the following

relations hold

(1) ∥a · b∥ ≤
√
d · ∥a∥ · ∥b∥,

(2) ∥a∥ ≤
√
d · ∥a∥

∞
and ∥a∥ ≤ ∥a∥

1
≤
√
d ∥a∥,

(3) ∥a · b∥
∞
≤ ∥a∥ · ∥b∥,

(4) ∥a · b∥
∞
≤ ∥a∥

1
· ∥b∥

∞
,

(5) ∥
∏n

i=1
ai ∥∞ ≤

(∏n−1

i=1
∥ai ∥1

)
· ∥an ∥∞ where ai ∈ R for all 1 ≤

i ≤ n.

The following lemma shows that any element in ∆Cdw,p is in-

vertible in Rq when q is chosen in a certain way. The result is a

direct corollary of [21, Corollary 1.2].

Lemma D.2. If q > (2p
√
K)K and q ≡ 2K + 1 mod 4K for some

1 < K ≤ d where K is a power of 2, then any y ∈ ∆Cdw,p is invertible
in Rq .

We also make use of the following important lemmas from [7].

Lemma D.3 ([7, Lemma 6]). For any f ,д ∈ R = Z[X ]/(Xd + 1), if
f · дs = 0 in Zq [X ]/(Xd + 1) for some q, s ∈ Z+, then f · д = 0 in
Zq [X ]/(X

d + 1).

Lemma D.4 ([7, Lemma 7]). Let s ≥ 1 and f1, . . . , fs ∈ R =

Z[X ]/(Xd + 1), and assume that д =
∏s

i=1
fi = 0 in Zq [X ]/(Xd + 1)

for some q ∈ Z+. If either ∥д∥
∞
< q/2 or ∥ f1∥∞ ·

∏s
i=2
∥ fi ∥1 < q/2,

then there exists 1 ≤ j ≤ s such that fj = 0. In other words, if∏s
i=1

fi = 0 in Z[X ]/(Xd + 1), then there exists 1 ≤ j ≤ s such that
fj = 0.

E IMPROVED SPECIAL SOUNDNESS PROOF
FOR THE BINARY PROOF

Before going into the technical details of the soundness proofs, we

remark the following. Even though we prove separate statements

regarding the extracted openings of different components of the

full protocol, the openings are indeed related. First, there is a single

extraction procedure that is used to extract the openings of all

components. Therefore, all the relaxation factors are determined by

the same challenges. In particular, the relaxation factor is exactly

the same element y when it is simply a challenge difference in

∆Cdw,p . That is, for example, y in the proofs of Lemmas 5.3, 5.4 and

5.5 are exactly the same. Moreover, when the relaxation factor is a

product of elements in ∆Cdw,p , then one of the multiplicands in the

product is equal to the y in Lemmas 5.3, 5.4 and 5.5.

Also, as in the ring signature in [7], different parts of the protocol

uses the same components. For example, the binary proof proves

that all f ’s in (f
1
, f r ) encode some bits, and they are later used

both in the ring signature and also to prove that the corrector

commitment C is well-formed. Since the full special soundness

proofs for the underlying protocols we use has already been shown

in [7], our goal in the proofs here is to point to the main technical

differences and to show how the extracted opening norms are

bounded, which is important for choosing parameter.

Proof of Lemma 5.5. The proof uses the standard norm rela-

tions in R = Z[X ]/(Xd + 1), which is recalled in Lemma D.1. As in

the special soundness proof of the binary proof in [7] (i.e., special

soundness of Theorem 1 and 2 in [7]), for 3 distinct challenges

x ,x ′,x ′′, the extractor of the interactive binary proof is given three

accepting protocol transcripts as

(A,B,x , f
1
, f r ,zb ), (23)

(A,B,x ′, f ′
1
, f ′r ,z

′
b ), (24)

(A,B,x ′′, f ′′
1
, f ′′r ,z

′′
b ). (25)

