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Abstract

Genetic data is an indispensable part of big data,
promoting the advancement of life science and
biomedicine. Yet, highly private genetic data also
brings concerns about privacy risks in data shar-
ing. In our work, we adopt the cryptographic prim-
itive Secure Function Evaluation (SFE) to address
this problem. A secure SFE scheme allows insti-
tutions and hospitals to compute a function while
preserving the privacy of their input data, and each
participant knows nothing but their own input and
the final result. In our work, we present privacy-
preserving solutions for Human Leukocyte Antigen
(HLA) matching and two popular biostatistics tests:
Chi-squared test and odds ratio test. We also show
that our protocols are compatible with multiple
databases simultaneously and could feasibly han-
dle larger-scale data up to genome-wide level. This
approach may serve as a new way to jointly analyze
distributed and restricted genetic data among insti-
tutions and hospitals. Meanwhile, it can potentially
be extended to other genetic analysis algorithms,
allowing individuals to analyze their own genomes
without endangering data privacy.

1 Introduction

Gene is the unit of heredity made of DNA, transferred from a
parent to his/her offspring, and the complete set of genes and
other genetic materials present in a cell or organism generate
genome. With the progress of life science, genetic data has
been proved to be closely related to most of the life activities,
such as growth and illnesses [Shendure er al., 2019]. The
popularity of genetic testing leads to an exponential growth
of biological data, while this large amount of genetic data
provides valuable insights in fields like healthcare, drug dis-
covery and precision medicine [Liu et al., 2018] [Lee et al.,
2018]. On the other hand, individual’s blood relationship,
disease susceptibility, physical characteristics and personality
traits — all can be interpreted from genes. Concerns over ge-
netic data privacy impede the communication of data and pre-
vent joint analysis among different institutions. Meanwhile,
countries enacted laws or regulations to strictly control the
usage and sharing of genetic data. Thus, most of the genetic

data is kept in overwhelmingly secured repositories to pro-
vide high-level data security and privacy.

In fact, human genetic information is diversified. Biology
studies like statistical analysis [Vento-Tormo er al., 2018],
data selection, and data matching will greatly benefit from
more comprehensive and massive data resources. Currently,
institutions/hospitals rely on signed agreements to share pri-
vate genetic data under the supervision of governments, but
the signing process is rather slow, and private data will be
permanently shared. National authorities have established a
centralized public database to alleviate those problems. For
example, ClinGen, founded in 2013 by National Institutes
of Health (NIH), aims to become a central system that de-
fines the clinical relevance of genes and variants in preci-
sion medicine and research. However, data-centralization
also worsens the consequence of the security breach of the
database, which potentially attracts more attacks. Further-
more, centralized database usually suffers from proof acces-
sibility. In this data-driven era, to promote the development
of life science, isolated data is far from enough.

In this paper, we utilize the cryptographic primitive re-
lated to secure computation called Secure Function Evalua-
tion, present a privacy-preserving Human Leukocyte Antigen
(HLA) matching solution and an extensible secure statistics
computation framework. In summary, we make the following
contributions:

e We design the first secure HLA matching solution,
adopting the secure function evaluation protocol based
on the boolean circuit. Also, we propose a database
shuffling mechanism to increase the security of HLA
matching.

We provide an extensible framework for developing
other statistics algorithms, which can take common bio-
informatics files as input. We also discuss the security
problems of naive implementation of secure statistics
function and provide possible solutions.

2 Related Work

2.1 Genome Privacy

The biomedical community has been working to utilize the
benefit of data sharing. However, the integration of genetic
data yields many security and privacy concerns. On the one
hand, genetic data carries various sensitive information about



an individual such as ethnic heritage, disease predispositions,
and phenotypic traits. On the other hand, due to its hereditary
nature, the disclosure of genetic data would bring an impact
on their blood relatives. Also, the recently adopted EU Gen-
eral Data Protection Regulation (GDPR) refers to the term
genetic data throughout its recitals, and — perhaps more im-
portantly — genetic data are included in the list of sensitive
data in Article 9, without any kind of differentiation. It in-
dicates that the legislator tries to reflect the increasing use of
genetic data (not only for research purposes) and the growing
concerns around such use.

