A Lattice-based Enhanced Privacy ID

Nada EL Kassem!, Luis Fiolhais?, Paulo Martins®, Liqun Chen!, and Leonel
Sousa*

! University of Surrey, UK
n.elkassem@surrey.ac.uk, liqun.chen@surrey.ac.uk
2 INESC-ID, Portugal
luis.azenhas.fiolhais@tecnico.ulisboa.pt
3 Universidade Técnica de Lisboa, Portugal
paulo.sergio@ist.utl.pt
4 Universidade de Lisboa, Portugal
las@inesc-id.pt

Abstract. The Enhanced Privacy ID (EPID) scheme is currently used
for hardware enclave attestation by an increasingly large number of plat-
forms that implement Intel Software Guard Extensions (SGX). However,
the scheme currently deployed by Intel is supported on Elliptic Curve
Cryptography (ECC), and will become insecure should a large quantum
computer become available. As part of National Institute of Standards
and Technology (NIST)’s effort for the standardisation of post-quantum
cryptography, there has been a great boost in research on lattice-based
cryptography. As this type of cryptography is more widely used, one ex-
pects that hardware platforms start integrating specific instructions that
accelerate its execution. In this article, a new EPID scheme is proposed,
supported on lattice primitives, that may benefit not only from future
research developments in post-quantum cryptography, but also from in-
structions that may extend Intel’s Instruction Set Architecture (ISA) in
the future. This paper presents a new security model for EPID in the
Universal Composability (UC) framework. The proposed Lattice-based
EPID (LEPID) scheme is proved secure under the new model. Experi-
mentally compared with a closely related Lattice-based Direct Anony-
mous Attestation (DAA) (LDAA) scheme from related art, it is shown
that the private-key size is reduced 1.5 times, and that signature and ver-
ification times are sped up up to 1.4 and 1.1 times, respectively, for the
considered parameters, when LEPID is compared with LDAA. Moreover,
the signature size compares favourably to LDAA for small and medium-
sized communities.

1 Introduction

The Enhanced Privacy ID (EPID) scheme is a fundamental part of the security
model underpinning Software Guard Extensions (SGX)’s functioning [I]. It gives
the ability to attest that a hardware enclave was successfully established on an
Intel platform.

2 A Lattice-based Enhanced Privacy 1D

EPID can be seen as Direct Anonymous Attestation (DAA) with different
linkability requirements [2]. The DAA scheme was built having the Trusted Plat-
form Module (TPM) standard in mind. In this context, the TPM holds a rep-
resentation of the host machine state, and wishes to provide a verifier with a
signature of the state representation, without revealing their identity. During
an offline phase, an issuer provisions the TPM and the host with membership
credentials. Based on this cryptographic material, the TPM and the host jointly
prove that they belong to the DAA community in zero-knowledge, while produc-
ing the above-mentioned signature. Unlike other privacy-preserving systems, like
group signatures, DAA does not support the property of traceability, wherein a
group manager can identify the signer from a given signature.

Alternatively, the DAA provides two approaches to prevent a malicious signer
from abusing their anonymity. Firstly, when a private-key is leaked, anyone can
check whether a specific DAA signature was created under this key or not. Sec-
ondly, two DAA signatures created by the same signer may or may not be linked
from a verifier’s point of view. The linkability is controlled by a parameter called
basename. When the same basename is used by the same signer for two signa-
tures, they are linked; otherwise they are not. However, there are situations
where this model does not suffice to prevent malicious actions. For instance,
should an attacker corrupt a TPM and obtain the private-key without ever pub-
lishing it, there is no way to revoke it. While this latter problem can be mitigated
by having TPMs use the same basename whenever they access a certain service,
this option removes the anonymity for all uses with the same basename.

EPID is a more general scheme than DAA and thus does not split signers
into TPMs and hosts, but also targets the creation of anonymous signatures. An
EPID scheme consists of an issuer, signers, verifiers and a revocation manager.
Like with DAA, one can check whether a certain signature was generated by
a leaked private-key. Nonetheless, the ability to link signatures with the same
basename is removed. Instead, whenever a signer is corrupted, they may be
revoked by including one of their signatures as part of a revocation list. As
a result, EPID is capable of revoking corrupted signers from the system, even
when their private-key is kept hidden, whilst providing maximum privacy for the
platforms. Enhanced Privacy ID signatures can also be constructed on the top of
group signatures that allow members of a group to anonymously sign messages on
behalf of the group, with the added property that a group manager can revoke the
credentials of a misbehaving or compromised group member. This construction
was adopted by a recently proposed post-quantum EPID scheme from symmetric
primitives [3], an overview of the scheme will be given in Section m

Lattices have proven to be a flexible tool in constructing cryptographic
schemes, with applications ranging from digital signatures to public-key encryp-
tion and zero-knowledge proofs, while offering post-quantum security [4U5]6].
One expects that as this type of cryptography matures, an increasing num-
ber of platforms exploiting EPID ship with accelerators for lattice-based con-
structs [7]. Herein, by building from a recently proposed DAA scheme [§], the
range of cryptographic constructs supported by lattice-based cryptography is

A Lattice-based Enhanced Privacy 1D 3

extended to EPID. The LEPID signature size compares favourably to Lattice-
based DAA (LDAA) for small and medium-sized communities.

Organisation: The next section introduces the lattice-based hard problems
and the two building blocks that support the proposed LEPID scheme, namely
the LDAA scheme from [§] and the Zero Knowledge Proof of Knowledge (ZKPoK)
of Ring-Learning With Errors (Ring-LWE) secrets from [6]. Section [3| presents
a new security model for EPID in the UC framework. The novel LEPID scheme
is proposed in Section [and proven secure in Section [5} The performance of the
LEPID scheme is discussed in Section [6] Section [7] briefly discusses the related
work. Finally, Section [§| concludes the paper.

2 Preliminaries

Throughout this paper we will use the polynomial rings R, = Z4[X]/(X™ + 1),
where Z, is the quotient ring Z/gZ and n a power of 2. We use names in bold,
like a, both to denote elements of R, and their coefficient embeddings in Zj.
|lal|s represents the infinity norm of a polynomial a, ||a|sw = max; |a’|, and

la|l = /31, (ai)? where the a’ are the coefficients of a. A = (ai,...,an)
denotes a vector where m is a positive integer and a, ..., a,, are polynomials.
|A]lco denotes the infinity norm of A, defined as ||A]lcc = max; ||a;||co. Bsa
represents the set of vectors u € {—1,0,1}3? having exactly d coordinates equal
to -1, d coordinates equal to 0, and d coordinates equal to 1. We represent a
challenge set by C = {XCU, ley € {0,1,...2n — 1}}, where C denotes the set of
differences C — C except 0. D" represents the discrete Gaussian distribution of
standard deviation s, s.t. Propn|[|lz|| > v2hs] < 27h/4 We define the following
rejection sampling algorithm from [9] to avoid the dependency of z on the secret
2
b, rej(z,b,&) : Let u + [0,1);ifu > 1/3 exp(%) return 0, else return

1, with £ representing a standard deviation of some distribution.

Definition 1 (The Ring Short Integer Solution Problem (Ring-SIS,, ., 4.3)
[10]). Given m uniformly random elements a; € R, defining a vector A=
(a1,as,...,an), find a nonzero vector of polynomials Z € Ry of norm 1200 <

B such that: fA(Z) = Zie[m] a;z; = 0 € Ry. The Ring Inhomogeneous Short
Integer Solution (Ring-ISISy m.q.5) problem asks to find Z of norm || Z||e < B,
and such that.‘fA(Z) =y € Ry for some uniform random polynomial y.

Definition 2 (The Ring Learning With Error Problem (Ring-LWE)
[I1]). Let x be an error distribution defined over R and s < R, a uniformly
random ring element, the Ring-LWE distribution A, over Ry X Rq is sampled
by choosing a € Ry uniformly at random, randomly choosing the noise e < x
and outputting (a,b) = (a, sa + e mod q) € Ry x Rq. Let u be uniformly
sampled from Ry. The decision problem of Ring-LWE asks to distinguish between
(a,b) « A, and (a,u) for a uniformly sampled secret s < Rq. The search

4 A Lattice-based Enhanced Privacy 1D

Ring-LWE problem asks to return the secret vector s € R, given a Ring-LWE
sample (a,b) < As .

2.1 Lattice-based Direct Anonymous Attestation

The DAA scheme proposed in [§] can be split at a high level into three parts. In a
first part, a TPM-host pair with identifier id = (idy, ..., id;) € {0,1}¢ joins a DAA
community. This consists of the TPM sampling small X, = (Z1,...,xm) € Ry
and sending u; = A X, to the issuer, where A, € Ry is part of the issuer’s
public-key. A signature proof of knowledge based on [12], showing that w is
well formed is also sent, along with a link token that prevents two TPMs from
having the same secret-key. Using its private-key, the issuer then samples small
X, = (T4t - T3m) € Rﬁm such that A, X, = u — uy, where Aj, = [AI|AO +
S idiA;] € R?™ and w € Ry, Az € R and A; € R Vi € {0,...,1} are
part of the issuer’s public-key. The vector X, is sent back to the host. After this
process, the TPM and host own small key-shares satisfying

X X [Ae An] =, (1)

In a second part, the TPM and the host jointly generate a signature with
respect to a message u. The signature corresponds to a tuple (nym, bsn, 7), where
nym is a link token, bsn is the basename, and 7 is a signature-based proof:

™= SPK{puinc := {pp, nym, bsn}, witness := {X =(x1,...,%3m),1d, e}:
u = X[Ach] mod g A ||)A(||OO < BAnym = H(bsn)x1+e mod g A |le]|oo < B}(u)

demonstrating not only but also that nym = H(bsn)x1 +e mod ¢, where H
is a random oracle mapping bsn to a polynomial and e is small.

A final part deals with signature verification. First, 7 is verified. Then, the
verifier iterates over the list of revoked private-keys, consisting of the elements
acgi) of the)A(t(i) in (1)) of the corrupt signers. In the case that || nym—?—l(bsn)my) Iloo
is small, the signature has been generated by the i-th revoked user and is re-
jected. Similarly, two signatures (nym, bsn,) and (nym’, bsn, ') having the same
basename are linked when |[nym — nym’||» is small.

2.2 Zero Knowledge Proof of the Ring-LWE Secrets

The technique presented in [6] will herein be used to modify the LDAA and
support the more effective revocation method of EPID. This techniques allows
one to efficiently prove in zero-knowledge possession of s and e, with 2s and 2e
being short, such that 2y = 2as + 2e, for public @ and y. Random r,, r. < D,
are initially produced, and t = ars + 7. is computed. A challenge ¢ = H(t) €
{0,1,...,2n — 1} is generated and sy = r; + X¢s, s, = 7. + X e are outputted
in response with probability P(ss, s.), where P is chosen in a way that prevents
ss and s, from depending on the prover’s secret inputs.

A Lattice-based Enhanced Privacy 1D 5

3 UC based Security Model for EPID

The security model for the DAA given by Camenisch et al. in [I3] has been
modified by replacing linkability with a revocation interface, adding the signature
revocation check from [I4], and introducing other modifications that results in
a new EPID security model in the Universal Composability (UC) framework.
Our new security definition is given in the UC model with respect to an ideal
functionality }'éP'D. In UC, an environment £ should not be able to distinguish
with a non-negligible probability between two worlds: the real world, where each
party in the EPID protocol IT executes its assigned part of the protocol and
the network is controlled by an adversary A that communicates with £; and the
ideal world, in which all parties forward their inputs to féPlD, which internally
performs all the required tasks and creates the party’s outputs. A protocol IT
is said to securely realise IIZEPID if, for every adversary A performing an attack
in the real world, there is an ideal world adversary S that performs the same
attack in the ideal world.

An EPID scheme should satisfy: ¢) unforgeability, i.e. for honest issuer and
signers, no adversary can output a valid signature on a message p without know-
ing the signer’s secret key; i) correctness, i.e. honestly generated signatures are
always valid; and 4i4) anonymity, i.e. even for a corrupt issuer, no adversary
can tell whether two honestly generated signatures were produced by the same
signer. The UC framework allows us to focus on the analysis of a single protocol
instance with a globally unique session identifier sid. }“fEP'D uses session identi-
fiers of the form sid = (Z, sid’) for some issuer Z and a unique string sid’. In
the procedures, functions CheckTtdHonest and CheckTtdCorrupt are used that
return ‘1’ when a key belongs to a honest signer that has produced no signature,
and when a key belongs to a corrupt user such that there is no signature simul-
taneously linking back to the inputted key and another one, respectively; and
return ‘0’ otherwise. We label the checks that are done by the ideal functionality
in roman numerals.

