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Abstract. Gaudry and Lubicz introduced the idea of Kummer line in 2009, and Karati and Sarkar
proposed three Kummer lines over prime fields in 2017. In this work, we explore the problem of secure
and efficient scalar multiplications on binary field using Kummer line and investigate the possibilities
of speedups using Kummer line compared to Koblitz curves, binary Edwards curve and Weierstrass
curves. We propose a binary Kummer line BKL251 over binary field F2251 where the associated elliptic
curve satisfies the required security conditions and offers 124.5-bit security which is the same as that
of Binary Edwards curve BEd251 and Weierstrass curve CURVE2251. BKL251 has small curve param-
eter and small base point. We implement our software of BKL251 using the instruction PCLMULQDQ of
modern Intel processors and batch software BBK251 using bitslicing technique. For fair comparison,
we also implement the software BEd251 for binary Edwards curve. In both the implementations, scalar
multiplications take constant time which use Montgomery ladders. In case of left-to-right Montgomery
ladder, both the Kummer line and Edwards curve have almost the same number of field operations.
For right-to-left Montgomery ladder scalar multiplication, each ladder step of binary Kummer line
needs less number of field operations compared to Edwards curve. Our experimental results show that
left-to-right Montgomery scalar multiplications of BKL251 are 9.63% and 0.52% faster than those of
BEd251 for fixed-base and variable-base, respectively. Left-to-right Montgomery scalar multiplication
for variable-base of BKL251 is 39.74%, 23.25% and 32.92% faster than those of the curves CURVE2251,
K-283 and B-283 respectively. Using right-to-left Montgomery ladder with precomputation, BKL251
achieves 17.84% speedup over BEd251 for fixed-base scalar multiplication. For batch computation,
BBK251 has comparatively the same (slightly faster) performance as BBE251 and sect283r1. Also it
is clear from our experiments that scalar multiplications on BKL251 and BEd251 are (approximately)
65% faster than one scalar multiplication (after scaling down) of batch software BBK251 and BBE251.

Keywords: Binary Finite Field Arithmetic, Elliptic Curve Cryptography, Kummer line, Edwards
Curve, Montgomery Ladder, Scalar Multiplication.

1 Introduction

Diffie-Hellman (DH) key agreement [18] protocol is one of the most important protocols of modern cryp-
tography. It allows two users to communicate over a public channel and create a shared key to establish a
secure communication session. The protocol has two phases: i) exchange of public keys, and ii) computation
of a shared key using their own secret key and the received public key.

Elliptic curve cryptography was introduced separately by Miller [35] and Koblitz [31] and hyperelliptic
curve cryptography by Koblitz [32]. Elliptic Curve DH (ECDH) is an instantiation of DH protocol designed
on the cyclic group of Elliptic curves where the corresponding discrete logarithm problem is computationally
hard. ECDH is the fastest and has smallest key size among all the other variants of DH protocol.

All SSH/TLS communications start with DH key agreement protocol between client and server. TLS 1.3
uses Ephemeral Diffie-Hellman key-exchange protocol [47, 50] and includes new elliptic curves which target at
128-bit and the 224-bit security. Famous Montgomery curve Curve25519 has been included in TLS 1.3 which
provides 128-bit security. Kummer lines are proposed in [23, 21] and have been considered as an alternative
to elliptic curves. [30, 28] propose three Kummer lines over prime fields with 128-bit target security level.
Concrete implementations of these Kummer lines using SIMD vector instructions of modern processors show
that these Kummer lines are significantly faster than SIMD-based implementation of Curve25519 [40].



TLS 1.3 and cryptographic libraries like OpenSSL support elliptic curves over both the prime and binary
fields [49, 41, 13]. K-233, B-233, K-283, B-283 [42] of TLS 1.3 and OpenSSL are elliptic curves over binary
fields which target 128-bit security. Binary Edwards curve BEd251 [6, 9] and CURVE2251 [51] over binary
field F2251 are other prominent curves which also target 128-bit security.

Performance of elliptic curve cryptography depends on the efficiency of scalar multiplications. compu-
tation of side-channel attack resistant scalar multiplication is a prerequisite for cryptographic applications.
If we consider important primitives of public key cryptography like DH protocol or digital signatures [42],
we see that fixed-base scalar multiplications take the most important role to determine the performance.
In DH protocol, computation of public key is done by fixed-base scalar multiplication and one variable-
base scalar multiplication is required to compute the shared secret. The performance of DH is measured by
the sum of those two scalar multiplications. If we consider digital signature algorithms as ECDSA [24] or
qDSA [30, 48], key generation and signing use only fixed-base scalar multiplications. Verification of ECDSA
uses a double-base scalar multiplication. On the other hand, qDSA is designed using the x-coordinate based
constant-time scalar multiplications over Kummer line. As a consequence, only the x-coordinates of the
generator of the group and the public key of the signer are available. The signature verification modules of
the software [30, 48], therefore, use one fixed-base and one variable-base scalar multiplication. It is shown
in [5, 30] that small base point can improve the performance of fixed-base scalar multiplication significantly
compared to fixed-base scalar multiplication with large base point and variable-base scalar multiplication.
For an example, Curve25519 and Kummer lines KL2519, KL25519 and KL2663 have small base points and
as a consequence they achieve 18% − 24% faster fixed-base scalar multiplication compared to variable-base
scalar multiplication.

But the NIST Koblitz curves K-233 and K-283 and NIST random curves B-233, and B-283 do not
possess any small base-point. [13] reports the fastest implementation of these four curves for variable-base
scalar multiplications which use LD-Montgomery method. Also the base-point of CURVE2251 is large and
similarly the available fastest implementation does not get any advantage of small base point [51]. For
efficient arithmetic, BEd251 uses WZ-coordinate system and the fact W = X + Y prevents to have a
small base point. Therefore, to have efficient implementation, software BBE251 computes 128 variable-base
scalar multiplications of binary Edwards curve BEd251 in a batch [6]. Batch implementation of 128 variable-
base scalar multiplications of binary Weierstrass curve CURVE2251 is available at [15]. These software of
batch computation use the bitslicing technique to achieve the best possible result by avoiding the shifting
operations. They compute 1 6 n 6 128 scalar multiplications in batches and take the same amount of
time irrespective of the value of n. In other words, without any requirement of a large number of scalar
multiplications, we can not get the speedups mentioned for these software. For a busy server, these software
are effective ones. But for simple clients machines, these software are not suitable.

1.1 Our Contributions

This work introduces concrete proposition of binary Kummer line BKL251 over field F2251 which has small
base point and targets at 128-bit security. We show the efficient behavior of BKL251 through field oper-
ation count comparison and by developing software using PCLMULQDQ instructions along with the efficient
implementation of binary Edwards curve BEd251 [6]. We also provide software which computes 128 scalar
multiplications for both the fixed-base and variable-base in batch for BKL251. The experimental results show
that BKL251 offers the fastest DH protocol [18] on binary elliptic curves among all the constant-time imple-
mentations which do not use endomorphism. In this work, we use the conservative set-up over binary field
“with as little algebraic structure as possible” [12]. Therefore, we do not use any special field with beneficial
properties (like Fq2) or any special algebraic properties (like endomorphism).

1. Binary Kummer line. Following the introduction of Kummer line over binary fields by Gaudry and
Lubicz in [21], this work shows that it is possible to achieve competitive speed using binary Kummer
line compared to Weierstrass curves, Koblitz curves, binary Edwards curve or Kummer lines over prime
fields. In Section 2, we provide the new theoretical details of binary Kummer line along with the basic
details available at [21]:
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– We introduce the identity and the point of order 2 on binary Kummer line. Along with the theoret-
ical interests, the identity also has an important role in the right-to-left Montgomery ladder scalar
multiplication.

– Mapping π from Kummer line to associated elliptic curve was given in [21]. We give the explicit
formulas for the mapping π and that of π−1 (Section 2.2). But the mapping π alone does not preserve
the consistency between scalar multiplications on Kummer lines and associated elliptic curves. We
extend the mapping π to π̂ by adding a particular point of order two on the associated elliptic curve
and proves the consistency of scalar multiplications (Section 2.3). We also prove the equivalence
between the hardness of discrete logarithm problem (DLP) defined on Kummer line and associated
elliptic curve.

– Let P be a point on the elliptic curve and n be a scalar, and the scalar multiplication is done via
binary Kummer line. Here, we also supply the explicit formulas required to recover the y-coordinate
of the point nP (Section 2.4).

In this work, we propose a binary Kummer line BKL251 (Section 5) whose details are given below:
– Choice of Finite Field. Our target is 128-bit security. For fair comparison with BEd251 and

CURVE2251, we choose the finite field F2251 .
– Choice of Kummer line. The binary Kummer line BKL251 is one with the smallest curve parameter
b = t13 + t9 + t8 + t7 + t2 + t + 1 ∈ F2251 such that it satisfies certain security conditions. For the
line, we also identify a base point (t3 + t2, 1) with small coordinates. Later we provide the details of
the above mentioned security conditions and show that BKL251 offers 124.5-bit security similar to
BEd251 and CURVE2251.

