
SaberX4: High-throughput Software Implementation
of Saber Key Encapsulation Mechanism

Sujoy Sinha Roy
School of Computer Science, University of Birmingham, United Kingdom

email: s.sinharoy@cs.bham.ac.uk

Abstract—Saber is a module lattice-based CCA-secure key
encapsulation mechanism (KEM) which has been shortlisted
for the second round of NIST’s Post Quantum Cryptography
Standardization project. To attain simplicity and efficiency on
constrained devices, the Saber algorithm is serial by construction.
However, on high-end platforms, such as modern Intel processors
with AVX2 instructions, Saber achieves limited speedup using
vector processing instructions due to its serial nature.

In this paper we overcome the above-mentioned algorithmic
bottleneck and propose a high-throughput software implementa-
tion of Saber, which we call ‘SaberX4’, targeting modern Intel
processors with AVX2 vector processing support. We apply the
batching technique at the highest level of the implementation hi-
erarchy and process four Saber KEM operations simultaneously
in parallel using the AVX2 vector processing instructions. Our
proof-of-concept software implementation of SaberX4 achieves
nearly 1.5 times higher throughput at the cost of latency
degradation within acceptable margins, compared to the AVX2-
optimized non-batched implementation of Saber by its authors.

We anticipate that both latency and throughput of SaberX4
will improve in the future with improved computer architectures
and more optimization efforts.

Index Terms—public-key cryptography, post-quantum cryp-
tography, lattice-based cryptography, key encapsulation scheme,
Saber

I. INTRODUCTION

Public-key cryptography is used in key exchange, authen-
tication and digital signature applications. The most popular
public-key algorithms, namely the RSA and ECC cryptosys-
tems, rely on the hardness of integer factorization and elliptic-
curve discrete logarithm problems from the Number The-
ory. These problems cannot be solved using our present-day
computers. Quantum computers are a new class of powerful
computers which rely on quantum mechanical phenomenon to
perform ‘certain’ tasks significantly faster than our present-
day computers. These ‘certain’ tasks include drug discovery,
DNA sequencing, machine learning etc., and also solving the
number theoretic problems that are the foundations of RSA
and ECC cryptosystems.

Post-quantum cryptography is a new branch of cryptography
which develops and studies cryptographic algorithms that
are secure against both quantum and classical computers,
and can interoperate with existing communications protocols
and networks [1]. The mathematical problems behind post-
quantum cryptographic algorithms are computationally infea-
sible for present-day as well as powerful quantum comput-
ers. Existing post-quantum cryptographic algorithms rely on
code-based, hash-based, lattice-based, multivariate quadratic

equation-based and super-singular isogeny-based computation
problems. Research in the past 10 years, have resulted in a rich
collection of post-quantum cryptographic schemes. In 2017,
the American National Institute of Standards and Technology
(NIST) initiated ‘Post-quantum Cryptography Standardiza-
tion,’ a project to solicit, evaluate, and standardize one or more
post-quantum public-key cryptographic algorithms [1]. Of the
69 candidate schemes which were submitted to the first round
of the standardization project, 26 have advanced to the second
round. The NIST has anticipated that the second round will
conclude by June 2020 and the third round will begin. In these
two final rounds, the algorithms will be scrutinized for their
security and implementation aspects.

Saber [3] is a CCA-secure Key Encapsulation Mechanism
(KEM) whose security relies on the hardness of the Module
Learning With Rounding problem (MLWR) which is presumed
to be a computationally infeasible problem on module lattices.
Saber has been designed considering high security, efficiency,
flexibility and at the same time simplicity. Saber uses power-
of-two modulus which makes modular reduction free of cost
and makes the protocol free from the requirement of rejection
sampling. However, the use of non-prime modulus precludes
the use of asymptotically fastest Number Theoretic Trans-
form (NTT)-based polynomial multiplier which is found to
be not a disadvantage as small-degree polynomials can be
multiplied efficiently using generic algorithms such as Karat-
suba and ToomCook [3]. Software implementations on both
high-end [3] and low-end processors [6] have demonstrated
efficiency, flexibility and scalability of the Saber algorithm.

