
Reduction Modulo 2448 − 2224 − 1

Kaushik Nath and Palash Sarkar

Applied Statistics Unit

Indian Statistical Institute

203, B. T. Road

Kolkata - 700108

India

{kaushikn r,palash}@isical.ac.in

Abstract

An elliptic curve known as Curve448 defined over the finite field Fp, where p = 2448− 2224− 1, has been pro-

posed as part of the Transport Layer Security (TLS) protocol, version 1.3. Elements of Fp can be represented

using 7 limbs where each limb is a 64-bit quantity. This paper describes efficient algorithms for reduction

modulo p that are required for performing field arithmetic in Fp using 7-limb representation. A key feature of

our work is that we provide the relevant proofs of correctness of the algorithms. We also report efficient 64-bit

assembly implementations for key generation and shared secret computation phases of the Diffie-Hellman key

agreement protocol on Curve448. Timings results on the Haswell and Skylake processors demonstrate that

the new 64-bit implementations for computing the shared secret are faster than the previously best known

64-bit implementations.

Keywords: Curve448, Goldilocks prime, modulo reduction, elliptic curve cryptography, Diffie-Hellman

key agreement.

1 Introduction

As part of the Transport Layer Security (TLS) protocol, version 1.3 [8], RFC 7748 [2] specifies the
Montgomery form elliptic curve Curve448 and its birationally equivalent Edwards form elliptic curve
Edwards448. The curve Edwards448 was originally proposed in [1] where it was named Ed448-Goldilocks.
The underlying field for Curve448 and Edwards448 is Fp where p is the prime 2448 − 2224 − 1.

Implementation of elliptic curve operations require arithmetic over the underlying field Fp. Specif-
ically, addition, subtraction, multiplication and squaring are required. Additionally, for implementing
Montgomery ladder for Curve448, it is required to implement multiplication by a small constant. All of
these operations require reduction modulo p.

For 64-bit architecture, an element of Fp can be represented using 7 limbs where each limb is a 64-bit
quantity. Such a representation can be considered to be a packed or, saturated limb representation of
the elements of Fp. Alternatively, elements of Fp may be represented using 8 limbs where each limb is a
56-bit quantity stored in a 64-bit word. Such a representation can be considered to be a redundant or,
unsaturated limb representation. For modern Intel processors such as Skylake and later processors, the
implementation of field arithmetic using the saturated limb representation turns out to be faster than
that of the unsaturated limb representation.

Our contributions

Algorithms along with their proofs of correctness. In this work, we consider the 7-limb saturated
limb representation of elements of Fp. Our focus is on the reduction algorithms which are required to
implement field arithmetic operations in Fp.

The main contribution of the paper is to present explicit reduction algorithms along with their proofs
of correctness for all the field arithmetic operations required to implement Diffie-Hellman key agreement
using Curve448. The algorithms proceed over several iterations successively reducing the size of the
input. As part of the proof of correctness, it is required to argue that the algorithms terminate without
any overflow. The termination argument has a certain amount of subtlety. To the best of our knowledge,
no previous work had considered the issue of proof of correctness. Without a formal argument about

1



termination, a reduction strategy may turn out to be incomplete or may perform redundant operations;
we provide a short discussion of these possibilities in the appendix.

Efficient 64-bit assembly implementations of X448. Computing the Diffie-Hellman key agree-
ment over the curve Curve448 demands computation of scalar multiplication over Curve448. This com-
putation has been named as X448 in [2]. Implementation of scalar multiplication requires implementation
of field arithmetic over the underlying field. We have implemented field arithmetic over Fp, and based on
it we have developed efficient assembly implementations of the X448 function of Curve448. The perfor-
mances of our 64-bit implementations for shared secret computation are faster than the previously best
known 64-bit implementations. Timing details are provided later. We have made our software publicly
available at the following link.

https://github.com/kn-cs/x448/tree/master/7limb

2 Arithmetic in Fp

Let p = 2448 − 2224 − 1 and θ = 264. For d ≥ 0, define the polynomial

f(θ) = f0 + f1θ + · · ·+ fdθ
d (1)

where f0, f1, . . . , fd are non-negative integers. Following usual convention, we will call the fi’s to be
limbs of f(θ).

As mentioned above, we consider the 7-limb representation of the elements of Fp. So, elements of Fp
can be represented as a polynomial f(θ) = f0 + f1θ + · · ·+ f6θ

6 where 0 ≤ f0, f1, . . . , f6 < θ. Note that
the set of all such f(θ) is in one-one correspondence with the set of integers {0, 1, . . . , 2448−1}. Since, p <
2448 − 1, a degree 6 polynomial f(θ) with 0 ≤ f0, f1, . . . , f6 < θ is not necessarily reduced modulo p. So,
some elements of Fp have non-unique representation. This, however, is a not a problem for intermediate
quantities in an elliptic curve computation. It is only the final result that is reduced to have a unique
representation modulo p. Avoiding obtaining unique representations for the intermediate quantities
leads to an overall faster algorithm for performing the elliptic curve computation. Consequently, given
a polynomial h(θ) = h0 + h1θ + · · · + hdθ

d, with d > 0, by reduction modulo p, we will denote the
task of obtaining a polynomial f(θ) = f0 + f1θ + · · · + f6θ

6 with 0 ≤ f0, f1, . . . , f6 < θ such that
f(θ) ≡ h(θ) mod p.

For i ≥ 2, let x and y be two 64i-bit integers. Suppose, it is required to compute the integer
product x · y. If x = y, then this corresponds to the squaring operation, while if x 6= y, then a general
multiplication operation is required. Intel processors from Broadwell (launched in 2014) onwards provide
a special set of 64-bit multiplication and addition instructions which allow very fast computation of the
product x ·y. For i = 4, the multiplication and squaring algorithms have been illustrated using diagrams
in two Intel white papers [5, 6]. Explicit descriptions of the squaring and multiplication algorithms in
the general case have been provided in [3].