2. Implementation of Scalar Multiplication over binary Kummer line. Section 6.1 deals with one
of the major concern: implementation of scalar multiplication resistant against side-channel attacks like
timing attacks [9]. The solution is constant time scalar multiplication and one of the popular choices
is Montgomery ladder [38] with a differential addition and a doubling operation. In binary Kummer
line, one left-to-right Montgomery ladder step requires 4[M], 5[S] along with 1[M] by Kummer line
parameter and 1[M] by base point1. By carefully choosing small Kummer line parameter and small base
point, we achieve one ladder step at the cost of 4[M]+5[S]+2[C] for fixed-base scalar multiplications and
5[M]+5[S]+1[C] for variable-base scalar multiplications. With precomputed multiplies of the base point,
each step of the right-to-left Montgomery ladder of fixed-base scalar multiplication of binary Kummer
line needs 4[M]+2[S] operations. The implemented software for BKL251 are publicly available at:

BKL251: https://github.com/skarati/BKL251

3. Implementation of Scalar Multiplication over binary Edwards Curve. To make a fair compari-
son, the possible candidates are mpfq [22], CURVE2251 and BEd251 along with K-283, B-283, K-233 and
B-233. But there exist certain problems associated with the available software of each of the mpfq [22],
CURVE2251 and BEd251.

(a) mpfq uses similar curve arithmetic as binary Kummer line but the software is approximately 12 years
old and it does not take advantage of the present processors. The software was developed for the
curve

Em : Y 2 +XY = X3 + (t13 + t9 + t8 + t7 + t2 + t+ 1),

and (t3 + 1, 1) has been used as base point for fixed-based scalar multiplications. But (t3 + 1, 1) is
not a point of Em rather it is a point on the twist of Em [20].

(b) Latest implementation of CURVE2251 is available as a part of the RELIC [1, 2] but each ladder step
takes 6[M]+5[S] [52] which is higher than the operation count of ladder step of the binary Edwards
curve.

(c) There does not exist a single software (best to our knowledge) which provides efficient implementation
of single fixed-base and variable-base scalar multiplications of BEd251.

1 [M], [S], [C] and [B] stand for field multiplication, field squaring, multiplication by small constant and multiplication
by base-point respectively.

3



One ladder step of binary Edwards Curve [9] needs 4[M], 4[S] along with 2[M] by curve parameters and
1[M] by base point in WZ-coordinate system. Because of WZ-coordinate system, base point becomes a
full length element of the field. As a consequence, the operation count for each ladder step of left-to-right
Montgomery scalar multiplication becomes 5[M]+4[S]+2[C] for both the cases of fixed-base and variable-
base. On the other hand, each ladder step of fixed-base scalar multiplication of binary Edwards curve
needs 5[M]+2[S]+2[C] for right-to-left Montgomery ladder with precomputation. We also implement the
binary Edwards curve BEd251 using left-to-right and right-to-left Montgomery ladder which take the
above mentioned field operations and the implemented software are available at:

BEd251: https://github.com/skarati/BEd251

4. Batch Binary Kummer BBK251. The software BBE251 of BEd251 is available at [7] and uses bitslicing
technique to compute 128 variable-base scalar multiplications in batches. In this work, we also implement
software which computes 128 scalar multiplications for fixed-base and variable-base in batch for BKL251
using bitslicing technique and we name the software as BBK251. The software is publicly available at:

BBK251: https://github.com/skarati/Batch-Binary-Kummer-BBK251

2 Binary Kummer line

Let k be a finite field of characteristic two. Let b ∈ k and b 6= 0. Let Eb be an elliptic curve defined over k
by Equation (1):

Eb : Y 2 +XY = X3 + b4. (1)

In this work, we explore the problem of efficient and timing-attack resistant computation of scalar multipli-
cation via the Kummer line associated with the elliptic curve Eb. Gaudry and Lubicz define the Kummer
line associated with Eb using algebraic theta functions [21] and we denote this Kummer line by BKL(1,b). We
refer [21] to interested reader for further details.

The arithmetic of Kummer line is given in projective coordinate system. Let P = (x1, z1) and Q = (x2, z2)
be two points on the Kummer line such that P 6= (0, 0) and Q 6= (0, 0). We say that P and Q are equivalent,
denoted by P ∼ Q, if there exists a ξ ∈ k∗ such that x1 = ξx2 and z1 = ξz2.

Suppose that P = (x1, z1) is a projective point on the Kummer line BKL(1,b). Given the point P, doubling
Algorithm dbl of Table 1 computes 2P = (x3, z3). Let Q = (x2, z2) be another point on the BKL(1,b) and we
want to compute P + Q = (x4, z4). Given the point P−Q = (x, z), computation of (x4, z4) is shown by the
differential addition Algorithm diffAdd of Table 1.

(x3, z3) = dbl(x1, z1) : (x4, z4) = diffAdd(x1, z1, x2, z2, x, z) :
x3 = b(x21 + z21)2; x4 = z(x1x2 + z1z2)2;
z3 = (x1z1)2; z4 = x(x1z2 + x2z1)2;

Table 1. Doubling and Differential Addition on Binary Kummer line

In Kummer line BKL(1,b), the point I = (1, 0) acts as an identity. This can be proved by showing

diffAdd(x, z, 1, 0, x, z) = (x2z, xz2) ∼ (x, z)
diffAdd(1, 0, x, z, x, z) = (x2z, xz2) ∼ (x, z)

dbl(1, 0) = (b, 0) ∼ (1, 0)

 (2)

It also can be shown that the point (0, 1) is a point of order 2 as given in Equation (3)

dbl(0, 1) = (b, 0) ∼ (1, 0) (3)

In the rest of the paper, we will consider Kummer line BKL(1,b) for some non-zero element b ∈ k.
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2.1 Scalar Multiplication

Let P = (x, z) be a point on the Kummer line BKL(1,b) and n be a l-bit scalar as n = {1, nl−2, . . . , n0}. Our
objective is to compute nP = (xn, zn). We apply Montgomery ladder to perform this operation [36]. The
ladder step iterates for l − 1 times and each ladder step performs a dbl and a diffAdd operation.

Assume that at a ladder step, the inputs are the points (x1, z1) and (x2, z2). At the end of the ladder step,
the outputs are two points (x3, z3) and (x4, z4). Suppose that we need to compute double of the point (x1, z1)
and addition of the points (x1, z1) and (x2, z2), then during the ladder step we compute (x3, z3) = dbl(x1, z1)
and (x4, z4) = diffAdd(x1, z1, x2, z2, x, z). The details of the Algorithms scalarMult and ladderStep are
given in the Table 2. Notice that, Algorithm ladderStep uses “If” condition, but in our implemented code
of the ladder step we do not use any branching instruction.

We start Algorithm scalarMult with two points S = P and R = 2P = dbl(P). Let at i-th iteration, the
inputs be the points S = mP and R = (m+1)P. Then if ni = 0, the ladderStep outputs the points S = 2mP
and R = (2m+ 1)P. On the other hand, if ni = 1, the ladderStep computes the points S = (2m+ 1)P and
R = 2(m+ 1)P.

nP = scalarMult(P, n) : ladderStep(S,R, ni):
1. Let n = {1, nl−2, . . . , n0}; 1. If ni = 0 then
2. Set S = P and R = dbl(P); 2. R = diffAdd(S,R,P);S = dbl(S);
3. For i = l − 2 to 0 do 3. Else If ni = 1 then
4. ladderStep(S,R, ni); 4. S = diffAdd(S,R,P);R = dbl(R);
5. End For; 5. End If;
6. Return S;

Table 2. (Left-to-Right) Scalar Multiplication and Ladder Step

2.2 Binary Kummer line and the associated Elliptic Curve

We can map a point of Kummer line P to elliptic curve by the mapping π : BKL(1,b) → Eb/{±1} [21] which
is defined as

π(P = (x, z)) =

{
(bz, ·, x), if x 6= 0
∞, if x = 0.

(4)

Putting X = bz
x in Equation (1), we can compute the Y -coordinate up to elliptic involution. We can also

move back to Kummer line BKL(1,b) from Eb/{±1} using the inverse mapping π−1 as defined by Equation (5).
Let P = (X, ·, Z) be a point on Eb then

π−1(P ) =

{
(bZ, ·, X), if X 6= 0
(0, 1), if X = 0.

(5)

But the mapping π alone does not conserve the consistency of the scalar multiplications between Kummer
line BKL(1,b) and the elliptic curve Eb. We also need a point of order two of the elliptic curve Eb as given in
the next section.