Since they are accepting transcripts, we have from Step 16 of Algo-

rithm 10

xB +A = Comck (f ,д; zb ), (26)

x ′B +A = Comck (f
′,д′; z′b ), (27)

where f and д are as defined in Algorithm 10. Let y = x − x ′ and
take the difference of the above two equations. We get

yB = Comck (f − f ′,д − д′; zb − z
′
b ), (28)

yA = Comck (x f
′ − x ′ f ,xд′ − x ′д; xz′b − x

′zb ). (29)

For r̂ := zb − z
′
b , the proofs about r̂ follows. Define b̂ = f − f ′,

â = x f ′ − x ′ f , ĉ = д − д′ and d̂ = xд′ − x ′д. From here, we have

y fi = x ˆbi + âi ∈ Rq̂ , (30)

yдi = y fi (x − fi ) = xĉi + ˆdi ∈ Rq̂ , (31)

for any coordinate fi of f and any coordinate дi of д. Further, for
any coordinate fi , fj,0 of f , we have

∥y fi (x − fi )∥∞ ≤ ∥y∥1 ∥ fi ∥1 ∥x − fi ∥∞ ≤ 2pw · dBf · (p + Bf ),

where Bf = max{Ba ,Br }. Now, for the coordinates fj,0 of f , we
have

∥y fj,0(x − fj,0)∥∞ ≤ ∥y∥1 ∥ fj,0∥∥x − fj,0∥

≤ 2pw · Ba
√
d(β − 1) · (p

√
w + Ba

√
d(β − 1))

≈ 2pwB2

adβ .

Therefore, since the following holds

q̂/2 > max

{
2pwdBf (p + Bf ), 2pwB

2

adβ
}
, (32)

21



the equations (30) and (31) hold over R for any coordinate of f and

д.

By Lemma 5.3, we know that the Euclidean norm of (ĉ, d̂,xzb −
x ′z′b ) (i.e., the opening of yA) is bounded from above by γ

bin
=

2p
√
dw

(
Tд + ˆB2

big
m̂d

)
1/2

. The same bound clearly holds for the

opening of yB by ignoring the factor x . Then, using γ
bin

-binding

of HMC, the steps continue exactly as in the soundness proofs of

Theorem 1 and 2 in [7] with a crucial difference: the equations

now hold in R, not Rq̂ . As a result, for any coordinate â of â, any

coordinate
ˆb of b̂ and any coordinate ĉ of ĉ , we get

©­«
1 x x2

1 x ′ x ′2

1 x ′′ x ′′2

ª®¬ ·
©­­«

∗

â
(
y − 2

ˆb
)
− yĉ

ˆb(y − ˆb)

ª®®¬ = 0 in R, (33)

where the entry marked with ∗ is not relevant for our analysis.

Denoting the left-most matrix by V and multiplying both sides by

the adjugate matrix V as in [7], we get

det(V ) ˆb(y− ˆb) = (x ′′−x ′)(x ′−x)(x ′′−x) ˆb(y− ˆb) = 0 in R. (34)

Again note the difference from [7] that (34) hold in R, not Rq̂ . By
Lemma D.4, one of the factors in (34) needs to be zero. Since the

challenge differences cannot be zero, we get either
ˆb = 0 ory− ˆb = 0.

That is,
ˆb ∈ {0,y}. This proves that all coordinates of b̂ are in {0,y}

as required for the binary proof. In other words,

b̂ = yb for b ∈ B ⊂ {0, 1}∗, (35)

y fi = yxbi + âi ∈ R, (36)

for any coordinate fi of f where bi ∈ {0, 1}. Further, by Step 6 of

Algorithm 10, we have

fj,0 = x −

β−1∑
i=1

fj,i ,

f ′j,0 = x ′ −

β−1∑
i=1

f ′j,i ,

=⇒ fj,0 − f ′j,0 = x − x ′ −

β−1∑
i=1

(
fj,i − f ′j,i

)
.