Pseudo-random number generation using SHAKE-128 ex-
tendable output function [2] occupies a significant portion
of Saber’s execution time. On platforms with vector pro-
cessing instructions, pseudo-random number generation using
SHAKE-128 can be performed in parallel. For example,
Kyber KEM [7] uses the 4x vectorized SHAKE with four
seeds to generate pseudo-random strings in parallel. On the
contrary, the Saber [4] chooses to use the serial SHAKE-
128 to make the implementation of Saber simple and efficient
on resource-constrained platforms, e.g., billions of microcon-
trollers deployed in IoT applications. However, the application
of serial SHAKE in Saber, prevents any parallel process-
ing on vector-processors during the generation of pseudo-
random strings. For example, the AVX2-optimized implemen-
tation of Saber [4] by its authors uses AVX2 instructions to
speedup polynomial multiplications only. Whereas, the AVX2-



optimized implementation of Kyber [7] uses AVX2 instruc-
tions extensively to speedup both polynomial multiplication
and pseudo-random number generation.

Contributions: In this paper we overcome the above-
mentioned serial-execution bottleneck during the computation
of Saber KEM by applying parallel processing at the highest
level of the implementation hierarchy, i.e., the application-
level, where the Saber KEM protocol is executed. We ‘batch’
four Saber KEM operations into a single process and exe-
cute them in parallel using 256-bit AVX2 vector processing
instructions on modern Intel processor. We use the AVX2
implementation of SHAKE-128, known as SHAKE-128x4 [2],
to compute four SHAKE-128 operations in parallel, thus
producing four pseudo-random strings for the four KEM
operations simultaneously. In addition to that, our high-level
parallel processing approach is able to compute the SHA3
hash functions for the four KEM operations in parallel using
AVX2 instructions. On an Intel Core i5 7th generation pro-
cessor, our batched implementation achieves nearly 1.5 times
higher throughput compared the implementation of Saber by
its authors. The source codes of SaberX4 are available at
https://github.com/sujoyetc/SaberX4.

II. PRELIMINARIES

A. Notation

The ring of integers modulo q is denoted as Zq where the in-
tegers are in [0, q). The modular reduction operation z mod q
reduces an integer z in [0, q). The quotient polynomial ring
is denoted as Rq = Zq[x]/(xn + 1) where n is a power-
of-two. Thus polynomials in Rq are of n coefficients where
each coefficient is in [0, q). The notations Rl and Rl×k denote
the ring of l-vectors and l × k-matrices over R respectively.
Polynomials in Rq are denoted in lower case letters and
matrices/vectors are denoted in bold lower/upper case letters.

For a probability distribution χ over a set S, the notation
z ← χ is used to denote sampling z ∈ S according to the
distribution χ. Similarly, ZZZ ← χ(Rl×kq ) denotes sampling the
matrix ZZZ ∈ Rl×kq , where all coefficients have been sampled
from χ. To indicate a deterministic sampling of matrix ZZZ
starting from a random seed r, the notation ZZZ ← χ(Rl×kq ; r) is
used. The uniform distribution is denoted as U and a centered
binomial distribution with the parameter µ, which is an even
number, is denoted as βµ.

The bitwise left and right shift operations are denoted using
the operators� and� respectively. When these operators are
applied on polynomials or matrices, they are actually applied
on the coefficients.

Saber uses a hierarchy of algorithms. First, a Chosen
Plaintext Attack (CPA) secure public-key encryption scheme is
realized whose security is based on the Module Learning with
Rounding (MLWR) problem. Next, a post-quantum variant of
the Fujisaki-Okamoto transform [5] is applied to implement
Chosen Ciphertext Attack (CCA) secure Key Encapsulation
Mechanism (KEM) scheme. In the following, we describe the
algorithms used in CPA-secure ‘Saber Public Key Encryption’
and CCA-secure ‘Saber Key Encapsulation’.

B. Saber Public Key Encryption

The CPA-secure key generation, encryption and decryption
algorithms used in Saber [3] are shown in Alg. 1, 2 and 3
respectively. Saber uses two moduli q = 213 and p = 210 with
bit-lengths εq = 13 and εp = 10 respectively. Key generation
uses a 32 byte random seed seedAAA and then expands it using
the extendable output function SHAKE-128 inside gen() in
Alg. 1 to construct the pseudo-random matrix AAA. The secret
vector sss is sampled from a binomial distribution βµ with
parameter µ. It consists of l polynomials. The key generation
operation generates the public-key pk and secret-key sk.

