
Privacy-Preserving Decentralised Singular Value
Decomposition

Bowen Liu and Qiang Tang

Luxembourg Institute of Science and Technology (LIST),
5, Avenue des Hauts-Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg

{bowen.liu, qiang.tang}@list.lu

Abstract. With the proliferation of data and emerging data-driven ap-
plications, how to perform data analytical operations while respecting
privacy concerns has become a very interesting research topic. With
the advancement of communication and computing technologies, e.g. the
FoG computing concept and its associated Edge computing technologies,
it is now appealing to deploy decentralized data-driven applications. Fol-
lowing this trend, in this paper, we investigate privacy-preserving singu-
lar value decomposition (SVD) solutions tailored for these new comput-
ing environments. We first analyse a privacy-preserving SVD solution by
Chen et al., which is based on the Paillier encryption scheme and some
heuristic randomization method. We show that (1) their solution leaks
statistical information to an individual player in the system; (2) their so-
lution leaks much more information when more than one players collude.
Based on the analysis, we present a new solution, which distributes the
SVD results into two different players in a privacy-preserving manner.
In comparison, our solution minimizes the information leakage to both
individual player and colluded ones, via randomization and threshold
homomorphic encryption techniques.

Keywords: Internet of Things · Fog Computing · Edge Computing ·
Singular Value Decomposition · Paillier Encryption · Threshold Cryp-
tosystem

1 Introduction

Internet of Things (IoT) is increasingly appearing in our lives, which promises
to connect everyone with everything from everywhere. In practice, IoT generates
a large amount of data that is closely related to the human users (or, owners)
of the devices. On the positive side, such data can be used for many useful
purposes such as building smart services. However, on the other side, it brings
huge privacy risks [13]. In most applications, the root of the privacy issue lies
in the fact that data needs to be aggregated to a must-to-be trusted service
provider before any service can be provided.

To mitigate the privacy concerns resulted from privacy-invasive data aggre-
gation in general, information security researchers and cryptographers have been

2 Liu and Tang

advocating privacy-preserving distributed protocols for decades. Unfortunately,
these protocols do not appeal to the real-world applications, which are often
designed for the cloud computing paradigm that essentially requires data ag-
gregation to a central third-party server. Recently, with the advancement of
communication infrastructure (e.g. 5G) and computing technologies such as the
FoG computing concept and its associated Edge computing technologies, it has
become a trend to design and deploy decentralised applications, which push com-
putations to the edge so that it avoids data aggregation to some extent. Coined
by Numhauser in 2011 [1], there are many (similar) definitions for FoG comput-
ing. For example, Cisco [4] defines FoG computing as a paradigm that extends
cloud computing [8] and services to the edge of the network, shown in Figure
1. In reality, FoG Computing can process its services at different nodes in the
network as opposed to a central server. It significantly decreases the data move-
ment across the network, so as to reduce the congestion, cost, and latency, and
it also provides a decentralised infrastructure that naturally facilitates privacy
protection. While many FoG-based applications are emerging, it is becoming
an interesting research topic to design privacy-preserving solutions for the data
exploitation tasks in these applications.

Fog Computing

Cloud Computing

Edge Devices

Fig. 1. FoG Computing

1.1 Related Work and Problem Statement

In this paper, we are interested in how to perform Singular Value Decomposi-
tion (SVD) based on data from decentralized IoT devices. In machine learning
and data mining, SVD is a powerful and fundamental matrix factorization tech-
nique. It provides a means to decompose a matrix into a product of three simpler
matrices, so that one may discover useful and interesting properties of the orig-
inal matrix [6]. It finds many applications in reality. One prominent example
is recommender systems [9] which are the cornerstone for many personalization
services.

Chen et al. [3] proposed a privacy-preserving FoG computing framework for
SVD computation. In their solution, the result of SVD is separated into two
parts and stored at two different nodes. As a result, if an attacker compromises
only one node, then it does not learn everything. Unfortunately, there is no
formal analysis in [3]. Han, Ng, and Yu [6] provided a solution for performing

Privacy-Preserving Decentralised Singular Value Decomposition 3

SVD in partitioned dataset, where two players collaborate with each other to
perform SVD based on their joint dataset. Their solution is based on a number
of cryptographic primitives, and the authors concluded that it is a challenge to
reduce the complexity when their solution is used for large dataset. For privacy-
preserving matrix factorization (MF) in general, Nikolaenko et al. [10] proposed
a garbled circuit-based protocol and Kim et al. [7] proposed a protocol based
on homomorphic encryption. In both solutions, the factorization operation is
decentralized to two non-colluding servers, one of them controls key materials
while the other carries out the factorization operation. When the two servers are
compromised at the same time, then everything is leaked. Some further examples
include Zhuo et al. [15] utilized full homomorphic encryption to achieve privacy-
preserving data statistics on crowd-sourcing data and Zhou et al. [14] utilized
one-way trapdoor permutation to realize time series data aggregation for wireless
wearable communications.

Despite the literature work, it remains an open problem to design an effi-
cient privacy-preserving SVD (or MF in general) protocol that provides rigorous
security even when several players are compromised simultaneously.

1.2 Contribution and Organization

In this paper, we aim at rigorous privacy-preserving SVD solutions in the FoG
computing paradigm. Firstly, we review the solution by [3] in Section 3 and
demonstrate several privacy risks in Section 4. Our analysis covers a number
of scenarios, including individual player/attacker and more colluded players/at-
tackers. Moreover, we also briefly analyse the recommender use case. Based on
the analysis, we simplify the FoG architecture from [3] and present a stronger
security model, which captures scenarios where several players may collude. We
then propose a new solution based on threshold homomorphic encryption and
push some of the heavy computation workloads to the edge. We further analyse
the security properties and the asymptotic complexities, as well as benchmark-
ing results on a PC. These results appear in Section 5. In addition, we present
some preliminary in Section 2 and draw some conclusions in Section 6.