Fipp Setup: On input (SETUP, sid) from the issuer Z, Fipp verifies that
(Z, sid") = sid and outputs (SETUP, sid) to S. Flpp receives from the simula-
tor S the algorithms Kgen, sig, ver, identify and revoke. These algorithms are
responsible for generating keys for honest signers, creating signatures for honest
signers, verifying the validity of signatures, checking whether a signature was
generated by a given key, and updating the revocation lists respectively. féPlD
stores the algorithms, checks that the algorithms ver, identify and revoke are
deterministic [Check-I], and outputs (SETUPDONE, sid) to Z.

Fipip Join:

1. JOIN REQUEST: On input (JOIN, sid, jsid) from a signer M, create a join
session (jsid, M;,request). Output (JOINSTART, sid, jsid, M;) to S.
2. JOIN REQUEST DELIVERY: Proceed upon receiving delivery notification
from S by updating the session record to (jsid, M;, delivery).
— If Z or M, is honest and (M;, x, x) is already in Member List ML, output
L [Check II].

6

A Lattice-based Enhanced Privacy ID

— Output (JOINPROCEED, sid, jsid, M;) to Z.
JOIN PROCEED: Upon receiving an approval from Z, F,lzp'D updates the ses-
sion record to (jsid, sid, M;, complete). Then it outputs (JOINCOMPLETE,
sid, jsid) to S.
KEY GENERATION: On input (JOINCOMPLETE, sid, jsid, tsk) from S.
— If the signer is honest, set tsk = L, else verify that the provided tsk is
eligible by performing the following two checks that are described above:
e CheckTtdHonest(#sk)=1 [Check III].
e CheckTtdCorrupt(tsk)=1 [Check IV].
— Insert (M;, tsk) into Member List ML, and output JOINED.

Fipip Sign:

1.

SIGN REQUEST: On input (SIGN, sid, ssid, M;, i1, p) from the signer on
a message u with respect to p, the ideal functionality aborts if Z is honest
and no entry (M,) exists in ML, else creates a sign session (ssid, M,, i, p,
request) and outputs (SIGNSTART, sid, ssid, M;, (i, p)) to S.
SIGN REQUEST DELIVERY: Oun input (SIGNSTART, sid, ssid) from S,
update the session to (ssid, M;, u, p, delivered), and output (SIGNPROCEED,
sid, ssid, u, p) to M;.
SIGN PROCEED: On input (SIGNPROCEED, sid, ssid) from M;, Flop
updates the records (ssid, M, u, p, delivered), and outputs (SIGNCOMPLETE,
sid, ssid,KRL, SRL) to S, where KRL and SRL represent the key and the sig-
nature revocation lists respectively.
SIGNATURE GENERATION: On input (SIGNCOMPLETE, sid, ssid, o, KRL,
SRL) from S, if M; is honest then Fipp will:
— Ignore an adversary’s signature o, and generate the signature for a fresh
or established tsk.
— Check CheckTtdHonest(tsk)=1 [Check V], and store (M, tsk) in Do-
mainKeys.
— Generate the signature o < sig(tsk, u, p).
— Check ver(o, i, p, KRL, SRL)=1 [Check VI], and check identify (o, u, p, tsk) =
1 [Check VII].
— Check that there is no signer other than M; with key tsk’ registered in
Members or DomainKeys such that identify (o, u, p, tsk’)=1 [Check VIII].
— For all (o*, u*,p*) € SRL, find all (¢sk*, M*) from Members and Do-
mainKeys such that identify(c*, u*, p*, *, tsk™) = 1
e Check that no two distinct keys tsk™ trace back to o*.
e Check that no pair (tsk*, M;) was found.
— If M, is honest, then store (o, i, M;, p) in Signed and output (SIGNATURE,
sid, ssid, o,KRL, SRL).

Fiop Verify: On input (VERIFY, sid, i1, p, 0, KRL, SRL), from a party V to check
whether ¢ is a valid signature on a message p with respect to p, KRL and SRL,
the ideal functionality does the following:

— Extract all pairs (tsk;, M;) from the DomainKeys and ML, for which identify (o,

1, P, tsk;)=1. Set b = 0 if any of the following holds:

A Lattice-based Enhanced Privacy 1D 7

More than one key tsk; was found [Check IX].
e 7 is honest and no pair (tsk;, M;) was found [Check X].
An honest M; was found, but no entry (%, 1, M;, p) was found in Signed
[Check XIJ.
There is a key tsk™ € KRL, such that identify(o, p, p, tsk*)=1 and no pair
(tsk, M;) for an honest M; was found [Check XII].
e For some matching tsk; and (o*, u*, p*) € SRL, identify(c*, u*, p*, tsk;) =
1
— If b#0, set b +ver(o, i, p, SRL,KRL). [Check XIII]
— Add (o, u, p,KRL, SRL, b) to VerResults, and output (VERIFIED, sid, b) to V.

Fipp Revoke: On input (tsk*,KRL), the ideal functionality replaces KRL with
KRL U tsk*. On input (o*,u*,SRL), the ideal functionality replaces SRL with
SRL U o* after verifying o*.

4 The Proposed LEPID Scheme

The DAA scheme proposed in [§] is herein modified so as to support the security
model described in Section[3] We give a general overview of the proposed Lattice-
based EPID (LEPID) scheme in Subsectionbefore proceeding with the details
in Subsection 42

4.1 High Level Description of the LEPID Scheme

The first part of the DAA protocol described in Subsection[2-1]is herein mirrored,
with the exception that the TPM and the host are fused into a single signer. In
particular, the issuer makes one further polynomial b available in Procedure
When requesting to join a DAA community in Procedure [2] the signer with
identifier id = (idy,...,id;) € {0,1} samples a small X; = (21,...,Epmp1) €
R and sends wy = [b|Az] X, mod ¢ to the issuer, along with a link token
nym; = H(bsnz)x1 + ez and a zero-knowledge proof m,, from [8] showing that
u, is well formed. Upon receiving this message, the issuer uses nymy; to check
that no other signer has the same x;, verifies m,, and samples small X, =
[Xhl |Xh2] = (Y2, -+, Y2m+1) € Ry x Ry such that AL X5, = u—u; mod q, with

Ap = [Az] Ay + Zé:l id; A;] e Rgm. X, is sent back to the signer, that updates
their key as X = (21,Vi—(2,...m+1)®i = Ti + Yi, Vie(m42,...2m+1)Ti = Yi) in
Procedure B

Signatures are generated in Procedures [4] and [5| as in Subsection for the
DAA, but the basename is always chosen at random, generating link tokens
nym = px; + e mod ¢ for a uniformly random p, and the proof-of-knowledge
7 is as described in Appendix [A71] In particular, this allows one to maintain
linkability in the case of leaked private-keys, whilst maintaining full anonymity.
In addition, when signing a message, the signer is presented with a list of sig-
natures from revoked users and proves in zero-knowledge that their underlying
x; was not used to produce any of those signatures. We achieve this by firstly

8 A Lattice-based Enhanced Privacy ID

randomising the (nym} = p} f; +1;, pl) pairs from the list of revoked signatures,
where f; corresponds to the x; polynomial of the i-th revoked user and I; has
small norm, as

d; = nymiq; +1; (2)
0, =piq; +1; (3)

1"

for small g;, I, and l; sampled from a Gaussian distribution. Note that d; =
0; - fi + e; for a small e;. The signature includes not only d; and o;, but also
k; = o;x1 + l;/ along with a zero-knowledge proof of the construction of d;,
0; and k;. This zero-knowledge proof is an adaptation of the one described in
Subsection the details of which can be found in Appendix

Signature verification in Procedure [] is similar to that of the DAA, with
the difference that now the proof of the shape of d;, o; and k; is verified, and
the norm of d; — k; is assessed to ascertain whether the @, used to produce
the signature under verification is the same as the one used to produce the i-th
revoked signature. Finally, the community revocation manager may revoke users
by updating the list of revoked private-keys (KRL) or the list of signatures of
revoked users (SRL) using Procedure

4.2 Detailed Description of the LEPID Scheme

We now present our LEPID scheme in detail. We start by recalling some standard
functionalities that are used in the UC model of the DAA [I3]:

— Fca is a common certificate authority functionality that is available to all
parties.

— JFcrs is a common reference string functionality that provides participants
with all system parameters.

— Fiuh is a special authenticated communication functionality that provides
an authenticated channel between the issuer and the signer.

The LEPID scheme includes the Setup, Join, Sign, Verify and Revoke pro-
cedures that are as follows.

Procedure 1 (Setup). Fcrs creates the system parameters: sp = (\, ¢, g,
n, m, Rq, B, £, r, s, £), where A, t are positive integer security parameters, 3 is
a positive real number such that § < ¢, £ is the length of the users’ identifiers,
and r, s and £ represent standard deviations of Gaussian distributions.

Upon input (SETUP, sid), where sid is a unique session identifier, the is-
suer first checks that sid = (Z,sid’) for some sid’, then creates its key pair.
The Issuer’s public key is pp = (sp, b, Ar, Ao, A1,..., Ay, u, Ho, H, H), where
A7, A;i(i=0,1,...,0) € R, byu € Ry, Ho : {0,1}* — {1,2,3}1, H: {0,1}* —
Ry, and H : {0,1}* — {0,1,2,...,2n —1}. The Issuer’s private key is Tz, which
is the trapdoor of A7 with ||T7]|. < 8.

A Lattice-based Enhanced Privacy 1D 9

The issuer initialises the Member List ML < (). The issuer proves that his
secret key is well formed in 7z, and registers the key (T, 7z) with Fea and
outputs (SETUPDONE, sid).

Procedure 2 (Join Request). On input query (JOIN, sid, jsid, M), the
signer M forwards (JOIN, sid, jsid) to Z, who replies by sending (sid, jsid, p, bsnz)
back to the signer, where p is a uniform random nonce p < {0,1}*, and bsnz is
the issuer’s base name. The signer M proceeds as follows:

1. It checks that no such entry exists in its storage.

2. Tt samples a private key: ®; < Dy and (xa,...,&m11) — DT Let X, =
(z1,...,%Tms1) correspond to M’s secret key with the condition ||(x2, ...,
a:mH)Hoo < B/2 and ||x1 || < B. M stores its key as (sid, X;), and computes
the corresponding public key w; = [b|AI]Xt mod g, a link token nym; =
H(bsnz)x1 + ez mod g for some error ez < Ds such that ||ez||. < F, and

generates a signature based proof:

w = SPK{puinc := {pp, uy, bsnz, nymz }, witness := {X; = (1, ..., Tmi1),
er}, u = [blA7]X, mod g A | Xi/@illoo < B/2 Al < B

Anymz = H(bsnz)xys +ez mod g A |ez]oe < 6}(;})

3. It sends (nymy, u;, Ty,) to the issuer by giving F,, an input (SEND, nym,
Ty Sid, jsid).

Z, upon receiving (SENT, nymy, my,,, sid, jsid, M) from F ,, verifies the proof
7w, and makes sure that the signer M ¢ ML. Z stores (jsid, nymg, my,,, M),
and generates the message (JOINPROCEED, sid, jsid, id, 7,), for some identity
id € {0,1} assigned to M, and not used before by any joined member.

Procedure 3 (Join Proceed). If the signer chooses to proceed with the
Join session, the message (JOINPROCEED, sid, jsid) is sent to the issuer, who
performs as follows:

1. It checks the record (jsid, nymz,id, M, m,,). For all nym’ from the previous
Join records, the issuer checks whether |[nymz — nymZ||o < 25 holds; if yes,
the issuer further checks if u; = wj}. If the equality u; = u} holds, the issuer
will jump to Step 4 returning X, = X i, if not the issuer will abort. Note
that this double check will make sure that no two EPID keys will include
the same x; value.