A field multiplication/squaring in Fp consists of the following two broad steps. Suppose that f(θ)
and g(θ) are two 7-limb integers from the set {0, 1, . . . , 2448 − 1} representing elements of Fp. In the
first step, the integer product of f(θ) and g(θ) is obtained in h(θ). The quantity h(θ) can be written
as a 14-limb quantity h(θ) = h0 + h1θ + · · ·+ h13θ

13, where 0 ≤ h0, h1, . . . , h13 < 264. The second step
consists of reducing h(θ) to a 7-limb integer which is congruent to h(θ) modulo p.

The Montgomery ladder algorithm for Curve448 requires multiplying a 7-limb quantity f(θ) by the
constant c = 39082 (note, 215 < c < 216 and so c is a 16-bit quantity). The integer product c ·f(θ) can be
computed much faster than a general integer multiplication of two 7-limb quantities. The result c · f(θ)
can be written as an 8-limb quantity where all the limbs are 64-bit quantities. A reduction algorithm is
to be applied to this 8-limb quantity to reduce it to a 7-limb quantity which represents an element of Fp.

The integer addition of two 7-limb integers f(θ) and g(θ) results in an 8-limb integer. In this case, the
last limb is a single bit. Nevertheless, the result of the addition has to be reduced to a 7-limb quantity.

Subtraction of two elements f(θ) and g(θ) in Fp is more problematic. The integer operation f(θ)−g(θ)
can turn out to be negative. To avoid handling negative numbers a suitable multiple of p is added to
the result. This creates subtleties in the reduction algorithm.

3 Reduction in Fp

In Section 3.1 below, we describe the method for reducing a 14-limb quantity to a 7-limb quantity. As
part of this algorithm, it is required to reduce an 8-limb quantity to a 7-limb quantity. Correspondingly,

2

https://github.com/kn-cs/x448/tree/master/7limb


this part can be used to reduce the result obtained either after multiplication by a 64-bit constant or
after addition of two 7-limb quantities. This is pointed out in Section 3.2. The case of subtraction in Fp
is described in Section 3.3.

3.1 Reduction from 14-Limb to 7-Limb

Let h(θ) be the 14-limb polynomial which is to be reduced. The polynomial h(θ) represents an integer z
of 2 · 448 = 896 bits. A formal description of the algorithm to reduce h(θ) is given in Function reduce448
of Algorithm 1. All the operations in reduce448 can be performed using 64-bit arithmetic instructions
available in modern processors. For showing correctness of the algorithm it is required to argue that
the output is indeed congruent to the input modulo p. Further, it is also required to argue that the
procedure terminates without any overflow.

Let h(0)(θ) = h(θ). Function reduce448 takes the 14-limb polynomial h(0)(θ) as input and reduces
it through the intermediate polynomials h(1)(θ), h(2)(θ) finally producing the 7-limb output polynomial
h(3)(θ). A summary of the properties of the polynomials h(1)(θ), h(2)(θ) and h(3)(θ) and the different
steps of reduce448 that produces these polynomials are as follows:

• h(1)(θ) has 8 limbs. The last limb is at most 2 bits long. The computation of h(1)(θ) from h(0)(θ)
is achieved by Steps 4-26.

• h(2)(θ) has 8 limbs. The last limb is at most 1-bit long and further, if h
(2)
7 = 1, then h

(2)
4 = h

(2)
5 =

h
(2)
6 = 0. The computation of h(2)(θ) from h(1)(θ) is achieved by Steps 27-33.

• h(3)(θ) has 7 limbs where each limb is a 64-bit quantity. The computation of h(3)(θ) from h(2)(θ)
is achieved by Steps 34-38.

The properties of h(1)(θ), h(2)(θ) and h(3)(θ) stated above are formally proved in Theorem 1. In par-
ticular, we note that the second property stated above is required to argue that the procedure terminates
without any overflow in the next iteration.

Theorem 1. Suppose the input h(0)(θ) = h
(0)
0 +h

(0)
1 θ+ · · ·+h

(0)
13 θ

13 to reduce448 is such that 0 ≤ h(0)i <

264 for i = 0, 1, . . . , 13. Then the output h(3)(θ) of reduce448 is such that h(3)(θ) = h
(3)
0 + h

(3)
1 θ + · · · +

h
(3)
6 (θ) with 0 ≤ h(3)j < 264 for j = 0, 1, . . . , 6. Further, h(3)(θ) ≡ h(0)(θ) mod p.

Proof. Let η = 64. We have the prime p = 2448 − 2224 − 1 and since θ = 264 = 2η, we have

2448 = θ7 ≡ 2224 + 1 = 2η/2θ3 + 1 mod p. (2)

Reduction from h(0)(θ) to h(1)(θ). The input h(0)(θ) to reduce448 can be written as

h(0)(θ) = (h
(0)
0 + h

(0)
1 θ + · · ·+ h

(0)
6 θ6) + (h

(0)
7 θ7 + h

(0)
8 θ8 + · · ·+ h

(0)
13 θ

13),

= (h
(0)
0 + h

(0)
1 θ + · · ·+ h

(0)
6 θ6) + (h

(0)
7 + h

(0)
8 θ + · · ·+ h

(0)
13 θ

6)θ7,

≡ (h
(0)
0 + h

(0)
1 θ + · · ·+ h

(0)
6 θ6) + (h

(0)
7 + h

(0)
8 θ + · · ·+ h

(0)
13 θ

6)(2η/2θ3 + 1) [using (2)],

= (h
(0)
0 + h

(0)
1 θ + · · ·+ h

(0)
6 θ6) + (h

(0)
7 + h

(0)
8 θ + · · ·+ h

(0)
13 θ

6) +

(h
(0)
7 + h

(0)
8 θ + · · ·+ h

(0)
13 θ

6)θ32η/2. (3)