2 Preliminary on Singular Value Decomposition

m

n

M =

m

m

n

n

n

Singular Value

U
VT

Fig. 2. Singular Value Decomposition

Let M be a m×n matrix. As shown in Figure 2, the SVD of M is a factorization
of the form UΣVT , where U is an m × m left-singular matrix of M, Σ is an

4 Liu and Tang

m × n singular matrix of M, V is a n × n right-singular matrix of M, and T
means conjugate transpose. In addition, there are also two relations:

M ·MT = UΣVT ·VΣTUT = UΣΣTUT ; MT ·M = VΣTUT ·UΣVT = VΣTΣVT

The columns of U (left-singular vectors) and V (right-singular vectors) are,
respectively, eigenvectors of M ·MT and MT ·M. The non-zero elements of Σ
are the square roots of the non-zero eigenvalues of M ·MT and MT ·M.

A prominent application of SVD is recommender systems. Using the users’
rating data, a service provider can recommend other films that they might like.
As a toy example, suppose we have 3 users’ score records for 4 movies (0 for the
case not rated), see Table 1.

Movie A Movie B Movie C Movie D

User 1 3 0 0 4

User 2 4 0 1 0

User 3 0 4 3 0
Table 1. Rating Matrix

For this toy example, after applying SVD to the rating matrix, we can obtain
three singular matrices denoted as U, Σ and VT .

U =

−0.784 0.243 0.571
−0.588 0.000 −0.809
−0.196 −0.970 0.143

 Σ =

5.831 0.000 0.000 0.000
0.000 5.000 0.000 0.000
0.000 0.000 2.828 0.000

 VT =


−0.807 −0.135 −0.202 −0.538

0.146 −0.776 −0.582 0.194

−0.538 0.202 −0.135 0.807
0.000 0.137 −0.158 0.727



In practice, a dimensionnality reduction procedure can be applied to generate
small-rank feature matrices. Note that the eigenvalue 2.828 is smaller than the
other two values, so that we can choose to suppress it and have a truncated
variant of Σ, namely

Σ∗ =

(
5.831 0.000
0.000 5.000

)
Accordingly, we generate a variant of U by removing its last column and a

variant of VT by removing its last two rows. Let the variants be denoted as U∗

and V∗T respectively. By computing U∗Σ∗
1
2 and Σ∗

1
2V∗T , we obtain the user

and item feature matrices shown in Table 2 and 3.

User 1 -1.893 0.543

User 2 -1.420 0.000

User 3 -0.473 -2.169
Table 2. User Feature Matrix

Movie A Movie B Movie C Movie D

-1.949 -0.326 -0.488 -1.299

0.326 -1.735 -1.301 0.434

Table 3. Movie/Item Feature Matrix

Based on these feature matrices, a recommender service provider can serve
users with predictions on the movies they have not rated.

3 Overview of Chen et al.’s Solution

In this section, we introduce the privacy-preserving solution by Chen et al. [3]
and also briefly introduce its application to the recommender use case.

Privacy-Preserving Decentralised Singular Value Decomposition 5

Second-Layer FoG Device (SDu)
(Decomposing ATA)

Second-Layer FoG Device (SDv)
(Decomposing AAT)

(3) Sending Decrypted Result

(3) Sending Decrypted Result

(2) Sending
Randomized Data

Randomizing
Collected Data

First-Layer
FoG Device (FD)

(1) Uploading
Encrypted Data

Edge Device
(ED1)

(EDi)

(EDN)

...
...

Second-Layer
FoG Device (SDd)

Fig. 3. Fog Computing Architecture

By assuming a FoG architecture, shown in Figure 3, Chen et al. [3] designed
a privacy-preserving SVD solution based on some heuristic randomization tech-
niques and the Paillier scheme, described in Appendix A. This FoG computing
architecture consists of the following types of entities:

– Server : The initialization of the whole system is generated and operated by
the server, it is considered as fully trusted node in the FoG architecture.
Once, the initialisation is done, the server will not get involved anymore. So,
we omit it in Figure 3.

– Edge Devices ED: Each edge device is the original collector of the data and
represents the human user behind it.

– First-layer FoG Device FD: The FoG device is responsible for collecting the
data from edge devices and coordinating the SVD operations.

– Second-layer FoG Devices SDs: There are three different devices in this
category. SDd decrypts the received information and obtains the randomized
data matrix, and prepares data for SDu and SDv, who will perform the
decomposition.

3.1 Description of the Solution

Parameter Propose

N Number of Edge Devices (ED)

l Dimension of data vector

x Range of value in data vector: [0, x]

k1 For generating t = 2k1

W Randomized W > max(N, l) · x2
S Randomized S > max(N, l) · (x2 + 2tWx+ t2W 2)

k2 Bit length of W

k3 Bit length of S

~a For transforming vector into number

k Length of p, q in Paillier cryptosystem

(n, g) Public key of Paillier cryptosystem

6 Liu and Tang

(λ, µ) Private key of Paillier cryptosystem

Table 4: Initialization Parameters

Initialisation. The trusted server will setup the parameters for the system,
shown in Table 4. In terms of Paillier cryptosystem [11], the server generates the
public key (n = pq, g), and the private key (λ, µ). In the meanwhile, the server
generates two random coprime numbers W and S respectively. Additionally, a
super-increasing vector ~a = (a1 = 1, a2, ..., al)

T is generated, and each value

needs to conform to the following conditions:
∑i−1
j=1 aj · (x+ tW + tS) < ai, i ∈

[2, l] and
∑l
j=1 aj · (x+ tW + tS) < n. The Paillier private key (λ, µ) is assigned

to SDd, and the private randomization parameters W and S are assigned to
FD, SDu, SDv. All other parameters are public.

Privacy-preserving Protocol. Illustrated in Figure 3, the privacy-preserving
protocol runs in four steps.