2. For all nymZ in the Issuer’s Revocation record IR, the issuer checks whether
the equation

Inymz — nym? e < 23

holds, if yes the issuer aborts.
3. It calculates the vector of polynomials A, = [Az|Ay + ZZ 1 id; Aj] e R2™.
4. Tt samples, using the issuer’s private key 77, a preimage X, = [Xh1 |Xh2] =

(ya, ... o Yom+1) € DI x DT of u—u, such that AhXh =up =u—u; mod g
and [Xy, e < 8/2 and [Xn,)l < 5.

10 A Lattice-based Enhanced Privacy ID

5. The issuer adds (nymy,id, M, 7y,) to his data base, and sends (sid, jsid, X},)
to M via FJ .-

When M receives the message (sid, jsid, Xh), it checks that the equations
ApXy = up, mod g and w = u; + uy, are satisfied with ||)A(h1||Oo < /2 and
||X'h2||Oo < B. It stores (sid, M, id,Xh,ut) and outputs (JOINED, sid, jsid). M
then computes X = (21, Yi—(2,... .m+1) Ti := i + Yi, Yic(ma2,....2m+1) Ti := Yi),
where || X s < 8.

Procedure 4 (Sign Request). Upon input (SIGN, sid, ssid, M, u), the
signer does the following:

1. It makes sure to have a Join record (sid, id, X, M).
2. It generates a sign entry (sid, ssid, p) in its record.
3. Finally it outputs (SIGNPROCEED, sid, ssid,).

Procedure 5 (Sign Proceed). When M gets permission to proceed for
ssid, the signer proceeds as follows:

1. Tt retrieves the records (sid,id, m,,) and (sid, ssid, p).

2. M samples a random polynomial p and computes the polynomial nym =
px1 + e mod g, for an error term e < Dy such that |le||o, < 5. M then
generates a signature based knowledge proof 7.

= SPK{puinc := {pp, nym, p},
witness := {X = (®1,..., Tam+1),1d, €} :
BIANX = u A Xl <8 A nym=pai+e A e < 8} 1).

The details of the proof 7 are presented in Appendix

3. The signer proves that it is not using any of the keys that produced a revoked
signature (o, p},nym}) in the signature revocation list (more details about
the proof can be found in Appendix .

— Let nym; = p; f; + 1;, where (f;,1;) were used before to create nym; by
some M;* that generated a revoked signature o} € SRL. M proceeds as
follows:

q;, U, U U < Dy

e 0, =piq;+1, ki =021+, di =nymjq;, + 1

® Ty, Te, g, T, T T 4= D,

L4 tnym =prg, + 7, toi = p;rqi + T,
ty, = 0iTy, + 1y, tg, = nymiry, + 1.

— Calculates the challenge ¢, = H (nym|to, [tx, [tq; |1t) € {0,1,2,...,2n—1}.

— The following responses are computed:

® s, =75 + X%, S =7+ X%e, 8¢, =7y, + Xqy,
s =1y + Xl S =T+ Xl Sy =Ty + Xy,
Abort if any of these rejection samples outputs 1:
e rej (35171 , Xy, 5)7 rej (se, Xe, g)a rej (Sth , Xy, 6)7
rej(sy, XU, §), rej(sy, XU, §) or rej(sym, XU, §).

A Lattice-based Enhanced Privacy ID 11

4. Finally, M outputs o = (m,nym, 0;, ki, d;, Sz, , Se, Sq;5 81z, 8177, 81777, €, KRL, SRL).

Procedure 6 (Verify). Let KRL denotes the revocation list with all the rogue
signer’s secret keys «7. Upon input (VERIFY, sid, o, u, KRL, SRL), the verifier
proceeds as follows:

L. It checks the zero-knowledge proof regarding the statement: {[b] A X =u
Al Xlloo <BANYM =px; +e modgAlelew<p }
2. For all 7 € KRL, if ||px; — nym|| < 8 the verifier outputs 0.
3. For all o} = (maym=, nym?, p}) € SRL, the verifier
(a) computes:
— t'y,=0i8;, + 81y — Xk, t'g,=nym}sy, + sy — X d,,
t,,=pis, + sy — Xo, t nym=pSz, + Sc — Xnym.
(b) checks ¢, < H(t nym|t'o,|t' i, |t'a;|;t) and that all the following norms
satisty [|Sa: [locs [8ellocs [[8g: oo ||'3l§ 005 ”'Slg/ 005 ||Slg” loo < B+ VnB.
4. For all 07 = (mnym:, nym;, p;), the verifier checks 2||d; — k;|| < I', where I
is a function of 8. If 2||d; — k;|| < I" the verifier outputs 0, otherwise 1.

Procedure 7 (Revoke). On input (Revoke, sid, 7, KRL) or (Revoke, sid, o,
w1, SRL), the revocation manager adds 7 to KRL or o* to SRL after verifying o*.

5 A Sketched Security Proof for LEPID

In this section, we provide a sketch of the security proof of the LEPID scheme.
A detailed security proof is presented in Appendix [B] A variant of the sequence
of games of [I3] is presented, showing that no environment € can distinguish the
real world protocol IT with an adversary A, from the ideal world]-'éPlD with a
simulator S. Starting with the real world protocol game, we change the protocol
game by game in a computationally indistinguishable way, finally ending with
the ideal world protocol.

Game 1. This is the real world protocol.

Game 2. An entity C is introduced, that receives all inputs from the honest
parties and simulates I for them. This is equivalent to Game 1.

Game 3. C is split into F and S. F behaves as an ideal functionality,
receiving all inputs and forwarding them to S, who simulates the real world
protocol for honest parties. S sends the outputs to F', who forwards them to £.
This game is similar to Game 2, but with a different structure.

Game 4. F now behaves differently in the setup interface. It stores the
algorithms for the issuer Z, and checks that the structure of sid is correct for
an honest Z, aborting if not. In case Z is corrupt, S extracts the secret key for
7 and proceeds in the setup interface on behalf of Z. Clearly £ will notice no
change.

Game 5. F now performs the verification and key revokation checks instead
of forwarding them to S. There are no protocol messages and the outputs are
exactly as the real world protocol. However, the verification algorithm that F

12 A Lattice-based Enhanced Privacy 1D

uses does not contain any key or signature revocation checks. F can perform
this check separately, so the outcomes are equal.

Game 6. F stores in its records the members that have joined. If 7 is honest,
F stores the secret key tsk, extracted from S, for corrupt platforms. S always has
enough information to simulate the real world protocol except when the issuer is
the only honest party. In this case, S does not know who initiated the join, and
so cannot make a join query with F on the signer’s behalf. Thus, to deal with
this case, F can safely choose any corrupt signer and put it into Members. The
identities of signers are only used for creating signatures for honest signers, so
corrupted signers do not matter. In the case that the signer is already registered
in Members, F would abort the protocol, but Z will have already tested this
case before continuing with the query JOINPROCEED. Hence F will not abort.
Thus in all cases, F and S can interact to simulate the real world protocol.

Game 7. (Anonymity). In this game, F creates anonymous signatures for
honest platforms by running the algorithms defined in the setup interface. Let
us start by defining Game 7.k.k". In this game F handles the first k' signing
inputs of M; for i < k using algorithms, and subsequent inputs are forwarded
to S who creates signatures as before. We note that Game 7.0.0=Game 6. For
increasing k', Game 7.k.k’ will be at some stage equal to Game 7.k + 1.0, this
is because there can only be a polynomial number of signing queries to be pro-
cessed. Therefore, for large enough k and &/, F handles all the signing queries
of all signers, and Game 7 is indistinguishable from Game 7.k.k’. To prove that
Game 7.k.k’ + 1 is indistinguishable from Game 7.k.k’, suppose that there ex-
ists an environment that can distinguish a signature of an honest party using
tsk = x; from a signature using a different tsk’ = &, then the environment can
solve the Decision Ring -LWE Problem.

The first j < k' signing queries on behalf of M, are handled by F using the al-
gorithms, and subsequent inputs are then forwarded to S as before. Now suppose
that F outputs the tuples (nym7, p?, o! k! d’ si s , 8% sl, , slm slm ¢, SRL)

for j < K/, with nym’ = pia, + €7, for an error term e;j < Dg, and the re-
maining proofs are honestly generated. The j = k' + 1- th query for My, is
as follows: (nym®, pS o k3, dS, sS s, ss sﬁ sf,/,sﬁ,, ¢, uS,SRL). S is chal-

3’,‘17
S 08 ki, de, fl,ss sS sﬁ,sf,,,sf,u, ¢S, uS,SRL) is

217

lenged to decide if (nym®, p
chosen from a Ring LWE distribution for some secret Ty or unlformly at ran-
dom. S proceeds in simulating the signer without knowing the secret a:1 S can
answer all the H queries, as S is controlling .FCRS S sets: tk fo sS .+ sl,, —
X KS; t3 =nym;s; + slg,, — X dS; t5 =p}ss + sl, X% o S5t m=p°s5 +

C =H(tS S). Fori > kK +1, 8

outpute the tuples (nym?, p’, 0! kj d’, sl sl sJ slé,s{(i,,8{2,,,c?;,uj,SRL),with

— X nym®; and, finally, ¢

1.)

02210 %er 2q;0
nym/ = p’ ml + e’ mod g, for some freshly generated secret x] and error term
el D,. For each case, M}, can provide a simulated proof as follows. S sets
t] =o]s! +8l" Xkl;) =nym?s], —|—sl,,, —Xdl; t) =P sﬂ +31' Xcol;

19T
tl m=p’sl + sl — X nym?; and, finally, ¢J : =H (]|t .

nym

A Lattice-based Enhanced Privacy ID 13

Thus, any distinguisher between Game 7.k.k" and Game 7.k.k’ + 1 can solve
the Decision Ring LWE Problem.

Game 8. F now no longer informs S about the message and p that are being
signed. If the signer M is honest, then & can learn nothing about the message
u and p. Instead, S knows only the leakage I(u, p). To simulate the real world,
S chooses a pair (¢/, p’) such that I(¢/, p’)=I(u, p). An environment £ observes
no difference, and thus Game 8=Game 7.

Game 9. If 7 is honest, then F now only allows members that joined to
sign. An honest signer will always check whether it has joined before signing in
the real world protocol, so there is no difference for honest signers. Therefore
Game 9=Game 8.

Game 10. When storing a new tsk = x1, F checks CheckTskCorrupt(tsk)=1
or CheckTskHonest(tsk)=1. We want to show that these checks will always pass.
In fact, valid signatures always satisfy nym = pz; + e where ||z1]/- < 8 and
llellcc < B. By the unique Shortest Vector Problem, there exists only one tu-
ple (x1,e) such that ||&1]lcc < 8 and |le||o < B for small enough . Thus,
CheckTskCorrupt(tsk) will always give the correct output. Also, due to the large
min-entropy of discrete Gaussians the probability of sampling &} = @1, and thus
of having a signature already using the same tsk = x1, is negligible, which im-
plies that CheckTskHonest(tsk) will give the correct output with overwhelming
probability. Hence Game 10=Game 9.

Game 11. (Completeness). In this game, F checks that honestly gener-
ated signatures are always valid. This is true as sig algorithm always pro-
duces signatures passing through verification checks. Those signatures satisfy
identify(tsk, o, u, p) = 1, which is checked via nym. F also makes sure, using its
internal records Members and DomainKeys that honest users are not sharing the
same secret key tsk. If there exists a key tsk’ = &} in Members and DomainKeys
such that ||nym — px| |l < B, then this breaks search Ring-LWE.

Game 12. Check-IX is added to ensure that there are no multiple sk tracing
back to the same signature. Since there exists only one pair (21, ez), ||Z1]|c < 0,
llezllo < B, satisfying nym; = H(bsnz)xi + ez, two different signers cannot

share the same a1, thus any valid signature traces back to a single tsk.

Game 13. (Unforgeability). To prevent accepting signatures that were issued
by the use of join credentials not issued by an honest issuer, F further adds
Check-X. This is due to the unforgeability of Boyen signatures [15].

Game 14. (Unforgeability). Check-XI is added to F, preventing the forg-
ing of signatures with honest tsk and credentials. If a valid signature is given
on a message that the signer has never signed, the proof could not have been
simulated. &1 would be extracted and Ring-LWE would be broken. So Game
14=Game 13.

