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Abstract. FPGAs are increasingly used in cloud applications and being integrated
into Systems-on-Chip (SoCs). For these systems, various side-channel attacks on
cryptographic implementations have been reported, motivating to apply proper coun-
termeasures. Beyond cryptographic implementations, maliciously introduced covert
channel receivers and transmitters can allow to exfiltrate other secret information
from the FPGA. In this paper, we present a fast covert channel on FPGAs, which
exploits the on-chip power distribution network. This can be achieved without any
logical connection between the transmitter and receiver blocks. Compared to a
recently published covert channel with an estimated 4.8 Mbit/s transmission speed,
we show 8 Mbit/s transmission and reduced errors from around 3% to less than
0.003%. Furthermore, we demonstrate proper transmissions of word-size messages
and test the channel in the presence of noise generated from other residing tenants’
modules in the FPGA. When we place and operate other co-tenant modules that
require 85% of the total FPGA area, the error rate increases to 0.02%, depending on
the platform and setup. This error rate is still reasonably low for a covert channel.
Overall, the transmitter and receiver work with less than 3–5% FPGA LUT resources
together. We also show the feasibility of other types of covert channel transmitters,
in the form of synchronous circuits within the FPGA.
Keywords: fpga, multi-tenant, accelerator, SoC, covert-channel, side-channel, power
distribution network, PDN, on-chip, remote, software, hardware, trojan

1 Introduction
Field Programmable Gate Arrays (FPGAs) are increasingly integrated with processor
cores in SoCs, and even offered via remote access in the cloud by various providers such
as Amazon, Alibaba, and Microsoft [AWS18, Ali18, PCC+14]. In such systems, users can
remotely access the programmable logic. By multi-tenant access, a single FPGA is split
among multiple users [EV12, BSB+14, FVS15, KLP+18]. Since typical FPGA and digital
design flows involve the use of Intellectual Property (IP) cores from third party vendors, an
increasing risk is that an adversarial vendor integrates malicious Trojan logic to exfiltrate
information secretly [LKG+09, TK10].

For such threats, secure FPGA design flows try to limit the possible information
exchange between IP cores [HBW+07, Cor12]. However, recent publications have shown
that through the already existing electrical connections in the Power Distribution Network
(PDN), a malicious IP core can circumvent these countermeasures and still perform
side-channel attacks. These attacks allow extracting secret keys of cryptographic cores
in the same FPGA without any logical connections [SGMT18a, KGT18, ZS18, GDT+19],
and can even be exploited when the victim is outside of the FPGA [SGMT18b]. Such
attacks rely on side-channel information leakage during operation of cryptographic cores,
and might require hundreds or thousands of measurements to extract a small secret key.
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Until now, the achievable data throughput through the PDN side channel is not system-
atically analyzed, when a deliberate communication channel is established. Such Covert
Channels can be used to secretly exfiltrate information in more complex attack scenarios.
For instance, if Hardware Trojans [KHD+08, LKG+09, TK10] or malicious Software [Gir87]
can be placed into a system, they can use a covert channel to exfiltrate secret information
to a less privileged security level [KHD+08], or outside of the system [Gir87]. Furthermore,
they can also be used for complex attacks within a chip, like Spectre Attacks [KGG+18].

Covert channels are established by modulating or hiding information in various media,
which can be an existing communication channel such as in a computer network [Gir87].
When no logical connection exists, side channel information can be used. These can be
physical variations, such as temperature, power consumption, acoustic or electromagnetic
emanations [PAK99], or micro-architectural effects inside a chip, such as the difference in
timing of cache memory access [Per05, KGG+18]. By causing or observing these variations,
covert transmitters and receivers can be implemented [Gir87].

Specifically for on-chip communication in FPGAs, not many covert channels have been
reported yet. Most of them still require a logical connection or shared resources [PRP+19,
SBE11] to achieve a data rate of 3.4 Mbit/s at maximum, but are prevented by established
isolation design flows for security [Cor12]. Others achieve 1 bit/s when circumventing
the isolation design flow using thermal fluctuations [INK11], which has also specifically
been discussed for Cloud FPGAs [TS19]. The work in [GRS19] has shown basic covert
channel transmission using on-chip voltage fluctuations on different FPGA platforms. A
proper transmission channel for more than single-bit messages is not shown, but estimated
to achieve 4.8 Mbit/s with an estimated error rate of 2.4%. What is also missing, is an
evaluation under realistic conditions, when other circuits cause voltage noise due to their
activity.

In this paper, we improve voltage covert channels in multi-tenant FPGAs, by being
resistant to noisy conditions and establishing the transmission of messages at different
word sizes. In the FPGAs used in this paper, we can achieve a much lower error rate of
0.003% (30× 10−6). This paper is an extension of our preliminary work in [Ngu18]. We
extend the results with another method for receiving covert messages, by evaluating the
communication under noisy conditions, and additional evaluations on other FPGA boards.
The presented voltage covert channel is based on a shared PDN, which supplies the FPGA
fabric on the electrical level, typical for most integrated circuits. By that, two isolated
IP cores at opposite ends of the FPGA chip can communicate. To achieve this goal, a
transmitter and receiver module are designed, which can modulate and demodulate data
words into voltage fluctuations. Using our method, the voltage fluctuations can be used
for a high-speed covert channel with up to 8 Mbit/s transmission speed at a lower than
30× 10−6 bit error ratio (BER). The proposed covert channel communication can still be
upheld when additional circuits, from other co-tenants, are active in the system, which has
not been evaluated before. The presented design can self-calibrate to the process variation
of any FPGA (chip-to-chip and within-chip variations), and thus enable attacks in the
cloud or SoCs, without the need of a separate bitstream per device. Furthermore, we also
show that the transmitter does not necessarily require special building blocks, such as ring
oscillators (ROs), which were needed in [GRS19]. Our evaluations show that it is also
possible to use synchronous designs, which is not easily detected.

The contributions of this paper can be summarized to the following:

• Voltage-based covert channel communication between modules inside an FPGA, with
proper multi-bit transmissions

• Improvements for higher transmission speed and lower error rate over previous work
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Figure 1: Voltage-based Covert Channels as a Threat in Multi-Tenant FPGAs

• Covert channel established and tested under a more realistic scenario with noisy
conditions, when other co-tenants are active and present in the FPGA, up to almost
maximum utilization

• On-chip covert channel communication method that is also portable to other chips,
because the sensor used in the receiver self-calibrates to various FPGAs to counteract
the impact of variations (inter and intra-die)

• Basic proof that ROs are not necessarily required for this covert channel, thus being a
more stealthy attack

The remaining paper is structured as follows: In Section 2, we will explain background
knowledge and explain existing covert channels with focus on FPGAs. The following Sec-
tion 3 will then explain the design of the covert channel we used for this paper. Section 4
will explain our experimental setup and the final results are discussed in Section 5. Section 6
contains a discussion on channel capabilities and countermeasures. The paper is concluded
in Section 7.