Steps 4-8 add the two polynomials (h
(0)
0 +h

(0)
1 θ+ · · ·+h

(0)
6 θ6) and (h

(0)
7 +h

(0)
8 θ+ · · ·+h

(0)
13 θ

6) limb-wise

by forwarding the 1-bit carry, producing the polynomial (r
(0)
0 + r

(0)
1 θ+ · · ·+ r

(0)
7 θ7). Hence, from (3) we

write

h(0)(θ) ≡ (r
(0)
0 + r

(0)
1 θ + · · ·+ r

(0)
7 θ7)︸ ︷︷ ︸

through Steps 4-8

+ (h
(0)
7 + h

(0)
8 θ + · · ·+ h

(0)
13 θ

6)θ32η/2, (4)

where 0 ≤ r(0)0 , r
(0)
1 , . . . , r

(0)
6 < 2η, and 0 ≤ r(0)7 < 2.

For j = 7, 8, . . . , 13, define

h
(0)
j = h

(0)
j,0 + h

(0)
j,12η/2, where h

(0)
j,0 = h

(0)
j mod 2η/2, and h

(0)
j,1 = bh(0)j /2η/2c. (5)

3



Algorithm 1 Reduction from 14-limb to 7-limb in Fp. In the algorithm, η = 64.

1: function reduce448(h(0)(θ))

2: input: h(0)(θ) = h
(0)
0 + h

(0)
1 θ + · · ·+ h

(0)
13 θ

13 such that 0 ≤ h(0)i < 2η for i = 0, 1, . . . , 13.

3: output: h(3)(θ) = h
(3)
0 + h

(3)
1 θ + · · · + h

(3)
6 θ6 such that 0 ≤ h

(3)
i < 2η for i = 0, 1, . . . , 6 and

h(3)(θ) ≡ h(0)(θ) mod p.

4: t← h
(0)
0 + h

(0)
7 ; r

(0)
0 ← t mod 2η; carry← bt/2ηc

5: for i← 1 to 6 do
6: t← h

(0)
i + h

(0)
i+7 + carry; r

(0)
i ← t mod 2η; carry← bt/2ηc

7: end for
8: r

(0)
7 ← carry

9: s
(0)
0 ← r

(0)
0 ; s

(0)
1 ← r

(0)
1 ; s

(0)
2 ← r

(0)
2

10: t← r
(0)
3 + 2η/2bh(0)10 /2

η/2c; s(0)3 ← t mod 2η; carry← bt/2ηc
11: for i← 4 to 6 do
12: t← r

(0)
i + h

(0)
i+7 + carry; s

(0)
i ← t mod 2η; carry← bt/2ηc

13: end for
14: s

(0)
7 ← r

(0)
7 + carry

15: for i← 0 to 2 do
16: t

(0)
i ← 2η/2(h

(0)
i+11 mod 2η/2) + bh(0)i+10/2

η/2c
17: end for
18: t

(0)
3 ← 2η/2(h

(0)
7 mod 2η) + bh(0)13 /2

η/2c
19: for i← 4 to 6 do
20: t

(0)
i ← 2η/2(h

(0)
i+4 mod 2η/2) + bh(0)i+3/2

η/2c
21: end for
22: t← s

(0)
0 + t

(0)
0 ; h

(1)
0 ← t mod 2η; carry← bt/2ηc

23: for i← 1 to 6 do
24: t← s

(0)
i + t

(0)
i + carry; h

(1)
i ← t mod 2η; carry← bt/2ηc

25: end for
26: h

(1)
7 ← s

(0)
7 + carry

27: t← h
(1)
0 + h

(1)
7 ;h

(2)
0 ← t mod 2η; carry← bt/2ηc

28: t← h
(1)
1 + carry;h

(2)
1 ← t mod 2η; carry← bt/2ηc

29: t← h
(1)
2 + carry;h

(2)
2 ← t mod 2η; carry← bt/2ηc

30: t← h
(1)
3 + 2η/2h

(1)
7 + carry;h

(2)
3 ← t mod 2η; carry← bt/2ηc

31: t← h
(1)
4 + carry;h

(2)
4 ← t mod 2η; carry← bt/2ηc

32: t← h
(1)
5 + carry;h

(2)
5 ← t mod 2η; carry← bt/2ηc

33: t← h
(1)
6 + carry;h

(2)
6 ← t mod 2η; h

(2)
7 ← bt/2ηc

34: t← h
(2)
0 + h

(2)
7 ;h

(3)
0 ← t mod 2η; carry← bt/2ηc

35: t← h
(2)
1 + carry;h

(3)
1 ← t mod 2η; carry← bt/2ηc

36: t← h
(2)
2 + carry;h

(3)
2 ← t mod 2η; carry← bt/2ηc

37: h
(3)
3 ← h

(2)
3 + 2η/2h

(2)
7 + carry

38: h
(3)
4 ← h

(2)
4 ; h

(3)
5 ← h

(2)
5 ; h

(3)
6 ← h

(2)
6

39: return h(3)(θ) = h
(3)
0 + h

(3)
1 θ + · · ·+ h

(3)
6 θ6

40: end function.