1. EDi’s data is expressed in vector form ~di = (d1i, d2i, ..., dli)
T . Note that the

data from EDs forms a matrix A as follows.

A =


d11 d12 . . . d1N
d21 d22 . . . d2N
...

...
. . .

...
dl1 dl2 . . . dlN

 (1)

By using the public vector ~a, EDi first converts its vector into an integer.

mi = ~di
T
· ~a = a1d1i + a2d2i + ...+ aldli

It then encrypts this integer with Paillier public key to obtain ci. At the end
of this step, EDi, for every 1 ≤ i ≤ N , sends ci to FD.

2. After receiving every ci, FD chooses two vectors ~zi = (z1i, z2i, ..., zli)
T and

~ri = (r1i, r2i, ..., rli)
T , where each element is randomly chosen from [1, t]. It

then computes the randomization parameter Ri =
∑l
k=1 ak ·(zki ·W+rki ·S),

and sets the randomized ciphertext c′i as

c′i = ci · gRi mod n2

= (gmi · rni) · gRi mod n2

= (g
∑l
k=1 ak·dki · rni) · g

∑l
k=1 ak·(zki·W+rki·S) mod n2

= g
∑l
k=1 ak·(dki+zki·W+rki·S) · rni mod n2

At the end of this step, FD sends c′i (1 ≤ i ≤ N) to SDd.
3. After receiving every c′i, SDd decrypts it to obtain

m′i =

l∑
k=1

ak · (dki + zki ·W + rki · S) mod n

Next, by applying Algorithm 1, the randomized non-encrypted data in vector
form can be computed.

Privacy-Preserving Decentralised Singular Value Decomposition 7

Algorithm 1 Recover Vector from Integer

Input: m′i and ~a = (a1, a2, ..., al)
T

Output: randomized non-encrypted data ~d
′
i

1: let tmp = (ta1 , ta2 , ..., tal)
T within empty value inside

2: Xl ← m′i =
∑l
j=1 ak · (dji + zji ·W + rji · S) mod n

3: for k = l to 2 do
4: Xk−1 ← Xk mod ak
5: tak ← Xk−Xk−1

ak
= dki + zki ·W + rki · S

6: end for
7: ta1 ← X1 = d1i + z1i ·W + r1i · S
8: return ~d

′
i = (ta1 , ta2 , ..., tal)

T

Now, SDd has the matrix A′ made up by N different randomized non-

encrypted vectors ~d′i = (d′1i, d
′
2i, ..., d

′
li)
T .

A′ =
[
~d′1
~d′2 . . .

~d′N

]
=


d′11 d

′
12 . . . d

′
1N

d′21 d
′
22 . . . d

′
2N

...
...

. . .
...

d′l1 d
′
l2 . . . d

′
lN

 (2)

At last, SDd sends resu = A′ · A′T and resv = A′T · A′ to SDu and SDv

respectively.
4. With resu, SDu derandomizes every entry e′ij as follows.

e′ij mod S mod W

=(dij + zij ·W + rij · S) mod S mod W

=(dij + zij ·W) mod W

=dij

The resulting matrix is A·AT . Then, SDu performs eigenvalue decomposition
to obtain U and Σ of A·AT , referring to Section 2. Similarly, SDv can obtain
V and Σ of AT · A. At the end, SDu and SDv will store UΣ 1

2 and VΣ 1
2

respectively. Note that they might apply the dimension reduction procedure,
as mentioned in Section 2 , to store smaller feature matrices.

3.2 Recommender Use Case

Referring to the recommender use case described in Section 2, Chen et al. [3]
presented a procedure to extend the privacy-preserving SVD protocol to compute
predictions of unrated items for the user of any edge device ED. Assuming this
use case, the information that SDu obtains at the end of privacy-preserving SVD
protocol, namely UΣ 1

2 , can be regarded as the user feature matrix, where the i-
th row is the feature vector of the user of EDi. Correspondingly, the information
that SDv obtains at the end of privacy-preserving SVD protocol, namely VΣ 1

2 ,
can be regarded as the item feature matrix, where the j-th row is the feature
vector of the j-th item.

8 Liu and Tang

If the user of EDi wants to retrieve the prediction on the j-th item, the
procedure is detailed below.

1. SDu and SDv randomize InfoUi and InfoIj with W and S, respectively,
and send the randomized data to SDd. Here, as described above, InfoUi
stands for the user feature vector of EDi, while InfoIj stands for the item
feature vector of item j. As an example, the randomization of InfoUi is
shown in Algorithm 2.

Algorithm 2 Randomize data with W and S

Input: InfoUi, W , S and range of random number [1, t]
Output: randomized vector InfoUi′

1: for every element hzi of InfoUi where 1 ≤ z ≤ l do
2: Generate random integer x, y from [1, t]
3: h′z1 ←= hz1 + x ·W + y · S
4: end for
5: return InfoUi′ = (h′1i, h

′
2i, ..., h

′
li)

2. After receiving the randomized feature vectors InfoUi′ and InfoIj′, SDd

computes a randomized score Score
′

= InfoUi′{InfoIj′}T , and sends it to
FD.

3. After receiving Score′, FD can derandomize it with W and S to obtain the
plaintext prediction for EDi:

Score = Score′ mod S mod W = InfoUi · InfoIjT

4 Analysis of Chen et al.’s Solution

In [3], Chen et al. analysed all devices of the system, and claimed that none of
them has the ability to learn private data under normal operations. However,
we show that their solution has a number of vulnerabilities, it leaks information
not only to an individual device but also colluded devices (more seriously).

4.1 Information Leakage to Individual Device

At the end of the privacy-preserving protocol, SDv obtains AT ·A with following
notation.

AT · A =


v11 v12 . . . v1N
v21 v22 . . . v2N
...

...
. . .

...
vN1 vN2 . . . vNN

 (3)

Leakage 1. We note that the values vii, for i ∈ [1, N], are in the following
form.