Game 15. Check-XII is added to F, ensuring that honest signers keys are
not being revoked. If an honest signer is simulated by means of the Ring-LWE

14 A Lattice-based Enhanced Privacy 1D

problem instance and a proper key KRL is found, it must be the secret key of the
target instance. This is equivalent to solving the search Ring-LWE problem.
Game 16. F now performs signature based revocation when verifying signa-
tures. F checks that there is no (o*, nym*, p*) € SRL such that for some matching
tsk; and (o*, u*, p*) € SRL, we have identify(c*, u*, p*, tsk;) = 1. By the sound-
ness of the proof presented in Appendix this check will always pass with
overwhelming probability. O

6 Experimental Results

Let ¢ > 2 represents an integer modulus such that ¢ = poly(n). For correctness,
we require the main hardness parameter n, to be large enough (e.g., n > 100) and
g > [as both being at least a small polynomial in n. We also let m = O(log q) as
in [I0]. A concrete choice of parameters can be as follows: n =512, [=32, ¢ =
8380417, m = 24, and 5 = 275.

Both LDAA and LEPID were implemented in C, emulating all entities in
a single machine. The code was compiled with gcc 4.8.5 with the -03 and
-march=native flags and executed on an Intel i9 7900X CPU with 64GB run-
ning at 3.3 GHz operated by CentOS 7.5. The obtained experimental results can
be found in Table [I] Note that the measured times for signing and verification
do not take into account transfer times between the entities or object creation
and destruction.

By construing the signer as a single entity instead of two as in the LDAA,
the proposed LEPID scheme achieves a reduction of the private-key size of 1.5
times. While the comparison in signatures sizes between both schemes yields
favourably for the proposed LEPID scheme with a small amount of rejected
users, as the number of users in the SRL increases, its signature size increases
linearly at a rate of 18kB per rejected user (9 polynomials and an integer). When
the SRL contains 500 users, the LEPID signature size closely matches that of the
LDAA scheme. Should LEPID signing be implemented on a device with limited
computational resources like the TPM, its constrained memory resources and
the cost of data transfer might limit its application to small and medium-sized
communities. In particular, if one considers a revocation rate of 0.1%, LEPID

Private-ke Signature Signing Verification
Scheme (kB) ' (MB) Time (s) Time (s)
LDAA 147 847 541 129
LEPID (no revoked users) 100 836 361 114
LEPID (100 users in SRL) 100 838 371 117
LEPID (500 users in SRL) 100 845 372 119
LEPID (1000 users in SRL) 100 854 374 121

Table 1: Experimental results for the proposed LEPID and LDAA [§] for n = 512,
q = 8380417, I = 32, m = 24 and 8 = 256 obtained on an Intel i9 7900X

A Lattice-based Enhanced Privacy ID 15

signatures will compare favourably in size to LDAA signatures for communities
with fewer than 500,000 users.

The signing time in the LEPID scheme is dominated by the signature based
knowledge proof 7. The addition of the SRL , and consequently of 13 polyno-
mial multiplications per rejected user, shows no meaningful impact in the final
signing time, where LEPID maintains a speedup of 1.4 over the LDAA scheme.
Likewise, in the verification time, the additional 2 polynomial multiplications
per rejected user incurred by the SRL are negligible compared to the verifica-
tion of 7. Hence, the proposed LEPID scheme achieves a speedup of 1.1 when
compared with the LDAA scheme across both small and medium rejection lists.
For the computational complexity introduced by the SRL to be meaningful, the
number of rejected users must be in the order of millions. Once more, the pro-
posed LEPID scheme shows improved signature and verification times for small
and medium communities when compared with the LDAA.

7 Related Work

A post-quantum EPID scheme has been proposed in [3] built on hash and
pseudorandom functions. More concretely, the EPID credential corresponds to a
hash-based signature generated by the issuer, and proofs-of-knowledge are con-
structed from the Multi-Party Computation (MPC) in the head technique from
Ishai et al. [16]. While [3] achieves signature sizes in the order of MBs, execution
times are not considered. The main goal of this article is not to outperform [16],
but rather to ignite research on lattice-based EPID partially propelled by the
National Institute of Standards and Technology (NIST)’s effort on post-quantum
cryptography standardisation [I7]. By basing our construction on lattices, future
versions of EPID might leverage the research resulting from this standardisation
process to improve their efficiency. Moreover, since post-quantum cryptography
is still in its infancy, it might be useful for implementers to consider multiple
security assumptions, to mitigate the effects of cryptanalysis against one of them.

8 Conclusion

While EPID plays a determinant role in the security of SGX, the scheme cur-
rently deployed by Intel will become insecure in the event that a large-scale
quantum-computer is produced. Herein, a novel EPID scheme is proposed, sup-
ported on lattice-based security assumptions, and achieving presumed quantum
resistance. A security model for EPID is presented for the first time in the UC
framework, and the proposed scheme is proven secure under this model. When
compared with a closely related LDAA scheme from related art, the proposed
LEPID achieves a reduction in the private-key size of 1.5 times, and of the signa-
ture and verification times of 1.4 and 1.1 times, respectively, when no users have
been revoked. It is furthermore shown, experimentally, that the overhead intro-
duced by the more effective revocation method of LEPID is minimal for small

16

A Lattice-based Enhanced Privacy ID

to medium-sized communities. Finally, it is expected that the proposed LEPID
may benefit from theoretical developments and hardware accelerators that result
from the increased interest that lattice-based cryptography has gathered in the
last few years.

Acknowledgements. This research was supported by European Unions Hori-

zon 2020 research and innovation programme under grant agreement No. 779391
(FutureTPM), and by national funds through Fundagdo para a Ciéncia e a
Tecnologia (FCT) with references UID/CEC/50021/2019 and FCT Grant No.
SFRH/BD/145477/2019.

References

10.

11.

12.

Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie Brickel, and Frank Mck-
een. Intel Software Guard Extensions: EPID Provisioning and Attestation Ser-
vices Intel, 2016. https://software.intel.com/en-us/download/intel-sgx-intel-epid-
provisioning-and-attestation-services.

Ernie Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous attestation.
In Proceedings of the 11th ACM conference on Computer and communications
security, pages 132—-145. ACM, 2004.

Dan Boneh, Saba Eskandarian and Ben Fisch. Post-quantum EPID Signatures
from Symmetric Primitives. In Topics in Cryptology — CT-RSA 2019, pages 251
271. Springer, 2019.

Vadim Lyubashevsky. Towards practical lattice-based cryptography. University of
California, San Diego, 2008.

Carsten Baum, Ivan Damgard, Sabine Oechsner, and Chris Peikert. Efficient com-
mitments and zero-knowledge protocols from ring-sis with applications to lattice-
based threshold cryptosystems. TACR Cryptology ePrint Archive, 2016:997, 2016.
Fabrice Benhamouda, Jan Camenisch, Stephan Krenn, Vadim Lyubashevsky, and
Gregory Neven. Better zero-knowledge proofs for lattice encryption and their
application to group signatures. In ASIACRYPT (1), pages 551-572. Springer,
2014.

Hamid Nejatollahi, Nikil Dutt, Indranil Banerjee and Rosario Cammarota Domain-
specific Accelerators for Ideal Lattice-based Public Key Protocols TACR Cryptology
ePrint Archive, 2018:608, 2018.

Nada Kassem, Liqun Chen, Rachid El Bansarkhani, Ali El Kaafarani, Jan Ca-
menisch, Patrick Hough, Paulo Martins, and Leonel Sousa. More efficient,
provably-secure direct anonymous attestation from lattices. Future Generation
Computer Systems, 2019.

Vadim Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT,
volume 7237 of LNCS, 2012.

Chris Peikert et al. A decade of lattice cryptography. Foundations and Trends®
in Theoretical Computer Science, 10(4):283-424, 2016.

Oded Regev. The learning with errors problem (invited survey). In 2010 IEEE
25th Annual Conference on Computational Complexity.

San Ling, Khoa Nguyen, Damien Stehlé, and Huaxiong Wang. Improved zero-
knowledge proofs of knowledge for the isis problem, and applications. In Public-Key
Cryptography—PKC' 2013, pages 107-124. Springer, 2013.

A Lattice-based Enhanced Privacy ID 17

13. Jan Camenisch, Manu Drijvers, and Anja Lehmann. Universally composable direct
anonymous attestation. In Public-Key Cryptography — PKC' 2016, volume 9615 of
LNCS, pages 234—264. Springer, 2016.

14. Jan Camenisch, Liqun Chen, Manu Drijvers, Anja Lehmann, David Novick and
Rainer Urian. One TPM to Bind Them All: Fixing TPM 2.0 for Provably Secure
Anonymous Attestation. In IEEE Security & Privacy — S&P 2017, IEEE, 2017.

15. Xavier Boyen. Lattice mixing and vanishing trapdoors: A framework for fully
secure short signatures and more. In International Workshop on Public Key Cryp-
tography, pages 499-517. Springer, 2010.

16. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge
proofs fromsecure multiparty computation. In SIAM J. Comput., 39(3):1121-1152,
20009.

17. National Institute of Standards and Technology Post-Quantum Cryptography.
2019. https://csre.nist.gov/Projects/Post-Quantum-Cryptography.

A Zero Knowledge Proofs in the LEPID Scheme

A.1 The details of &

Now we explain the details on how to compute 7. Let k = |[log 8| + 1 and let
{B1, .-, B} € {0,1}* be the binary representation of 3. Since we are operating
in the ring R, = Z4[X]/(X™ + 1) with n = O()), then we can transform any
linear tranbformatlon into a matrix vector product. We construct the matrices

A; = rot(a;) for i = (1,2, ...,({ + 2)m + 1) for all polynomials a; in b, Ay, Ay,

., Ay respectively.
Let’s consider the following extensions:

— id = {idy, ...,id¢} € {0,1}* is extended to id* € By, which is the set of vectors
in {0,1}?* of hamming weight £.
— Ar=[A0 € 2™ fori=1toi=(2+)m+1.

We apply the techniques of decomposition and extension described in [I2] on
each of the vectors of X and the vector e, to get the vectors:

{ej}§=17 {.’1}{}?21, {m%}§=17 Tt {m]Zm—t,-l}?:l € B3n'

Let AH» (G+1ymi1 = 0 for j > £, and let @(145)my; = id* - @ppy1qy for 1 <i <20
and 1 <j<m,and &; =0 € Z" for 2m+ 1 < i < (2+ 2{)m + 1. Then,

L
u = [b|Ah] X = [b|AI‘A0 + Z id; fu X

i=1

Z Az + Z id; Z A'L+(j+l)m+1 Titm+1
2m+1 B k

= Z A - (Z ﬁd“’?> + Z'd ZAl-l-(]-i-l)m-‘rl (Z 5dm§i+m+1>
i=1 d=1 d=1

Before proceeding with the proof, the prover:

18 A Lattice-based Enhanced Privacy ID

1. Samples the following masking vectors: {rf < Z3"}%
€ [2(1+)m+1] and j € [k], and rig- < Z2°.
2. Deﬁnes the following terms: D = [rot(p)|0] € Z;*3", v] = @] + 7], vl =
e’ + 1l and vigr = id" + rig+.
Note that the above selection needs to satisfy the following equation:

J 3nk
1 {r] < Z; }j:1 for

2(14+-£)m—+1 k 2(14-£)m+1

k
ut+ > A (> Bl = Y A (D> oBY]
i=1 j=1 i=1 j=1

3. Samples the permutations as follows: 7 <= Sgp for id*, {¢; < Sgn};?:l for X1,
{1; < San}h_, for X, where X = [X; € R?+1|X2 € Ry,

Now, we are ready to explain the result.
To create 7, M first generates the commitments CMT = (C4, Cs, C3) where:

— Cy = COM(E4 A (5. 1 BT)+23“;?;"“ Ar(05 8ym)), D5, Bimd)
[I|0]'(ijlﬁj e)a T, {¢J j= 17{% Jj= 17{%}]‘ 1)-
- CQ = COM({QZ)J(T{) 7¢](m+1) 7/}](m+2) 7wj(r%m+l) ¢j({7—(1)4.1)7”4_2)’

) 7%((r(1) +2)m+1) 1/’3((r(20) +1)m+2) s (i (7(2E)+2)m+1)}§:1’

{wi(rD) Y=y, 7(ria-)).
- Cs3= CQM({@("){)v L g5(v m+1) ¥;(v m+2) - 71/)j(v%m+1)7 wj(UZT(1)+1)m+2)7
5 (0 gyme) Vi (O rymaa) B sy Hm
{oi (WD)} y, T(vig+)).
The following step is the Fiat-Shamir transformation, which has been used in
the existing DAA schemes. The only difference is that the hash-function output
is used as a random distribution of {1,2, 3}".
Challenge: The prover generates the challenges using Fiat-Shamir’s hash-

function transformation, which is based on a random oracle, which should only
include CMT:

{CH]}§:1 = HO(H? {CMT]}§:17 pp) = {17 2a S}t
Response: For each challenge, M sends its own response to to the verifier.