Using (5) for j = 10 we can write (4) as

h(0)(θ) ≡ (r
(0)
0 + r

(0)
1 θ + · · ·+ r

(0)
7 θ7) +

(h
(0)
7 + h

(0)
8 θ + h

(0)
9 θ2 + (h

(0)
10,0 + h

(0)
10,12η/2)θ3 + h

(0)
11 θ

4 + h
(0)
12 θ

5 + h
(0)
13 θ

6)θ32η/2,

4



which can be further written as

h(0)(θ) ≡ (r
(0)
0 + r

(0)
1 θ + · · ·+ r

(0)
7 θ7) + (h

(0)
7 + h

(0)
8 θ + h

(0)
9 θ2 + h

(0)
10,0θ

3)θ32η/2 +

(h
(0)
10,1 + h

(0)
11 2η/2 + h

(0)
12 θ2

η/2 + h
(0)
13 θ

22η/2)θ7,

≡ (r
(0)
0 + r

(0)
1 θ + · · ·+ r

(0)
7 θ7) + (h

(0)
7 + h

(0)
8 θ + h

(0)
9 θ2 + h

(0)
10,0θ

3)θ32η/2 +

(h
(0)
10,1 + h

(0)
11 2η/2 + h

(0)
12 θ2

η/2 + h
(0)
13 θ

22η/2)(θ32η/2 + 1) [using (2)],

= (r
(0)
0 + r

(0)
1 θ + · · ·+ r

(0)
7 θ7) + (h

(0)
10,1 + h

(0)
11 2η/2 + h

(0)
12 θ2

η/2 + h
(0)
13 θ

22η/2)θ32η/2 +

(h
(0)
10,1 + h

(0)
11 2η/2 + h

(0)
12 θ2

η/2 + h
(0)
13 θ

22η/2) + (h
(0)
7 + h

(0)
8 θ + h

(0)
9 θ2 + h

(0)
10,0θ

3)θ32η/2,

= (r
(0)
0 + r

(0)
1 θ + · · ·+ r

(0)
7 θ7) + (2η/2h

(0)
10,1θ

3 + h
(0)
11 θ

4 + h
(0)
12 θ

5 + h
(0)
13 θ

6) +

(h
(0)
10,1 + h

(0)
11 2η/2 + h

(0)
12 θ2

η/2 + h
(0)
13 θ

22η/2) + (h
(0)
7 + h

(0)
8 θ + h

(0)
9 θ2 + h

(0)
10,0θ

3)θ32η/2. (6)

Steps 9-14 perform the addition of the polynomials (r
(0)
0 +r

(0)
1 θ+ · · ·+r

(0)
7 θ7) and (2η/2h

(0)
10,1θ

3 +h
(0)
11 θ

4 +

h
(0)
12 θ

5 + h
(0)
13 θ

6) to produce the polynomial (s
(0)
0 + s

(0)
1 θ + · · ·+ s

(0)
7 θ7). Hence, from (6) we write

h(0)(θ) ≡ (s
(0)
0 + s

(0)
1 θ + · · ·+ s

(0)
7 θ7)︸ ︷︷ ︸

through Steps 9-14

+ (h
(0)
10,1 + h

(0)
11 2η/2 + h

(0)
12 θ2

η/2 + h
(0)
13 θ

22η/2) +

(h
(0)
7 + h

(0)
8 θ + h

(0)
9 θ2 + h

(0)
10,0θ

3)θ32η/2, (7)

where 0 ≤ s(0)0 , s
(0)
1 , · · · , s(0)6 < 2η, and 0 ≤ s(0)7 ≤ 2. Using the definitions of (5) we can be further write

(7) as

h(0)(θ) ≡ (s
(0)
0 + s

(0)
1 θ + · · ·+ s

(0)
7 θ7) + h

(0)
10,1 + (h

(0)
11,0 + h

(0)
11,12η/2)2η/2 + (h

(0)
12,0 + h

(0)
12,12η/2)θ2η/2 +

(h
(0)
13,0 + h

(0)
13,12η/2)θ22η/2 + (h

(0)
7,0 + h

(0)
7,12η/2)θ32η/2 + (h

(0)
8,0 + h

(0)
8,12η/2)θ42η/2 +

(h
(0)
9,0 + h

(0)
9,12η/2)θ52η/2 + h

(0)
10,0θ

62η/2,

= (s
(0)
0 + s

(0)
1 θ + · · ·+ s

(0)
7 θ7) + (h

(0)
10,1 + h

(0)
11,02η/2) + (h

(0)
11,1 + h

(0)
12,02η/2)θ +

(h
(0)
12,1 + h

(0)
13,02η/2)θ2 + (h

(0)
13,1 + h

(0)
7,02η/2)θ3 + (h

(0)
7,1 + (h

(0)
8,02η/2)θ4 +

(h
(0)
8,1 + h

(0)
9,02η/2)θ5 + (h

(0)
9,1 + h

(0)
10,02η/2)θ6,

= (s
(0)
0 + s

(0)
1 θ + · · ·+ s

(0)
7 θ7) + (t

(0)
0 + t

(0)
1 θ + · · ·+ t

(0)
6 θ6)︸ ︷︷ ︸

through Steps 15-21

. (8)

Steps 22-26 add the two polynomials (s
(0)
0 + s

(0)
1 θ+ · · ·+ s

(0)
7 θ7) and (t

(0)
0 + t

(0)
1 θ+ · · ·+ t

(0)
6 θ6) limb-wise

by forwarding the 1-bit carry, producing the polynomial (h
(1)
0 +h

(1)
1 θ+ · · ·+h

(1)
7 θ7). Hence, from (8) we

can write

h(0)(θ) ≡ (s
(0)
0 + s

(0)
1 θ + · · ·+ s

(0)
7 θ6) + (t

(0)
0 + t

(0)
1 θ + · · ·+ t

(0)
6 θ6),

= (h
(1)
0 + h

(1)
1 θ + · · ·+ h

(1)
7 θ7)︸ ︷︷ ︸

through Steps 22-26

= h(1)(θ), (9)

where 0 ≤ h
(1)
0 , h

(1)
1 , . . . , h

(1)
6 < 2η, and 0 ≤ h

(1)
7 < 22. In the rest of the proof, we use the looser bound

h
(1)
7 < 216 = 2η/4. This does not cause any problem. The advantage is that, later we can refer to the

subsequent part of the proof to argue about the correctness of the reduction of the quantity obtained
after multiplying by the 16-bit curve constant.