Over the years, privacy researchers have proposed several
methods on data de-identification and cryptographic privacy-
preserving techniques [Gymrek et al., 2013] [Homer et al.,
2008] [S. Shringarpure and Bustamante, 2015], meanwhile
other researchers try to find ways to breach genetic privacy.
[Erlich and Narayanan, 2013] provides a good summary for
current techniques either related to breach or protect genetic
privacy. Some of those attacks have even been demonstrated
in practice [Homer et al., 2008].

In recognition of the privacy needs for genetic data, gov-
ernments and institutions across the world have launched sev-
eral projects and software with the aim to promote data shar-
ing in a privacy-preserving manner, e.g. the Beacon Project,
the Matchmaker Exchange.

2.2 Secure Computation

Secure Computation, also called Secure Function Evaluation
(SFE) is a cryptographic primitive which securely evaluates
a function depending on two or more private inputs. Infor-
mally, SFE allows two parties, Alice and Bob, to secure com-
pute a function f(x,y), where z is Alice’s private input and
y is Bob’s private input, SFE ensures that at the end of the
protocol both parties could know nothing but their own input
and the evaluation result f(z,y).

The first generic circuit-based SFE protocol “Garbled Cir-
cuit” was proposed by [C. Yao, 1982] in 1982. In the late
1990s several protocols have been proposed based on differ-
ent circuits, e.g. boolean circuit, arithmetic circuit [Goldre-
ich et al., 1987] [Ben-Or et al., 1988] [Beaver et al., 1990].
Apart from the work we mentioned above, researchers have
been designing protocols for particular problems sacrificing
flexibility for efficiency such as private set intersection (PSI).
Later in section 4, we discuss our choices between different
circuits and how we choose our PSI protocol.

There are also other cryptographic primitives allowing the
secure computation of a function, for example, fully homo-
morphic encryption (FHE) scheme. However, FHE scheme
by now is far from practical and requires enormous computa-
tion power, therefore in our work, we have not considered it
as one of the solutions.

3 Preliminaries
3.1 Notation

In our HLA matching scenario, we denote the server as S and
the client as C. An HLA allele (string format) is denoted as
x. An individual HLA data Il = {2, 25, ...,2;} consists
of [ HLA allele. The database owned by S with n entries

is denoted as DI"l = {Iyl‘7 ...,L‘,,l"l}. We further encode
HLA allele from string format into 32-bit integer format, the
encoded data is denoted as [z]. As for secure statistics com-
putation protocol, we consider it in a two-party setting. P;
and P» are two parties holding database D; and D5 sepa-
rately. In addition, the underlying cryptographic primitives
of our protocols are instantiated with security parameter by
k = {80, 112,128} and static security parameter by o = 40,
as is recommended by National Institude of Standards and
Techonology (NIST).

3.2 Data Format

Human Leukocyte Antigens (HLA ) are proteins found on most
cells in human body and are used to match patients and
donors for bone marrow or cord blood transplants. Each
person has multiple HLA alleles and to deal with the en-
coding format of the highly polymorphic HLA molecules,
WHO Nomenclature Committee for Factors of the HLA Sys-
tem [HLA.Alleles.org, 2010] has proposed the nomenclature
of HLA alleles. Our HLA matching solution follows their
HLA system nomenclature and takes standard HLA alleles as
input. An example of HLA allele name is given below:

HLA-A*02:10IN

By definition, each HLA allele name has a unique number
corresponding to 2 sets of digits separated by colons. The
last character describes the protein expression level. For in-
stance, character N indicates that this HLA gene does not ex-
press, therefore we remove HLA data with ‘N’ during data
pre-processing. HLA typing bases on real DNA sequence
or polypeptide chain (the translated product from DNA se-
quence). As alleles receive at least a 4-digit number, any
missing specific HLA protein will be replaced by 0. We con-
verted string format HLA gene to an integer, the conversion
rule is shown in table A.

In the matching case, we work with the HLA database con-
sisting of HLA allele information and sample IDs. As is
shown above, HLA-A is the HLA allele type, 02 stands for
the allele group and /01 stands for the specific HLA protein.

For secure statistics computation protocol, we use HapMap
format files as input, which is a popular format adopted by
several major international biological databases describing
genotype information of different samples. The current re-
lease consists of sample attributes, including SNP ID, SNP
allele and list of sample names. The following Table 1 shows
an example of HapMap format file.

rs# alleles NA18532 NA18605 NA18542
rs11252546 C/T TT CC CC
rs10904494  A/G AA AG GG
rs11591988 A/C AA AA CC

Table 1: HapMap format

3.3 Security Model

In this paper, we assume that each participating pair has al-
ready established secure point-to-point channels prior to the



execution of protocol, in other words, all P2P communica-
tions are assumed to be securely encrypted.