2 Related Work and Attacker Model
2.1 Attacker Model
Our basic attacker model is depicted in Figure 1 and is comparable to those in related
work on multi-tenant FPGA covert channel attacks [GRS19, TS19, RGS20]. We assume
an attacker which has partial or complete access to an IP core or accelerator used in
various FPGA tasks. An unsuspecting victim user downloads and uses the IP core from
an accelerator store, which often exists for FPGAs in the cloud. The IP core fulfills its
normal task, but at the same time it contains logic that uses a covert channel to transmit
the information the victim processes, and imprints it on the PDN, which is shared for the
full FPGA fabric. We also consider that the FPGA is shared among multiple users as
a multi-tenant FPGA or in an FPGA-SoC, and thus the attacker can reside in another
area of the FPGA or chip as a receiver of the covert channel. The added difficulty in this
multi-tenant setting is that other circuits can cause noise in the system. In this scenario,
any secret asset from the user that goes through the malicious IP core can be exfiltrated
to the attacker.

2.2 Covert Channels
Covert channels are a way to exfiltrate information from a system, and can thus be used
to impact security [Gir87, PAK99]. This is done in various ways, such as altering the
delay of network packets [Gir87], hiding data by steganography [JJ98] in multimedia
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streams, through various side channels in modern computer architecture [WL06, GYLH16],
or physical phenomena [PAK99, INK11]. In principle, any side effect occurring during
operation of a computing system can be used as a covert channel [PAK99]. Power or
voltage-based covert channels can exfiltrate information to the outside of a chip depending
on CPU utilization or power management [ZBT10, GZBE18, KWKK18, LKG+09]. Security
breaches can occur if such a channel is used where secure isolation is demanded.

Side-channel attacks use very similar mechanisms as covert channel communication,
and thus sometimes the term is used interchangeably. However, while side channels are
usually described to extract data from accidental information leakage by measurements,
physical covert channels deliberately cause side effects and use them as a communication
mechanism from the transmitter to the receiver side.

2.3 Voltage-based Security Hazards in Multi-Tenant FPGAs
Every modern integrated circuit (IC) has a Power Distribution Network (PDN), which
is often shared among all transistors in the IC, and consists of resistive, capacitive and
inductive components [MF04, ASM07]. The power consumption P in an IC is proportional
to the toggling rate f of its transistors, and the supply voltage V as P ∝ f × V 2. When
considering a voltage regulator, it tries to keep V as stable as possible, since transistor
delays depend on it τd ∝ 1/V . However, due to parasitic resistive and inductive components,
the voltage is still influenced, leading to fluctuations in the supply voltage available to
an individual transistor, and thus its delay τd. This influence depends on the current
consumption in time i(t) and resistive and inductive components, such that a voltage drop
can be described as Vdrop = i(t)R+ Ldi(t)/dt.

The behavior of the on-chip PDN has been analyzed for FPGAs before [ZH12, GOKT18,
ZAB+18]. Subsequently, it was exploited to cause faults through undervolting from within
FPGAs [GOT17, KGT18, SSN+19, MS19] without requiring dedicated fault injection
equipment. Furthermore, power analysis side-channel attacks can catch chip-internal volt-
age fluctuations to extract secret keys from logic in another area of the FPGA [SGMT18a,
ZS18, GDT+19]. In both classes of attacks, FPGA primitives are diverted from their
intended use, in which voltage can be measured or affected. By that, isolation features on
the logical level can be circumvented.

For fault attacks, ring oscillators (ROs) are implemented using FPGA logic [GOT17,
SSN+19] with an additional enable-signal to control their activity. By suddenly activating
all of them simultaneously using the enable-signal, they reduce the voltage level, using a
high change in current in a small time (di(t)/dt) [GOT17]. A sufficiently high voltage drop
can then cause computation errors [KGT18, MS19], or crash the entire FPGA [GOT17].

Power analysis side-channel attacks on the other hand passively measure voltage
fluctuations by either counting how fast ring oscillators run [ZS18], or use Time-to-Digital
Converters (TDCs) to achieve a higher sampling rate [SGMT18a, GDT+19] to attack
faster symmetric cryptography algorithms.

Similar to ROs, TDC-based sensors rely on the difference in circuit speed, depending
on voltage [ZSZF13, GOKT18]. However, instead of an oscillation, they use a single long
path as a cascade of buffers, as we also use in this paper and show in the Receiver-part
at the bottom of Figure 3. Between the buffers, flip-flops (‘FD’) are added, and the first
buffer is sourced from the clock signal, which typically requires an initial delay also made
out of buffers. Like this, the registers together show how far the clock propagates within
one clock cycle, and thus also the respective relative voltage level. Based on their power
consumption, cryptographic circuits cause voltage fluctuations. When these fluctuations
are measured with a TDC-based sensor, Correlation Power Analysis can analyze them
statistically to extract secret keys [SGMT18a, GDT+19].

In FPGAs, various covert channels have been described already, that are mainly based
on the PDN. One of them uses capacitive coupling within nearby wires in the same
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interconnect [PRP+19] to gather the information of the next wire. However, this coupling
is easily prevented by adding unused slices between the IP cores as isolation, which is
suggested by secure FPGA design flows [HBW+07, Cor12]. Furthermore, if modules
already have logical connections with restricted functionality, additional data can still be
modulated on top of them in form of small timing variations, or difference in communication
speed [SBE11]. Using such methods, about 8 kbit/s can be reached inside an FPGA, while
the same authors suggested that IO pins can be re-used to exfiltrate information out of
the FPGA, reaching about 3.4 Mbit/s. Furthermore, a covert channel using voltage has
also been described for FPGAs, which can transfer data to the outside of the chip with up
to 8 Mbit/s at 20% error rate, or as the authors note, at a realistic 500 kbit/s [ZBT10].

Nevertheless, these covert channels all require physical contact or proximity, or existing
logical connections, which may not work in multi-tenant FPGAs and particularity in a
cloud or SoC environment. To work logically independent, temperature covert channels
have been reported that do not require a logical connection and could thus be a security
threat to multi-tenant FPGAs. Using temperature changes, 0’s or 1’s can be represented
by high or low temperatures, reaching a speed of about 1 bit/s [INK11, TS19].

More recently, voltage-based covert channels have shown that they also allow for covert
channel communication in FPGAs, reaching up to 5 Mbit/s [Ngu18, GRS19], when no
other circuit except debugging or system shell logic is active in the system. At lower speed,
this has even been shown feasible to escalate between CPU and FPGA accelerator in
server-grade systems [RGS20].

2.4 Adjustable Delay Line Voltage Sensor
To show an attack scenario feasible in multi-tenant FPGAs in a cloud setting with remote
access, it is not practical to require a fine-tuned design to a particular FPGA device.
However the TDC-based voltage sensor we implement here is sensitive to manufacturing
process variation [ZSZF13, GOKT18], and requires some adjustment.