Reduction from h(1)(θ) to h(2)(θ). Polynomial h(1)(θ) can further be written as

h(1)(θ) ≡ h
(1)
0 + h

(1)
1 θ + · · ·+ h

(1)
6 θ6 + h

(1)
7 (2η/2θ3 + 1) [using (2)],

= (h
(1)
0 + h

(1)
1 θ + · · ·+ h

(1)
6 θ6) + (h

(1)
7 + 2η/2h

(1)
7 θ3). (10)

Steps 27-33 add the polynomial (2η/2θ3+1)h
(1)
7 = (h

(1)
7 +2η/2h

(1)
7 θ3) to the polynomial (h

(1)
0 +h

(1)
1 θ+· · ·+

h
(1)
6 θ6), which produces (h

(2)
0 +h

(2)
1 θ+ · · ·+h

(2)
7 θ7), where 0 ≤ h(2)0 , h

(2)
1 , · · · , h(2)6 < 2η, and 0 ≤ h(2)7 < 2.

5



Hence, from (10) we write

h(1)(θ) ≡ (h
(1)
0 + h

(1)
1 θ + · · ·+ h

(1)
6 θ6) + (h

(1)
7 + 2η/2h

(1)
7 θ3),

= (h
(2)
0 + h

(2)
1 θ + · · ·+ h

(2)
7 θ7)︸ ︷︷ ︸

through Steps 27-33

= h(2)(θ), (11)

where 0 ≤ h
(2)
0 , h

(2)
1 , · · · , h(2)6 < 2η, and 0 ≤ h

(2)
7 < 2. Note that in Steps 27-33, the value of carry is at

most 1. In Step 33, h
(2)
7 = 1 if and only if h

(1)
6 = 2η − 1 and carry = 1 which implies h

(2)
6 = t mod 2η =

2η mod 2η = 0. Moving one step backward, in Step 32 the output carry is 1 if and only if the conditions

h
(1)
5 = 2η − 1 and the input carry = 1 hold, which results in setting h

(2)
5 to 0. Moving another step

backward, in Step 31, the output carry is 1 if and only if the conditions h
(1)
4 = 2η − 1 and the input

carry = 1 hold, which results in setting h
(2)
4 to 0. Moving one more step backward, in Step 30, the output

carry is 1 if and only if the conditions h
(1)
4 = 2η − 1 and the input carry = 1 hold, and so the value of h

(2)
3

is bounded above by (2η − 1 + 2η/4 · 2η/2 + 1) mod 2η = 23η/4. Hence, if h
(2)
7 = 1, the conditions

h
(2)
3 < 23η/4, h

(2)
4 = h

(2)
5 = h

(2)
6 = 0. (12)

have to hold.

Reduction from h(2)(θ) to h(3)(θ). Polynomial h(3)(θ) can further be written as

h(2)(θ) ≡ h
(2)
0 + h

(2)
1 θ + · · ·+ h

(2)
6 θ6 + h

(2)
7 (2η/2θ3 + 1) [using (2)],

= (h
(2)
0 + h

(2)
1 θ + · · ·+ h

(2)
6 θ6) + (h

(2)
7 + 2η/2h

(2)
7 θ3). (13)

If h
(2)
7 = 0, then after Steps 34-38 we get h

(3)
j = h

(2)
j , j = 0, 1, . . . , 6; else, if h

(2)
7 = 1, then using (12) we

can say that the reduction surely terminates by the addition in Step 37. Using the bound of h
(2)
3 < 23η/4

from (12) the maximum possible value of h
(3)
3 through Step 37 is 23η/4 + 2η/2 + 1 < 2η. This implies

after Steps 34-38 0 ≤ h(3)j < 2η, j = 0, 1, 2, 3, and h
(3)
4 = h

(3)
5 = h

(3)
6 = 0. Hence, in any case from (13) it

follows that

h(2)(θ) ≡ (h
(2)
0 + h

(2)
1 θ + · · ·+ h

(2)
6 θ6) + (h

(2)
7 + 2η/2h

(2)
7 θ3),

= (h
(3)
0 + h

(3)
1 θ + · · ·+ h

(3)
6 θ6)︸ ︷︷ ︸

through Steps 34-38

= h(3)(θ), (14)

where 0 ≤ h(3)0 , h
(3)
1 , · · · , h(3)6 < 2η. Also, by combining (9), (11) and (14) we have h(3)(θ) ≡ h(0)(θ) mod p,

which proves the theorem.

3.2 Reduction from 8-Limb to 7-Limb

Integer addition of two field elements in Fp will produce an 8-limb quantity, the eighth limb of which
has a size of at most 1 bit. Multiplying a field element by a field constant will also produce an 8-limb
quantity. Considering Curve448, the field constant with which a multiplication of a field element arises
in the Montgomery ladder is (A+ 2)/4 = (156326 + 2)/4 = 39082 < 216 = 2η/4. Hence, given an 8-limb
quantity, the reduction to 7-limb can be performed as follows. Consider the 8-limb quantity to be h(1)(θ)
and apply the part of reduce448 which reduces h(1)(θ) to h(3)(θ). The correctness of the reduction is
guaranteed by the part of the proof of Theorem 1 which argues the correctness of the reduction from
h(1)(θ) to h(2)(θ) and from h(2)(θ) to h(3)(θ).

3.3 Subtraction

Let f(θ) and g(θ) be 7-limb quantities representing elements of Fp. The requirement is to compute
(f(θ) − g(θ)) mod p. Function sub448 of Algorithm 2 performs this computation. The description of
sub448 uses the instruction sub which is defined as follows. Let x and y be 64-bit quantities and b0 be a
bit. The instruction sub(x, y, b0) produces as output the pair (z, b1) where z is a 64-bit quantity and b1
is a bit. The definitions of z and b1 are as follows.

z =

{
x− (y + b0) if x ≥ y + b0,
264 + x− (y + b0) if x < y + b0;

(15)

b1 =

{
0 if x ≥ y + b0,
1 if x < y + b0.