Normally, secure function evaluation protocols are dis-
cussed under two security models: semi-honest security (also
called honest-but-curious security) and malicious security. A
semi-honest adversary is believed to execute protocol hon-
estly, but he/she will try to learn as much information as pos-
sible from the message it receives. In contrast, the malicious
security model assumes that adversaries could perform arbi-
trary behavior. Our secure protocols are based on a semi-
honest secure computation protocol, therefore in our work,
we choose the semi-honest model.

4 Privacy-Preserving HLA Matching

HLA molecules are highly polymorphic and they play an im-
portant role in the immune system. HLA matching is the
main way for both organ and bone marrow transplantation pa-
tients to find a suitable donor. The accuracy and efficiency of
matching strongly affect the postoperative rehabilitation and
survival rate of patients, a higher degree of HLA compatibil-
ity of donor-patient means lower incidence of transplantation
rejection, which increases the success rate of transplantation.
There may be a higher HLA matching rate between imme-
diate siblings or parents. However, if matching between sib-
lings or parents failed, comparing with donor database seems
to be a more promising way. By now, there is still a lack
of comprehensive and unified HLA database and hospitals
have their own HLA database with trivial overlap. Currently,
each patient may need to take multiple HLA matching tests
at different hospitals to find a potential donor. And each of
these tests costs approximately three thousand yuan, which is
a heavy financial burden for patients’ families. In the con-
ventional offline HLA matching, only 3 to 6 HLA classi-
cal genes will be considered within a limited donor group.
With our privacy-preserving HLA Matching system, patients
would only need to take the HLA matching test once and can
utilize all HLA allele information.
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@Karo HLACA0L0L HLADQL*0201

@Leial HLAD*03.0L HLADQL*02.01
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@Licko HLAA'0201 HLADQL0201

@Chalie HLAC*03.01 HLADQL*02.01

®Bob HLAD*0L0L HLAA0LOLL
Database Shuffing

Figure 1: Privacy-Preserving HLA Matching Scenario

In our solution, we bring our HLA matching system online,
enabling efficient and convenient privacy-preserving match-
ing with different databases. From the perspective of patients,

they can easily access to more diverse and massive donor re-
sources, increasing the possibility of successful matching. As
for databases, our solution ensures data security and privacy
under a semi-honest model. Figure 1 illustrates the structure
of our solution.

In this section, we discuss and detail our privacy-
preserving HLA matching solution. To begin with, a client
(presumably a patient) wants to securely find out the similar-
ity between his/her HLA data and each entry in the server’s
database. We let server S holds an HLA database D"l =
("' ..., 11}, and client C holds one individual HLA data

1 Llcl. Clinically, the similarity between two individuals’ HLA
data could be evaluated by calculating the number of the same
HLA alleles, denoted as f(I1,I). This similarity function
could also be treated as a slightly modified version of generic
Private Set Intersection protocol f (I, I2), which takes two
input sets I; and I, returning the size of their intersection
(|11 N Iz)).

Currently, there are two types of private set intersection
protocols: 1) Specially-designed protocols, which are faster
and more efficient. 2) Generic protocols based on secure
computation protocol. Despite the fact that generic proto-
cols have more overhead than specially-designed protocols,
they could be adjusted to compute any functions [Pinkas ef
al., 2015]. Also, the result of specially-designed PSI proto-
cols provides more auxiliary information (returning the in-
tersection set) than generic protocols (returning the size of
intersection set), Therefore we choose to implement a secure
two-party computation protocol to provide more security.
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In the following section, we describe how to use basic
boolean gates, namely EQ and ADD gates, to compute the
similarity function f (Lljlcl, I y"l). Notice that in our generic
PSI protocol, EQ and ADD gates are both secure SFE gates.

4.1 Secure Computation

Recall that we want to securely compute the following sim-
ilarity function, which consists of multiple secure ADD and
EQ gates. Theoretically, every function can be constructed
by three basic gates: AND, XOR and INV, in this section, we
focus on the evaluation of those three basic gates and how to
construct EQ and ADD gates using basic gates.