2.3 Equivalence between BKL(1,b) and Eb

Let BKL(1,b) be a Kummer line on the binary field k and Eb be the associated elliptic curve as defined by
Equation (1). Let P be a point on Kummer line BKL(1,b). Also consider the point T2 = (0, b2) which is a
point of order two on Eb. As π(P) is a point on Eb, π(P) + T2 is also a point on Eb. Now we extend the
mapping π to π̂ by Equation (6):

π̂(P) = π(P) + T2. (6)
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The inverse mapping of π̂ is defined as

π̂−1(P ) = π−1(P + T2), (7)

where P is a point on Eb. Let P = (x, z) be a point on the Kummer line such that it is not a point of order
2 or identity, then Equation (8) holds.

2π̂(P) = π̂(dbl(P)) (8)

Let P1 and P2 be any two points on Eb such that P1 6= ±P2 and neither of them is point at infinity nor of
order 2, then Equation (9) holds.

π̂
(
dbl(π̂−1(Pi))

)
= 2Pi, i = 1, 2

π̂
(
diffAdd(π̂−1(P1), π̂−1(P2), π̂−1(P1 − P2))

)
= P1 + P2

}
(9)

Notice that 2π̂(P) = 2 (π(P) + T2) = 2π(P). The proofs of Equations (8) and (9) are trivial, but the
expressions grow very fast and hard to compute manually. Therefore, we used a GP/PARI [53] script to
verify them symbolically and made available along with the software. Equations (8) and (9) are important
as they form the consistency between the scalar multiplications on binary Kummer line BKL(1,b) and elliptic
curve Eb. Let P ∈ BKL(1,b). Then we have π̂(nP) = nπ̂(P). Again, we have that π̂(nP) = π(nP) + T2 and
nπ̂(P) = n (π(P) + T2) = nπ(P) + n (mod 2) T2. Therefore, π̂(nP) = nπ̂(P) can be rewritten as:

π(nP) = nπ(P) + (1 + n (mod 2)) T2

which is pictorially shown in Figure 1. The equivalence of scalar multiplication on Kummer line and the

P

Pn

P

Pn

Q

Qn

π +T2

π +T2

n· n·

Q P P

PnPnQn +T2

+T2 π−1

π−1

(i) KL(1,b) to Eb (ii) Eb to KL(1,b)

Fig. 1. Consistency of scalar multiplications between BKL(1,b) and Eb

associated elliptic curve is exactly the same as Kummer line on prime field [30]. From Figure 1, we conclude
that discrete logarithm problem is equally hard on the Kummer line BKL(1,b) and the elliptic curve Eb.

2.4 Retrieving y-coordinate

One of the main purposes of the Kummer line is to perform faster scalar multiplications. Let P = (XP , YP , ZP )
be a point on elliptic curve Eb and n be a scalar. The objective is to compute S = nP via Kummer line
BKL(1,b) and this can be done in the following manner.

Set P = π̂−1(P ) and compute (S,R) = scalarMult(P, n) where S = nP and R = S + P. By the
consistency of scalar multiplications S = π̂(S) = (XS , YS , ZS) and R = S + P = π̂(R) = (XR, YR, ZR).
But the problem is that scalar multiplication by Kummer line does not provide the YS explicitly. In this
section, we provide the method to recover YS from the known values S = (XS , ·, ZS) and R = (XR, ·, ZR)
and P = (XP , YP , ZP ) following the approaches given in [29, 43]. Let the affine coordinates of the points be

S = (xs, ys) =
(

XS

ZS
, YS

ZS

)
, R = (xr, yr) =

(
XR

ZR
, YR

ZR

)
and P = (xp, yp) =

(
XP

ZP
, YP

ZP

)
where YS and YR are

unknown to us.
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By chord-and-tangent rule for addition on Eb, the points S, P and −R lie on the straight line Y = mX+c
where m =

ys+yp

xs+xp
. Substituting Y = mX + c into the equation of the curve we obtain:

X3 + (m+m2)X2 + cX + (c2 + b4) = 0. (10)

Now xs, xp and xr are roots of Equation (10) and we have:

xs + xp + xr = m+m2. (11)

Putting m =
ys+yp

xs+xp
in Equation (11), we recover ys as given in Equation (12).

ys =
1

xp
[(xsxp + xpxr + xrxs)(xs + xp) + ypxs] . (12)

Substituting xs = XS

ZS
, ys = YS

ZS
, xr = XR

ZR
, xp = XP

ZP
and yp = YP

ZP
in Equation (12), we get projective

coordinate YS as given in Equation (13):

YS =
ZSZP

XP

[(
XSXP

ZSZP
+
XPXR

ZPZR
+
XRXS

ZRZS

)(
XS

ZS
+
XP

ZP

)
+
YPXS

ZPZS

]
. (13)

3 Binary Edwards Curve

In this section, we give a brief description of binary Edwards curve to make the paper self-contained. Let k
be a field of characteristic 2 and d ∈ k \ {0}. We define binary Edwards curve [6, 9] by Equation (14).

BEd : d(x+ x2 + y + y2) = (x+ x2)(y + y2) (14)

The neutral element is the point (0, 0). The point (1, 1) has order 2. The Edwards curve BEd is birationally
equivalent to the ordinary curve Ed of Equation (15).

Ed : X2 +XY = X3 + (d2 + d)X + d8. (15)

The mapping from BEd to Ed is given by Equation (16).

φ : (x, y) 7→ (X,Y )

X =
d3(x+ y)

xy + d(x+ y)
(16)

Y = d3
(

x

xy + d(x+ y)
+ d+ 1

)
[6, 9] suggest the use of WZ-coordinate system, where W = X + Y , which provides the minimum operation
count for each of the ladder step of Montgomery scalar multiplication. Let P,Q ∈ BEd such that P = (w2, z2),
Q = (w3, z3) and P −Q = (w1, 1) are given. We compute 2P = (w4, z4) and P +Q = (w5, z5) using mixed
differential and doubling operation as given in Table 3. We refer [6, 9] for further details of binary Edwards
curve.

c = w2(w2 + z2); w4 = c4; z4 = d(z22)2 + w4;
v = cw3(w3 + z3); z5 = v + d(z2z3)2; w5 = v + z5w1;

Table 3. Mixed differential and doubling of binary Edwards Curve
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4 Right-to-Left Montgomery ladder

The x-coordinate-based scalar multiplication of Section 2.1 is the traditional one and sometimes is referred
as left-to-right Montgomery ladder. We also have right-to-left Montgomery ladder method of scalar multipli-
cation which was introduced in [27]. This section provides the details of the right-to-left Montgomery ladder
double-and-add algorithm of [45] in the context of BKL(1,b) and BEd.

Let P be a point on the Kummer line BKL(1,b) (or BEd) and n be a scalar. We compute scalar multi-
plication nP using the Algorithm scalarMultR2L as given in Table 4. We start with the points R0 = P,
R1 = I and R2 = P. If the bit in the scalar is 1, then we compute R1 = diffAdd(R0,R1,R2) else we
compute R2 = diffAdd(R0,R2,R1). At the end of each iteration, we compute R0 = dbl(R0). Notice that,
the invariant R0 = R1 + R2 always holds at the beginning of and end of each iteration.

nP = scalarMultR2L(P, n) : ladderStepR2L(R0,R1,R2, ni):
1. Let n = {nl−1, nl−2, . . . , n0}; 1. If ni = 1 then
2. Set R0 = P, R1 = I and R2 = P; 2. R1 = diffAdd(R0,R1,R2);
3. For i = 0 to l − 1 do 3. Else If ni = 0 then
4. ladderStepR2L(R0,R1,R2, ni); 4. R2 = diffAdd(R0,R2,R1);
5. End For; 5. End If;
6. Return R1; 6. R0 = dbl(R0);

Table 4. Right-to-Left Scalar Multiplication and Ladder Step

nP = scalarMultR2LwPrecomp(P, n) : ladderStepR2L(R0,R1,R2, ni):
1. Let n = {nl−1, nl−2, . . . , n0}; 1. If ni = 1 then
2. Set R0 = P, R1 = I and R2 = P; 2. R1 = diffAdd(R0,R1,R2);
3. For i = 0 to l − 1 do 3. Else If ni = 0 then
4. ladderStepR2L(R0,R1,R2, ni); 4. R2 = diffAdd(R0,R2,R1);
5. R0 = 2i+1P; 5. End If;
6. End For;
7. Return R1;

Table 5. Scalar Multiplication with Precomputation and Right-to-Left Ladder Step

In Algorithm scalarMultR2L, all the three points R0, R1 and R2 keep changing at each ladder step.
Therefore, we can not take the advantage of small base point to have efficient implementation of fixed-base
scalar multiplication. However, it is possible to achieve significant speedups by precomputing the multiples
of the base point, that is, the points 2iP for 0 6 i 6 l. The details of the right-to-left fixed-base scalar
multiplication algorithm with precomputation scalarMultR2LwPrecomp is given in Table 5. As the access of
the lookup table does not depend on the input scalar and is sequential, Algorithm scalarMultR2LwPrecomp

is of constant time and side-channel attack resistant.