(16)

6



The assembly instruction sub can be used to implement sub(x, y, 0) while the assembly instruction sbb

can be used to implement the more general sub(x, y, b0).

Algorithm 2 Subtraction in Fp.

1: function sub448((f(θ), g(θ)))
2: input: 7-limb quantities f(θ) and g(θ) such that 0 ≤ fi, gj < 264 for i, j = 0, 1, . . . , 6.

3: output: h(2)(θ) = h
(2)
0 + h

(2)
1 θ + · · · + h

(2)
1 θ6 such that 0 ≤ h

(2)
i < 264 for i = 0, 1, . . . , 6 and

h(2)(θ) ≡ (f(θ)− g(θ)) mod p.

4: b← 0
5: for i← 0 to 6 do
6: (h

(0)
i , b)← sub(fi, gi, b)

7: end for

8: d← b; d′ ← d� 32
9: b← 0

10: (h
(1)
0 , b)← sub(h

(0)
0 , d, b)

11: (h
(1)
1 , b)← sub(h

(0)
1 , 0, b)

12: (h
(1)
2 , b)← sub(h

(0)
2 , 0, b)

13: (h
(1)
3 , b)← sub(h

(0)
3 , d′, b)

14: (h
(1)
4 , b)← sub(h

(0)
4 , 0, b)

15: (h
(1)
5 , b)← sub(h

(0)
5 , 0, b)

16: (h
(1)
6 , b)← sub(h

(0)
6 , 0, b)

17: d← b; d′ ← d� 32
18: b← 0
19: (h

(2)
0 , b)← sub(h

(1)
0 , d, b)

20: (h
(2)
1 , b)← sub(h

(1)
1 , 0, b)

21: (h
(2)
2 , b)← sub(h

(1)
2 , 0, b)

22: (h
(2)
3 , b)← sub(h

(1)
3 , d′, b)

23: h
(2)
4 ← h

(1)
4 ; h

(2)
5 ← h

(1)
5 ; h

(2)
6 ← h

(1)
6

24: return h(2)(θ) = h
(2)
0 + h

(2)
1 θ + · · ·+ h

(2)
6 θ6

25: end function.

The correctness of sub448 is stated in the following theorem.

Theorem 2. The output h(2)(θ) = h
(2)
0 + h

(2)
1 θ + · · · + h

(2)
6 θ6 of sub448 satisfies 0 ≤ h

(2)
i < 264 for

i = 0, 1, . . . , 6 and h(2)(θ) ≡ (f(θ)− g(θ)) mod p.

Proof. The limbs h
(2)
i , i = 0, 1, . . . , 6 are obtained as the first components of the outputs of some

invocations of the sub instruction. Consequently, it follows that all of these are 64-bit quantities. This
settles the point about the bounds on these limbs. So, we have to argue two things. First, h(2)(θ) =
(f(θ) − g(θ)) mod p and second that the procedure terminates without any overflow. The congruency
argument is obtained from the following observations.

1. Let δ = 2224+1. Steps 8-16 of sub448 correspond to the subtraction of δ from the integer represented
by h(0)(θ). Similarly, Steps 17-22 correspond to the subtraction of δ from the integer represented
by h(1)(θ).

2. Suppose f(θ) ≥ g(θ) (as integers). Then, after Step 7, we have h(0)(θ) = f(θ)− g(θ) and b = 0. As
a consequence of b = 0 at Step 7, it follows that h(0)(θ) = h(1)(θ) = h(2)(θ) establishing the result
for this particular case.

3. In view of the previous point, assume f(θ) < g(θ). In this case, after Step 7, we have that
h(0) represents the integer 2448 + f(θ) − g(θ) and b = 1. Steps 10-16 subtract δ from h(0)(θ) =
2448 + f(θ)− g(θ).

(a) If h(0)(θ) ≥ δ, then after Step 16, h(1)(θ) represents the integer h(0)(θ) − δ = 2448 + f(θ) −
g(θ) − δ = p + f(θ) − g(θ) ≡ (f(θ) − g(θ)) mod p and b = 0. As a consequence of b = 0 at
Step 16, it follows that h(2)(θ) = h(1)(θ) establishing the result for this case.

7



(b) If h(0)(θ) < δ, then after Step 16, h(1)(θ) represents the integer 2448 + h(0)(θ) − δ = 2448 +
2448 + f(θ) − g(θ) − δ = 2448 + p + f(θ) − g(θ) and b = 1. Steps 19-22 subtract δ from
h(1)(θ) = 2448 + p+ f(θ)− g(θ) to obtain h(2)(θ) = h(1)(θ)− δ = 2448 + p+ f(θ)− g(θ)− δ =
2p+ f(θ)− g(θ) ≡ (f(θ)− g(θ)) mod p.

It only remains to argue that b produced by the sub instruction in Step 22 is necessarily 01.If the value
of d′ in Step 17 is 0, then it follows that the value of b in the output of Step 22 is also 0. So, suppose
that the value of d′ in Step 17 is 232. In this case, a sufficient condition for the value of b produced by

the sub call in Step 22 to be 0 is h
(1)
3 ≥ 232 + 1. The value of d′ in Step 17 is 232, only if the value of b

produced by the sub call in Step 16 is 1. Arguing backwards, the value of b produced by the sub call in
Step 13 must be 1. Denote by b0 (resp. b1) the value of b in the input (resp. output) of Step 13. By the

previous argument, we have b1 = 1. From the definition of sub, b1 = 1 occurs if and only if h
(0)
3 < d′ +b0

and in this case h
(1)
3 = 264 + h

(0)
3 − (d′ + b0). Since d′ ≤ 232 and b0 ≤ 1, it follows that h

(1)
3 ≥ 232 + 1 as

required.