The resulting responses are treated as follows:
— CH =1: reveal Cg and Cjs, i.e., output all the permuted T(ld*) 7(Tig),

{¢(=)J TRIC) 1,{%(6])}J v e (rD Yoy {65 (rD) Yo
{w;(r])}

— CH = 2 reveal C, and C4, i.e., output all the permutations T, {qu}
{sz}J Lipitk 5—1, and all the v values.

— CH = 3: reveal Cy and Cs, i.e., output all the permutations T, {(bj}
{i}h_1 {e;}h=1, and all the r values.

J=0
J=0

Verification: Depending on the prover’s inputs, the verifier can always check
2 out 3 commitments. Note that the responses to all 3 commitments allows to
deduce the witness.

A Lattice-based Enhanced Privacy ID 19

A.2 Signature Proof of knowledge m, (same for mq,, 7,,)

The proofs 7y, , T4, and 7,, allow the prover to efficiently demonstrate knowledge
of small secrets 2q;, 21, 21, 21! < D, such that:

— 20, = 2pjq; +2l;
— 2k; = 20;x1 + ng
— 2d; = 2nymigq; + 21"

We now explain in detail the proof 7, and show its properties: completeness,
honest-verifier zero-knowledge and special soundness.

The following lemma shows that there is always a subset of polynomials in the
ring R, that are invertible such that their inverses have only small coefficients.

Lemma 1. [6] Let 0 < 4,5 < 2n — 1, then the polynomial 2(X* — X7)~! has
infinite norm at most 1 over the ring R,.

Let k; = o;x1 + 1)/, where 1 and I} are chosen from D, and play the roles
of the LWE-secrets. Our scheme convinces the verifier that the signer knows
some secret 7 and a random polynomial ZZ’ with norms larger than 3 such that
Cok; = 0,07 + ZZ’ . However ¢, € C is unknown to the verifier. On the other hand,
to check that o is not in SRL we need to measure the exact distance between
the k;s and d;s, thus the verifier has to know ¢,. Therefore, we need the signer
M to construct a proof that allows a verifier to check the distance even without
knowing ¢,. We adopt the ZKP from [6] to let the signer prove that it actually
knows small secrets 7 and lZ-’ with norms greater then S that satisfy the equation

2k; = 20;27 + 217, i.e. the verifier ensures that the prover knows short secrets

17

for twice k; (same proof for d;, o; applies).
Proof. We prove now that our modified SPK satisfies the following:

Lemma 2. [JJ: Let a and b be two polynomials in Zq/(X™ + 1). If a polyno-
mial b is chosen randomly with mean 0, then with high probability ||ablle =

V| allol|bl|sc-

— Completeness: In fact the verifier can always verify the equation since:
Xk, + 1y,
= X (01 +1U]) + 0irs, + 111
= X% (0;z1 +1]) + 0i(8z, — 2% @1) + 8110 — 21
= 0;8;, + Sy

For the norms we have that ||s.,||c =~ 8 + v/nfS with overwhelming proba-
bility using lemma [2} and the same applies for |5y [|o-

20 A Lattice-based Enhanced Privacy ID

— Honest-verifier zero-knowledge: Given a challenge c¢,, a simulator S pro-
ceeds as follows: chooses s;, and s,y randomly from D/, computes i, =
0;8s, + s;y — X k;. Finally S outputs (Cv, b, Kis Sst,Sz;')- If no abort oc-
curs, then the distribution of (s, , s;7) does not depend on (x1,1}’), thus the
simulated and real protocol transcripts are indistinguishable.

— Special soundness: Given two accepted transcripts (¢}, s , s,) and (¢2,s2 ,s3,),
that share the same t;,. We also proved the verification equalfty Xki+ty, = '
0;8z, + 8177. Therefore,
we have:

Xcikl + tki = OZ'S;LD1 + Sllé/ (4)
and
Xk, + ti, = 0;55, + 312;/ (5)
Subtracting the two above equations we get:
k}l(XCi — Xci) = O,L'(Sil - 8:261) =+ (S%g/ — 8?2/)
dividing both sides by (X w— X CZ) and multiplying by 2 we get:

2(8;1 — 3%1) 2(3};/ - 312;/)

2k; = o;
S X T (X - X

The equation can be written in the form:

2’61 = 0;T1 + lzl (6)
o — (3;1 _332?1) i _ (sllé’_sfé’)
where 71 = 27 Sty and = 2y

Thus, relying on lemmas [I] and [2] the infinite norm of the extracted witness
a7 is as follows:

1 2 —1
1]l < V/nll(sz, = 8%l l|2(X = X)) loo < 2V/n(8 + VB)
Similarly, for the extracted I, we have

= 1 2 —1
1171l < Vall(siy = sii) [l |2(X = X) oo < 2v/n(8 + V)

1 2. —1
since [|(s1, — 82)l < 208 + VAiB) and J2(X% — x))
lemma [Il

o = 1 from

B Detailed Security Proof of the LEPID Scheme

A Lattice-based Enhanced Privacy ID 21

— SETUP
On input (SETUP, sid) from Z, output (FORWARD, (SETUP, sid,T) to S.

— JOIN
1. On input (JOIN, sid,jsid) from the platform M;, output (FORWARD,
(JOIN, sid, jsid, M;)) to S.
2. On input (JOINPROCEED,sid,jsid) from Z, output (FORWARD,
(JOINPROCEED, sid, jsid),) to S.

— SIGN
1. On input (SIGN,sid, ssid,p) from M;, output (FORWARD,
(SIGN,sid, ssid, M;,p)) to S.
2. On input (SIGNPROCEED,sid, ssid) from M, output (FORWARD, (SIGN-
PROCEED, sid, ssid), M;) to S.

— VERIFY

On input (VERIFY, sid, i, p,o,KRL, SRL) from V, output (FORWARD, (VER-
IFY, sid, ju, p, o, KRL, SRL), V) to S.

— REVOKE: On the input tsk* from a party R, output (FORWARD, (REVOKE,
sid, p, tsk™ , KRL, SRL), R) to S.
On the input (o*,p*,p*) from a party R, (FORWARD, (REVOKE,
sid, u*,p*,0*,KRL, SRL), R) to S.

— OUTPUT

On input (OUTPUT, P, u) from S, output p to P.

Fig.1: Game 3 for F

— KeyGen
Upon receiving input (FORWARD, (SETUP, sid,Z)from F, give “Z” (SETUP,
sid) .

— JOIN

1. Upon receiving (FORWARD, (JOIN, sid, jsid, M;) from F, give input (JOIN,
sid, jsid) to “M;”

2. Upon receiving input (FORWARD, (JOINPROCEED,sid, jsid), Z) from F,
give “Z” input (JOINPROCEED,sid, jsid).

— SIGN

1. Upon receiving input (FORWARD, (SIGN, sid, ssid, M;,p) from F, give
“M;” input (SIGN, sid, ssid, p).

2. Upon receiving input (FORWARD, (SIGNPROCEED,sid, ssid), M;) from F,
give “M;” input (SIGNPROCEED,sid, ssid).

22 A Lattice-based Enhanced Privacy 1D

— VERIFY

Upon receiving input (FORWARD, (VERIFY, sid, i, p, 0, KRL, SRL), V) from F,
give “V” input (VERIFY, sid, i, p, o, KRL, SRL).
— REVOKE

Upon receiving (FORWARD, (REVOKE, sid, u, tsk™,KRL, SRL), R) from F, give
“R” an input (REVOKE, sid, u, tsk™,KRL, SRL).
Upon receiving (FORWARD, (REVOKE, sid, u*, p*,0*,KRL, SRL), R) from F,
give “R” an input (REVOKE, sid, u*, p*,o*,KRL, SRL).

— OUTPUT

When any simulated party “P” outputs a message u, S sends (OUTPUT, P, u)to
F.

Fig.2: Game 3 for S

— SETUP

1. On input (SETUP, sid) from Z, verify that sid = (Z,sid') and output
(SETUP, sid) to S.

2. On input (ALGORITHMS, sid, sign, ver, revoke, identify, Kgen) from S,
check that ver, revoke, and identify are deterministic. Store (sid, sign, ver,
revoke, identify, Kgen) and output (SETUPDONE, sid) to Z.

— JOIN

1. On input (JOIN, sid,jsid) from the platform M;, output (FORWARD,
(JOIN, sid, jsid, M;)) to S.

2. On input (JOINPROCEED,sid,jsid) from Z, output (FORWARD,
(JOINPROCEED,sid, jsid),) to S.

— SIGN

1. On input (SIGN, sid,ssid,p) from M;, output (FORWARD, (SIGN,
sid, ssid, M;,p)) to S.
2. On input (SIGNPROCEED,sid, ssid) from M;, output (FORWARD,
(SIGNPROCEED,sid, ssid), M;) to S.
— VERIFY

On input (VERIFY, sid, u, p,o,KRL, SRL) from V', output (FORWARD, (VER-
IFY, sid, s, p,o,KRL,SRL), V) to S.

A Lattice-based Enhanced Privacy ID 23

— REVOKE

On the input t¢sk® from a party R, output (FORWARD, (REVOKE,
sid, ju, tsk™ ,KRL), R) to S.
On the input (o*, u*,p*,KRL,SRL) from a party R, (FORWARD, (REVOKE,
sid, p*, p*,0*,KRL,SRL), R) to S .

— OUTPUT
On input (OUTPUT, P, u) from S, output u to P.

Fig. 3: Game 4 for F

— KeyGen: Honest Z: On input (SETUP, sid) from F

e Check sid = (Z, sid’), output L to Z if the check fails.

e Give “I” input (SETUP, sid).

e Upon receiving output (SETUPDONE, sid) from “Z”, S takes its private key
Tr.

e Define Sign(t¢sk, i, p, KRL, SRL) as follows:
Define SamplePre(Tr, u;, u,id) that outputs a signature Xj, = [Xp,|Xp,] as
satisfying

Ay - X, =u, mod q,

with || X5, [l < 8/2 and || Xp, ||lso < 8, and id is a fresh tag will be the L-EPID
credential.
* nym = p - tsk + e mod g, for an error term e < Dy such that |le]|. < 5.
* Y(o7,pi,nym}) € SRL
© g, U < Dy
-0, =piq;+1;
0 kl = 0,1 + l;l
- d; = nymigq; + 1
C Ty Tes Ty Ti, T, T = Ds
: tnym =Pprg, +7e
- to, = PiTy, +ry.
< by, = 0Ty, + Ty
- tq, = nymirg, + Ty
© G = H(tnym‘tol- L |ta,
© 8y =Ty XTI
- 8¢ =T¢+x%e
© 8g, =Tq, TITVq
C sy =Ty + zel]
c sy =1y +al
sy = vy + el
* rej(sz,,x1,§), rej(s.,ze,§), rej(sq,x%q;§), rej(sy,zl,§),
rej(sy,x® U, &) or rej(syr, x>, §).

w) €{0,1,2,--- ,2n —1}.

24 A Lattice-based Enhanced Privacy 1D

* 0= (m nym, 0;, ki, d;, Sz, Se, Sq;, S/, 817/, 817, Cy, KRL, SRL)

e Define ver(o, i, p, KRL, SRL) as follows:

* V tsk™ € KRL, if ||p - tsk™ — nym||oo < 8 outputs 0.