Privacy-Preserving Decentralised Singular Value Decomposition 9


v11 = d211 + d221 + ...+ d2l1

...

vNN = d21N + d22N + ...+ d2lN

According to Cauchy-Schwarz inequality [12], based on vii, SDv can deduce

the upper bound about the average of the elements in ~di for each device EDi,

namely
∑l
j=1 dji

l ≤ (viil)
1
2 .

Leakage 2. Taking the elements related to ED1 as an example, SDv possesses
the following values.


v11 = d211 + d221 + ...+ d2l1

...

vN1 = d1Nd11 + d2Nd21 + ...+ dlNdl1

Adding all of them, SDv can obtain
∑N
j=1 vj1 =

∑N
j=1 d1j · d11 +

∑N
j=1 d2j ·

d21 + · · ·+
∑N
j=1 dlj · dl1. Based on the fact that every dji ∈ [0, x], according to

the law of large numbers [2], the above equality can be approximately written
as ∑N

j=1 vj1

N
=

1 + x

2
· d11 +

1 + x

2
· d21 + ...+

1 + x

2
· dl1

Based on this, SDv can obtain the approximate average of the elements in

~d1 for device ED1, namely
2
∑N
j=1 vj1

N ·(1+x)·l . Clearly, the same analysis applies to EDi

(2 ≤ i ≤ N).

4.2 When two Devices Collude

If SDu and SDv collude, they possess U, Σ and V which are the singular matrices
of A. It means they can restore all private data as U · Σ · VT = A. If SDd and
FD collude, they will possess W , S, and the Paillier private key (µ, λ). With
this information, they can recover the private data of all EDs. Clearly, if SDu

or SDv colludes with SDd, they can also recover everything in the same way.

Next, we investigate the case that SDv and one ED collude. Generally, let’s
assume if SDv and EDi collude. They possess ~di and AT · A as defined in
Equation (3).

~di = (d1i, d2i, ..., dli)
T

The elements from the i-th column of AT · A are defined as follows.

10 Liu and Tang



v1i = d11d1i + d21d2i + ...+ dl1dli

...

v(i−1)i = d1(i−1)d1i + d2(i−1)d2i + ...+ dl(i−1)dli

...

v(i+1)i = d1(i+1)d1i + d2(i+1)d2i + ...+ dl(i+1)dli

...

vNi = d1Nd1i + d2Nd2i + ...+ dlNdli

Below, we describe two simple active attacks.
Attack 1. Being an active attacker, EDi can set its vector to be ~di = (1, 1, ..., 1).

As a result, from the value vji where j ∈ [1, N] and j 6= i, SDv and EDi can
learn the average of the elements in the vector of EDj .

vji
l

=
d1j + d2j + ...+ dlj

l

Attack 2. Similarly, EDi can set its vector to be ~di = (0, ..., 1, ..., 0) where
the y-th element is 1 and all others are 0. In this case, from the value vji, SDv

and EDi can learn the the element dyj in the vector of EDj .

vji = d1jd1i + d2jd2i + ...+ dyjdyi + ...+ dljdli = dyj

4.3 When more Participants Collude

Attack 1. Suppose that SDv and l (or more) EDs collude. If this case, they will

possess AT · A defined by Equations (3) and for example the following l ~ds.
~di = (d1i, d2i, ..., dli)

T

...

~d(i+l−1) = (d1(i+l−1), d2(i+l−1), ..., dl(i+l−1))
T

With the information, SDv may recover the data of any EDj , for j /∈ [i, i+
l−1]. Note that the i-th to i+l−1-th elements from the j-th column of AT ·A are
defined as follows. The attack is simply to solve the system of l-variable linear
equations. 

vij = d1id1j + d2id2j + ...+ dlidlj

...

vN(i+l−1) = d1(i+l−1)d1j + d2(i+l−1)d2j + ...+ dl(i+l−1)dlj

By solving the system of equation, the attacker can obtain all the value of
daj where a ∈ [1, l].

Attack 2. Suppose SDd and h EDs collude, where h is an integer, they will
process A′ as defined by Equation (2). For example, consider the following h ~ds.

Privacy-Preserving Decentralised Singular Value Decomposition 11


~di = (d1i, d2i, ..., dli)

T

...

~d(i+h−1) = (d1(i+h−1), d2(i+h−1), ..., dl(i+h−1))
T

For EDj , where j ∈ [i, i+ h− 1], the relevant elements in A′ lie in the j-th
column which can be expressed as:


d
′
1j = d1j + zj1 ·W + rj1 · S

...

d
′
lj = dlj + zjl ·W + rjl · S

These equations can be transformed into the following form shown in Equa-
tions (4), where zs, rs, and W , S are the unknowns.


d
′
1j − d1j = zj1 ·W + rj1 · S

...

d
′
lj − dlj = zjl ·W + rjl · S

(4)

Since rs and zs are random integers chosen from [1, t], according to the law
of large numbers [2], we can get an approximated form of the following equation.

1

l
·

l∑
i=1

(d
′

ij − dij) =
1 + t

2
·W +

1 + t

2
· S

Since the computation is based on data from EDj , we let Pj denote the
approximated estimation for W + S.

Pj = W + S =
2

(1 + t) · l
·

l∑
i=1

(d
′

ij − dij)

Based on Pj for all j ∈ [i, i + h − 1], SDd can try to recover W and S by a
brute-force attack, shown in Algorithm 3.

Once W and S are found, the whole matrix A can be recovered. We emphasize
that a brute-force attack has been analyzed in [3], where the attacker tries each
possible value of S. The complexity of their attack is O(2k3). In contrast, our
attack enumerates the parameter W which is much smaller than S (as shown
in Table 4, S > max(N, l) · (x2 + 2tWx + t2W 2)). The complexity of current
brute-force method is only O(2k2) + 2lh.