The main challenge with the baseline design, proposed by Zick et al. [ZSZF13], is to
have the right length initial delay, which can not be sufficiently determined using the
report from the timing analysis tool alone. In order to make a single bitstream work on all
devices, the delay of that design needs to be adjusted for a specific FPGA as well as the
modules used within that FPGA, and thus needs testing on the actual device. Based on
our experiments with various samples of the same type of FPGA board, the idle value
of the sensor can be extremely different. For instance, while one FPGA can be within
the range of a 6-bit sensor (0-63), another FPGA might always show 0 or 63 constantly.
In [ZSZF13] it is suggested to use a phase-shifted clock for either the entry to the delay
line, or the flip-flops used for sampling. In our experiments, that approach increases the
idle sensor noise significantly, for which Krautter et al. [KGT20] found a better solution,
which we outline here:

In that solution, it can be selected how early or late the clock enters the initial delay
line, and by that adjust its length dynamically, calibrated to a specific FPGA board. In
Figure 2 we show such a complete tapped delay line that can be adjusted in its path
length. It is matched to CARRY4 and LUT Xilinx FPGA primitives [Xil16]. Similar
elements exist for other vendors (e.g. Intel Cascade Chain). In the top of Figure 2 we
show the exit bins of the TDC, configured as registers connected to the output signals of
a CARRY4 element, which still follows the design from [ZSZF13]. The parts below that
contain our proposed adjustable-length delay line. The lower part of Figure 2 shows one
fine calibration slice, and the center part shows two LUTs of a coarse calibration slice.
The output of the fine calibration stages is fed into coarse calibration stages, and finally
can be read from the flip-flops (FD) in the exit slices.

Fine Calibration: To allow different entry points of the clock signal into the path,
the fine calibration stages are based on fast CARRY4 elements. The clock signal clk
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Figure 2: Principle of a delay line based on LUT and CARRY4 elements. At the bottom
slice, selectable entry points of the clock clk form fine calibration steps. The center slices
use the output from fine calibration as the input to LUT-based coarse calibration. In the
top exit slices, multiple bins of the delay line are routed to flip-flops (FD) as the output.
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Table 1: Amount of coarse and fine calibration slices used in this paper.
FPGA Fine Calibration Slices (each 1x

CARRY4)
Coarse Calibration Slices (each

4x LUT)

Pynq-Z1 4 (=16 stages) 8 (=32 stages)
Kintex-7 KC705 4 (=16 stages) 12 (=48 stages)

can enter the carry-chain at different depths, and therefore provide small delay shifts in
the time-scale of single MUX elements within the CARRY4, while still benefiting from a
balanced clock tree. The fine calibration is more sensitive to small timing differences and
hence it is put before the coarse stages, to be able to use the clock tree with almost the
same arrival time of the clock signal. This way, it allows us to keep the steps of the fine
calibration more linear. The fine stages output will then be connected to the inputs of the
coarse stages through the interconnect wires meant for data signals, which is sufficient for
the higher delays of the coarse calibration.

Coarse Calibration: The output from the fine calibration slices is fed to slices with
LUTs configured in a similar cascade way as the CARRY4 elements, also allowing a later or
earlier entry point of the previous signal. However, instead of the clock, the single output
from fine calibration is used as the inputs to all the coarse calibration LUTs. For instance,
in the shortest calibrated path, the clock propagates through the last MUX of the fine
calibration CARRY4 elements and a single LUT in the coarse calibration stage, until it
reaches the CARRY4 elements of the exit slices and the first flip-flop at the output.

The amount and type of required calibration stages can be adjusted to be roughly
below the worst-case delay provided by timing analysis, while the remaining calibration
can be handled on-the-fly by selecting the right inputs. If more delay is required, latches
can also be added in the slices used for coarse calibration. With this design, we do not
need the phase-shifted clock tree as in [ZSZF13], and by that have less noise in the sensor
output. Furthermore, the sensor can be checked using the same clock (clk), synchronous
to the remaining design.

With this adjustable length delay line, a simple state machine first goes through coarse
and then fine-calibration stages just after reset of the system. In each step, the state
machine changes a calibration setting and then observes the sensor value, to finally reach a
reasonable idle sensor value in the middle of the possible sensor range. By that, the sensor
can be used to observe relative voltage fluctuations in either positive or negative direction.

In Table 1 we show the amount of coarse and fine calibration slices we used for the
experiments later in this paper.

3 Voltage-based Covert Channels in FPGAs
The idea of creating a voltage-based covert channel is to use the full-chip PDN in a way
similar to a shared bus. Thus, by using similar circuits as used for fault or side-channel
attacks, we can read or write to the PDN, just like to a shared bus network. The previous
section explained the various building blocks for side-channel and fault attacks. We adapt
the ROs for causing a voltage drop, and TDC sensors to measure the voltage drop. Like
that, the ROs can become a transmitter for voltage fluctuations, while TDC or other ROs
can be used as receivers. An overview of this principle is shown in Figure 3.

3.1 Signal Modulation and Line Coding
The most basic and straightforward way to modulate a digital signal is to module ‘0’ as
low voltage an ‘1’ as high voltage, as in standard CMOS logic. To adhere to the unique
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properties of the on-chip PDN, we will still alter this scheme from being a unipolar code
to a bipolar code.

Other Tenants

Receiver

Transmitter

FD FD FD FD

clock voltage-level estimate

Initial

Delay

dataword[31:0]

RO-Group 8

ROs cause voltage fluctuations that travel through PDN, 

and affect buffer delay in the circuit on the receiving side

Demodulation 

State Machine

synchronizes & 

demodulates on 

dataword-level

dataword[31:0]

Modulation State Machine

decides in which pattern 

RO groups are turned 

on/off, based on dataword

RO-Group 1
LD LD

RO-Group 2
LD LD

FPGA

RO-Group N

Switching noise

8 RO-groups in total

Figure 3: Principle of transmitter and receiver circuits in the FPGA. The top shows the
Transmitter, which modulates data onto enable-patterns (in time) by activating RO-Groups
on/off to shape voltage fluctuations. The Receiver at the bottom is based on a TDC sensor,
which is affected by the voltage fluctuations, demodulated by another state machine. The
middle resembles other circuits in the FPGA through which the voltage fluctuations travel.

From related work and our own analysis, we know that voltage fluctuations from
suddenly activating or deactivating ROs will lead to voltage spikes in either the negative or
positive direction, which gradually recover over a certain timespan. An example of that is
shown in the waveform diagram in Figure 4. The output of our TDC sensor tdc_s[5:0]
shows negative and positive voltage spikes, which depend on ROs being active or inactive,
as active_part_reg[7:0] indicates. We leverage on these properties to move from a
unipolar code (0, 1) to a bipolar code (0, —, 1), using the following states:

• Positive Voltage Spike: Encodes ‘1’

• Negative Voltage Spike: Encodes ‘0’

• Neutral Voltage Level: ‘No Data’, between the spikes

With this scheme, we also facilitate synchronization, because ‘No Data’ can be a synchro-
nization between the data bits.

3.2 Transmitter Design
To implement a transmitter for the described signal modulation, we implement ROs as
shown in Figure 3. The ‘LD’ is a transparent latch with an enable-signal and the inverter
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Figure 4: Measurement inside the FPGA on the Pynq-Z1, recorded with Xilinx ILA. It
shows the ROs being activated and deactivated in a period of 336 ns, and the respective
response of the TDC sensor (tdc_s[5:0]). The timescale is the number of clock cycles of
the 125 MHz system clock.