I
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Before evaluating the boolean circuit, server S maintains an
input {[zx]}r, € {0,1}?? and Client C maintains {[z;]}. €
{0,1}32. For simplicity, we denote a; as the ith bit of private
input {[zx]}p,, b; as the ith bit of private input {[x;]};,., and
@ as bit operation XOR. Boolean circuit evaluation depends
on XOR-based sharing, which means the evaluation of XOR
and INV gate are straight-forward and non-interactive. As



Algorithm 1 EQ Gate Construction

Input: a € {0,1}%2, b € {0,1}32.
Output: O or 1.
. Define 32-bit integer c, 1 bit integer r.
: for every biti : 0 — 31 do

r < AND(r, ¢;)
end for
return r
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Algorithm 2 ADD Gate (32-bit) Construction
Input: a € {0,1}32, b € {0,1}32.

Output: a + b.

1: function halfAdder (iny,ins,in.):
2:  outy = XOR(iny,ing)

3:  out, = AND(iny, ing)

4: return outg, out,

5: end function
6.
7
8

: function ADD (a, b):
: Lete<+ 0,1« {0,1}32
9: foreverybiti: 0 — 31do

10: r;, ¢ < halfAdder(a;, b;, ¢)
11:  end for
12: returnr

13: end function

for AND gate we adopted the R—OT? evaluation using pre-
computed multiplication triples [Asharov et al., 2013]. Here
in this paper we only provide a brief introduction of AND
gate evaluation, for those who are interested in this procedure,
we strongly recommend the original paper. As for the ADD
gate, we implement the work done by [Choi ef al., 2011] us-
ing those basic gates.

In the following, we describe secret-sharing, reconstruc-
tion and the evaluation processes of three basic gates.

e Sharing Secrets: Boolean circuit uses XOR-based secret
sharing. For each input bit a; € {0,1}, S generates
a random bit {a;}s = r; € {0,1} and send {a;}. =
a; ® r; to C, similarly C generates {b; }. = r} and send
{bi}s=b;®r;toS.

e Reconstruction: S sends its local compuation result to
C, then C compuates result = {result}, ® {result}.
In HLA matching scenario, server S does not necessarily
need to receive the matching result.

e XOR Evaluation: S locally computes {a;}s @ {b;}s, C
locally computes {a; }. @ {b; }e.

e INV Evaluation: S locally computes —{a;}s, C does
nothing.

e AND Evaluation: AND is evaluated using pre-computed
boolean multiplication triples A = o A 3 (generated by
R-OT?). S and C securely compute ¢ = a @ « and
f = b @ [ using XOR evaluation and reconstruction.
And finally S computes e f® f-{a; }sPe-{b; }s D{\}s
and C computes f - {a;}. ®e- {b;}. B {A}c

Similar to normal binary gates, those secure gates can be
used to construct complex functions. For instance, S and C
want to evaluate INV(XOR(a, b)), S and C' first share their se-
crets and then start to evaluate XOR gate, after the evaluation,
S would have {a;}s ® {b;}s and C has {a;}. & {b; }.. With-
out reconstructing, they continue to evluate next INV gate,
S computes —{a; }s ® {b; } s depending on the previous result
and C dose nothing. Finally they reconstruct their secrets and
getresult ={a;}s ® {b;}s ® {a;}c ® {bi}. = —a ® b. Algo-
rithm 1 and 2 depicts how to build secure EQ and 32-bit ADD
gate using basic gates.

4.2 Circuit Performace

As for circuit optimization, we have adopted several GMW
optimization methods mentioned in [Schneider and Zohner,
2013] and showed that GMW protocol achieves similar per-
formance as the garbled circuit in low-latency networks.
Our test environment is Ubuntu 16.04.6 LTS with Intel(R)
Xeon(R) Gold 5118 CPU 2.30GHz and 64G RAM. Our
tests show EQ gate evaluations based on Yao’s garbled cir-
cuit and boolean circuit both complete in less than 2ms. Fig-
ure 2 shows evaluation time with different number of client’s
HLA alleles using both boolean and Yao’s circuit. It shows
boolean circuit is more efficient than Yao’s garbled circuit
(Even though it is usually seen as best-performing). Further-
more, we compared our solution in the local environment
(low-latency) and in real network condition (high-latency)
(Figure 3). For this test, our server uses above configuration
and our client is Ubuntu 16.04.6 LTS with Intel(R) i7-7700
CPU 3.60GHz and 16G RAM.