12 Liu and Tang

Algorithm 3 Brute-force the value of W and S

Input: P , Range of W
Output: Value of W and S
1: Let LC denote the set of all results of d

′
ij − dij where i ∈ [1, l] and j ∈ [1, N]

(i.e. Equation (4) for EDj)
2: for each f in range of W do
3: SBF ← P − f
4: for each LCk in LC do
5: ModSk ← LCk modulo SBF
6: end for
7: Let ModS denote the set of all ModSk
8: if GCD(ModS) > 1 and coprime(GCD(ModS), SBF) then
9: return W = GCD(ModS), S = SBF

10: end if
11: end for

4.4 Analysis of the Recommender Use Case

Regarding the recommender use case from Section 3.2, we observe that it has two
privacy vulnerabilities. One is that FD obtains the prediction score for the edge
devices. The score indicates the interest of the human user behind the device,
so that it may be considered as private information. Disclosing such information
may be considered undesirable by many. The other is that SDd obtains the
randomized feature vectors for all prediction queries. Considering the attack
from Section 4.3, SDd may recover W and S, and then recover the plaintext
data from all the devices.

5 New Privacy-Preserving SVD Solution

In this section, we first simplify the FoG architecture shown in Figure 3 and
propose a stronger security model. Then, we present a new solution and provide
detailed security and performance analysis.

5.1 Security Model

Our new FoG architecture is shown in Figure 4. In comparison to that in Figure
3, we get rid of the involvement of the second-layer SDd device. With this new
architecture, the second-layer devices SDu and SDv will store the decomposed
matrices, while the first-layer device FD is responsible for interacting with the
edge devices and coordinating the SVD operations.

The purpose of our solution is to perform SVD based on the private data
from all edge devices EDi (1 ≤ i ≤ N), where EDi’s input is a data vector
~di. Note that we assume every data vector is in a column form and all these
data vectors form a data matrix A, as defined in Equation (1). As the output,
SDu and SDv should learn (U, Σ) and (V, Σ) respectively. Any other disclosure
about the private information, including EDi’s data, (U, Σ) and (V, Σ), will be

Privacy-Preserving Decentralised Singular Value Decomposition 13

considered as an information leakage. Referring to the description of SVD in
Section 2, the legitimate information disclosure is equivalent to disclosing A ·AT
and AT · A to SDu and SDv respectively.

Second-Layer FoG Device (SDu)

Second-Layer FoG Device (SDv)

(3.2) Decomposing

(2.b) Sending

(2.a) Randomly
Permuting Data

First-Layer
FoG Device (FD)

(1) Uploading
Encrypted Data

Edge Device
(ED1)

(EDi)

(EDN)

...
...

(2.b) Sending

(3.1)
Decrypting in
collaboration
with FD and SDv

(3.1)
Decrypting in
collaboration
with FD and SDu

(3.2) Decomposing

Fig. 4. Simplified FoG Architecture

Comparing with [3] and other distributed machine learning solutions, we will
not make a general semi-honest assumption to ask all participants to follow the
protocol specification and not to collude with each other. As we have put in our
analysis, such an assumption is not realistic in practice, particularly some edge
devices can be compromised or forged easily. Instead, we assume some players
may collude and try to figure out information that they are not supposed to
learn. Next, we enumerate all the attack scenarios and our privacy expectations.

1. When a group of edge devices is regarded as the attacker, it should learn
nothing about the private data of other edge devices. This implies that the
attacker learns nothing about (U, Σ) and (V, Σ) more than what it can infer
from its own data.

2. When SDu is regarded as the attacker, it only learns (U, Σ). When SDv is
regarded as the attacker, it only learns (V, Σ). When FD is regarded as the
attacker, it learns nothing.

3. When SDu and FD are regarded as the attacker (i.e. they collude), it only
learns (U, Σ). When SDv and FD are regarded as the attacker (i.e. they
collude), it only learns (V, Σ). When SDu and SDv are regarded as the
attacker (i.e. they collude), it learns a randomly permuted data matrix A†,
which is obtained by randomly permuting the rows and columns of A. This
means the attacker cannot trivially link a data vector to an edge device and
cannot trivially recover the order of the elements in a data vector.

4. When FD and a group of edge devices are regarded as the attacker, it should
learn nothing about the private data of other edge devices. This implies that
the attacker learns nothing about (U, Σ) and (V, Σ) more than that it can
infer from its own data.

5. When SDu and a group of edge devices are regarded as the attacker, it

should learn nothing more than what can be inferred from A† ·A†T and the

14 Liu and Tang

data vectors of these edge devices. When SDv and a group of edge devices
are regarded as the attacker, it should learn nothing more than what can

be inferred from A†T ·A† and the data vectors of these edge devices. Recall
that A† is defined in bullet 3.

Note that we do not consider the scenarios, where all edge devices collude or
all FoG devices (SDu, SDv and FD) collude, because in both cases the attacker
will know everything by default in our setting.

In our construction, we will use threshold homomorphic encryption as the
main building block, which guarantees that only the legitimate information will
be decrypted and delivered to the corresponding parties. As such, when we say
the solution does not leak any information about some private data α, it meant
that if another piece data β will generate the same output as α then the at-
tacker cannot determine whether α or β has been used as the input. It has the
same flavor as the semantic security of the underlying homomorphic encryption
scheme.

5.2 Description of the New Solution

Our main tool is a homomorphic encryption scheme, which supports partial
homomorphic multiplication (between plaintext and ciphertext) and a polyno-
mial number of homomorphic additions. In addition, we also require the scheme
to allow us to support threshold decryption. To this end, the threshold Pail-
lier scheme [5], described in Appendix B, satisfies our needs. This leads to the
following initialisation for our new solution.

In the initialization stage, SDu, SDv and FD jointly set up the parameters
of the threshold homomorphic encryption scheme. We assume the public key is
pk, while the private key shares for the FoG devices are denoted as sku, skv and
skf respectively. We require a (3, 3) threshold decryption setting, namely all
three FoG devices need to collaborate in order to recover a plaintext message.