4 Implementation and Timings

We present two 7-limb 64-bit implementations for shared secret computation phase of the X448 function.
We term these implementations as mxaa and maax-type implementations. The implementations based
on the instructions mulx, add, adc are collectively termed as mxaa, and the implementations based on
the instructions mulx, adcx, adox are collectively termed as maax. All the implementations are based
on 64-bit assembly instructions targeting the Intel architectures. The mxaa type implementations are
supported across a wide range of Intel processors. The maax type implementations are supported on
modern Intel processors such as Skylake, but are not supported on previous generation processors such
as Haswell.

Implementation of X448 requires implementation of field arithmetic over Fp. Field multiplication
and squaring are done in two steps. The first step multiplies two 7-limb field elements (considered as
integers) to obtain a 14-limb integer. The second step reduces the 14-limb integer to a 7-limb integer.
For the reduction, we have used Function reduce448 while for the integer multiplication we have used
the algorithms given in [3]. Implementations of field addition, subtraction and multiplication by the
curve constant are as described in Sections 3.2 and 3.3. Overall, the implementation of X448 requires an
implementation of the Montgomery ladder. We have made a careful constant-time assembly implemen-
tation of the Montgomery ladder. A major goal of the implementation has been to make efficient use
of the available registers so that a minimal number of load/store instructions are required. Below, we
provide timing results for the new implementations. The timing experiments were carried out on single
cores of the Haswell and Skylake processors. The turbo-boost and hyper-threading features were turned
off while measuring the cpu-cycles.

Platform specifications. The specifications of the hardware and software tools used in our software
implementations are given below.

Haswell: Intel®CoreTM i7-4790 4-core CPU 3.60 Ghz. The OS was 64-bit Ubuntu 14.04 LTS and the
source code was compiled using GCC version 7.3.0.

Skylake: Intel®CoreTM i7-6500U 2-core CPU @ 2.50GHz. The OS was 64-bit Ubuntu 14.04 LTS and
the source code was compiled using GCC version 7.3.0.

Timings in the form of cpu-cycles are provided in Table 1. For comparison we have considered the
timings of the most efficient (to the best of our knowledge) publicly available 64-bit implementation of
Curve448, which is the software implementation corresponding to the work [4]2. We downloaded the
mentioned software and measured the cpu-cycles on the same platforms on which we have measured
the cpu-cycles of our implementations. This has been done to keep the comparisons consistent. We
summarize the following observations from the timings of Table 1.

• On Skylake, the new implementations are substantially better than the the previous implementa-
tions. For maax-type implementation a speed-up of about 18% is obtained, while for mxaa type
implementations, a speed-up of about 22% is obtained.

1An earlier version of this argument had an error. Thanks to Timothy Shelton [7] for correcting it.
2Program code from https://github.com/armfazh/rfc7748_precomputed was accessed on June 25, 2020.

8

https://github.com/armfazh/rfc7748_precomputed


Operation Haswell Skylake Implementation Implementation Type

Shared secret

732013 587389 [4] mxaa, inline assembly

- 530984 [4] maax, inline assembly

719217 461379 this work mxaa, assembly

- 434831 this work maax, assembly

Table 1: CPU-cycle counts on Haswell and Skylake processors for
shared secret computation on Curve448.

• For Haswell, the new mxaa-type implementation is better than the previous implementation by
about 13K cpu-cycles. While this is an improvement, it is not as substantial an improvement as
has been achieved in Skylake.

While the reduction algorithms that we have described avoid certain redundant operations performed
by the code corresponding to [4], and consequently, do contribute to the speed improvement, it is not
the only reason for the speed-up. A major reason for the speed improvement is a very careful assembly
implementation making judicious use of the available registers so that the number of load/store operations
is minimal.

In addition to the shared secret computation, we have also developed assembly code for the key
generation phase of Curve448. The corresponding timings are reported in Table 2.

Operation Haswell Skylake Implementation Implementation Type

Key generation
653035 427058 this work mxaa, assembly

- 396583 this work maax, assembly

Table 2: CPU-cycle counts on Haswell and Skylake processors for
key generation on Curve448.

5 Conclusion

In this work we have presented reduction algorithms and their proofs of correctness required for compu-
tation in the field Fp where p = 2448 − 2224 − 1. Based on these algorithms and other previously known
techniques, we have made efficient 64-bit assembly implementations of the X448 function of Curve448
leading to new speed records for 64-bit implementations. While our work has concentrated entirely on
the prime 2448−2224−1, we note that the ideas involved can be applied to other primes having a similar
form such as the prime 2480 − 2240 − 1.

References

[1] Mike Hamburg. Ed448-goldilocks, a new elliptic curve. IACR Cryptology ePrint Archive, 2015:625, 2015.

[2] Adam Langley and Mike Hamburg. Elliptic curves for security. Internet Research Task Force (IRTF), Request
for Comments: 7748, https://tools.ietf.org/html/rfc7748, 2016. Accessed on 16 September, 2019.

[3] Kaushik Nath and Palash Sarkar. Efficient Arithmetic in (Pseudo-)Mersenne Prime Order Fields. IACR
Cryptology ePrint Archive, 2018:985, 2018.

[4] Thomaz Oliveira, Julio López Hernandez, Hüseyin Hisil, Armando Faz-Hernández, and Francisco Rodŕıguez-
Henŕıquez. How to (pre-)compute a ladder - improving the performance of X25519 and X448. In Selected
Areas in Cryptography - SAC 2017 - 24th International Conference, Ottawa, ON, Canada, August 16-18,
2017, Revised Selected Papers, pages 172–191, 2017.

[5] E. Ozturk, J. Guilford, and V. Gopal. Large integer squaring on Intel architecture processors,
intel white paper. https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/

large-integer-squaring-ia-paper.pdf, 2013.

[6] E. Ozturk, J. Guilford, V. Gopal, and W. Feghali. New instructions supporting large integer arithmetic on
Intel architecture processors, intel white paper. https://www.intel.com/content/dam/www/public/us/en/

documents/white-papers/ia-large-integer-arithmetic-paper.pdf, 2012.