V 07 = (ym: , nym;, p;) € SRL,

compute:

t'y,=0;8:, + sy — x%k;

t'q,=nym;s,, + sy — x°d;

tloi :p;’ksql' + Sy — z°0;

t' nym=PSz, + Se — z°nym

co = H(t nymlt'o;[¢'1: 80 10).

check [|8z, [[oo, [[Selloo, I1g; 110, I81: loo, 181 loos | S1z]loc < B+ v/nB.

check 2||d; — k;|| < I', where I' is a function of 5. If 2||d; — k;|| < I’

the verifier outputs 0, otherwise 1.

x If all checks pass, output (VERIFIED, sid, 1), (VERIFIED, sid, 0) otherwise.

e Define revoke(tsk™,o*, u*, p*), add ¢sk*™ to KRL or o* to SRL after verifying

o*.

e Define Identify(o, i, p, tsk) as follows: It parses o as (nym, p) and checks that
tsk € Dg, ver(o, u, p)=1 and ||nym — p - tsk|| < B. If so output 1, otherwise
output 0.

e Define Kgen, take tsk € Dy and output tsk.
e S sends (KEYS, sid, Sign, Verify, Revoke, Identify, Kgen) to F.
Corrupt I: S notices this setup as it notices Z registering a public key with F¢ 4
with sid = (Z, sid’).
e If the registered key is in the form (AI, mz) and 77 is valid, then S extracts
Ty from 77.
e S defines the algorithms Sign, Verify, Revoke, and Identify as before, but now
depending on the extracted key. S sends (SETUP, sid) to F on behalf of Z.
On input (KEYGEN, sid) from F, S sends (KEYS, sid, Sign, Verify, Revoke,
Identify, Kgen) to F.
e On input (SETUPDONE, sid) from F. S continues simulating “Z”.
— JOIN, SIGN, VERIFY, REVOKE: Unchanged.

PN @Hp>0NI=

Fig. 4: Game 4 for S

— SETUP
1. On input (SETUP, sid) from Z, verify that sid = (Z,sid') and output
(SETUP, sid) to S.
2. On input (ALGORITHMS, sid, sign, ver, revoke, identify, Kgen) from S,
check that ver, revoke, and identify are deterministic. Store (sid, sign, ver,
revoke, identify, Kgen) and output (SETUPDONE, sid) to Z.

— JOIN

A Lattice-based Enhanced Privacy ID 25

1. On input (JOIN, sid,jsid) from the platform M;, output (FORWARD,
(JOIN, sid, jsid, M;)) to S.

2. On input (JOINPROCEED,sid,jsid) from Z, output (FORWARD,
(JOINPROCEED, sid, jsid), T) to S.

— SIGN

1. On input (SIGN, sid,ssid,p) from M;, output (FORWARD, (SIGN,
sid, ssid, M;, p)) to S.

2. On input (SIGNPROCEED,sid, ssid) from M;, output (FORWARD,
(SIGNPROCEED,sid, ssid), M;) to S.

— VERIFY
On input (VERIFY, sid, i, p, o, KRL, SRL) from V'
e Set f=0if

* There is a tsk* € KRL such that Identify(o, u, p, tsk*) = 1
o If f#0, set f=Verify(o, u, p).
e Add (o, u, p,KRL, f) to VerResults, output (VERIFIED, sid, f) to V.
— REVOKE
On input (REVOKE, tsk*,o*, u*, p*), the revocation manager adds tsk™ to KRL
or o* to SRL after verifying o*.
— OUTPUT
On input (OUTPUT, P, u) from S, output p to P.

Fig.5: Game 5 for F

— KeyGen, JOIN, SIGN : Unchanged.
— VERIFY, REVOKE: Nothing to simulate.

Fig.6: Game 5 for S

— SETUP
1. On input (SETUP, sid) from Z, verify that sid = (Z,sid’) and output
(SETUP, sid) to S.
2. On input (ALGORITHMS, sid, sign, ver, revoke, identify, Kgen) from S,
check that ver, revoke, and identify are deterministic. Store (sid, sign, ver,
revoke, identify, Kgen) and output (SETUPDONE, sid) to Z.

— JOIN

1. JOINREQUEST: On input (JOIN, sid, jsid) from M;
e Create a join session (jsid, M;, request).
e Output (JOINSTART, sid, jsid, M;) to S.

26 A Lattice-based Enhanced Privacy ID

2. JOIN REQUEST DELIVERY: Proceed upon receiving delivery notification
from S.
e Update the session record to (jsid, M;, delivered).
e If 7 or M, is honest and (M, *) is already in Members, output L.
e Output (JOINPROCEED,sid, jsid, M;) to Z.
3. JOIN PROCEED: Upon receiving (JOINPROCEED,sid, jsid, M;) from T
e Update the session record to (jsid, sid, M;, complete).
e Output (JOINCOMPLETE, sid, jsid) to S.
4. KEY GENERATION: On input (JOINCOMPLETE,sid, jsid, tsk) from S.
e Update the session record to (jsid, M;, complete)
e If M, is honest, set tsk = L.
e Insert (M;,tsk) into Members, and output (JOINED, sid, jsid) to M;.

SIGN

1. On input (SIGN, sid,ssid,p) from M;, output (FORWARD, (SIGN,
sid, ssid, M;,p)) to S.

2. On input (SIGNPROCEED,sid, ssid) from M;, output (FORWARD,
(SIGNPROCEED, sid, ssid), M;) to S.

VERIFY
On input (VERIFY, sid, u, p, 0,KRL, SRL) from V
e Set f=0if

* There is a tsk* € KRL such that Identify(o, u, p, tsk*) = 1

o If f #£0, set f=Verify(o, i, p, KRL, SRL).

e Add (o, u, p,KRL, f) to VerResults, output (VERIFIED, sid, f) to V.
REVOKE
On input (REVOKE, tsk™,o*, u*, p*), the revocation manager adds tsk™ to KRL
or o* to SRL after verifying o*.
ouTPUT
On input (OUTPUT, P, u) from S, output p to P.

Fig. 7: Game 6 for F

KeyGen: Unchanged.
JOIN: Honest M;, T
e When S receives (JOINSTART, sid, jsid, M;) from F
e It simulates the real world protocol by giving “M,;” input (JOIN, sid, jsid)
and waits for output (JOINPROCEED, sid, jsid, M;) from “Z”.
e As M; is honest, S already knows tsk as it is simulating M.
e S sends (JOINSTART, sid, jsid) to F.
e Upon receiving input (JOINCOMPLETE, sid, jsid) from F, S gives “Z” input
(JOINPROCEED, sid, jsid) and waits for output (JOINED, sid, jsid) from
“M;7.

A Lattice-based Enhanced Privacy ID 27

e Upon receiving input (JOINCOMPLETE, sid, jsid) from F, S sends (JOIN-
COMPLETE, sid, jsid, L) to F.
Honest Z, Corrupt M; :

e S notices this join as “Z” receives (SENT, sid’, (u;, 7y,)) from Fr ;.

e S doesn’t know the identity of the signer that started this join, so S chooses
any corrupt M* and proceeds as if this signer initiated this join, although
this may not be the correct signer. This makes no difference as when creating
signatures we only look for corrupt signers as they are not considered in
generating signatures.

S then extracts tsk from the proof m,,.
S makes a join query with M* by sending (JOIN, sid, jsid, M*) to F.
Upon receiving input (JOINSTART, sid, jsid, M*) from F, S continues sim-
ulating “Z” until it outputs (JOINPROCEED, sid, jsid, M*).
S sends (JOINSTART, sid, jsid) to F.
e Upon receiving (JOINCOMPLETE, sid, jsid) from F, S sends (JOINCOM-
PLETE, sid, jsid, tsk) to F.
e Upon receiving (JOINED, sid, jsid) from F as M, is corrupt, S gives “I”
input (JOINPROCEED, sid, jsid).
Honest M;, Corrupt Z:
e On input (JOINSTART, sid, jsid, M;) from F, S gives “M;” input (JOIN,
sid, jsid) and waits for output (JOINED, sid, jsid, M;) from “M,”.
e S sends (JOINSTART, sid, jsid) to F.
e Upon receiving input (JOINPROCEED, sid, jsid) from F, S sends (JOIN-
PROCEED, sid, jsid) to F on behalf of Z.
e Upon receiving input (JOINCOMPLETE, sid, jsid) from F, S sends (JOIN-
COMPLETE, sid, jsid, L) to F.
— SIGN, VERIFY, LINK: Unchanged.

Fig.8: Game 6 for S

— SETUP, JOIN: Unchanged.
— SIGN
e SIGN REQUEST: On input (SIGN, sid, ssid, u, p) from M,

* Create a sign session (ssid, M;, p, p, request).

x Output (SIGNSTART, sid, ssid, M;) to S.
SIGN REQUEST DELIVERY: On input (SIGNSTART, sid, ssid) from S,
update the session to (ssid, M;, u, p, delivered).
e Output (SIGNPROCEED, sid, ssid, u,p) to M.
e SIGN PROCEED: On input (SIGNPROCEED, sid, ssid) from M;

x Update the records (ssid, M, u, p, delivered).

* Output (SIGNCOMPLETE, sid, ssid) to S.
SIGNATURE GENERATION: On the input (SIGNCOMPLETE, sid, ssid, o)
from S, if M; is honest then:

28 A Lattice-based Enhanced Privacy ID

* Ignore the adversary’s signature o.
* Generate the signature o < Sign(tsk, u, p).
x For all (o*,p*,p*) € SRL, find all (¢sk™, M*) from Members and Do-
mainKeys such that identify(c*, u*, p*,*, tsk™) = 1
- Check that no two distinct keys tsk™ trace back to o*.
- Check that no pair (tsk*, M;) was found.
* If M; is honest, then store (o, u, M;,p) in Signed and output (SIGNA-
TURE, sid, ssid,o) to M;.

— VERIFY
On input (VERIFY, sid, u, p, o,KRL, SRL) from V
e Set f=0if

* There is a tsk™ € KRL such that Identify(o, u, p, tsk*) = 1
o If f #0, set f=Verify(co, u,p).
e Add (o, u, p,KRL, f) to VerResults, output (VERIFIED, sid, f) to V.
— REVOKE
On input (REVOKE, tsk*,o*, u*, p*), the revocation manager adds tsk™ to KRL
or o* to SRL after verifying o*.
— OUTPUT
On input (OUTPUT, P, u) from S, output p to P.

Fig.9: Game 7 for F

— KeyGen, JOIN: Unchanged.
— SIGN :Honest M;
Upon receiving (SIGNSTART, sid, ssid, M;, p, p) from F.
e S starts the simulation by giving “M;” input (SIGN, sid, ssid,, u,p).
e When “M,;” outputs (SIGNPROCEED, sid, ssid,u,p), S sends (SIGN-
START, sid, ssid) to F.
e Upon receiving (SIGNCOMPLETE, sid, ssid) from F, output (SIGNPRO-
CEED, sid, ssid) to “M;”.
e When “M;” outputs (SIGNATURE, sid, ssid, o), send (SIGNCOMPLETE,
sid, ssid, L) to F.
Corrupt M;
Upon receiving (SIGNSTART, sid, ssid, M;, p, u) from F, send (SIGNSTART,
sid, ssid) to F.
e Upon receiving (SIGNPROCEED, sid, ssid, u, p) from F on behalf of M;, as
M, is corrupt, S sends (SIGN, sid, ssid, M;, u, p) to F on behalf of M,.
e Upon receiving (SIGNCOMPLETE, sid, ssid) from F, S sends (SIGNCOM-
PLETE, sid, ssid,o) to F.
— VERIFY, LINK: Nothing to simulate.

Fig.10: Game 7 for S

A Lattice-based Enhanced Privacy ID 29

— SETUP, JOIN: Unchanged.
— SIGN
e SIGN REQUEST: On input (SIGN, sid, ssid, u, p) from M,
x Create a sign session (ssid, M;, pi, p, request).
*x Output (SIGNSTART, sid, ssid, M;, l(u.bsn)) to S.
SIGN REQUEST DELIVERY: On input (SIGNSTART, sid, ssid) from S,
update the session to (ssid, M;, u, p, delivered).
Output (SIGNPROCEED, sid, ssid, u, p) to M;.
e SIGN PROCEED: On input (SIGNPROCEED, sid, ssid) from M;
* Update the records (ssid, M;, u, p, delivered).
x Output (SIGNCOMPLETE, sid, ssid) to S.
SIGNATURE GENERATION: On the input (SIGNCOMPLETE, sid, ssid, o)
from S, if M; is honest then:
x Ignore the adversary’s signature o.
* Generate the signature o < Sign(tsk, u, p).
x For all (o*, pu*,p*) € SRL, find all (tsk*, M*) from Members and Do-
mainKeys such that identify(c*, u*, p*, *, tsk™) = 1
- Check that no two distinct keys tsk™ trace back to o*.
- Check that no pair (tsk™, M,) was found.
x If M, is honest, then store (o, u, M;, p) in Signed and output (SIGNA-
TURE, sid, ssid, o) to M,.