Figure 5: Measurement inside the FPGA on the Pynq-Z1, recorded with Xilinx ILA.
It shows how ‘0’ or ‘1’ are encoded as voltage fluctuations. When (de-)activating ROs
gradually, tdc_s[5:0] is just slightly affected. When (de-)activating the ROs all at once,
tdc_s[5:0] spikes in either direction. The timescale is in clock cycles of 125 MHz.

is realized with a FPGA LUT. This implementation follows one suggestion by Sugawara
et al. [SSN+19] for ROs that are not rejected by cloud FPGA design flows. Each RO
group thus has a signal to enable or disable their oscillation. All enable signals are then
controlled by a state machine that will iterate bit-per-bit of the data word that has to be
transmitted, and apply the respective activation pattern. For each bit of the data word,
the state machine will enable the ROs in a way to cause a negative or positive voltage
spike, or no spike for synchronization in-between.

Using all the ROs at once is not sufficient to transmit data in this way, as it would
result in an alternating transmission of ‘0’ and ‘1’, from sudden activation and deactivation
of all ROs. The solution is thus to gradually enable and disable ROs, if no voltage spike
should be provoked. For that, we separate the ROs into groups. To represent ‘1’-bits we
activate the groups step by step, and then suddenly deactivate them to cause a voltage
spike. Vice versa, we suddenly activate all of them, and then deactivate them step by step
to represent ‘0’. We recorded the behavior inside the FPGA with the Xilinx Integrated
Logic Analyzer (ILA), and show it in Figure 5 where 8 groups are activated as indicated
by the 8 bits of the active_part_reg[7:0] signal. The simultaneous decrease in load causes
a positive voltage spike, to be interpreted as ‘1’ on the receiving side. Since that method
causes a maximum, it should in reverse cause a minimum. Hence activating the ROs all at
once and then deactivating them gradually will result in a negative voltage spike as is also
shown in Figure 5.

To decide how fine the granularity needs to be for gradually enabling or disabling the
ROs, we empirically checked different groupings. For that, we wanted to see how many
groups are needed that the voltage fluctuations from enabling or disabling a single group
is small enough, i.e. only lead to a change of 2-3 sensor values. We determined that 8
groups result in sufficiently smooth voltage fluctuations, as seen in the waveform on the
receiver side, which is tdc_s[5:0] in Figure 5.
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3.3 Receiver Logic and Demodulation
The complete receiver consists of the previously described adjustable delay line that will
give a unary one-hot encoded value of N bins that can be encoded in log2(N)-bits and
then processed by the additional demodulation logic.

In this work, we use a sensor with 64 bins, resulting in a 6-bit value. The sensor is
self-calibrated during power-up for experimental purposes, but this calibration does not
need to be precise and can also be performed while the system is at full operation. The
only important part is that the sensor still has sufficient margin for positive and negative
swings without clipping at its maximum or minimum value. To calibrate, a state machine
first adjusts the length of the coarse and then the fine delay line, to finally target the
output to be somewhere in the middle of the sensor range, i.e. around 32 for all our
experiments performed here with a 6-bit sensor (0–63 sensor range). We propose two
demodulation strategies that are evaluated later:

Threshold-based Strategy: In this strategy, the demodulation logic takes the
average sensor value tdcavg at idle as the baseline, and from that computes upper and lower
bounds that it will use to detect the voltage spikes in either negative or positive direction.
To acquire tdcavg we just need to perform a significant long averaging, to filter out all
potential AC noise in the signal, since the absolute DC voltage is stable in the system.
To detect single bits in the signal, we performed a few tests to experimentally determine
reasonable lower and upper thresholds for negative and positive voltage spikes. We found
values of −8 and +4 at 125 MHz, and −6 and +3 at 200 MHz to be reasonable bounds,
in the cases where this threshold-based strategy was successful. These thresholds were
determined by visually observing the typical strength of the undershoots or overshoots,
as observed in the sensor output. The bounds depend on the operating frequency of the
TDC, since higher frequencies typically mean less sensitivity, which is in line with related
work [SGMT18a]. An adversary can find out such values by experimenting on an own
copy of the FPGA of the same model/make. Like that he can test reasonable upper and
lower bounds. Even an automated approach is feasible, if the adversary also implements
the receiver and performs test-transmissions with various bounds.

Gradient-Estimation-based Strategy: The value of tdcavg needed for the threshold-
based strategy can drift over time, since it is also temperature-dependent, as well as
dependent on the average power consumption (IR-drop). To prevent the need to acquire
tdcavg, we propose a strategy based on estimating the gradient of voltage fluctuations. By
that, the signal will only depend on the offset added from the transmitter, and the general
offset added by signals below a certain level is ignored. For that, the 6-bit sensor value
needs to be recorded for two clock cycles as tdct=1 and tdct=2, and a simple difference
between the two values then leads to an estimated gradient tdcgrad = tdct=2− tdct=1. Even
in this strategy, a certain threshold needs to be defined for the gradient itself, however it
is independent of a baseline idle value, and just needs to calculate the difference between
consecutive sensor values. For the gradient-threshold we experimentally found a tdcgrad

value of > +7 or < −7 to be suitable across all the performed experiments. There might
be different optimal value depending on the system with more experimentation, but for
our proof-of-concept, this was sufficient. However, we later show that the gradient-based
approach is not necessarily better, since we only estimate the gradient within one clock
cycle. Some voltage drops might require two or more, leading to a reduced gradient and
thus wrongly detected bits, for which a more advanced calculation is helpful.

Improved Two-Cycle Gradient-Estimation-based Strategy: In some of the
later experiments with synchronous senders, the basic gradient-estimation was still leading
to an unacceptably high error rate. Thus, we implemented gradient-estimation that
considers the gradient of two consecutive clock cycles, i.e. in total three clock cycles
tdct=1,2,3 and differences tdcgrad1 = tdct=2 − tdct=1 and tdcgrad2 = tdct=3 − tdct=2. Here,
both clock cycles need to have a gradient in the same direction (rising or falling), or it
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(a) Floorplan showing the design
separation into three modules.

(b) Floorplan with 60× s13207 in-
stances from ISCAS’89 [BBK89]
added for voltage noise.

Figure 6: Floorplans of the designs implemented in the Zynq ZC-7020 on the PYNQ-Z1
board.

gets ignored, to reject a certain amount of noise. Otherwise, it is calculated as tdcgrad =
tdcgrad1 + tdcgrad2. For this strategy, the gradient-threshold was reduced to > +6 or < −6,
which is increasing the sensitivity, while noise is still rejected due to the two-cycle approach.

3.4 Sending and Receiving Word-Size Messages
By detecting single bits, still no communication between modules can be performed, and
we thus need to consider a real transmission mode. Since the measured voltage spikes or
their gradients can be higher or lower than the threshold for more than a single clock cycle,
the decoder in the receiver might wrongly identify more than one bit. Thus, after the
decoder identifies a bit, a certain timeframe is added in which it waits before data from
the TDC is interpreted again. Within that timeframe, if higher gradients appear, they can
still override the initially identified one. An additional problem with the threshold-based
approach is that after many transmissions, the decoder could fail to identify some bits,
because the maximum or minimum were not within the determined thresholds. In that
case, we specify a maximum time that has to be waited, and if the time is up insert a
default ‘0’ or ‘1’.

We found good results when our transmitter was implemented such that the time from
spike to spike is 200 ns or 125 ns, which in each case is 25 clock cycles, for an operating
frequency of 125 MHz or 200 MHz respectively. Based on that, we chose a timeframe with
minimum and maximum values of 15 and 31 clock cycles of the respective clock. If no
value is received in that time, the default value is assumed. As a dynamic rate control, we
adjust the timeframe until the next bit, depending on when the last bit was found.