For the privacy-preserving SVD protocol, we will keep every data vector in
encrypted form after leaving the edge devices, and threshold decryption is only
carried out to recover the legitimate matrices for SDu and SDv respectively.
Depicted in Figure 4, the protocol consists of four phases.

1. Edge Computing Phase: EDi (1 ≤ i ≤ N) uses the public key pk to encrypt

its vector ~di = (d1i, d2i, ..., dli)
T into a ciphertext vector ~ci = (c1i, c2i, ..., cli)

T

where c1i = Enc(d1i, pk) and so on. Then, EDi sends ~ci, an encrypted inner

product Enc(~di
T
· ~di, pk), and l(l+1)

2 encrypted scalar values Enc(dxidyi, pk)
(1 ≤ x ≤ l, x ≤ y ≤ l) to FD. Note that these encryption operations can be
done offline.

After receiving ~ci (1 ≤ i ≤ N), FD will possess a ciphertext matrix C, which
is an encrypted counterpart of A defined in Equation (1).

Privacy-Preserving Decentralised Singular Value Decomposition 15

C =


c11 c12 . . . c1N
c21 c22 . . . c2N
...

...
. . .

...
cl1 cl2 . . . clN


Next, FD computes the encrypted forms of AAT and ATA, generally denoted
as C⊗CT and CT ⊗C respectively. For the sake of notation simplicity, if two
ciphertexts encrypt the same plaintext, then we consider them the same.
– We note that, for 1 ≤ x, y ≤ l, the element on x-th row and y-th column

of C ⊗ CT is in the form
∑N
i=1 cxi ⊗ cyi, which can be computed by

FD based on the encrypted scalar values from all edge devices. For each
such element, FD needs to perform N−1 homomorphic additions based
on the received encrypted scalar values, and it also needs to perform a
ciphertext rerandomization for security reasons.

– FD obtains CT ⊗ C by pushing the computing task back to the edge
devices as follows. For 1 ≤ x, y ≤ N , the element on x-th row and y-th
column of CT ⊗C is in the form of an encrypted inner products ~cx

T ⊗ ~cy.

Note that, if the edge device EDx is given ~cy, then it can compute ~cx
T⊗~cy

more efficiently by replacing ~cx
T with the plaintext, namely ~dx

T
, and the

complexity is l partial homomorphic multiplications, l− 1 homomorphic
additions and a ciphertext rerandomization (to prevent the leakage of
the plaintext data). As the values on the diagonal have been sent by the

edge devices, there are only (N−1)(N−2)
2 encrypted inner products to be

computed, every edge device needs to compute (N−1)(N−2)
2N on average.

2. Randomization Phase: FD chooses two random permutations. PU randomly
permutes the edge device indexes: for any 1 ≤ i ≤ N , PU(i) ∈ {1, 2, · · · , N}.
PI permutes the index of elements in data vectors: for any 1 ≤ i ≤ l, PU(i) ∈
{1, 2, · · · , l}. In this phase, based on C⊗CT and CT ⊗C, FD generates their
variants corresponding to the following permuted plaintext data matrix.

A† =


dPU(1)PI(1) dPU(1)PI(2) . . . dPU(1)PI(N)

dPU(2)PI(1) dPU(2)PI(2) . . . dPU(2)PI(N)

...
...

. . .
...

dPU(l)PI(1) dPU(l)PI(2) . . . dPU(l)PI(N)


Let C† denote a ciphertext of A†. Then, FD can generate C† ⊗ C†T and

C†T ⊗ C† as follows.
(a) Clearly, PI does not affect C† ⊗ C†T , which can be generated based on

PU by rearranging the elements in C⊗ CT .

(b) Clearly, PU does not affect C†T ⊗ C†, which can be generated based on
PI by rearranging the elements in CT ⊗ C.

At the end, FD sends C† ⊗ C†T to SDu, and sends C†T ⊗ C† to SDv.

3. Ephemeral SVD Phase: After receiving C†⊗C†T , SDu can request the help

from SDv and FD to decrypt all the elements to obtain A†A†T . It can then
perform decomposition and obtain U† and Σ†. Similarly, SDv can obtain V†
and Σ†.

16 Liu and Tang

4. Secure Storage Phase (optional): Based on some predefined rule, SDu and
SDv can truncate Σ† in a certain way (see Section 2), and then store an en-
crypted product instead of the plaintext matrices. For example, if they do not
truncate Σ† at all, they store Enc(U†(Σ†) 1

2 , pk) and Enc((Σ†)
1
2 (V†)T , pk)

respectively.

The permutations, namely PU and PI, only affects the location of device
indexes and data elements in the data matrix, so that they do not affect the
functionality of SVD in any manner. Referring to the recommender use case,
FD can easily determine the feature vectors for a specific user and item in
U†(Σ†) 1

2 and (Σ†)
1
2 (V†)T . If the optional Secure Storage Phase is adopted, then

when an outsider attacker compromises any two of the FoG devices (i.e. SDu,
SDv and FD) at the end of the solution, it learns nothing due to the threshold
decryption requirement.

5.3 Security and Performance Analysis

Security Analysis. We show that the solution satisfies our privacy expectations
defined in Section 5.1.

1. When a group of edge devices are regarded as the attacker, it does not learn
anything about the private data of other edge devices because it only receives
encrypted data and has no access to the decryption oracle.

2. When SDu (or SDv) is regarded as the attacker, it only learns (U†, Σ†) (or,
(V†, Σ†)) because that is the only information disclosed in the Ephemeral
SVD Phase. When FD is regarded as the attacker, it clearly learns nothing
because of the threshold decryption constraint.

3. When SDu and FD are regarded as the attacker, it possesses (U†, Σ†) and
the permutations. As a result, it only learns (U, Σ) because of the threshold
decryption constraint. Similarly, when SDv and FD are regarded as the
attacker, it only learns (V, Σ). When SDu and SDv are regarded as the
attacker, it learns a randomly permuted data matrix A†, which is equivalent
to (U†, Σ†) and (V†, Σ†).