— VERIFY
On input (VERIFY, sid, u, p, o,KRL, SRL) from V
e Set f=0if

* There is a tsk* € KRL such that Identify(o, u, p, tsk*) = 1
o If f £0, set f=Verify(o, i, p, KRL, SRL).
e Add (o, u, p,KRL, f) to VerResults, output (VERIFIED, sid, f) to V.
— REVOKE
On input (REVOKE, tsk*,o*, u*, p*), the revocation manager adds tsk™ to KRL
or o* to SRL after verifying o*.
— OUTPUT
On input (OUTPUT, P, u) from S, output p to P.

Fig.11: Game 8 for F

— KeyGen, JOIN: Unchanged.
— SIGN

Honest M;:
Upon receiving (SIGNSTART, sid, ssid, M;,1) from F.

e S takes a dummy pair (1/, bsn’) such that I(y/, bsn') = I.
e S starts the simulation by giving “M,” input (SIGN, sid, ssid, i/, p’).

30 A Lattice-based Enhanced Privacy ID

e When “M,;” outputs (SIGNPROCEED, sid, ssid,y',p’), S sends (SIGN-
START, sid, ssid) to F.

e Upon receiving (SIGNCOMPLETE, sid, ssid) from F, output (SIGNPRO-
CEED, sid, ssid) to “M;”.

e When “M;” outputs (SIGNATURE, sid, ssid, o), send (SIGNCOMPLETE,
sid, ssid, 1) to F.

Corrupt M,
Upon receiving (SIGNSTART, sid, ssid, M;,1) from F.

o Send (SIGNSTART, sid, ssid) to F.

e Upon receiving (SIGNPROCEED, sid, ssid, u, p) from F on behalf of M;, as
M, is corrupt, S sends (SIGNPROCEED, sid, ssid, u, p) to F on behalf of
M;.

e Upon receiving (SIGNCOMPLETE, sid, ssid) from F, send (SIGNCOM-
PLETE, sid, ssid, o) to F.

— VERIFY, LINK: Nothing to simulate.

Fig.12: Game 8 for S

— SETUP, JOIN: Unchanged.
— SIGN
e SIGN REQUEST: On input (SIGN, sid, ssid, u, p) from M;,
e Abort if 7 is honest and no entry (M, *) exists ML.
x Create a sign session (ssid, M;, u, p, request).
* Output (SIGNSTART, sid, ssid, M, [(pu.bsn)) to S.
SIGN REQUEST DELIVERY: On input (SIGNSTART, sid, ssid) from S,
update the session to (ssid, M;, u, p, delivered).
Output (SIGNPROCEED, sid, ssid, u, p) to M;.
e SIGN PROCEED: On input (SIGNPROCEED, sid, ssid) from M;
x Update the records (ssid, M;, u, p, delivered).
* Output (SIGNCOMPLETE, sid, ssid) to S.
SIGNATURE GENERATION: On the input (SIGNCOMPLETE, sid, ssid, o)
from S, if M; is honest then:
* Ignore the adversary’s signature o.
* Generate the signature o < Sign(tsk, u, p).
x For all (o*,u*,p*) € SRL, find all (¢sk™, M*) from Members and Do-
mainKeys such that identify(c*, u*, p*,*, tsk™) = 1
- Check that no two distinct keys tsk™ trace back to o*.
- Check that no pair (tsk™, M;) was found.
x If M, is honest, then store (o, u, M;, p) in Signed and output (SIGNA-
TURE, sid, ssid,o) to M;.
— VERIFY
On input (VERIFY, sid, u, p, 0,KRL, SRL) from V

A Lattice-based Enhanced Privacy ID 31

o Set f=0if
* There is a tsk* € KRL such that Identify(o, u, p, tsk*) = 1

o If f#0, set f=Verify(o, i, p, KRL, SRL).

e Add (o, , p,KRL, f) to VerResults, output (VERIFIED, sid, f) to V.
REVOKE
On input (REVOKE, tsk*,c*, u*, p*), the revocation manager adds tsk™ to KRL
or o* to SRL after verifying o*.
OuUTPUT
On input (OUTPUT, P, u) from S, output p to P.

Fig.13: Game 9 for F

SETUP: Unchanged.
JOIN: Unchanged.
SIGN: Unchanged.
VERIFY: Unchanged.
LINK: Unchanged.

Fig.14: Games 9-16 for S

SETUP: Unchanged.
JOIN
1. JOINREQUEST: On input (JOIN, sid, jsid) from M;
e Create a join session (jsid, M;, request).
e Output (JOINSTART, sid, jsid, M;) to S.
2. JJOIN REQUEST DELIVERY: Proceed upon receiving delivery notification
from S.
e Update the session record to (jsid, M;, delivered).
e If 7 or M, is honest and (M, *) is already in Members, output L.
e Output (JOINPROCEED,sid, jsid, M;) to Z.
3. JOIN PROCEED: Upon receiving (JOINPROCEED,sid, jsid, M;) from Z
e Update the session record to (jsid, sid, M;, complete).
e Output (JOINCOMPLETE, sid, jsid) to S.
4. KEY GENERATION: On input (JOINCOMPLETE,sid, jsid, tsk) from S.
e Update the session record to (jsid, M;, complete)
e If M; is honest, set tsk = L.
e Else, verify that the provided tsk is eligible by performing the following
checks:
« If M, is honest, then CheckTskHonest(tsk)=1.
x If M, is corrupt, then CheckTskCorrupt(tsk)=1.
o Insert (M;,tsk) into Members, and output (JOINED, sid, jsid) to M,.

32 A Lattice-based Enhanced Privacy ID

— SIGN

e SIGN REQUEST: On input (SIGN, sid, ssid, u, p) from M;,
o Abort if 7 is honest and no entry (M,, *) exists ML.
x Create a sign session (ssid, M;, u, p, request).
x Output (SIGNSTART, sid, ssid, M;, l[(u.bsn)) to S.
SIGN REQUEST DELIVERY: On input (SIGNSTART, sid, ssid) from S,
update the session to (ssid, M;, p, p, delivered).
Output (SIGNPROCEED, sid, ssid, i, p) to M;.
e SIGN PROCEED: On input (SIGNPROCEED, sid, ssid) from M;
x Update the records (ssid, M;, u, p, delivered).
* Output (SIGNCOMPLETE, sid, ssid) to S.
SIGNATURE GENERATION: On the input (SIGNCOMPLETE, sid, ssid, o)
from S, if M; is honest then:
Ignore the adversary’s signature o.
Generate the signature o < Sign(tsk, u, p).
Check CheckTskHonest(tsk)=1.
For all (o*, u*,p*) € SRL, find all (tsk™, M*) from Members and Do-
mainKeys such that identify(c*, u*, p*,*, tsk™) = 1
- Check that no two distinct keys tsk™ trace back to o*.
- Check that no pair (tsk*, M;) was found.
x If M, is honest, then store (o, u, M;, p) in Signed and output (SIGNA-
TURE, sid, ssid,o) to M;.

[]
*

* X %

VERIFY
On input (VERIFY, sid, u, p, 0,KRL, SRL) from V
e Set f=0if

* There is a tsk* € KRL such that Identify(o, u, p, tsk*) = 1.

o If f£0, set f=Verify(o, i, p, KRL, SRL).

e Add (o, u, p,KRL, f) to VerResults, output (VERIFIED, sid, f) to V.
REVOKE
On input (REVOKE, tsk*,o*, u*, p*), the revocation manager adds tsk™ to KRL
or o* to SRL after verifying o*.
OUTPUT
On input (OUTPUT, P, u) from S, output u to P.

Fig. 15: Game 10 for F

SETUP, JOIN: Unchanged.

SIGN
e SIGN REQUEST: On input (SIGN, sid, ssid, u, p) from M,
e Abort if Z is honest and no entry (M,,x) exists ML.

x Create a sign session (ssid, M;, u, p, request).
*x Output (SIGNSTART, sid, ssid, M;, [(u.bsn)) to S.

A Lattice-based Enhanced Privacy 1D 33

SIGN REQUEST DELIVERY: On input (SIGNSTART, sid, ssid) from S,
update the session to (ssid, M;, u, p, delivered).
Output (SIGNPROCEED, sid, ssid, u, p) to M;.
e SIGN PROCEED: On input (SIGNPROCEED, sid, ssid) from M;
x Update the records (ssid, M;, i, p, delivered).
*x Output (SIGNCOMPLETE, sid, ssid) to S.
SIGNATURE GENERATION: On the input (SIGNCOMPLETE, sid, ssid, o)
from S, if M; is honest then:
Ignore the adversary’s signature o.
Generate the signature o < Sign(tsk, u, p).
CheckTskHonest(tsk)=1.
Check Verify(o, u, p, KRL, SRL)=1.
Check identify (o, u, p,tsk)=1.
Check the is no signer other than M, with key ¢sk’ registered in Members
or DomainKeys such that identify(c, i, p, tsk’)=1.
x For all (o*,u*,p*) € SRL, find all (tsk™, M*) from Members and Do-
mainKeys such that identify(c*, u*, p*, *, tsk™) = 1
- Check that no two distinct keys tsk™ trace back to o*.
- Check that no pair (tsk*, M;) was found.
x If M; is honest, then store (o, u, M;, p) in Signed and output (SIGNA-
TURE, sid, ssid,o) to M;.

* X X X ¥ ¥

VERIFY
On input (VERIFY, sid, i, p, o, KRL, SRL) from V'
e Set f=0if

x There is a tsk* € KRL such that Identify(o, u, p, tsk*) = 1

o If f#£0, set f=Verify(o, u, p, KRL, SRL).

e Add (o, u, p,KRL, f) to VerResults, output (VERIFIED, sid, f) to V.
REVOKE
On input (REVOKE, tsk*,o*, u*, p*), the revocation manager adds tsk™ to KRL
or o* to SRL after verifying o*.
OUTPUT
On input (OUTPUT, P, u) from S, output p to P.

Fig.16: Game 11 for F

SETUP, JOIN: Unchanged.
SIGN
e SIGN REQUEST: On input (SIGN, sid, ssid, u, p) from M,
e Abort if 7 is honest and no entry (M, %) exists ML.
x Create a sign session (ssid, M;, pi, p, request).
*x Output (SIGNSTART, sid, ssid, M;, l(u.bsn)) to S.
e SIGN REQUEST DELIVERY: On input (SIGNSTART, sid, ssid) from S,
update the session to (ssid, M;, p, p, delivered).

34 A Lattice-based Enhanced Privacy ID

e Output (SIGNPROCEED, sid, ssid, i, p) to M,;.
e SIGN PROCEED: On input (SIGNPROCEED, sid, ssid) from M;
x Update the records (ssid, M;, i, p, delivered).
* Output (SIGNCOMPLETE, sid, ssid) to S.
e SIGNATURE GENERATION: On the input (SIGNCOMPLETE, sid, ssid, o)
from S, if M; is honest then:
x Ignore the adversary’s signature o.
Generate the signature o < Sign(tsk, u, p).
Check CheckTskHonest(tsk)=1.
Check Verify(o, u, p,KRL, SRL)=1.
Check identify (o, p, p,tsk)=1.
Check the is no signer other than M; with key tsk’ registered in Members
or DomainKeys such that identify(c, u, p, tsk’)=1.
x For all (o, pu*,p*) € SRL, find all (tsk*, M*) from Members and Do-
mainKeys such that identify(c*, u*, p*, *, tsk™) = 1
- Check that no two distinct keys tsk™ trace back to o*.
- Check that no pair (tsk*, M;) was found.
x If M; is honest, then store (o, u, M;, p) in Signed and output (SIGNA-
TURE, sid, ssid, o) to M,.
VERIFY
On input (VERIFY, sid, u, p, 0,KRL, SRL) from V
o Extract all pairs (tsk;, M;) from the DomainKeys and Members, for which
Identify (o, u, p, tsk;)=1.
e Set f=0if
x There is a tsk* € KRL such that Identify(o, u, p, tsk*) = 1
* More than one key tsk; was found.
o If f#0, set f=Verify(o, i, p, KRL, SRL).
e Add (o, p, p,KRL, f) to VerResults, output (VERIFIED, sid, f) to V.
REVOKE
On input (REVOKE, tsk*,c*, u*, p*), the revocation manager adds tsk* to KRL
or o* to SRL after verifying o*.
OUTPUT
On input (OUTPUT, P, u) from S, output p to P.