Since b̂ = f − f ′ = yb with all the coordinates of b in {0, 1}, we get

ybj,0 = y −

β−1∑
i=1

ybj,i =⇒ y

β−1∑
i=0

bj,i = y =⇒

β−1∑
i=0

bj,i = 1, (37)

since y , 0.

Now, using the fact that (33) holds over R in a similar fashion,

we also get for any coordinate â of â, any coordinate ˆb of b̂ and any

coordinate ĉ of ĉ

â
(
y − 2

ˆb
)
−yĉ = 0 =⇒ yĉ = â

(
y − 2

ˆb
)
= â (y − 2yb) . (38)

From here, by Lemma D.4 and definition of â, we have

ĉ = â(1 − 2b) =
(
x f ′ − x ′ f

)
(1 − 2b)

=
(
x (f − yb) − x ′ f

)
(1 − 2b) (by the definition of b̂ = yb)

=
(
x f − yxb − x ′ f

)
(1 − 2b) = (y f − yxb) (1 − 2b)

= y(f − xb)(1 − 2b).

The above proves that ĉ is determined by y, f ,x and b where f =
(f

1
, f r ).
To prove the infinity norm-bound on ĉ , we have for any coordi-

nate ĉ of ĉ ,

∥ĉ ∥
∞
= ∥(x f ′ − x ′ f )(1 − 2b)∥

∞
= ∥x f ′ − x ′ f ∥

∞
≤ 2pw ∥ f ∥

∞
.

This implies that

∥ĉ∥
∞
≤ 2pwBa , when f ∈ f

1
∈ R

k (β−1)

q̂ , (39)

∥ĉ∥
∞
≤ 2pw(β − 1)Ba , when f = fj,0 for j = 0, . . . ,k − 1, (40)

∥ĉ∥
∞
≤ 2pwBr , when f ∈ f r ∈ R

Sr+r−1

q̂ . (41)

From here, we can get

∥ĉ∥ ≤
(
(2pwβBa )

2 · kd + (2pwBa )
2 · k(β − 1)d

+(2pwBr )
2 · (Sr + r − 1)d

)
1/2

≤2pw
√
d ·

(
kB2

aβ(β + 1) + B2

r r (S + 1)

)
1/2
.

Observe that the norm-bound onyb is very small compared to those

on ĉ or r̂ . Therefore, we simply neglect it and obtain the following

bound

∥(yb, ĉ, r̂ )∥ ≈ ∥(ĉ, r̂ )∥ =
(
∥ĉ∥2 + ∥r̂ ∥2

)
1/2

≤

(
(2pw)2d

(
kB2

aβ(β + 1) + B2

r r (S + 1)

)
+ 4

ˆB2

big
md

)
1/2

□

F ADDITIONAL PROOFS AND LEMMAS
Proof of Lemma 5.2. We use the bounds on the norm of f∗’s in

the sequel (see Algorithm 10). For simplicity, we bound ∥x − f∗∥
by the bound on ∥ f∗∥ as ∥x ∥ is much smaller in comparison.

∥д∥2 =
k−1∑
j=0

β−1∑
i=0



fj,i (x − fj,i )


2

+

r−1∑
i=1



fc,i (x − fc,i )


2

+

S−1∑
j=0

r−1∑
i=0




f (j)
out,i (x − f

(j)
out,i )




2

=

k−1∑
j=0

β−1∑
i=1



fj,i (x − fj,i )


2

+

k−1∑
j=0



fj,0(x − fj,0)


2

+

r−1∑
i=1



fc,i (x − fc,i )


2

+

S−1∑
j=0

r−1∑
i=0




f (j)
out,i (x − f

(j)
out,i )




2

≤

k−1∑
j=0

β−1∑
i=1

d


fj,i 

2



x − fj,i


2

+

k−1∑
j=0

d


fj,0

2



x − fj,0


2

+

r−1∑
i=1

d


fc,i 

2



x − fc,i


2

+

S−1∑
j=0

r−1∑
i=0

d



f (j)

out,i




 


x − f
(j)
out,i




2

≤ dk(β − 1)

(
Ba
√
d
)

4

+ dk
(
Ba

√
dβ

)
4

+ d(r − 1)

(
Br
√
d
)

4

+ dSr
(
Br
√
d
)

4

≤ dk
(
Ba
√
d
)

4 [
(β − 1) + β2

]
+ d

(
Br
√
d
)

4

[r − 1 + Sr ]

22



≤ d3

(
B4

akβ(β + 1) + B4

r r (S + 1)

)
.