4 Experimental Setup and Implementation
Figure 6 (a) shows the complete floorplan of the implemented design on the Xilinx
Pynq-Z1 board, which hosts a Xilinx Zynq XC7Z020CLG400-1 FPGA SoC that integrates
a Dual-Core ARM Cortex-A9 CPU with FPGA logic. Figure 6 (b) shows the extended
floorplan to check the error tolerance of the covert channel when other circuits are active.
In our experiments, the two CPUs of the Zynq SoC were entirely unused. Furthermore,
some experiments are performed on a Xilinx KC705 development board, hosting a Kintex-7
XC7K325TFFG900-2 FPGA. The KC705 as well as the Pynq-Z1 board are both powered
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Table 2: Logic utilization and estimated power per module on the Pynq-Z1 platform,
reported in Xilinx Vivado. Ranges are due to various setups (gradient vs. threshold
decoding; 125 vs. 200 MHz). Small differences between the sum and Total Max are
possible, due to mapping heuristics.

Module
Utilization

Estimated Power
Slices LUTs Registers

Receiver (125 MHz) 0.71 % 0.70 % 0.30 % 0.007 W
Receiver (200 MHz) 1.02 % 0.73 % 0.35 % 0.018 W
Transmitter, 2504 ROs 5.45 % 5.0 % 2.5 % 0.013 W
Transmitter, 5000 FFs 10.27 % 9.73 % 4.82 % 0.289 W
Transmitter, 24×
s13207

43.59 % 37.98 % 20.47 % 0.597 W

Debug Logic 4.58 % 2.2 % 2.2 % 0.015 W
Clock Generator — — — 0.0 – 0.108 W
Device Static — — — 0.122 – 0.130 W

Circuits used to imitate voltage noise of co-residing tenant:
s1494+PRNG 1.45 % 1.20 % 0.05 % 0.009 W
s13207+PRNG 2.08 % 1.43 % 0.85 % 0.012 W
60× s13207+PRNG 91.05 % 84.2 – 87.6

%
50.9 % 0.596 – 1.085 W

Total Max (2504 ROs) 99.8 % 92.1 % 55.9 % 1.24 W

(a) Floorplan showing the design
separation into three modules.

(b) Floorplan with 250×
s13207 instances from
ISCAS’89 [BBK89] added
as a source of voltage noise.

Figure 7: Floorplans of the designs implemented in the Kintex XC7K325 on the KC705.
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Table 3: Logic utilization and estimated power per module on the KC705 platform, reported
in Xilinx Vivado. Ranges are due to various setups (gradient vs. threshold decoding; 125
vs. 200 MHz). Small differences between the sum and Total Max are possible, due to
mapping heuristics.

Module
Utilization

Estimated Power
Slices LUTs Registers

Receiver (200 MHz) 0.33 % 0.18 % 0.09 % 0.016 W
Transmitter, 5000 ROs 2.71 % 2.53 % 1.92 % 0.022 W
Transmitter, 10000 ROs 5.23 % 4.99 % 2.48 % 0.025 W
Debug Logic 0.64 % 0.21 % 0.54 % 0.016 W
Clock Generator — — — 0.114 W
Device Static — — — 0.159–0.190 W

Circuit used to imitate voltage noise of co-residing tenant:
250× s13207+PRNG 96.26 % 89.2 % 55.3 % 4.53 W

Total Max (5000 ROs) 99.64 % 92.5 % 57.2 % 4.89 W

by their dedicated power supplies. We briefly tested USB power for the Pynq-Z1, but did
not see any significant difference to the dedicated power supply.

The floorplan of our tested design on the Kintex-7 is shown in Figure 7 (a), again with
additional circuits as noise source in Figure 7 (b). For both platforms, we used Xilinx
Vivado 2017.1 to develop our design. We marked the respective areas for the transmitter,
receiver, and the debugging logic.

Xilinx Vivado estimates for area and power consumption for the PYNQ-Z1 platform
are listed in Table 2, and for the KC705 platform in Table 3. Transmitter and receiver
contain the previously discussed setup as explained in Section 3 and shown in Figure 3.
Please note that the FPGA mapping tools follow respective timing constraints such that
the receiver needs more resources to operate error-free at 200 MHz than at 125 MHz. The
debug logic consists of standard Xilinx Vivado Debug Cores. We use the Xilinx Integrated
Logic Analyzer (ILA) and Virtual Input-Output (VIO) Debug Cores. ILA is used to record
and visualize the respective waveforms of our sensor, mainly for debugging. VIO is used
to supply and read transmitted and received datawords to perform an evaluation at higher
speed. We control both cores using a set of TCL scripts to perform automatic tests for
characterizing the Bit Error Ratio (BER) in our results.

To allow automated testing, we start by changing the output datawords of VIO
randomly, and set up a trigger in ILA that waits for a finished transmission, shown
through a ‘ready’ signal. ILA is thus triggered when all bits (8, 16 or 32) of a word have
been transmitted. As soon as it is finished, the data demodulated on the receiver side
is stored in a VIO register that can be read from our workstation PC. The TCL script
compares the sent and received word. If they are not equal, the ILA trace from the FPGA
internal BRAM is transferred to the PC for later visualization and debugging. Using this
mechanism, tests can be performed in which multiple lengths of datawords are transmitted.
Transmissions of 8-bit, 16-bit or 32-bit datawords can be tested, and the option to replace
undetected spikes with either a ‘0’-bit or with a ‘1’-bit.

We performed preliminary experiments on the FPGA platforms to decide on the
following parameters and use them for all further evaluations and results.

• Distance between transmitter and receiver (floorplan)

• Amount of ROs for sufficient voltage drop, and tradeoff between area usage
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• Reasonable minimum time between transmitted bits, based on observed PDN behavior

More extensive evaluation could further tune these parameters to increase the through-
put and robustness, making our results a baseline for voltage-based FPGA covert channels.

Later, we also evaluate our setup in the presence of running s1494 and s13207 instances
of the ISCAS’89 [BBK89] benchmark suite mapped into the FPGA, which according to
their publication s1494 is a synthesized controller and s13207 is the design of a real chip.

4.1 Floorplan, Distance
We chose a rather high distance between transmitter and receiver on the chip, which we kept
across all experiments by restricting the modules into Xilinx pblock regions. This can prove
that traditional design practices for isolating IP cores [HBW+07, Cor12] can be bypassed
easily by using the presented covert channel. The resulting receiver and transmitter module
positions are marked in the floorplan in Figure 6 (a), in which the Receiver is placed on
the other side of the FPGA, opposite of the Transmitter. The same positions are kept for
the floorplan in which noise sources were added, shown in Figure 6 (b).