The encryption operation in Alg. 2 uses matrix generation,
binomial sampling, matrix-vector multiplication. The decryp-
tion operation computes vector-vector multiplication.

Algorithm 1 Saber.PKE.KeyGen() [4]
seedAAA ← U({0, 1}256)
AAA = gen(seedAAA) ∈ Rl×lq

r = U({0, 1}256)
sss = βµ(R

l×1
q ; r)

bbb = ((AAATsss+ hhh) mod q)� (εq − εp) ∈ Rl×1p

Return (pk := (seedAAA, bbb), sk := (sss))

Algorithm 2 Saber.PKE.Enc(pk = (seedAAA, bbb),m ∈ R2; r)
[4]
AAA = gen(seedAAA) ∈ Rl×lq

If (r is not specified)
r = U({0, 1}256)

s′s′s′ = βµ(R
l×1
q ; r)

bbb′ = ((AAAsss′ + hhh) mod q)� (εq − εp) ∈ Rl×1p

v′ = bbbT (sss′ mod p) ∈ Rp
cm = (v′ + h1 − 2εp−1m mod p)� (εp − εT ) ∈ RT
Return c := (cm, b

′b′b′)

Algorithm 3 Saber.PKE.Dec(sk = sss, c = (cm, b
′b′b′)) [4]

v = bbb′T (sss mod p) ∈ Rp
m′ = ((v − 2εp−εT cm + h2) mod p)� (εp − 1) ∈ R2

Return m′

C. Saber Key-Encapsulation Mechanism

Saber KEM is the key-encapsulation mechanism consisting
of three algorithms as described in Algorithms 4, 5 and 6
respectively. The readers may follow the original Round2 doc-
umentation of Saber [4] for detailed description and provable
security of these algorithms.

Algorithm 4 Saber.KEM.KeyGen() [4]
(seedAAA, bbb, sss) = Saber.PKE.KeyGen()
pk = (seedAAA, bbb)
pkh = F(pk)
z = U({0, 1}256)
Return (pk := (seedAAA, bbb), sk := (sss, z, pkh))



Algorithm 5 Saber.KEM.Encaps(pk = (seedAAA, bbb)) [4]
m← U({0, 1}256)
(K̂, r) = G(F(pk),m)
c = Saber.PKE.Enc(pk,m; r)
K = H(K̂, c)
Return (c,K)

Algorithm 6 Saber.KEM.Decaps(sk = (sss, z, pkh), pk =
(seedAAA, bbb), c) [4]
m′ = Saber.PKE.Dec(sss, c)
(K̂ ′, r′) = G(pkh,m′)
c′ = Saber.PKE.Enc(pk,m′; r′)
If (c = c′)

Return K = H(K̂ ′, c)
Else

Return K = H(z, c)

III. AVX2 IMPLEMENTATION OF SABER

A. Symmetric-key building blocks

In the algorithms of Saber, symmetric-key cryptographic
primitives such as hash functions G and H and an extendable
output function inside gen() are used. Saber uses SHA3-512
and SHA3-256, which were standardized in FPIS202 [2], to
implement the hash functions G and H respectively. For gener-
ating pseudo-random numbers, Saber uses SHAKE-128 [2] as
the extendable output function. Note that SHA3-512, SHA3-
256 and SHAKE-128 are wrappers around the Keccak core [2].
On vector processing platforms, such as Intel AVX2, four
Keccak function calls can be computed in parallel using the
four 64-bit slots of the 256-bit vector processor. However,
Saber uses the serial SHAKE-128 and generates the pseudo-
random strings sequentially, thus making no use of the vector
processor in this step. The authors of Saber chose the serial
SHAKE-128 to make its implementation easier and efficient
on constrained platforms [3].

B. Polynomial multiplication

Saber performs matrix-vector and vector-vector multiplica-
tions where the elements are polynomials in Rq . Hence, a
significant portion of the overall computation time is spent in
performing polynomial multiplications in Rq . Saber relies on
generic polynomial multiplication algorithms such as Karat-
suba or ToomCook. In [4] the authors of Saber proposed an
AVX2-optimized software implementation of ToomCook poly-
nomial multiplication and implemented a high-speed software
implementation of Saber.