□

Proof of Lemma 5.3. For two accepting transcripts with respect

to different challenges x ,x ′ ∈ Cdw,p , we have

xB +A = Comck (f ,д; zb ), (42)

x ′B +A = Comck (f
′,д′; z′b ), (43)

where (f ,zb ) and (f
′,z′b ) are responses with respect to challenges

x and x ′, respectively, and д and д are constructed from f and f ′,
respectively, as in Algorithm 10. From here, as in [7, Lemma 13],

the extracted opening (â, r̂a ) of yA for y = x − x ′ is as follows

yA = Comck (x f
′ − x ′ f ,xд′ − x ′д; xz′b − x

′zb ). (44)

Assume ∥(xд′,xz′b )∥ ≥ ∥(x
′д,x ′zb )∥ without loss of generality.

Also, note that the norms of f and f ′ are much smaller than that

of д and д′, respectively. This is due to the fact that a coordinate of

д is about the square of a coordinate of f . Therefore, for simplicity,

we neglect x f ′ − x ′ f in the rest. We have

∥(â, r̂a )∥ ≈


(xд′ − x ′д,xz′b − x ′zb )

 ≤ 2



(xд′,xz′b )


≤ 2

√
d ∥x ∥ ·



(д′,z′b )

 ≤ 2p
√
dw ·



(д′,z′b )


= 2p
√
dw

(

д′

2

+


z′b

2

)
1/2

≤ 2p
√
dw

(
Tд +

(
ˆB
big

√
m̂d

)
2

)
1/2

= 2p
√
dw

(
Tд + ˆB2

big
m̂d

)
1/2
. (45)

□

Proof of Lemma 5.4. Analogues to Lemma 5.3, the extracted

opening of C satisfies

yC = Comck (f c − f ′c ; zc − z
′
c ), (46)

where fc,0 = fc,r = f ′c,0 = f ′c,r = 0, f c = (fc,0−2fc,1, . . . , fc,r−1−

2fc,r ), and f ′c = (f
′
c,0 − 2f ′c,1, . . . , f

′
c,r−1

− 2f ′c,r ).

Note the fact that all of polynomials fc,0, f
′
c,0, . . . , fc,r−1, f

′
c,r−1

are upper-bounded by the same real value, which is used in the se-

quel. Assumewithout loss of generality that



(f c ,zc )

 ≥ 

(f ′c ,z′c )

.
∥(ĉ, r̂c )∥ =



(f c − f ′c ,zc − z
′
c )



 ≤ 2



(f c ,zc )


= 2

(

fc,0 − 2fc,1, . . . , fc,r−1 − 2fc,r


2

+ ∥zc ∥
2

)
1/2

≤ 2

(
3

2


fc,1, . . . , fc,r−1



2

+ ∥zc ∥
2

)
1/2

≤ 2

(
9(r − 1)(Br

√
d)2 + (B

big

√
md)2

)
1/2

≤ 2

(
9rB2

rd + B
2

big
md

)
1/2
. (47)

For any 0 ≤ i ≤ S − 1, an extracted opening of cnout,i is

y · cnout,i = Comck (f out,i − f ′
out,i ; zout,i − z

′
out,i ). (48)