4.2 Amount of ROs as Power Consuming Elements
For the amount of ROs as power-consuming switching elements we use a relatively small
number. Since about 13% of the LUTs used for ROs can crash an FPGA [GOT17], the
covert communication should be able to work with less LUT utilization. We also verified
that no timing errors occured in other circuits by performing experiments on an adder
circuitry, similar to the one shown in [KGT18]. We experimentally decided on using 2504
ROs divided into eight groups (8× 313) for the PYNQ-Z1 platform, corresponding to 4.7%
of its total available LUTs configured as ROs. For the KC705 platform we respectively
chose 5000 or 10,000 ROs depending on the experiment, which is equal to about 2.45%
and 4.9% of its total available LUTs. In both platforms this is much less in percentage of
the total logic cells, when considering other primitives available in the FPGA. To be able
to activate just a part of the ROs, we separate them into 8 groups. We expect that when
more ROs are used, higher voltage spikes can be generated, which are easier to discern on
the receiver side, increasing robustness and potentially speed. On the other hand, we will
also test synchronous oscillating elements, which would escape security checks more easily.

4.3 Minimum Time between Bits
We initially decided on a minimum amount of waiting time from bit to bit using experiments
on the Pynq-Z1 at 125 MHz, resulting in a 5 Mbit/s transmission rate. Nevertheless, the
same amount of clock cycles instead of real time was used for the 200 MHz operating
frequency for some experiments on the KC705, which was still successful and leading to
a 8 Mbit/s transmission rate. We think that with more ROs, the time for this recovery
could also increase, and thus again reduce the possible communication speed.

In order to acquire all these necessary parameters, the intuitive approach is to first
check the response on the PDN when all of the ROs are toggled on or off at the same
time, and observe the results on the TDC. We show the results of this basic evaluation in
a screenshot from the Xilinx Integrated Logic Analyzer (ILA) Debug Core, in Figure 4.
In these results, we already use 2504 ROs (8× 313) on the Pynq-Z1 and have settled on
the floorplan as shown in Figure 6. The activation signal active_part_reg[7:0] indicates
when all the ROs get activated or deactivated. In this case all 8 groups of ROs are toggled
simultaneously. Shortly after activating all the ROs, a negative voltage spike appears,
while a positive spike appears after all ROs get deactivated. We can see that the typical
time after the effect from the ROs has worn off is about 80 ns, i.e. 10 clock cycles. We
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Figure 8: Pynq-Z1 instance #1, 125 MHz and threshold-based decoding. Bit error ratio of
100,000 word transmissions based on 8, 16 or 32-bit word sizes and comparison between ‘0’
or ‘1’ as the default fallback for undetected voltage spikes. It shows that ‘0’ is misdetected
more often.

consider that we need about twice this time per bit in order to allow gradually enabling
or disabling the ROs from bit to bit. That would lead to a data rate of up to 6 Mbit/s,
but if some margin is added, 5 Mbit/s. The results in the following Section 5 show that
8 Mbit/s is also feasible.

5 Results
The line coding we used and present in Figure 5 already proves the basic function of
our covert channel. By the duration of the 8-bit that are transmitted in the example
of the experimental setup, a fast transmission rate of about 5 Mbit/s is experimentally
confirmed. In the detailed results presented in this section, we evaluate this covert channel
with respect to potential noise sources, transmission modes, and other boards or platforms.
Furthermore, we show an increase in transmission speed up to 8 Mbit/s when using the
gradient-based demodulation.

5.1 Basic Results on Pynq-Z1 with Threshold-based Demodulation
As a baseline, we provide the results when 100,000 words are transmitted in a system where
only debug logic, receiver, and transmitter are implemented, i.e. as shown in Figure 6 (a).
We vary the wordsize between 8-bit, 16-bit and 32-bit, after which a re-synchronization
happens, i.e. first timeframe is estimated from spike to spike. In the existing setup, this
re-synchronization is still handled through the workstation PC and debugging logic, taking
a significant amount of time, which we did not measure. However in a full attack, it can
be implemented by waiting the timeframe of 1 or 2 bits. On the receiver side, we evaluate
two cases, for either having the default fallback for undetected voltage spikes set to ‘0’
or set to ‘1’. A summary of these results is shown in Figure 8. The results show that
typically no errors happen for 8-bit transmissions, while longer messages with 16- or 32-bit
have a small BER at least below 40 × 10−6. Please note that with only 100,000 words
transmitted, we expect there can be a high statistical variance if we would repeat these
experiments more often, but these results still show an interesting trend.

To find the reason of different BER depending on the fallback ‘default’ bit, we look into
the errors per each bit of 32-bit dataword transmissions. Figure 9 compares the results per
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Figure 9: Pynq-Z1 instance #1, 125 MHz and threshold-based decoding. Distribution
of bit error ratio across bits of 100,000 32-bit transmissions, comparing ‘0’ and ‘1’ as
the default fallback for undetected voltage spikes. For ‘1’ as default it shows that errors
typically happen towards the later bits.

bit in the word, from transmissions with ‘0’ or ‘1’ as the default fallback. For ‘0’ as the
default, only one incorrect transmitted word occurs out of 100,000. This dataword though,
has 18 erroneous bits. As the plot shows, the errors happen nearly everywhere and not in
a specific pattern. That means that the basic synchronization did fail to recognize that
specific word, and can be considered as an outlier case. On the other hand, when ‘1’ is the
default, 101 transmitted words were erroneous with a total of 103 erroneous bits. Hence,
overall most transmission errors happen with ‘0’-bits, i.e. undetected negative voltage
spikes. Please note that these error rates can not exactly show the error rate of 1-bits or of
0-bits, but just a tendency if most misdetections are ‘0’ or ‘1’, by making the opposite bit
value the default. Figure 9 also shows that most of the errors happen towards the last half
of the transmitted word, suggesting that on longer words, the transmitter and receiver can
get out of synchronization. Nevertheless, a very low overall error rate can be achieved for
a covert communicaton channel, which can be considered sufficient in case error correction
codes (ECC) are applied.

5.2 Threshold-based, Error Rate with Noise Sources on Pynq-Z1
The robustness of the covert channel is also tested against more realistic conditions, in
which other circuits operate on the FPGA and cause voltage noise to mimic the effect of
switching noise coming from other tenants on the FPGA. The transmission was tested in
the presence of running s1494 and s13207 instances of the ISCAS’89 [BBK89] benchmark
suite mapped into the FPGA. We specifically found s13207 to be well-suited when trying
to reach the maximum FPGA utilization, since it has a relatively high register utilization
over its logic utilization. The designs were clocked with the same 125 MHz clock and reset
properly. The inputs of these circuits were fed with random data, generated from Linear
Feedback Shift Registers (LFSRs) inside the system. The circuit outputs are connected to
registers with a ’keep’ property, to not allow their removal. In the most extreme case, 60
instances of s13207 are instantiated and integrated together with the covert channel circuits,
resulting in an FPGA project that uses 92% of existing LUTs and 56% of the flip-flops,
leading to 99.8% slice utilization. The floorplan of that design is shown in Figure 6 (b),
and the used resources are listed in Table 2.

For these experiments we used another instance of the Pynq-Z1 board, noted as #2
in the respective figure captions. Since this board can be physically different, it proves
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Figure 10: Pynq-Z1 instance #2, 125 MHz and threshold-based decoding. Bit error ratio
of 100,000 32-bit word transmissions. Comparison between the first experimental setup
and designs with additional modules as a source of voltage noise.
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Figure 11: Pynq-Z1 instance #2, 125 MHz and threshold-based decoding. Distribution of
bit error ratio across bits of 100,000 32-bit transmissions, comparing the influence from
different circuits as noise source. Typically errors happen towards the later bits.

that our approach can adapt to it without changing of parameters. Because there can
still be differences between the two boards, we repeated all experiments necessary for
the comparisons we show in this section. In these experiments we exclusively used 32-bit
transmissions with ‘0’ as the default bit.