We also tested our solution under different size of database,
result shows that the computation time is proportional to the
size of entries in the database. With 5,000 entries in database,
the evaluation time is under 1 min.
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Figure 2: Time of Evaluation Process for Different Number of
Client’s HLA Allele Data (Yao vs. Bool)

4.3 Database Shuffling

Until now, we have introduced the secure evaluation of the
function f(Illcl,Iyil), that’s to say, server S and client C'
could securely compute the size of their intersection reveal-
ing nothing but their own private input. However, this does
not meet our privacy criteria, a semi-honest client C' would
still be able to attack and retrieve database’s entries in poly-
nomial time. Here’s our attack: assume there is no restriction
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Figure 3: Total Time for Different Number of Client’s HLA Allele
Data (real network vs. local network)

on client’s query data, C' may input only one legit HLA allele
as P.. After the computation, C' would get a result of either 1
or O for each P; in server’s database, this result further helps
adversarial C to determine if P; has this specific HLA allele.
By brute-forcing the private input space of HLA alleles, with
232 queries C' could successfully retrieve all individual data
from database.

result; = f(1*! 141 )

We notice that the query mechanism is deterministic for client
according to Equation 1, the server returns each matching re-
sult in the same order they appear in the database, which al-
lows an attacker to associate the result with one specific en-
try in the database. Therefore, introducing randomness for
database could solve this problem, e.g. shuffling the database
for every query that server receives. The shuffling mechanism
works as follows (Equation 2).

result; = f(I)'!, 1]l1) 3)

where u = PRNG(secret + query_ID) 4+ i (modn),
PRNG is the pseudorandom generator. At the beginning
of our protocol, database S uses its own private entropy to
generate secret. Then whenever S receives a query, it allo-
cates the query with a unique query_I D and sends it back to
C'. Next, server S feeds secret and query_I D into the pseu-
dorandom generator to generate some randomness (from the
perspective of C'it’s random). According to this randomness,
S shuffles the database. Therefore at the end of our protocol,
C only receives the shuffled matching result and query_ID.
After the HLA matching, if C' wants to find the identity
of a perfect-matched entry with query_I D and i, he/she may
contact database in person, S would securely reveal the cor-
responding identity of this entry using secret. Normally,
the seed generation function can be either a hash function
with an entropy or Password-Based Key Derivation Func-
tion 2 (PBKDF?2) function with a password and a salt. We
strongly recommend PBKDF?2 since it uses iterations to pro-
vide more security guarantee than the original hash function,
and it has a rather slow calculation process which makes it
time-consuming for an attacker to brute-force.

S Secure Statistics Computation

Researchers have found out that many types of cancer
and chronic diseases have genetic predisposition factors

[Chakravarti and Little, 2003] [Lander and Schork, 1994].
With the help of large databases, Genome-Wide Association
Studies (GWAS) can generalize and discover the rules behind
large amounts of genetic data. Most of the GWAS processes
combine statistics computation with biological interpretation
[Clark et al., 2015] [Denny ef al., 2016].

As for other types of genetic data, DNA also has allele
polymorphism. A single DNA allele that occurs above a cer-
tain degree (normally 5%) within a population will be defined
as a variant. Genetic testing can detect variants, however,
there are a large number of detected variants we still know
little about. GWAS can be implemented to discover potential
rules about the relationship between genotype and phenotype.
But it requires huge amount of data resource to eliminate ran-
dom error. The Chi-squared test and odds ratio test are two
commonly-used association study methods in GWAS.

In this section, we extend our protocols to cover statistics
analysis function and discuss the privacy issues behind the
naive implementation. Our work is similar to the work of
[Cho et al., 2018], their proposed framework requires raw
genotype and phenotype data as input because they work un-
der the assumption of outsourcing computation and clients
do not have enough computation power. The lack of local
processing increases the workload of their proposed secure
computation system. Our work assumes two institutions or
hospitals want to run statistics analysis on their private inputs,
therefore instead of raw data, we use the following aggregate
table as private input (Table 2).
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Party L Party 2