4.1 Differential addition formulas in scalarMultR2LwPrecomp

The point R0 = (x0, z0) of BKL(1,b) (or R0 = (w0, z0) of BEd) is precomputed in ladder step of Table 5. We
can save one field multiplication for each differential addition of line 2 and 4 of the ladderStepR2L if we
store the values of R0 as (x0

z0
, 1) (or (x0

z0
, 1)) for all 2iP. Then following [46], we can modify the differential

addition formula for both the BKL(1,b) (given in Table 1) and BEd (available at [9, 10]) as given below:
where R2 = (x2, z2) ( or R2 = (w2, z2)) and R1 = (x1, z1) ( or R1 = (w1, z1)).

8



Curve diffAdd(R0,R2,R1)

BKL(1,b)
x4 = z2(x1

x0
z0

+ z1)2;

z4 = x1(x1 + z1
x0
z0

)2;

BEd

A = (w0
z0

)w2;

B = (w0
z0

+ 1)(w2 + z2)

w5 = z1(d(A+B + z2)2)
z5 = w1(AB + dz2)

Table 6. Modified Differential Addition Formula for Fixed-base Right-to-Left Montgomery Ladder

5 Binary Kummer line over Field F2251

Let q be an integer and k = F2q be a finite field of characteristic 2 with 2q elements. We choose Kummer
line BKL(1,b) such that b ∈ F2q \ {0} and then we check whether the associated elliptic curve Eb is the one
with all the required security criteria like curve and the twist of it have near prime orders, have large prime
subgroups, resistance against pairing attacks and others which we discuss in details for the proposed Kummer
line later. In this work, we target 128-bit security and we choose field F2251 = F2[t]/(t251 + t7 + t4 + t2 + 1)
as the binary Edwards curve BEd251 [6, 9] and the binary Weierstrass curve CURVE2251 [52]. For BEd251,
curve parameter is d = t57 + t54 + t44 + 1.

To find the appropriate Kummer line, the value of b was increased from 1 onwards, and then we computed
the associated elliptic curve and checked the security details. In our experiment, we found that b = t13 +
t9 + t8 + t7 + t2 + t + 1 is the smallest value for which the associated elliptic curve Eb of the Kummer line
BKL(1,b) satisfies the following security details:

1. Order of the curve is 4p1 where p1 = 2249 − δ1 and δ1 = 1609786303524644589\ 8362306660609333279.
Therefore, the curve order is near prime [6] with cofactor h = 4.

2. Order of the twist curve is 2p2 where p2 = 2250+δ2 and δ2 = 32195726070492\ 891796724613321218666559.
Similarly, the twist curve order is near prime [6] with cofactor hT = 2.

3. The largest prime subgroup has order p1 and of size 249-bit. Therefore the curve provides approximately
124.5-bit security against discrete logarithms problem.

4. Avoiding subfields: The j-invariant 1/b4 is a primitive element of the field F2251 .

5. The discriminant of the curve is ∆ =
(
(2251 + 1− 4p1)− 4× 2251

)
which is 1 (mod 4) and a square-free

term. The discriminant is also divisible by the large prime ∆/(−7× 31× 599× 2207).

6. The multiplicative order of 2251 (mod p1) and 2251 (mod p2) are very large and they are respectively
λ = (p1 − 1)/2 and λT = (p2 − 1)/6. Therefore, the curve is resistant against pairing attacks.

7. Similar to the BEd251, it is also resistant against GHS attack as the degree of the extension field is 251
which is a prime [6, 34].

From hereon, BKL251 denotes the BKL(1,b) with b = t13 + t9 + t8 + t7 + t2 + t+ 1 over the finite field F2251 .
The Kummer line BKL251 also has a small base point (t3 + t2, 1), where other two curves have large base
points. Table 7 lists the comparative study of (estimates of) the sizes of the various parameters of the elliptic
curve associated with the proposed Kummer line BKL251 with respect to the BEd251 and the CURVE2251.
From Table 7, it can be concluded that BKL251 is as secure as BEd251 and CURVE2251.

5.1 Set of Scalars

In this work, the allowed scalars are of length 251 bits. In case of left-to-right Montgomery ladder, scalars
have the form

2250 + 4× {0, 1, 2, . . . , 2248 − 1}.
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(lg p1, lg p2) (h, hT ) (λ, λT ) lg(−∆) Base point

BEd251 [9, 6] (249,250) (4,2) ( p1−1
2
, p2−1

2
) 252 -

CURVE2251 [52] (249,250) (4,2) ( p1−1
2
, p2−1

6
) 253 (α1, γ1)

BKL251 (this work) (249,250) (4,2) ( p1−1
2
, p2−1

6
) 253 (α2, 1)

α1 = 0x6AD0278D8686F4BA4250B2DE565F0A373AA54D9A154ABEFACB90\
DC03501D57C,

γ1 = 0x50B1D29DAD5616363249F477B05A1592BA16045BE1A9F218180C5150\
ABE8573,

α2 = 0xC.

Table 7. Comparison of BKL251 against BEd251 and CURVE2251

On the other hand, scalars of the right-to-left Montgomery ladder have the form

2250 + 4× {1, 3, 5, . . . , 2248 − 1}.

We call these scalars as clamped scalar following the terminology of [30]. Use of clamped scalars ensures
two things:

1. Resistance to Small Subgroup Attacks. Small subgroup attacks are effective when curves have
small cofactors [33]. These attacks become infeasible if the scalars are the multiples of the cofactor. The
clamped scalars, here, are all multiples of 4 where 4 is the cofactor of the curves.

2. Constant time scalar multiplication. The most traditional way to achieve constant time scalar
multiplication is the use of Montgomery ladder. In Montgomery ladder, the ladder step iterates (l − 1)
times where l is the bit-length of the scalar. This implies that the constant time is relative to the length
of scalar. By clamping, we ensure the use of constant number of iterations of the ladder step irrespective
of the choice of the scalar.

In case of left-to-right Montgomery ladder, we always need 250 diffAdds and dbls. In case of right-
to-left Montgomery ladder, R2 = diffAdd(R0,R2,R1) (line 4 of ladderStepR2L in Table 5) becomes
R2 = dbl(R2) as R2 = R0 and R1 = I for all the consecutive 0’s from the least significant bit. After
the first 1 from the least significant bit, the ladder starts performing the operation diffAdd. The above
mentioned scalars keep the number of diffAdds and dbls constant while avoiding the small subgroup
attacks. Therefore during right-to-left Montgomery ladder, we need 248 diffAdds and 250 dbls.

Generation of Clamped Scalars. One can create a clamped scalar from a 32-byte random binary string.
For left-to-right ladder, first we clear the least significant two bits (that is, set zero to bit number 0 and 1 of
0-th byte). Second, we clear the most significant 5 bits (that is, set 0 to bit number 7, 6, 5, 4, and 3 of 31-st
byte). Lastly, we set the 3-rd least significant bit of 31-st byte to 1 (that is, set 1 to bit number 2 of 31-st
byte).

For right-to-left ladder, we first clamp the scalar as a scalar of left-to-right ladder. Then we set the third
least significant bit of the scalar as 1 (that is, bit number 2 of 0-th byte).

6 Scalar Multiplication

In this section, we explain the details of the algorithms implemented to compute scalar multiplication of
BKL251 and BEd251 where each algorithm contains the explicit formulas of each ladder step.

10



BKLscalarMult(P, n) : BKLscalarMultR2L(P, n) :
Input: Base Point = (x, 1) Input: Base Point = (x, 1)

n = {1, nl−2, nl−3, . . . , n0} n = {1, nl−2, . . . , n3, 1, 0, 0}
Output: xn Output: xn
1. sx = x; sz = 1; 1. r0x = x; r0z = 1;
2. rx = b(sx + sz)2; 2. r1x = 1; r1z = 0;
3. rz = sx2; 3. For i = 0 to 1 do
4. pb = 0; 4. t1 = b ∗ (r0x + r0z)4;
5. For i = (l − 2) to 0 do 5. r0z = (r0x ∗ r0z)2;
6. b = (pb⊕ ni); 6. r0x = t1;
7. condSwapConst(sx, rx, b); 7. End For;
8. condSwapConst(sz, rz, b); 8. r2x = r0x; r2z = r0z;
9. t1 = sx + sz; 9. pb = 1;
10. t2 = (t1 ∗ (rx + rz))2; 10. For i = 2 to l − 1 do
11. rz = (sx ∗ rz + sz ∗ rx)2; 11. b = (pb⊕ ni);
12. rx = t2 + rz; 12. condSwapConst(r1x, r2x, b);
13. rz = x ∗ rz; 13. condSwapConst(r1z, r2z, b);
14. sz = (sx ∗ sz)2; 14. t1 = r0x + r0z;
15. sx = b ∗ t41; 15. t2 = (t1 ∗ (r1x + r1z))2;
16. pb = ni; 16. r1z = (r0x ∗ r1z + r1x ∗ r0z)2;
17. End For; 17. r1x = r2z ∗ (t2 + r1z);
18. condSwapConst(sx, rx, n0); 18. r1z = r1z ∗ r2x;
19. condSwapConst(sz, rz, n0); 19. r0z = (r0x ∗ r0z)2;
20. Return (sx/sz); 20. r0x = b ∗ t41;
21. 21. pb = ni;
22. 22. End For;
23. 23. Return (r1x/r1z);

Table 8. Algorithms BKLscalarMul and BKLscalarMultR2L

6.1 Scalar Multiplication of BKL251

The algorithm for traditional left-to-right Montgomery scalar multiplication for variable-base BKLscalarMult
is given in Table 8. For fixed-base scalar multiplications, we precompute the point dbl(P) and keep it in
memory. We always consider that the z-coordinate of the input base point is 1 and the implementation
is designed to take advantage of that. The total operation count of a ladder step of BKLscalarMult is
5[M] + 5[S] + 1[C]. 1[C] refers the multiplication by Kummer line parameter b (line 15 of BKLscalarMult).
In our implementation, the base point is small (t3 + t2, 1) and consequently the field multiplication in line
13 of BKLscalarMult becomes a multiplication by constant. Therefore, the total operation count of a ladder
step becomes 4[M] + 5[S] + 2[C] for fixed-base scalar multiplication.