4. When FD and a group of edge devices are regarded as the attacker, it does
not learn anything about the private data of other edge devices because it
only receives encrypted data and does not receive any decryption output.

5. Due to the threshold decryption constraint, when SDu and a group of edge

devices are regarded as the attacker, it only learns A† · A†T and the data
vectors of these edge devices. Similarly, when SDv and a group of edge

devices are regarded as the attacker, it only learns A†T · A† and the data
vectors of these edge devices.

Asymptotic Performance Analysis. Regarding the complexity of the new so-
lution, we summarize the number of main cryptographic operations in Table 5. It
excludes offline and optional operations. As to notation, Dec, ⊕, ⊗, rand denote
threshold decryption, homomorphic addition, homomorphic multiplication, and

Privacy-Preserving Decentralised Singular Value Decomposition 17

ciphertext rerandomization respectively. Regarding the threshold Paillier scheme
described in Appendix B, referring to the cryptographic operations, we make the
following note: a partial ⊗ is an exponentiation, a ⊕ is a modulo multiplication,
and a rand is a modulo multiplication.

Player Complexity

EDi
l(N−1)(N−2)

2N
partial ⊗, (l−1)(N−1)(N−2)

2N
⊕, (N−1)(N−2)

2N
rand

FD l(l+1)(N−1)
2

⊕, l(l+1)+N(N+1)
2

Dec, l(l+1)
2

rand

SDu
l(l+1)+N(N+1)

2
Dec

SDv
l(l+1)+N(N+1)

2
Dec

Table 5. Asymptotic Complexity

Optimised Benchmarking. In order to learn the actual running time of differ-
ent parties, we implement our solution based on the threshold Paillier scheme.
For the benchmarking, we choose a 2048-bit n, set s = 2, and split the key
into three shares and require the decryption to involve all three key shares. We
assume there are 1000 devices and every data vector has 100 elements. In addi-
tion, as in the recommender use case, every element of the data vector is a small
number from 0 to 5.

To reduce the number of threshold decryption operations, we propose to
pack multiple ciphertexts into one and decrypt all of them at once. We have the
following:

– Every ciphertext in the matrix C† ⊗ C†T encrypts a number in the range
[0, 215). Since the message space for threshold Paillier is (0, n2), we can pack

around 270 ciphertexts Ci (1 ≤ i ≤ 270) into one as C1·(C2)2
15 · · · (C270)2

15×269

.
Note that operations are modulo n2+1. The packing incurs 269 + 15 +
30 + · · · + 15 × 269 = 544944 ciphertext multiplications. Recovering in-
dividual plaintext is trivial based on modulo operations with respect to
215×269, 215×268, · · · , 215 sequentially.

– Every ciphertext in the matrix C†T ⊗ C† encrypts a number in the range
[0, 212). Similar to the above case, we can pack around 340 ciphertexts Ci
(1 ≤ i ≤ 340) into one as C1 · (C2)2

12 · · · (C340)2
12×339

. The packing incurs
339 + 12 + 24 + · · ·+ 12× 339 = 691899 ciphertext multiplications.

Player Complexity Time

EDi 49850 partial ⊗, 49850 mul 3s

FD 5050000 mul, 1491 Dec 189s

SDu C† ⊗ C†T : 19 Dec (comb), 10353936 mul; C†T ⊗ C†: 1472 Dec 267s

SDv C† ⊗ C†T : 19 Dec; C†T ⊗ C†: 1472 Dec (comb), 1018475328 mul 15061s

Table 6. Optimised Complexity (N = 1000, l = 100)

After the optimisation, based on Table 5, we derive the new asymptotic
complexity in Table 6. Note that mul is a modulo multiplication, Dec and Dec
(comb) refer to the Share decryption and Combination algorithms respectively

18 Liu and Tang

in Appendix B. Based on our implementation on a PC with 3.40 GHz CPU and
16 GB memory, we obtain the actual running time in the last column.

In order to further reduce the running time for SDv, there are two more ways
to further optimise the computations. The first one is to check the density of the
dataset and pack more ciphertexts into one, and the other is to outsource the
computations to the edge devices. We leave the investigation of them as future
work.

6 Conclusion

In this paper, we analysed the privacy-preserving SVD solution by Chen et al.
[3], and demonstrated several privacy vulnerabilities. Based on our analysis,
we presented an enhanced solution and provided analysis on both security and
efficiency. As an immediate future work, we would like to further optimize its
efficiency by exploiting fine-grained packing and computation outsourcing. It
is also an interesting work to study the performances with larger datasets and
improve the efficiency a step further.

References

1. Bar-Magen Numhauser, J.: Fog computing introduction to a new cloud evolution.
University of Alcalá (2012)

2. Barbour, A.D., Luczak, M.J.: A law of large numbers approximation for Markov
population processes with countably many types. Probability Theory and Related
Fields 153(3), 727–757 (2012). https://doi.org/10.1007/s00440-011-0359-2

3. Chen, S., Lu, R., Zhang, J.: A flexible privacy-preserving framework for sin-
gular value decomposition under internet of things environment. In: IFIP Ad-
vances in Information and Communication Technology. vol. 505, pp. 21–37 (2017).
https://doi.org/10.1007/978-3-319-59171-1 3

4. Cisco: Fog Computing and the Internet of Things: Extend the Cloud to where the
things are (2015)

5. Damg̊ard, I., Jurik, M.: A Generalisation, a Simplification and some Applications
of Paillier’s Probabilistic Public-Key System. In: International Workshop on Public
Key Cryptography. pp. 119–136. Springer (2001)

6. Han, S., Ng, W.K., Philip, S.Y.: Privacy-preserving singular value decomposition.
In: 2009 IEEE 25th International Conference on Data Engineering. pp. 1267–1270.
IEEE (2009)