Figure 4: Secure Statistics Computation Scenario

5.1 Odds Ratio and Chi-Squared Test

Odds ratio and Chi-squared Test (x?) are both statistics algo-
rithms that quantify the strength of the association between
two factors. We provide a privacy-preserving odds ratio and
x? test using generic secure function evaluation. The table
and equations below introduce the statistics formulas for cal-
culating odds ratios and 2.

case control

a a b
A ¢ d

Table 2: OR and Chi’s input table

(a—¢?  (b—a)?
(b+d)

d
Odds Ratio = 22% (2 —
cxb (a+c¢)




In our designed scenario (Figure 4), there are two parties
P; and P, with reasonable computation power. P; holds
a private database D, and P, holds a private database Ds.
At the beginning of the protocol, P; and P, locally compute
the aggregate Table 1, denoted as [D;] and [D5]. We further
utilize secure multiplication gate MUL, secure division gate
DIV, and truncate function from [Catrina and Saxena, 2010]
to enable float point secure calculation with fixed-precision.

In this section we do not concentrate on the details of se-
cure MUL, DIV computation since they are not the main con-
tribution of this paper, instead, we present an attack for naive
implementation which reveals private inputs and offers a de-
fence method.

5.2 A Possible Attack and Countermeasure

A naive implementation of secure 2 and odds ratio computa-
tion takes D and D5 as inputs without any modification, we
argue that naive statistics protocol is vulnerable to attacks.
Let’s say two database P; and P» use naive method to se-
curely compute the output of OR, P; is a curious-but-honest
adversary while P, remains honest. To carry out the attack,
we assume: 1) During our attack, honest party P, does not
make any changes to its database D5. 2) Multiple queries are
permitted. In the following, we demonstrate our attack on the
native secure odds ratio computation.

At the begining of our attack, P; holds a private database
of {al, by, c1, dl}, and P, holds {ag, b, ca, d2} Py initiates
the first round of OR calculation and receives Equation 3 as
the result.

OR — (a1 + (12) X (dl + d2)

(Cl + 02) X (bl + bz)

P, then manually adds one self-selected entry (let’s say aa)
to its database D1, then in {D1}!, a} = a; + 2. Next P,

initiates the second round computation and receives the result
Equation 4.

“

(a'l + ag) X (d1 + dg)

OR' =
(Cl + CQ) X (b1 + bg)

®

By performing the following computation % =

@, P; will successfully learn the value a2 and similarly

within 4 rounds of execution of the protocol, P; will learn
all the inputs of P5. The attack for x? test follows the same
routine.

Here’s our defence strategy, in each round of calculation,
each party (P, and P») randomly selects 90% of their raw
genetic data to participate in local calculation. This means
for adequately large database D; and D-, each round of cal-
culation would result in different input table [D;] and [Ds],
violating our attack assumption 1).

6 Discussion

In this paper, we present a practical HLA matching solu-
tion using generic secure computation protocol and intro-
duce database shuffling to improve security of our protocols.
On the other hand, we present an extensible secure statis-
tics computation protocol which could be extended to other

biostatistical algorithms like linkage disequilibrium analysis
and linear logistic regression. Further direction could also
point to stronger security models, for instance, changing the
semi-honest model to covert security with public verifiabil-
ity. Because the semi-honest model requires strong security
assumptions and in genetic analysis, parties could behave ma-
liciously to learn data from other parties without revealing the
identity of themselves.
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A HLA Gene Encoding Table

HLA Gene ID HLA Gene ID HLA Gene 1D
HLA-A 1 HLA-U 15 HLA-DQA1 29
HLA-B 2 HLA-V 16 HLA-DQBI1 30
HLA-C 3 HLA-W 17 HLA-DPB1 31
HLA-E 4 HLA-Y 18 HLA-DPA2 32
HLA-F 5 HLA-DRA 19 HLA-DPB2 33
HLA-G 6 HLA-DRB1 20 HLA-DMA 34
HLA-H 7 HLA-DRB2 21 HLA-DMB 35
HLA-J 8 HLA-DRB3 22 HLA-DOA 36
HLA-K 9 HLA-DRB4 23 HLA-DOB 37
HLA-L 10 HLA-DRBS5 24 MICA 38
HLA-N 11 HLA-DRB6 25 MICB 39
HLA-P 12 HLA-DRB7 26 TAPI 40
HLA-S 13 HLA-DRB8 27 TAP2 41
HLA-T 14 HLA-DRBY9 28 HFE 42
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