Details of the right-to-left Montgomery ladder based scalar multiplication algorithm BKLscalarMultR2L

for variable base is also given in Table 8. The ladder step for variable-base and fixed-base are the same.
The total operation count of a ladder step of BKLscalarMultR2L is 6[M] + 5[S] + 1[C]. In case of fixed-base
scalar multiplication without precomputation table, we precompute 4P and assign to (r0x, r0z) at line 1 of
BKLscalarMultR2L and remove the computation described in lines 3–7.

On the other hand, fixed-base right-to-left Montgomery ladder based scalar multiplication with precom-
putation BKLscalarMultR2LPrecompFB is given in Table 10. We always consider that the z-coordinates of
the precomputed points are one. Each ladder step requires only 4[M] + 2[S] operations.

6.2 Scalar Multiplication of BEd251

For scalar multiplication on binary Edwards curve BEd251, WZ-coordinate system is used which has
minimum operation count per ladder step as suggested in [6, 9, 8]. The algorithm for scalar multiplication
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BEdscalarMult(P, n) : BEdscalarMultR2L(P, n) :
Input: Base Point = (w, 1) Input: Base Point = (w, 1)

n = {1, nl−2, nl−3, . . . , n0} n = {1, nl−2, . . . , n3, 1, 0, 0}
Output: xn Output: xn
1. sw = w; sz = 1; 1. r0w = w; r0z = 1;
2. rw = (sw ∗ (sw + sz))2; 2. r1x = 0; r1z = 1;
3. rz = rw + d; 3. For i = 0 to 1 do
4. pb = 0; 4. t1 = (r0w ∗ (r0w + r0z))2;
5. For i = (l − 2) to 0 do 5. r0z = r0w + d ∗ r0z4;
6. b = (pb⊕ ni); 6. r0w = t1;
7. condSwapConst(sw, rw, b); 7. End For;
8. condSwapConst(sz, rz, b); 8. r2w = r0w; r2z = r0z;
9. t1 = sw ∗ (sw + sz); 9. pb = 1;
10. t2 = t1 ∗ (rw ∗ (rw + rz)); 10. For i = 2 to l − 1 do
11. t3 = t2 + d ∗ (sz ∗ rz)2; 11. b = (pb⊕ ni);
12. sw = t21; 12. condSwapConst(r1w, r2w, b);
13. sz = sw + d ∗ sz4; 13. condSwapConst(r1z, r2z, b);
14. rw = w ∗ t3 + t2; 14. t1 = r0w ∗ (r0w + r0z)
15. rz = t3; 15. t2 = t1 ∗ (r1w ∗ (r1w + r1z));
16. pb = ni; 16. t3 = t2 + d ∗ (r0z ∗ r1z)2;
17. End For; 17. r0w = t21;
18. condSwapConst(sw, rw, n0); 18. r0z = r0w + d ∗ r0z4;
19. condSwapConst(sz, rz, n0); 19. r1w = r2w ∗ t3 + r2z ∗ t2;
20. Return (sw/sz); 20. r1z = t3 ∗ r2z;
21. 21. pb = ni;
22. 22. End For;
23. 23. Return (r1x/r1z);

Table 9. Algorithms BEdscalarMult and BEdscalarMultR2L

BKLscalarMultR2LPrecompFB(P, n) : BEdscalarMultR2LPrecompFB(P, n) :
Input: Base Points = (xi, 1), where xi = Input: Base Points = (wi, 1), where wi =

x-coordinate of 2iP, ∀0 6 i 6 l − 1 w-coordinate of 2iP, ∀0 6 i 6 l − 1
n = {1, nl−2, nl−3, . . . , n3, 1, 0, 0} n = {1, nl−2, nl−3, . . . , n3, 1, 0, 0}

Output: xn Output: xn
1. r0x = x2; 1. r0x = w2;
2. r1x = 1; r1z = 0; 2. r1x = 1; r1z = 0;
3. r2x = x2; r2z = 1; 3. r2x = w2; r2z = 1;
4. pb = 1; 4. pb = 1;
5. For i = 2 to l − 1 do 5. For i = 2 to l − 1 do
6. b = (pb⊕ ni); 6. b = (pb⊕ ni);
7. condSwapConst(r1x, r2x, b); 7. condSwapConst(r1w, r2w, b);
8. condSwapConst(r1z, r2z, b); 8. condSwapConst(r1z, r2z, b);
9. t1 = r2z ∗ (r0x ∗ r1x + r1z)2; 9. t1 = r0w ∗ r1w;
10. r1z = r2x ∗ (r0x ∗ r1z + r1x)2; 10. t2 = (r1w + 1) ∗ (r1w + r1w);
11. r1x = t1; 11. r1w = r2z ∗ (d ∗ (t1 + t2 + r1z)2);
12. r0x = xi+1; 12. r1z = r2w ∗ (t1 ∗ t2 + d ∗ r1z2);
13. pb = ni; 13. r0w = wi+1;
14. End For; 14. pb = ni;
15. Return (r1x/r1z); 15. End For;
16. 16. Return (r1w/r1z);

Table 10. Algorithms BKLscalarMultR2LPrecompFB and BEdscalarMultR2LPrecompFB
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BEdscalarMult is given in the Table 9 which is a left-to-right Montgomery ladder based variable-base scalar
multiplication. The operation count of a ladder step of BEdscalarMult is 5[M] + 4[S] + 2[C] where [C] is the
multiplication by Edwards curve parameter d (lines 11 and 13 of BEdscalarMult). In WZ-coordinate system,
W = X + Y . It is very hard to find a base point (x, y) on Edwards curve such that (x, y) is the generator of
the largest prime subgroup and w = x+ y becomes small enough to be considered as a small constant. Even
if we try to make x small, y becomes a random element of the field which satisfies the Equation (14), that
is y becomes the roots of the quadratic Equation (17)(

1 +
d

x+ x2

)
y2 +

(
1 +

d

x+ x2

)
y + d = 0. (17)

Similar thing happens if we try to control the size of y. In our experiment we could not find such a point
and it seems that the only way is to check all the points of BEd251 by brute-forced method2. As a result,
multiplication by the base point w becomes a full field multiplication and the operation count of each ladder
step of left-to-right Montgomery ladder for fixed-base remains the same as that of BEdscalarMult, that is,
5[M] + 4[S] + 2[C].

Right-to-left Montgomery scalar multiplication algorithm BEdscalarMultR2L for variable base is also
given in Table 9. Similar to Kummer line, the ladder steps for variable-base and fixed-base take the same
amount of field operations. From [9, 11], the minimum number of required field operations of a ladder step of
BKLscalarMultR2L is 7[M] + 4[S] + 2[C]. In case of fixed-base scalar multiplication without precomputation
table, we set (r0w, r0z) to 4P at line 1 of BKLscalarMultR2L and remove the computation described in lines
3–7.

If we use precomputation table for fixed-base right-to-left Montgomery ladder based scalar multiplication,
minimum number of operations required for each ladder step is 5[M] + 2[S] + 2[C] (from Table 6). Details of
the algorithm is given in Table 10 and we call it BEdscalarMultR2LPrecompFB.

6.3 Operation Count Comparison

In Table 11, we provide the comparison between BKL(1,b) and BEd with respect to minimum number of
field operations required per ladder step. BKL(1,b) takes one more [S] operation and one less [C] operation
compared to BEd during left-to-right scalar multiplication for variable base. During fixed-base case, BKL(1,b)
gains advantage as it takes one less field multiplication at the cost of one multiplication by small constant.
For the rest of the cases, BKL(1,b) always takes less number of field operations than BEd and as a result
BKL(1,b) performs better. Our experimental results also support the fact and we provide the details of the
implemented software in the upcoming sections.