IV. SABERX4: HIGH-THROUGHPUT AVX2
IMPLEMENTATION OF SABER

In this section we propose our SaberX4 software which
aims at increasing the number of Saber KEM operations
per second, i.e., the throughput at the cost of minimum
latency degradation. Let us consider a server machine which
is computing numerous key exchange operations. For such a

busy server, the speed of post-quantum key exchange is an
extremely important issue as the server must be able to process
several thousands of key exchange operations every second.
When optimizing throughput of KEM, care must be taken so
that the latency of individual KEM must not degrade too much
to make the implementation impractical.

A. Pseudo-random number generation using SHAKE-128

SHAKE-128 uses Keccak which is a strong one-way func-
tion. Hence, it is not possible to parallelize the serial pseudo-
random number generation in Saber by following standard
low-level parallel processing tricks.

We find that the simple-and-serial structure of the Saber
KEM algorithm actually opens the avenues for applying par-
allel processing at the highest layer of the implementation
hierarchy, i.e., the application layer where KEM protocols
are executed. We propose to execute multiple Saber KEMs
in a batch using vector processing instructions. On AVX2
platforms (vectors of 256-bit width) we batch four Saber KEM
operations together as we use the AVX2-optimized SHAKE-
128x4 [2], which is the batch of four SHAKE-128 calls.

B. Hash computations using SHA3

During the CCA transform steps in Saber KEM, the SHA3-
256 and SHA3-512 hash functions are computed several times.
Similar to SHAKE-128, these Keccak-based hash functions are
also computationally expensive. By batching four Saber KEM
operations together, we are able to batch these hash function
calls too: four hash values are computed in parallel for the
four Saber KEM operations.

C. Polynomial multiplication

To compute the polynomial multiplications for the four
batched Saber KEM operations, we consider two approaches
that could utilize the vector processing instructions. The first
approach is to compute the polynomial multiplications in
parallel, each using a 64-bit slot. The second approach is to
compute the polynomial multiplications for the batched KEMs
serially: 1) one KEM from the batch occupies all the slots of
the vector processor to compute its polynomial multiplication
and then 2) the next KEM from the batch occupies the vector
processor and computes its polynomial multiplication.

In this work, we choose the second approach as we
could use the existing AVX2-optimized implementation of
polynomial multiplication [4] by the authors of Saber. Their
implementation packs 16 coefficients of a polynomial in the
16 slots (each 16-bit) of a AVX2 vector. Packing from integers
to AVX2 vectors and the vice-versa are performed only at the
beginning or at the end of a polynomial multiplication. Thus,
excluding the pacing/unpacking operations, the polynomial
multiplications are computed using AVX2 instructions.

D. Other building blocks

The saber algorithm uses several other building blocks
namely, message encoder, message decoder, byte-string-to-
polynomial and polynomial-to-byte-string conversion, bino-
mial sampling, etc. These building blocks are relatively easier



to compute compared to SHAKE-128, SHA3 hash func-
tions and polynomial multiplication. The implementation of
Saber [4] by its authors describes these building blocks in
standard C language and does not attempt to use vector pro-
cessing instructions. In our implementation, we borrow these
building blocks from the implementation of Saber. These small
operations are thus executed serially in our implementation.

V. RESULTS

We implemented SaberX4 using both C language and
Intel AVX2 intrinsics. No assembly optimizations were ex-
plored in any of the public-key primitives. We compiled the
software implementation using gcc-5.5 with optimization
flags -O3 -fomit-frame-pointer -march=native
-std=c99. The computation times were measured on a
Dell laptop with Ubuntu 16.04 operating system and Intel(R)
Core(TM) i5-7200U CPU running at 2.5GHz. All the measure-
ments were taken after disabling hyper-threading and Turbo-
Boost. In Table I we present the performance results for
our implementation and compare our results with the AVX2-
optimized implementations of Saber [4] and Kyber [7].

In the table, the batched implementation of Saber is rep-
resented as ‘SaberX4’ to indicate the batching of four KEM
operations. With respect to the non-batched implementation of
Saber [4], our implementation achieves around 38%, 45% and
35% higher throughput for key generation, encapsulation and
decapsulation operations respectively. However, latencies of
the individual KEM operations increase roughly by a factor of
3 with respect to the non-batched implementation of Saber [4].
The latency degradation is well within the acceptable limits
as individual KEM operations require below 0.15 ms.