9

https://tools.ietf.org/html/rfc7748
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/large-integer-squaring-ia-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/large-integer-squaring-ia-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-large-integer-arithmetic-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-large-integer-arithmetic-paper.pdf


[7] Timothy Shelton. A note on “reduction modulo 2448−2224−1”. Cryptology ePrint Archive, Report 2021/804,
2021. https://ia.cr/2021/804.

[8] Version 1.3 TLS Protocol. RFC 8446. https://datatracker.ietf.org/doc/rfc8446/?include_text=1,
2018. Accessed on 16 September, 2019.

A Comparison to [4]

Page 17 of [4], provides an abstraction of the reduction strategy used to convert the integer z represented
by the 14-limb polynomial h(0)(θ) to a reduced integer in Fp, which are given as below.

z ← (z mod 2672) + (2448 + 2224)bz/2672c, (17)

z ← (z mod 2448) + (2224 + 1)bz/2448c, (18)

z ← (z mod 2448) + (2224 + 1)bz/2448c. (19)

The first two steps (17) and (18) convert the 14-limb input quantity h(0)(θ) to the 8-limb quantity h(1)(θ),
such that the size of the eighth limb of h(1)(θ) is at most 2 bits long. Step (17) reduces h(0)(θ) to an
11-limb polynomial, say f(θ) = f0 + f1θ + · · ·+ f10θ

10 and Step (18) reduces f(θ) to h(1)(θ). Step (19)
further reduces h(1)(θ) to h(2)(θ) which is also an 8-limb quantity whose final limb is at most 1 bit long.
The final reduction round that converts h(2)(θ) to h(3)(θ), which is a 7-limb quantity is missing. As a
result, the reduction strategy suggested in [4] is incomplete.

Reduction Algorithms Used in the Code Accompanying [4]. We have studied the latest version3

of the implementation corresponding to [4]. The reduction algorithm used in this code is different from the
strategy outlined in the paper. While the strategy suggested in the paper is incomplete, the algorithms
implemented in the code are indeed complete. They, however, perform some redundant operations.
Recall that in the final round which reduces h(2)(θ) to h(3)(θ), Algorithm 1 proceeds only up to the
fourth limb. Theorem 1 shows that this is sufficient. The present version of the code corresponding to [4]
performs the additions till the last limb. The three extra additions in the final round are redundant.
Similar redundancies are also present in addition, subtraction and multiplication by the field constant.

An efficiency issue while reducing h(0)(θ) to h(1)(θ). Define φ = θ32η/2 = 2224, which implies
φ2 ≡ φ + 1 using (2). We can also view h(0)(θ) as an equivalent polynomial h(0) in base φ defined as
h(0)(φ) = a+ bφ+ cφ2 + dφ3, where a, b, c, d < φ. Under such a consideration, the reduction from h(0)(θ)
to h(1)(θ) of Algorithm 1 can be described as a reduction from h(0)(φ) to h(1)(φ) through the following
steps.

h(0)(φ) = a+ bφ+ cφ2 + dφ3

= (a+ bφ) + (c+ dφ)φ2

≡ (a+ bφ) + (c+ dφ)(φ+ 1) mod p

= (a+ bφ) + (c+ dφ) + cφ+ dφ2 mod p

≡ (a+ bφ) + (c+ dφ) + cφ+ dφ+ d mod p

= (a+ bφ) + (c+ dφ) + dφ+ (d+ cφ) mod p

= h(1)(φ) mod p.

Algorithm 1 computes h(1)(φ) from h(0)(φ) by first adding (c+ dφ) to (a+ bφ) through Steps 4-8. Then
it adds dφ to the result through Steps 9-14. Finally, (d + cφ) is computed through Steps 15-21 and
added to the previous result through Steps 22-26 to produce h(1)(φ). The x86 architecture has 15 64-bit
registers (keeping aside the stack pointer register rsp) to work with. To store the value of the product
h(0)(φ) = (a + bφ + cφ2 + dφ3) we need 14 64-bit registers. So, the polynomial (a + bφ) is stored in 7
registers and (c + dφ) is stored in another 7. We need d to compute (d + cφ), so it is better to keep d
undisturbed until we compute the value of (d + cφ). We first add the register values of (c + dφ) to the
registers of (a + bφ). The register values of (a + bφ) gets updated to produce the temporary sum and
the register values of (c+ dφ) remain unchanged. After that, we only copy the middle limb of (c+ dφ)
to a temporary register and mask off its lower 32 bits to achieve the first 32 bits of d. The remaining
192 bits are easily obtained from the last three register values of (c+ dφ) without any extra operations.

3Program code from https://github.com/armfazh/rfc7748_precomputed/blob/master/src/fp448_x64.c was accessed
on June 25, 2020.

10

https://ia.cr/2021/804
https://datatracker.ietf.org/doc/rfc8446/?include_text=1
https://github.com/armfazh/rfc7748_precomputed/blob/master/src/fp448_x64.c


Now, we have d and add it to the previous sum to get a modified sum. Finally, we compute (d + cφ)
from (c + dφ) through shrd instructions which works in a circular manner and add the obtained value
to the previous sum to get the final value.

An alternative way to compute h(1)(φ) would be to first add (c + 2dφ) to (a + bφ) and then add
(d + cφ) to the result. The code corresponding to [4] uses this method. However, depending on the
number of available 64-bit registers in the x86 architectures, this is going to be less efficient. This is
because, computing 2d from d will necessitate extra operations to back up d for computing (d+ cφ) later
on. As a result, the number of load/stores will increase.

11


	Introduction
	Arithmetic in Fp
	Reduction in Fp
	Reduction from 14-Limb to 7-Limb
	Reduction from 8-Limb to 7-Limb
	Subtraction

	Implementation and Timings
	Conclusion
	Comparison to DBLP:conf/sacrypt/OliveiraLHFR17