Montgomery ladder Method BKL(1,b) BEd

Left-to-Right
Fixed-Base 4[M] + 5[S] + 2[C] 5[M] + 4[S] + 2[C]
Var Base 5[M] + 5[S] + 1[C] 5[M] + 4[S] + 2[C]

Right-to-Left
Fixed-Base 6[M] + 5[S] + 1[C] 7[M] + 4[S] + 2[C]
Var Base 6[M] + 5[S] + 1[C] 7[M] + 4[S] + 2[C]

Right-to-Left with Precomputation Fixed-Base 4[M] + 2[S] 5[M] + 2[S] + 2[C]

Table 11. Comparison of field operation counts per ladder step of BKL(1,b) and BEd

2 [9, 6] also do not mention anything about small base-point
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7 Field Arithmetic of the Implemented Software

Efficient field arithmetic is extremely necessary to have efficient scalar multiplication. There are many
efficient algorithms which are available for binary field arithmetic, but we focus only on the finite field
F2251 = F2[t]/f(t) where f(t) = t251 + r(t) is a irreducible polynomial with r(t) = (t7 + t4 + t2 + 1). Each
element u ∈ F2251 can be represented as a polynomial of the form

u = u250t
250 + u249t

249 + · · ·+ u1t+ u0, where each ui ∈ F2,∀0 6 i 6 250.

Element u can also be represented as binary vector of the form (u250, u249, . . . , u1, u0). This vector can be
divided into ν small vectors and we call these small vectors as limbs. Assume that the least significant ν − 1
limbs have length κ and then the length of the most significant limb is η = 251− κ× (ν − 1).

Our software explore the instruction PCLMULQDQ of Intel Intrinsic [26] to achieve efficient implementation.
Let x and y be two 128-bit registers as m128i. We represent x as a vector (x0, x1) where x0 is the least
significant 64 bits and x1 is the most significant 64 bits. Similarly, we also represent y as (y0, y1). Instruction
PCLMULQDQ takes two m128i variables and an 8-bit integer 0xij (0x stands for hexadecimal representation),
where i, j ∈ {0, 1}, as inputs. Let z be another m128i register. The PCLMULQDQ outputs

z = (z0, z1) = PCLMULQDQ(x, y, 0xij) = xi �2 yj ,

where (z1‖z0) is the result of the binary multiplication of xi and yj , ‖ denotes string concatenation and �2

denotes multiplication on F2. Notice that PCLMULQDQ can only multiply two binary elements of length 64-bit.
Because of this, we choose κ = 64 and consequently we have ν = 4. The length of the ν3 is η = 59 bits.

7.1 Field Element Representation

Let θ = t64 ∈ F2[t]. Each element u ∈ F2251 is represented as u(θ) as given below:

u(θ) = u0 + u1θ + u2θ
2 + u3θ

3.

We call u(θ) has proper representation if each ui < θ for i = 0, 1, 2 and u3 < t59. In other words, len(ui) 6 64
for i = 0, 1, 2 and len(u3) 6 59 as len(ui) = deg(ui) + 1 where ui is a binary polynomial3.

7.2 Reduction

Reduction is one of the most important and time-consuming algorithm of field arithmetic. Let u(t) ∈ F2[t]
such that deg(u) = 251 + i. Then we can write u = h(t)t251 + g(t) where h(t), g(t) ∈ F2[t]/f(t) such that
deg(h(t)) = i and deg(g(t)) 6 250. Then we have

u(t) = h(t)t251 + g(t) = r(t)h(t) + g(t) (mod f(t)).

Let u(θ) =
∑3

i=0 uiθ
i where deg(ui) 6 126(= 63 + 63) for i = 0, 1, 2 and deg(u3) 6 121(= 63 + 58).

If for any i = 0, 1, 2, deg(ui) > 63 and/or deg(u3) > 58 then u(θ) does not have proper representation.
Following the ideas of [4, 5, 24, 30], the reduction algorithm reduce is given in Table 12. Notice that the
returned v(θ) is of proper representation. After the For loop at line 4, len(vi) 6 64 for i = 0, 1, 2 and
len(v3) 6 max{len(u3), len(w2)} 6 max{122, 127 − 64} = 122. After line 5, len(v3) 6 59 and len(w3) 6 63.
This implies that w3 is a binary polynomial of maximum degree 62. As r is a polynomial of degree 7, deg(w3)
can be at most 69 after line 6 that is len(w3) 6 70. Then v0 can be of length 70 bits after line 7 which is
6-bit greater than the allowed 64-bit. Line 8 takes care of this overflow from v0. As XOR do not increase the
length of the input binary strings and len(v1) 6 64 at the beginning of line 8, then len(v1) is still at most 64
bits after line 8. This concludes that the output v(θ) is the proper representation of u(θ).

3 Let u be a polynomial with coefficients from {0, 1}. Then u can be represented as a string of the coefficients which
is basically a binary string. len(u) denotes the length of the binary string of coefficients of u and deg(u) provides
the degree of the polynomial u. Let u = t5 + t2 + 1, then string of coefficients is 100101. Therefore, len(u) = 6 and
deg(u) = 5.
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v(θ) = reduce(u(θ)) where u(θ) =
∑3

i=0 uiθ
i :

1. v0 = u0;
2. For i = 0 to 2 do
3. wi = vi �64; vi = lsb64(vi); vi+1 = ui+1 ⊕ wi;
4. End For;
5. w3 = v3 �59; v3 = lsb59(v3);
6. w3 = w3 �2 r, where r is the binary vector representation of r(t);
7. v0 = v0 ⊕ w3;
8. w0 = v0 �64; v0 = lsb64(v0); v1 = v1 ⊕ w0;

9. Return v(θ) =
∑3

i=0 viθ
i;

Table 12. Algorithm reduce

Remark: For the field reduction polynomial f(t) = (t251 + t7 + t4 + t2 +1), we did not find any trinomial
g(t) = (tk + tj + ti) for 252 6 k 6 512, 1 6 j 6 192 and 0 6 i 6 j − 1 such that f(t) divides g(t). Therefore,
we could not use the redundant trinomials strategy [14, 19, 44] for reduction of field elements.

7.3 Addition and Subtraction

Let u(θ) =
∑3

i=0 uiθ
i and v(θ) =

∑3
i=0 viθ

i be two elements of F2251 with proper representations. Let
w(θ) = u(θ) + v(θ) ∈ F2251 . Addition over binary field only needs XOR operations. We compute addition

algorithm add as wi = ui ⊕ vi for all i = 0, 1, 2, 3 where w(θ) =
∑3

i=0 wiθ
i is also in proper representation.

As binary addition operation is component-wise XOR, it is not followed by the reduce algorithm.
On binary field, subtraction is the same as the addition as −1 = 2− 1 = 1. Therefore, we do not define

subtraction separately.

7.4 Multiplication by Small Constant

Let u(θ) =
∑3

i=0 uiθ
i be an element of the field F2251 . Let c(θ) be a small constant such that c ∈ F2[t]

and deg(c) 6 63 and thus can be stored using one limb. We compute the multiplication of u(θ) by c(θ) as

u′(θ) =
∑3

i=0(c�2 ui)θ
i and then apply reduce on u′(θ) to achieve proper representation.

7.5 Field Multiplication

Let u(θ) =
∑3

i=0 uiθ
i and v(θ) =

∑3
i=0 viθ

i be two elements with proper representations to be multiplied.
The multiplication algorithm is given in the Table 13. The function polyMult of u(θ) and v(θ) computes a

polynomial of degree 6 in θ. Let the polynomial be w(θ) =
∑6

i=0 wiθ
i. We apply expandM function on w(θ)

to achieve a polynomial of 8 limbs where each limb is of at most 64-bit. The steps of the Algorithm expandM

are also given in the Table 13. Let the expanded polynomial be w(θ) =
∑7

i=0 wiθ
i with len(wi) 6 64. We

can derive Equation (19) from the output of the function expandM (that is Equation (18)) using the function
fold(w(θ)) as given below.

w(θ) = w7θ
7 + w6θ

6 + w5θ
5 + w4θ

4 + w3θ
3 + w2θ

2 + w1θ + w0 (18)

= (w3 + w7rt
5)θ3 + (w2 + w6rt

5)θ2 + (w1 + w5rt
5)θ + (w0 + w4rt

5) (19)

Notice that the expandM is absolutely necessary. After polyMult at line 1 of mult(u(θ), v(θ)), we have

w(θ) =
∑6

i=0 wiθ
i. In the absence of expandM function, consider the terms wirt

5 for i = 4, 5, 6. After
polyMult(u(θ), v(θ)), wi is a polynomial of degree at most 126. As deg(r) = 7, then wirt

5 can be a polynomial
of degree 126 + 7 + 5 = 138 which requires 139 bits to be stored. In our implementation, we use m128i
registers whose capacities are 128-bit. Therefore, without expandM, there will be overflow.
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w(θ) = mult(u(θ), v(θ)) : w(θ) = expandM(w(θ)) :
1. w(θ) = polyMult(u(θ), v(θ)) 1. w7 = 0;
2. w(θ) = expandM(w(θ)); 2. For i = 0 to 6 do
3. w(θ) = fold(w(θ)); 3. wi+1 = wi+1 ⊕ (wi �64); wi = lsb64(wi);
4. w(θ) = reduce(w(θ)) 4. End For;