We have ∥zout,i ∥∞ ≤ Bbig and ∥ f out,i ∥∞ ≤ Br . Therefore, (f out,i −

f ′
out,i ,zout,i − z

′
out,i ) can be upper-bounded as above easily. □

Lemma F.1. Let κ ′ = k(k − 1)/2. For any 0 ≤ i ≤ M − 1, the
extracted opening (0, r̂ i ) of pki, ℓ for the real spender’s public key
pki, ℓ defined in Algorithms 8 and 10, and the extracted opening
(0, r̂M ) of Pℓ for Pℓ defined in Algorithms 8 and 10 satisfies the
following

∥r̂ i ∥ ≤ (k + 1) · d · (2p)κ
′

wκ
′−1Bbig,k

√
md,

∥r̂M ∥ ≤ (k + 1) · d · (2p)κ
′

wκ
′−1B′big,k

√
md,

provided that q > (2p
√
K)K and q ≡ 2K + 1 mod 4K for some

1 < K ≤ d where K is a power of 2. Further, if k = 1 and the same
assumption on q holds, we have

∥r̂ i ∥ ≤ 2Bbig,k
√
md,

∥r̂M ∥ ≤ 2B′big,k

√
md .

Proof of Lemma F.1. Due to the assumption onq, anyy ∈ ∆Cdw,p

is invertible by D.2 since ∥y∥
∞
≤ 2p for any y ∈ ∆Cdw,p . The ex-

traction of our one-out-of-many proofs (the underlying ZKP of

the ring signature) will not have an additional y factor that ap-

pears in the special soundness proof of Theorem 3 in [7]. Therefore,

we can directly use the results in [7, Lemma 5], which gives for

κ ′ = k(k − 1)/2 and any 0 ≤ i ≤ M − 1

∥r̂ i ∥ ≤ (k + 1) · d · (2p)κ
′

·wκ
′−1 · Bz ,

where Bz is an upper-bound on the Euclidean norm of any z(i).
Hence, using the bound from Algorithm 10, we have

∥r̂ i ∥ ≤ (k + 1) · d · (2p)κ
′

·wκ
′−1 · B

big,k

√
md .

Similarly, the following is obtained by replacing B
big,k

with B′
big,k

in the norm z(M )

∥r̂M ∥ ≤ (k + 1) · d · (2p)κ
′

·wκ
′−1 · B′

big,k

√
md .

When k = 1, then the verification equations for the ring signa-

tures are just linear equations. Therefore, the extracted openings

are simply obtained by looking at the difference of two verifica-

tion equations with respect to different responses as in the proof of

Lemma 5.3. That is, r̂ i = z(i)
0
−z(i)

1
where z(i)

0
,z(i)

1
are two responses

with respect to different challenges in the protocol’s witness extrac-

tion. Hence, when k = 1, we have

∥r̂ i ∥ ≤ 2B
big,k

√
md,

∥r̂M ∥ ≤ 2B′
big,k

√
md .

Observe that when k = 1, κ ′ = 0. Therefore, the general bound

gives ∥r̂ i ∥ ≤ 2(d/w)B
big,k

√
md , which is slightly looser then the

above bound (note that we always have 1 ≤ w ≤ d sincew is the

Hamming weight of degree d − 1 polynomials). □

23


	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Overview of MatRiCT
	1.3 Our Techniques

	2 Preliminaries
	2.1 Module-SIS and Module-LWE problems
	2.2 Commitment Scheme

	3 Formal Definitions for RingCT-like Cryptocurrency Protocols
	3.1 Security Definitions

	4 MatRiCT: Lattice-based RingCT
	4.1 Implementation and Parameters

	5 Security Proofs
	5.1 Anonymity
	5.2 Balance

	6 Extension to Auditable RingCT
	6.1 Extractable Commitment Scheme
	6.2 Adding Auditability

	Acknowledgments
	References
	A More on Ring/Group Signature
	B Implications of having small dimensional serial number
	C On the Security Properties of the Commitment Scheme
	D Technical Lemmas
	E Improved Special Soundness Proof for the Binary Proof
	F Additional Proofs and Lemmas