7. Kim, S., Kim, J., Koo, D., Kim, Y., Yoon, H., Shin, J.: Efficient privacy-preserving
matrix factorization via fully homomorphic encryption. In: Proceedings of the 11th
ACM on Asia Conference on Computer and Communications Security. pp. 617–
628. ACM (2016)

8. Knorr, E., Gruman, G.: What cloud computing really means. InfoWorld 7, 20–20
(2008)

9. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8), 30–37 (2009)

https://doi.org/10.1007/s00440-011-0359-2
https://doi.org/10.1007/978-3-319-59171-1_3

Privacy-Preserving Decentralised Singular Value Decomposition 19

10. Nikolaenko, V., Ioannidis, S., Weinsberg, U., Joye, M., Taft, N., Boneh, D.: Privacy-
preserving matrix factorization. In: Proceedings of the 2013 ACM SIGSAC confer-
ence on Computer & communications security. pp. 801–812. ACM (2013)

11. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: International Conference on the Theory and Applications of Cryp-
tographic Techniques. pp. 223–238. Springer (1999)

12. Wu, H.H., Wu, S.: Various proofs of the Cauchy-Schwarz inequality. Octogon Math-
ematical Magazine 17(1), 221–29 (2009)

13. Yang, Y., Wu, L., Yin, G., Li, L., Zhao, H.: A survey on security and privacy issues
in Internet-of-Things. IEEE Internet of Things Journal 4(5), 1250–1258 (2017)

14. Zhou, J., Cao, Z., Dong, X., Lin, X.: Security and privacy in cloud-assisted wire-
less wearable communications: Challenges, solutions, and future directions. IEEE
wireless Communications 22(2), 136–144 (2015)

15. Zhuo, G., Jia, Q., Guo, L., Li, M., Li, P.: Privacy-preserving verifiable data aggre-
gation and analysis for cloud-assisted mobile crowdsourcing. In: IEEE INFOCOM
2016-The 35th Annual IEEE International Conference on Computer Communica-
tions. pp. 1–9. IEEE (2016)

A Paillier Cryptosystem

Paillier cryptosystem [11] is a popular public key encryption scheme that pos-
sesses useful homomorphic properties. The key generation, encryption and de-
cryption algorithms are as follows.

Key Generation. Choose two large prime numbers p and q which has the
same length k. Set the public key to be n = pq and g ∈ Z∗n2 . The private key is
computed by λ = lcm(p−1, q−1) and µ = (L(gλ mod n2))−1 where L(x) = x−1

n .
Encryption. For a message as m, choose a random number r ∈ Z∗n, the

ciphertext is computed as:

c = gm · rn mod n2

Decryption. Given a ciphertext c and private key, the corresponding original
message m could be recovered as:

m =
L(cλ mod n2)

L(gλ mod n2)
mod n =

cλ − 1 mod n2

gλ − 1 mod n2
mod n

Paillier scheme has the following homomorphic properties. Given two cipher-
texts c1, c2 for messages m1,m2, then c1c2 is a ciphertext for message m1 +m2

while cm2
1 is a ciphertext for message m1m2. Throughout the paper, we use ⊕

to denote homomorphic addition and ⊗ to denote homomorphic multiplication.

B The Threshold Damgard-Jurik Scheme

The threshold Damgard-Jurik scheme is a generalization of the Paillier crypto-
scheme, but with an increased ciphertext space [5]. The secret key is distributed
to v servers, at least t servers of them can proceed decryption efficiently (1 <
t ≤ v).

20 Liu and Tang

Key Generation. In addition to the key generation of classic Paillier cryp-
tosystem, we compute n

′
= p

′
q
′
where p = 2p

′
+1 and q = 2q

′
+1. Besides, choose

s > 0, thus the message space changes to Zns and choose d where d = 0 mod m
and d = 1 mod ns. Then, make the polynomial f(X) =

∑k−1
i=0 aiX

i mod nsn
′
.

where ai (for 0 < i < t) is random value from 0, ..., ns ∗ n′ − 1 and a0 = d. The
sharing secret of i-th decrypting participant is si = f(i) (for 0 < i ≤ v) and the
public key will be n.

Encryption. To encrypt a plaintext m, choose a random number r ∈ Z∗ns+1 ,
the ciphertext is computed as:

c = gm · rn
s

mod ns+1

Share decryption. The i-th decrypting participant computes ci = c2∆si where
c is ciphertext and ∆ = v!.

Combination. In order to obtain the original message, it requests t shares
and combines them as:

c
′

=
∏
i∈t

c
2λS0,i
i mod ns+1 where λS0,i = ∆

∏
i′∈t\i

−i
i− i′

∈ Z

Therefore, c
′

is in the form c
′

= c4∆
2f(0) = c4∆

2d. Note that, 4∆2d = 0 mod λ
and 4∆2d = 4∆2 mod ns, thus, c

′
= (1 + n)4∆

2m mod ns+1. By applying the
following Algorithm 4, we can finally restore the plaintext m.

Algorithm 4 Recover Plaintext in Threshold Variant

Input: Combined ciphertext c
′

= (1 + n)4∆
2m mod ns+1

Output: Plaintext m
1: let L((1 + n)i mod ns+1) = (i+

(
i
2

)
n+ ...+

(
i
s

)
ns−1) mod ns

2: thus ij = L((1 + n)i mod nj+1)− (
(
ij−1
2

)
n+ ...+

(
ij−1
j

)
nj−1) mod nj

3: i← 0
4: for j = 1 to t do
5: t1 ← L(a mod nj+1)
6: t2 ← i
7: for k = 2 to j do
8: i← i− 1
9: t2 ← t2 ∗ i mod nj

10: t1 ← t1 − t2∗nk−1

k!
mod nj

11: end for
12: i← t1 (here, i = 4∆2m)
13: end for
14: res← i ∗ i−1 mod ns

15: return res

	Privacy-Preserving Decentralised Singular Value Decomposition