The Kyber KEM algorithm [7] has been designed to lever-
age from the vector processing instructions on modern high-
end platforms. The AVX2 and assembly-optimized implemen-
tation of Kyber KEM uses vector processing most of the
time to achieve fast computation time. Thus Kyber has lower
latency compared to Saber on Intel AVX2 platforms. In Table I
we see that the encapsulation operation in SaberX4 achieves
slightly higher throughput compared to the same of Kyber;
whereas the key generation and decapsulation operations in
SaberX4 are slightly slower than those of Kyber.

We would like to remark that there is not much scope for
increasing the throughput of Kyber by applying similar batch-
ing technique. The computationally-expensive building blocks
in Kyber are already parallel in nature and are computed using
AVX2 instructions.

Theoretically, SaberX4 is expected to achieve nearly four
times higher throughput compared to Saber. In practice, we
obtain less than 1.5 times higher throughput. One reason
behind this is that, vector processing has its own overhead.
With improved computer architecture, this overhead is likely
get smaller in the future. Additionally, in this work, our
goal was to see if the idea of batching works in practice
by having a proof-of-concept implementation. In the imple-
mentation phase, we tried to maximize code reuse from the
existing library of Saber [4]. Some of the routines, such as

TABLE I
PERFORMANCES ON INTEL AVX2 PLATFORM

Scheme Operation Latency Throughput
(cycles) (ops/sec)

SaberX4 Key Generation 296,582 33,717
AVX2 optimized Encapsulation 334,769 29,871
Batched Decapsulation 354,417 28,215

Saber [4] Key Generation 102,870 24,302
AVX2 optimized Encapsulation 121,113 20,641

Decapsulation 119,986 20,835

Kyber768 [7] Key Generation 69,599 35,920
AVX2 and ASM Encapsulation 89,723 27,863
optimized Decapsulation 75,495 33,114

message encoder, message decoder, byte-string-to-polynomial
and polynomial-to-byte-string conversions, binomial sampling,
etc. are still executed serially, although they can be batched to
achieve higher throughput.

VI. CONCLUSIONS

In this paper we proposed a batching technique to realize
a high-throughput software implementation of Saber KEM,
which we call ‘SaberX4’, targeting high-end processors with
AVX2 vector processing instructions. With a proof-of-concept
implementation, we showed that the application-level batching
technique maximizes the utilization of vector processor thus
offering nearly 1.5 times higher throughput for the Saber KEM
algorithm. As a future work, we would consider optimizing
the current proof-of-concept implementation of SaberX4 to
improve its throughput as well as latency.

REFERENCES

[1] “NIST Post-Quantum cryptography Round 2 submissions,”
2019. [Online]. Available: https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography/Round-1-Submissions

[2] National Institute of Standards and Technology. 2015., “SHA-3 standard:
Permutation-Based Hash and Extendable-Output Functions,” FIPS PUB
202, 2015.

[3] J.-P. DÁnvers, A. Karmakar, S. S. Roy, and F. Vercauteren, “Saber:
Module-LWR based key exchange, CPA-secure encryption and CCA-
secure KEM,” Cryptology ePrint Archive, Report 2018/230, 2018,
https://eprint.iacr.org/2018/230, Africacrypt 2018.

[4] J.-P. DÁnvers, A. Karmakar, S. S. Roy, and F. Vercauteren,
“Saber,” Proposal to NIST PQC Standardization, Round2, 2019,
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/round-2-
submissions.

[5] D. Hofheinz, K. Hvelmanns, and E. Kiltz, “A Modular Analysis of the
Fujisaki-Okamoto Transformation,” Cryptology ePrint Archive, Report
2017/604, 2017, http://eprint.iacr.org/2017/604.

[6] A. Karmakar, J. M. B. Mera, S. S. Roy, and I. Verbauwhede,
“Saber on ARM CCA-secure module lattice-based key encapsulation
on ARM,” IACR Trans. Cryptogr. Hardw. Embed. Syst.,
vol. 2018, no. 3, pp. 243–266, 2018. [Online]. Available:
https://doi.org/10.13154/tches.v2018.i3.243-266

[7] P. Schwabe, R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lep-
oint, V. Lyubashevsky, J. M. Schanck, G. Seiler, and D. Stehle,
“Crystals-kyber,” Proposal to NIST PQC Standardization, Round2,
2019, https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/round-2-
submissions.