For a single s1494 or s13207 there are only moderate resource requirements in the
FPGA (cf. Table 2), leading to an increase in error rate by a factor of 6. With the
increased noise source of 60× s13207 that leads to a 99.8% slice utilization, as reported
in Table 2, the BER was increased by about 40×. As previously observed, the bit errors
also occur towards the end of a transmitted word, and mostly 1-bit errors occured, which
can still be managed using the widely used Single Error Correction Double Error Detection
(SECDED) coding. We show an overview of the errors depending on the circuit noise
source in Figure 10, and depending on where in the transmission they occur in Figure 11.



18 Voltage-based Covert Channels using FPGAs

Figure 12: Measurement inside the FPGA on the KC705 board, recorded with Xilinx ILA.
It shows that the tdc_s[5:0] signal does almost never reach above the idle value (before
time), thus making it infeasible to encode a binary ‘1’ in a simple high-value above a
threshold. Previously this was possible on the Pynq-Z1 board as shown in Figure 5.

5.3 Gradient-based Demodulation on Pynq-Z1
Next to threshold-based demodulation, we also test gradient-based demodulation on the
Pynq-Z1. We test this demodulation scheme at 125 MHz and 200 MHz, with and without
60x s13207 added as a noise source. In all of these setups, the threshold-based demodulation
leads to a lower error rate, as we show in comparisons in Figure 15. We will see later that
for the KC705, this approach is superior than threshold-based.

5.4 Threshold-based Demodulation on KC705
Here, we test the KC705 with the same threshold-based demodulation as in the Pynq-Z1.
We keep the same percentage of resources used for ROs as in the Pynq-Z1 and also use
a 125 MHz operating frequency. In the Kintex-7 of the KC705, a clock generator has to
be used to convert the given differential 200 MHz clock to 125 MHz. Since the FPGA on
the KC705 has about 4× the resources of the Pynq-Z1, we increase the ROs from 2504
(8 × 313) to 10,000, resulting in similar resource use for the transmitter of ≈5% LUTs
and ≈2.5% Registers (cf. Table 2 with Table 3). Like this, the threshold-based approach
performs very poorly on the KC705 board, leading to an error rate of ≈50% when the
default bit is set to ‘0’. When we switch to a default bit of ‘1’ we still get an almost as
high error rate of 48%, because almost every bit is detected as ‘0’.

The reason for this poor performance can be seen when looking at a recorded voltage
waveform in Figure 12. After the first activation of ROs, the voltage drops really fast, and
does never recover back to the idle value during the transmission. Thus, only negative
voltage spikes can be decoded, with a lack of proper synchronization from the idle signal.
One alternative would be to switch to a bipolar coding using spikes and idle times, while
relying on synchronized timing. However, we did not evaluate this, since a better solution
is the gradient-based demodulation.

5.5 Gradient-based Demodulation on KC705, including Noise
Since threshold-based demodulation has some drawbacks on the KC705, we apply the
gradient-based demodulation. Because of extremely low BER in preliminary experiments,
we can even reduce the amount of ROs to the half of just 5000, requiring only 2.5% of
LUTs and 1.9% of Registers. All data for the gradient-based demodulation is recorded
for this amount of ROs. We reach zero errors for 100,000 32-bit word transmissions if no
additional noise circuits are added to the FPGA.



D. R. E. Gnad, C. D. Nguyen, S. H. Gillani, M. B. Tahoori 19

None 250x s13207 250x s13207
+ random enable/disable

Additional Circuit in System

0

20

40

60

80

100
B

it 
E

rr
or

 R
at

io
 (B

E
R

) 
10

6

Error Ratio influence from Co-residing Circuit

Total bit error ratio
1-bit error ratio
2-bit error ratio
3-bit or more error ratio

Figure 13: KC705 at 200 MHz (8 Mbit/s) with gradient-based decoding, 2.5% ROs.
Bit error ratio of 100,000 32-bit word transmissions. Comparison between the normal
experimental setup and designs with additional modules as a source of voltage noise.

To further test the robustness of the gradient-based demodulation, we similarly add
circuits as noise sources as we did for the Pynq-Z1 platform before (cf. Section 5.2). To
reach an almost maximum utilization in the Kintex-7 XC7K325T, we insert 250× instances
of s13207 and respective LFSR-based PRNGs. Additionally to running the 250 instances
constantly to generate noise, we added another mode that increases its impact. On top of
running all the circuits, we additionally enable and disable them randomly to simulate
realistic power changes in the system with higher di(t)/dt load. For that, we chose intervals
of 277 clock cycles, such that 2-3 of such load changes can happen within one transmission.
In each of these intervals, we look up a random number generator to choose if the enable
signal of a circuit is active or inactive.

The floorplan of the KC705 designs with and without noise sources are shown in Figure 7,
and the used resources are listed in Table 3. We show the overall error rates in Figure 13,
and also the errors depending on the bit inside a word in Figure 14. These results show
that gradient-based demodulation leads to very low overall errors on the KC705 platform,
even under noisy conditions. However, in case of errors happening, we typically see many
bits of a transmitted word being affected, as the category ‘more than 3-bit errors’ shows.
Thus, more effort might be needed for error correction.

5.6 Comparison between Pynq-Z1 and KC705

We performed some additional experiments and show a comparison between the two
platforms, where we use board #2 for the Pynq-Z1. We show these results in Figure 15.
This overview shows that the Pynq-Z1 board typically performs better with threshold-based
demodulation, and at 125 MHz (5 Mbit/s), while 200 MHz (8 Mbit/s) is not necessarily
advisable for this platform, except when there is not much noise in the system and with
gradient-based demodulation. Interestingly, the gradient-based approach operates better
at the higher frequency. The KC705 board does not work well with threshold-based
demodulation, since the error rate reaches almost 50%. With gradient-based decoding, it
performs very well with a low error rate, even when there is noise in the system.

In summary, both FPGA boards can effectively use this covert channel, but need to
use the right demodulation scheme on the receiver side, but without any changes in the
transmitter. Thus, the module that leaks the information does not have to be changed
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Figure 14: KC705 at 200 MHz (8 Mbit/s) with gradient-based decoding, 2.5% ROs.
Distribution of bit error ratio across bits of 100,000 32-bit transmissions, comparing the
influence from an almost fully utilized FPGA versus no additional noise source. There are
zero errors without noise source, and with noise, never more than 155 × 10−6, depending
on the bit position.

between these two demodulation variants, but only the demodulation logic on the receiving
side, i.e. the information leaked into the PDN just needs to be interpreted correctly.