5. Return w(θ) =
∑3

i=0 wiθ
i; 5. Return w(θ) =

∑7
i=0 wiθ

i;

Table 13. Algorithms mult and expandM

Computation of polyMult(u(θ), v(θ)). Let u(θ) and v(θ) be in proper representation with 4 limbs and

let w(θ) = polyMult(u(θ), v(θ)) =
∑6

i=0 wiθ
i. The main objective of polyMult is the computation of the

coefficients of w(θ), that is wi for i = 0, 1, . . . , 6. We use 2-2 Karatsuba [37] method with PCLMULQDQ and
XOR instructions to compute the coefficients of w(θ). The details are given below:

w(θ) = polyMult(u(θ), v(θ))

= polyMult2(u1θ + u0, v1θ + v0) + polyMult2(u3θ + u2, v3θ + v2)θ4 +

(polyMult2((u1 ⊕ u3)θ + (u0 ⊕ u2), (v1 ⊕ v3)θ + (v0 ⊕ v2)) +

(polyMult2(u1θ + u0, v1θ + v0) + polyMult2(u3θ + u2, v3θ + v2))) θ2

We also compute polyMult2 using Karatsuba method as

polyMult2(u1θ + u0, v1θ + v0)

= (u1 �2 v1)θ2 + (((u0 ⊕ u1)�2 (v0 ⊕ v1))⊕ (u0 �2 v0)⊕ (u1 �2 v1)) θ

+ (u0 �2 v0)

Each polyMult2 requires 3 PCLMULQDQ operations and 4 XORs. Consequently, polyMult requires 9 PCLMULQDQ

operations and 22 XORs.
Remark: We also implemented the hybrid method [30] and the schoolbook method. Our experiments

show that Karatsuba method produces the best result (See Table 17).

Unreduced Field Multiplication (multUnreduced). Let u(θ) and v(θ) be two elements of F2251 with

proper representation, that is u(θ) =
∑3

i=0 uiθ
i and v(θ) =

∑3
i=0 viθ

i. Let w(θ) is a polynomial of the form

w(θ) =
∑6

i=0 wiθ
i. We define multUnreduced as

w(θ) = multUnreduced (u(θ), v(θ)) = polyMult(u(θ), v(θ)).

multUnreduced (u(θ), v(θ)) is exactly the same as the mult without expandM, fold and reduce.

Field Addition of unreduced field elements (addReduce). Let u(θ) =
∑6

i=0 uiθ
i and v(θ) =

∑6
i=0 viθ

i

be results of two multUnreduceds, because addReduce is used on the outputs of two multUnreduced in our
implementation. As addition over binary field is simply the bit-wise XOR of the inputs, it does not increase
the length and thus there is no issue of overflow. The details of the algorithm of addReduce is given in
Table 14. On the XORed value, we apply expandM, fold and reduce to achieve a proper representation.

7.6 Field Squaring

Field squaring is much less expensive in binary fields compared to prime fields as here squaring means
relabeling the exponent of the input binary element. Let u(θ) =

∑3
i=0 uiθ

i be the element to be squared.
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w(θ) = addReduce(u(θ), v(θ)) :
1. For i = 0 to 6 do
2. wi = ui ⊕ vi;
3. End For;
4. w(θ) = expandM(w(θ));
5. w(θ) = fold(w(θ));
6. w(θ) = reduce(w(θ));

7. Return w(θ) =
∑3

i=0 wiθ
i;

Table 14. Algorithms addReduce

The squaring algorithm is given in Table 15. The polySq function creates a polynomial w(θ) =
∑6

i=0 wiθ
i

from u(θ) as given in Equation 20.

wi =

{
u2i/2 = ui/2 �2 ui/2, i = 0 (mod 2)

0, i = 1 (mod 2)
(20)

w(θ) = sq(u(θ)) : w(θ) = expandS(w(θ)) :
1. w(θ) = polySq(u(θ), v(θ)) 1. For i = 0, 2, 4, 6 do
2. w(θ) = expandS(w); 2. wi+1 = (wi �64); wi = lsb64(wi);
3. w(θ) = fold(w); 3. End For;

4. w(θ) = reduce(w(θ)) 4. Return w(θ) =
∑7

i=0 wiθ
i;

5. Return w(θ) =
∑3

i=0 wiθ
i;

Table 15. Algorithms sq and expandS

The expandS is also slightly different than expandM. In function expandS, if i = 0 (mod 2), then we divide
the wi in to two parts and assign the least significant 64 bits to wi and the remaining most significant bits
to wi+1. If i = 1 (mod 2), we do nothing. The details of the function expandS are also given in Table 15.
On the output of expandS, we apply fold and reduce to compute the proper representation of the squared
value.

Notice that, polySq only needs 4 PCLMULQDQ operations and no XORs which is less than half of the
operation counts of polyMult. As a result, sq is significantly faster than mult.

Remark: Squaring also can be done by inserting zero between every consecutive bits using the help of a
lookup table as proposed in [3]. But to process each 64-bit limb, it requires 2 AND, 1 Right Shift by a Byte,
2 table lookup operations, 1 INTERLO and 1 INTERHI operations. Each table lookup also depends on the
input element and therefore it is not of constant time. To achieve constant time implementation, we avoid
table lookup and implement field squaring operation polySq using only 4 PCLMULQDQ operations.

7.7 Field Inverse

We compute Kummer line scalar multiplication in projective coordinate system and receive an projective
point (xn, zn) at the end of the iterations of ladder steps. Therefore, we compute the affine output as xn/zn
which requires one field inversion and one field multiplication. We compute field inversion as z−1n = z2

251−2
n

in constant time using 250 field squaring and 10 field multiplications following the sequence given in [6]. The

multiplications produce the terms z3n, z7n, z2
6−1

n , z2
12−1

n , z2
24−1

n , z2
25−1

n , z2
50−1

n , z2
100−1

n , z2
125−1

n and z2
250−1

n .
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7.8 Conditional Swap

The laddersteps of Tables 2, 4 and 5 use conditional swap based on the input bit from the scalar. But
to achieve constant time scalar multiplication, no use of branching instructions is prerequisite. Therefore,
we perform the conditional swap without any branching instruction as given in Table 16. In Table 16, the
algorithm condSwap uses branching instruction where condSwapConst performs the same job as the condSwap
without any branching instruction. In computer, 0 is represented as a binary string of all zeros and −1 is
represented as a binary string of all ones in 2’s complement representation. Therefore, if b is 0 then w = 0
at the end of the line 2 of Algorithm condSwapConst else it is w = ui ⊕ vi. As a consequence, if b = 0, there
is no change of values in ui and vi as ui = ui ⊕ 0 = ui and vi = vi ⊕ 0 = vi. On the other hand, if b = 1,
then ui and vi get swapped as ui = ui ⊕ w = ui ⊕ ui ⊕ vi = vi and vi = vi ⊕ w = vi ⊕ ui ⊕ vi = ui.

condSwap(u(θ), v(θ), b) condSwapConst(u(θ), v(θ), b)
1. If (b = 1) then 1. For i = 0 to 4 do
2. For i = 0 to 4 do 2. w = ui ⊕ vi; w = w&(−b);
3. w = ui; ui = vi; vi = w; 3. ui = ui ⊕ w; vi = vi ⊕ w;
4. End For; 4. End For;
5. End If;

Table 16. Algorithm Conditional Swap

8 Implementation of Batch Binary Kummer lines

In this work, we also provide an efficient software which computes variable-base and fixed-base scalar
multiplications in a batch of 128. In this implementation, we use the software BBE251 available at [6] as the
base implementation. As the underlying fields are the same for both the cases, we only had to modify the
fieldelement.h, core2.cpp and gates.cpp files of the available software to make it work for the Kummer
line BKL251. We also make the modified code publicly available.

9 Implementations and Timings

We have implemented the software BKL251 and BEd251 using the Intel intrinsic instructions applicable
to m128i. All the modules of the field arithmetic and the ladder step are written in assembly language
to achieve the most optimized implementation. The 64 × 64 bit binary field multiplications are done using
pclmulqdq instruction. We compute 128-bit bit-wise XOR and AND operations using instructions pxor and
pand respectively. For byte-wise and bit-wise right-shift, we use psrldq and psrlq. We implement the scalar
multiplication function with clamped scalars and Montgomery ladder algorithm with condSwapConst and
constant-time field inverse operation. Consequently, our codes achieve constant run-time.

We use reduce algorithm with mult, sq, multConst and addReduce. In case of function mult and sq, the
size of the limbs are at most 76 bits after fold operations. Therefore, the w3 of line 5 of Algorithm reduce

(Table 12) will be 17 bits at most and in turn w3 becomes 24-bit after line 6. Therefore, there will be no
overflow from v0 of line 7 of Table 12. Similar thing happens for the addReduce.