* X ¥ X X

Fig. 17: Game 12 for F

SETUP, JOIN: Unchanged.
SIGN
e SIGN REQUEST: On input (SIGN, sid, ssid, u, p) from M,
e Abort if Z is honest and no entry (M,,x) exists ML.
x Create a sign session (ssid, M;, u, p, request).
* Output (SIGNSTART, sid, ssid, M;, [(p.bsn)) to S.

A Lattice-based Enhanced Privacy 1D 35

SIGN REQUEST DELIVERY: On input (SIGNSTART, sid, ssid) from S,
update the session to (ssid, M;, u, p, delivered).
Output (SIGNPROCEED, sid, ssid, u, p) to M;.
e SIGN PROCEED: On input (SIGNPROCEED, sid, ssid) from M;
x Update the records (ssid, M;, i, p, delivered).
*x Output (SIGNCOMPLETE, sid, ssid) to S.
SIGNATURE GENERATION: On the input (SIGNCOMPLETE, sid, ssid, o)
from S, if M; is honest then:
* Ignore the adversary’s signature o.
Generate the signature o < Sign(tsk, u, p).
Check CheckTskHonest(tsk)=1.
Check Verify(o, u, p, KRL, SRL)=1.
Check identify (o, u, p,tsk)=1.
Check the is no signer other than M; with key tsk’ registered in Members
or DomainKeys such that identify(c, i, p, tsk’)=1.
x For all (o*,u*,p*) € SRL, find all (tsk™, M*) from Members and Do-
mainKeys such that identify(c*, u*, p*, *, tsk™) = 1
- Check that no two distinct keys tsk™ trace back to o*.
- Check that no pair (tsk*, M;) was found.
x If M; is honest, then store (o, u, M;, p) in Signed and output (SIGNA-
TURE, sid, ssid,o) to M;.
— VERIFY
On input (VERIFY, sid, i, p, o, KRL, SRL) from V'
e Extract all pairs (tsk;, M;) from the DomainKeys and Members, for which
Identify (o, p, p, tsk;)=1.
e Set f=0if
* T is honest and no pair (tsk;, M;) was found.
* There is a tsk™ € KRL such that Identify(o, u, p, tsk*) = 1
+x More than one key tsk; was found.
o If f #£0, set f=Verify(o, i, p, KRL, SRL).
e Add (o, u, p,KRL, f) to VerResults, output (VERIFIED, sid, f) to V.
— REVOKE
On input (REVOKE, tsk*,o*, u*, p*), the revocation manager adds tsk™ to KRL
or o* to SRL after verifying o*.
— OUTPUT
On input (OUTPUT, P, u) from S, output p to P.

* X X X %

Fig. 18: Game 13 for F

— SETUP, JOIN: Unchanged.
— SIGN
e SIGN REQUEST: On input (SIGN, sid, ssid, u, p) from M,

36 A Lattice-based Enhanced Privacy ID

e Abort if 7 is honest and no entry (M,, *) exists ML.
x Create a sign session (ssid, M;, u, p, request).
x Output (SIGNSTART, sid, ssid, M;, l[(u.bsn)) to S.
e SIGN REQUEST DELIVERY: On input (SIGNSTART, sid, ssid) from S,
update the session to (ssid, M;, u, p, delivered).
e Output (SIGNPROCEED, sid, ssid, i, p) to M,;.
e SIGN PROCEED: On input (SIGNPROCEED, sid, ssid) from M;
x Update the records (ssid, M;, u, p, delivered).
* Output (SIGNCOMPLETE, sid, ssid) to S.
o SIGNATURE GENERATION: On the input (SIGNCOMPLETE, sid, ssid, o)
from S, if M, is honest then:
Ignore the adversary’s signature o.
Generate the signature o < Sign(tsk, u, p).
Check CheckTskHonest(tsk)=1.
Check Verify(o, u, p, KRL, SRL)=1.
Check identify (o, p, p,tsk)=1.
Check the is no signer other than M; with key tsk’ registered in Members
or DomainKeys such that identify(o, u, p, tsk’)=1.
x For all (o*, pu*,p*) € SRL, find all (¢sk*, M*) from Members and Do-
mainKeys such that identify(c*, u*, p*, *, tsk™) = 1
- Check that no two distinct keys tsk™ trace back to o*.
- Check that no pair (tsk™, M;) was found.
x If M, is honest, then store (o, u, M;, p) in Signed and output (SIGNA-
TURE, sid, ssid, o) to M,.
— VERIFY
On input (VERIFY, sid, u, p, o,KRL, SRL) from V
e Extract all pairs (tsk;, M;) from the DomainKeys and Members, for which
Identify (o, u, p, tsk;)=1.
e Set f=0if
x T is honest and no pair (tsk;, M;) was found.
* An honest M; was found, but no entry (x, u, M;, p) was found in Signed.
* There is a tsk* € KRL such that Identify(o, u, p, tsk*) = 1
+x More than one key tsk; was found.
o If f #0, set f=Verify(o, u, p,KRL, SRL).
e Add (o, i, p,KRL, f) to VerResults, output (VERIFIED, sid, f) to V.
— REVOKE
On input (REVOKE, tsk*,c*, u*, p*), the revocation manager adds tsk™ to KRL
or o* to SRL after verifying o*.
— OUTPUT
On input (OUTPUT, P,) from S, output u to P.

* X ¥ X X X

Fig.19: Game 14 for F

A Lattice-based Enhanced Privacy 1D 37

— SETUP, JOIN: Unchanged.
— SIGN
e SIGN REQUEST: On input (SIGN, sid, ssid, u, p) from M,
e Abort if Z is honest and no entry (M, %) exists ML.
* Create a sign session (ssid, M;, pi, p, request).
x Output (SIGNSTART, sid, ssid, M;, l[(u.bsn)) to S.
SIGN REQUEST DELIVERY: On input (SIGNSTART, sid, ssid) from S,
update the session to (ssid, M;, u, p, delivered).
Output (SIGNPROCEED, sid, ssid, u, p) to M;.
SIGN PROCEED: On input (SIGNPROCEED, sid, ssid) from M;
* Update the records (ssid, M;, u, p, delivered).
x Output (SIGNCOMPLETE, sid, ssid) to S.
SIGNATURE GENERATION: On the input (SIGNCOMPLETE, sid, ssid, o)
from S, if M; is honest then:
x Ignore the adversary’s signature o.
Generate the signature o « Sign(tsk, i, p).
Check CheckTskHonest(tsk)=1.
Check Verify(o, u, p, KRL, SRL)=1.
Check identify (o, u, p,tsk)=1.
Check the is no signer other than M; with key tsk’ registered in Members
or DomainKeys such that identify(c, i, p, tsk’)=1.
x For all (o*,u*,p*) € SRL, find all ({sk™, M*) from Members and Do-
mainKeys such that identify(c*, u*, p*, *, tsk™) = 1
- Check that no two distinct keys tsk™ trace back to o*.
- Check that no pair (tsk*, M;) was found.
« If M, is honest, then store (o, u, M;, p) in Signed and output (SIGNA-
TURE, sid, ssid,o) to M;.
— VERIFY
On input (VERIFY, sid, i, p, o, KRL, SRL) from V'
e Extract all pairs (tsk;, M;) from the DomainKeys and Members, for which
Identify (o, p, p, tsk;)=1.
e Set f=0if
* T is honest and no pair (tsk;, M;) was found.
* An honest M; was found, but no entry (%, u, M;, p) was found in Signed.
* There is a tsk* € KRL such that Identify(o, u, p,tsk*) = 1, and no pair
(M, tsk;) for honest M; was found.
% More than one key tsk; was found.
o If f#0, set f=Verify(o, i, p, KRL, SRL).
e Add (o, p, p, KRL, f) to VerResults, output (VERIFIED, sid, f) to V.
— REVOKE
On input (REVOKE, tsk*,o*, u*, p*), the revocation manager adds tsk™ to KRL
or o* to SRL after verifying o*.
— OUTPUT
On input (OUTPUT, P, u) from S, output p to P.

* X X X %

Fig. 20: Game 15 for F

38 A Lattice-based Enhanced Privacy ID

— SETUP, JOIN: Unchanged.
— SIGN
e SIGN REQUEST: On input (SIGN, sid, ssid, u, p) from M,
e Abort if 7 is honest and no entry (M,, *) exists ML.
* Create a sign session (ssid, M;, p, p, request).
x Output (SIGNSTART, sid, ssid, M;, l(u.bsn)) to S.
SIGN REQUEST DELIVERY: On input (SIGNSTART, sid, ssid) from S,
update the session to (ssid, M;, u, p, delivered).
Output (SIGNPROCEED, sid, ssid, i, p) to M;.
e SIGN PROCEED: On input (SIGNPROCEED, sid, ssid) from M;
x Update the records (ssid, M;, u, p, delivered).
*x Output (SIGNCOMPLETE, sid, ssid) to S.
SIGNATURE GENERATION: On the input (SIGNCOMPLETE, sid, ssid, o)
from S, if M; is honest then:
x Ignore the adversary’s signature o.
Generate the signature o < Sign(tsk, i1, p).
Check CheckTskHonest(tsk)=1.
Check Verify(o, u, p, KRL, SRL)=1.
Check identify (o, u, p,tsk)=1.
Check the is no signer other than M; with key tsk’ registered in Members
or DomainKeys such that identify(o, u, p, tsk’)=1.
x For all (o*, pu*,p*) € SRL, find all (tsk*, M*) from Members and Do-
mainKeys such that identify(c*, u*, p*, *, tsk™) = 1
- Check that no two distinct keys tsk™ trace back to o*.
- Check that no pair (tsk*, M,) was found.
x If M, is honest, then store (o, u, M;, p) in Signed and output (SIGNA-
TURE, sid, ssid, o) to M,.
— VERIFY
On input (VERIFY, sid, i1, p, o,KRL, SRL) from V'
e Extract all pairs (tsk;, M;) from the DomainKeys and Members, for which
Identify (o, p, p, tsk;)=1.
e Set f=0if
x T is honest and no pair (tsk;, M;) was found.
* An honest M; was found, but no entry (x, u, M;, p) was found in Signed.
x There is a tsk* € KRL such that Identify(o, u, p, tsk*) = 1, and no pair
(M, tsk;) for honest M; was found.
x For some matching t¢sk; € ML and (o*,u*,p*) € SRL, such that
identify(c*, u*, p*, tsk;) = 1.
* More than one key tsk; was found.
o If f£0, set f=Verify(o, u, p, KRL, SRL).
e Add (o, u, p,KRL, f) to VerResults, output (VERIFIED, sid, f) to V.
— REVOKE
On input (REVOKE, tsk*,o*, u*, p*), the revocation manager adds tsk™ to KRL
or o* to SRL after verifying o*.

* ¥ X X %

A Lattice-based Enhanced Privacy 1D 39

— OUTPUT
On input (OUTPUT, P,) from S, output u to P.

Fig. 21: Game 16 for F

	A Lattice-based Enhanced Privacy ID
	Introduction
	Preliminaries
	Lattice-based Direct Anonymous Attestation
	Zero Knowledge Proof of the Ring-LWE Secrets

	UC based Security Model for EPID
	The Proposed LEPID Scheme
	High Level Description of the LEPID Scheme
	Detailed Description of the LEPID Scheme

	A Sketched Security Proof for LEPID
	Experimental Results
	Related Work
	Conclusion
	Zero Knowledge Proofs in the LEPID Scheme
	The details of
	Signature Proof of knowledge ki(same for di, oi)

	Detailed Security Proof of the LEPID Scheme