In case of multConst operation in scalar multiplications BKLscalarMult and BKLscalarMultR2L, the
maximum length of the constant is the length of the Kummer line parameter b which is 14-bit (where the
base point is of 4 bits). Therefore, the maximum possible length of u′3 after line 3 of Algorithm multConst is
72-bit. During reduce of multConst, w3 of line 7 of Table 12 becomes 20-bit long and in turn there will be no
overflow from v0. Similarly, in scalar multiplications BEdscalarMult and BEdscalarMultFB, the maximum
length of the constant is curve parameter d which is of degree 57. Therefore, the maximum possible length
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of u′3 after line 3 of Algorithm multConst is 116-bit. During reduce of multConst, w3 of line 7 of Table 12
can be at most 64-bit long and thus there will also be no overflow from v0.

As there will be no overflow from v0 after line 7 of reduce in all possible cases of mult, sq, multConst
and addReduce in context of BKL251 and BEd251, we further optimize the field arithmetic by removing the
line 8 of reduce in Table 12 during implementation.

In the modules of field multiplications and squaring, a significant amount of time is taken by the attempt
of achieving the proper representation. In other words, the operations expandM/expandS, fold and reduce,
in total, take a considerable amount of time compared to polyMult/polySq. Using multUnreduced and
addReduce in BKLscalarMult (line 11), BKLscalarMultR2L (line 16) and BEdscalarMultR2L (line 19), we
avoid one set of expandM, fold and reduce operations at each ladder step and it produces a significant
speedup. The rest of the details of the implementation can be found from the available software.

Timing experiments were carried out on a single core on the platform:

Skylake: IntelrCore™i3-6100U 2-core CPU @2.30GHz running

OS of the computer is 64-bit Ubuntu 18.04.5 LTS and the code was compiled using GCC version 8.4.0.
During timing measurements, turbo boost and hyperthreading were turned off. An initial cache warming

was done with 25,000 iterations and then the median of 100,000 iterations was recorded. The Time Stamp
Counter (TSC) was read from the CPU to RAX and RDX registers by RDTSC instruction.

In Table 17, we provide the timing results of left-to-right Montgomery scalar multiplications of BKL251
and BEd251 which are implemented using three different field multiplication methods: Schoolbook, Hybrid
and Karatsuba. [5, 25] use schoolbook method to obtain best result over prime field for Curve25519. On
the other hand, [30] uses hybrid method to produce best result for Kummer lines over prime fields. But in
our work, we found that Karatsuba method implemented using PCLMULQDQ provides the best running time
for binary Kummer line. Our experiments show that fixed-base scalar multiplication of BKL251 is 9.63%
faster than binary Edwards curve BEd251. On the other hand, variable-base scalar multiplications on binary
Kummer line and Binary Edwards curve have almost same performance, and BKL251 is 0.52% faster than
BEd251.

In Table 18, we compare the performances of right-to-left Montgomery ladder scalar multiplications.
It shows that the BKL251 provides the fastest result. BKL251 is 17.84% faster than BEd251 and 45.99%
faster than Koblitz over F4163 [44] for fixed-base scalar multiplication with precomputation. Using right-to-
left Montgomery ladder with precomputation, we can achieve 15.84% faster fixed-base scalar multiplications
compared to left-to-right Montgomery ladder fixed-base scalar multiplication, but we get only 7.13% speedup
in case of BEd251. On the other hand, left-to-right Montgomery ladder is 7.04% faster than right-to-left
Montgomery ladder for BKL251 in case of variable base scalar multiplication.

Table 19 provides a comparative study of variable-base scalar multiplications of a few curves which target
at 128-bit security and have timing attack resistant implementation. Even though this work does not consider
special fields or special algebraic properties, we include Four-Q curve or Koblitz curves [44] over quadratic
field to the comparison for the sake of completeness4. BKL251 is 39.74% faster than CURVE2251 and, 23.25%,
32.92% and 0.48% faster than the NIST propsed binary curves K-283, B-283 and B-233 respectively. On the
other hand, BKL251 is 11.8% slower than the K-233.

Kummer lines over prime field KL2519 and KL25519 are 11.82% and 2.1% faster than BKL251. Notice
that both the implementations of KL2519 and KL25519 use SIMD parallelization where BKL251 does not
use any parallelization. BKL251 is 2.08% faster than Curve25519 even though it uses SIMD parallelization.

Table 20 lists the timing and bit-operation comparisons among the batch software: BBE251, Curve2251,
sect283r1 and BBK2515. Provided timings are scaled as (total batch computation time)/128. Performances
of batch binary Kummer and Edwards are almost the same. It also shows that each variable-base scalar

4 All the Skylake performances are measured in our experimental system. But due to publicly unavailabile code, all
the Haswell performances are obtained from the referred articles.

5 Reported details of BBE251 and BBK251 are obtained from out experimental setup. But due to unavailability of
the public code, data of Curve2251 and sect283r1 are obtained from the referred article.
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Field
Multiplication BKL251 BEd251

Algorithm Fixed-Base Var-Base Fixed-Base Var-Base

School-book 83,598 91,570 90,894 91,062

Hybrid 83,398 91,484 91,422 91,586

Karatsuba 82,062 90,560 90,812 91,036

Table 17. Timings of Left-to-Right Montgomery Scalar Multiplications of BKL251 and BEd251 in clock cycles (cc)

Curve Fixed-Base Var-Base
with without with without

Precomp. Precomp. Precomp. Precomp.

Koblitz over F4163 [44] 128,284 145,188 - -

BKL251 (this work) 69,292 97,170 - 97,416

BEd251(this work) 84,334 101,922 - 102,010

Table 18. Timings of Right-to-Left Montgomery Scalar Multiplications of BKL251 and BEd251 in clock cycles (cc)

Curve Field Endomorphism SIMD Timing Architecture
Parallelization (in cc)

NIST K-233 [13] F2233 no no 81,000 Haswell

NIST B-233 [13] F2233 no no 91,000 Haswell

NIST K-283 [13] F2283 no no 118,000 Haswell

NIST B-283 [13] F2283 no no 135,000 Haswell

CURVE2251 [51] F2251 no no 150293 Skylake

KL2519 [30, 40] F2251−9 no yes 80,987 Skylake

KL25519 [30, 40] F2255−19 no yes 88,678 Skylake

Curve25519 [39] F2255−19 no yes 92,485 Skylake

Koblitz [44] F4143 yes yes 82,872 Haswell

Koblitz [44] F4163 no yes 105,952 Haswell

Koblitz [44] F4163 no yes 145,188 Haswell

Four-Q [16, 17] F(2127−1)2 yes yes 50621 Skylake

Four-Q [16, 17] F(2127−1)2 no yes 89,917 Skylake

BEd251 (this work) F2251 no no 91,036 Skylake

BKL251 (this work) F2251 no no 90,560 Skylake
Table 19. Comparison between variable-base scalar multiplications on different curves for 128-bit security level

Curve Fixed-Base Var-Base
Timing(cc) Bit operation Timing(cc) Bit operation

BBE251 [6] - - 260,843 44,679,665

Curve2251 [15] 106,391 - - -

sect283r1 [15] 218,130 - - -

BBK251(this work) 213,928 36,172,773 260,220 44,634,234

Table 20. Timings of Batch Binary Edwards, Kummer and Short Weierstrass
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multiplication of BKL251 or BEd251 (from Table 19) is approximately 65% faster than one variable-base
scalar multiplication (after scaling down) of batch software BBK251 or BBE251 (from Table 20).

Diffie-Hellman Key Exchange. In two-party Diffie-Hellman key exchange [18] protocol, each party
has to compute two scalar multiplication: one fixed-base and one variable-base. Ignoring the communication
time, the total computation time required by each party is the sum of the computation time of both the
scalar multiplication. BKL251 takes 69, 292 + 90, 560 = 159, 852 cc to compute a shared key. On the other
hand, BEd251 needs 84, 334 + 91, 036 = 175, 370 cc. Therefore, BKL251 is 8.85% faster than BEd251 to
perform Diffie-Hellman key exchange.

10 Conclusion

This work proposes the first ever binary Kummer line, namely BKL251. It also fills a gap in the existing
literature by exhibiting that Binary Kummer line based scalar multiplication offers competitive performance
compared to existing proposals like K-283, B-283, K-233, B-233, BEd251 and CURVE2251 over finite field
of characteristic 2 using PCLMULQDQ. Previous implementations of BEd251 and CURVE2251 focus on batch
implementation using bitslicing technique. This work presents the first ever implementation of the proposed
BKL251 and BEd251 using the instruction PCLMULQDQ (best to our knowledge) along with the batch binary
implementation of BKL251. From the experimental results, we conclude that BKL251 is faster than all the
binary curves which target at 128-bit security and have timing-attack resistant implementation without any
morphism.

Acknowledgement. We thank Palash Sarkar and Kaushik Nath for their valuable comments.
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