5.7 Transmitting with Synchronous Designs on Pynq-Z1

The shown covert channel so far can be prevented by using bitstream checking for
combinational loops, as discussed in related work [SSN+19, KGT19, LMG+20]. Thus, we
performed a basic experiment with another design. For that, the LUT+LD based ROs are
replaced with synchronous LUT+FD elements. The flip-flop (FD) is clocked at 800 MHz
from a clock generated inside the FPGA, by using a Xilinx Clock Generator sourced from
the global 125 MHz clock. This was tested on the Pynq-Z1 platform. However, since it is
shown that [KGT19, LMG+20] can still detect high-fanout nets, we also evaluate the use of
multiple ISCAS’89 s13207 circuits clocked at 600 MHz to modulate the voltage fluctuations.
This is similar to what has been previously done to inject faults with AES circuits, in [PHT].
We visualize how these synchronous circuits look in principle in Figure 16.

When using the same resources as used for 2504 (8 × 313) ROs before, these new
synchronous elements did produce voltage fluctuations visible in the receiver, but not
large enough to reach the previous thresholds. When increasing the amount to 5000
LUT+FD elements and changing the lower threshold from -8 to -7, we can get reasonable
results. Similarly, we use 24x s13207 as a sender that can also generate sufficient voltage
fluctuations. In both setups we also evaluate gradient-based demodulation, and test the
influence of a single s13207 circuit as a source for disturbing voltage noise. These results
are reported in Figure 17.

Interestingly, for synchronous senders, the gradient-based demodulation performs better
than threshold-based, while this was the other way around for RO-based senders on the
Pynq platform (cf. Figure 15). However, in total, the synchronous circuits have a very
high error rate, even with just a limited amount of noise from a single s13207 circuit.
Nevertheless, we increased the FPGA utilization to 95% by adding as much as possible
additional s13207 circuits as sources of noise, which reaches to an almost 50% error rate in
gradient and threshold-based demodulation. Thus, here we apply the previously presented
improved gradient-based demodulation (cf. Section 3.3).
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Figure 15: Comparison between various experiments on the KC705 and Pynq-Z1 #2.
KC705 with 2.5% LUT utilization for ROs and Pynq-Z1 with 5% LUT utilization for ROs.
These results show that gradient-based demodulation works better on the KC705 platform,
while threshold-based demodulation works better on the Pynq-Z1.
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Figure 16: Principle of different types of synchronous senders used to evaluate a more
stealthy strategy of modulating voltage fluctuations onto the PDN.
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Figure 17: Testing the performance of transmitting with synchronous elements or circuits.
Comparison between various experiments on a Pynq-Z1.
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Figure 18: Testing the performance of transmitting with a lot of noise in the system and
synchronous elements or circuits. Comparison between various experiments on a Pynq-Z1.

The results are presented in Figure 18. With the improved gradient-based strategy,
the error rate can be reduced to about 17% when using Flip-Flops as Senders or about
30% when using 24x s13207 circuits as senders. Thus in this second scenario, the data rate
would at least need to be reduced to about 3.5 MBit/s, plus additional error correction
overhead.

In total, we can conclude that checking for asynchronous parts of a design [SSN+19,
KGT19, LMG+20] is not enough to thwart the shown covert channel attacks, but it
increases the required effort, and will need a sufficient amount of error correction for a
successful communication.
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6 Discussion and Countermeasures
6.1 Capabilities of the Channel
The shown covert channel can provide a very fast communication up to 8 Mbit/s, only
by using the shared PDN of a FPGA chip, reaching from one to the other end of the
die. That is achieved with a relatively low area usage of less than 3 or 5%, depending
on the FPGA, and power consumption of 20 mW. Furthermore, when choosing the right
demodulation scheme for the respective FPGA, the communication channel is relatively
error-free, even when the full FPGA is utilized by other tenants or modules. This can be
explained because normal circuits usually do not have massive changes in toggling (i.e.
switching activity), and thus barely influence the on-chip voltage level, allowing the covert
channel transmission to almost work as before. Even in the case of various circuits being
turned on and off during runtime, the error rate stays below 150 ×10−6 BER when the
appropriate mode is used for the respective device, i.e. gradient-based for KC705 and
threshold-based for Pynq-Z1. For the setups when synchronous flip-flops or circuits are
used, the BER is still below 30% even in the noisiest setup, which in the end could still be
used for transmissions with a data rate below 3.5 MBit/s.

To improve the transmission further, we think more ROs can generate more clear
voltage spikes, slightly increasing the needed area and power consumption. On the other
hand, increased voltage spikes also require more time to wear off in the PDN and thus
lead to slightly lower data rates. By increasing the ROs, the risk for actual faults will
also increase in the system, which has to be taken into consideration. For the amount of
ROs we have used in the experiments here, no errors were observed. This confirms that
the established channel is for sure “covert”, as it causes no (timing) errors in any running
modules in the FPGA.

The absolute limit of this covert channel can still be explored in future work, since
we have already seen difference in the KC705 and Pynq-Z1 platforms. Other platforms
could again behave differently. However, it is clear that ROs will generate a certain type of
voltage spikes due to typical PDN behavior. We have also seen some tendencies of device
aging having an impact on these results, which will be explored in future work.

What has also not been extensively evaluated in this paper, is the actual maximum
achievable speed. The time between desired voltage spikes of either 125 or 200 ns was
found with just a few experiments. With fine-grained optimization, higher data rates will
become achievable.

In its current form, this covert channel can become a dangerous building block if
maliciously integrated into 3rd party libraries or accelerators, or used as a Hardware
Trojan. In that way, a voltage covert channel based on voltage fluctuations can be a risk
beyond FPGAs, in other integrated circuits. For instance, it is also feasible that existing
synchronous circuit elements are toggled simultaneously to create enough fluctuations for
this covert channel.

6.2 Countermeasures
Countermeasures to prevent this electrical covert channel could be either established at
the side of the victim, or on system level:

• The system supervisor can check IP cores or entire bitstreams, before they are loaded
to the FPGA, to detect the design elements that can potentially be used as transmitter
(ROs) and receiver (TDCs). This approach was suggested against side-channel attacks
in [KGT19]. However, some stealthier malicious constructs, such as advanced ROs, are
much harder to detect with such checking schemes [SSN+19]. We have also explored
the use of more complex synchronous ROs for the transmitter, which is not easily
prevented.
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• The victim side could employ power equalization countermeasures as used in hiding-
schemes against side-channel attacks [KGS+19]. However, to protect against side-
channel analysis, the circuit that should be protected is usually known, while a hidden
covert channel transmitter would need to be equalized, which is usually more challenging.

Further investigation and research are required to evaluate these or other possibilities
for countermeasures against this covert channel, which is in our future research direction.

7 Conclusion
FPGAs are increasingly adopted as accelerators in Systems-on-Chip (SoCs) or Cloud-based
systems, such that multiple user contexts exist in a single FPGA chip. Existing side-channel
attacks have shown that new security issues emerge from that. In this work, we show
a related security issue in which logically, or even physically, separated untrusted third
party IP cores, or user accelerators can perform covert communication inside an entire
system. Especially at the high data rate and reliability that we have shown under noisy
conditions inside a multi-tenant FPGA, such unwanted communication channels can
facilitate various attacks, such as exfiltrating secret information across privilege levels.
Effective countermeasures for such attacks yet need to be explored, but could be similar
to those that are being developed for FPGA-internal voltage-based side-channel attacks.
Overall, we believe that system-wide power distribution needs to be designed and optimized
from a security perspective against possible covert or side-channel attacks.
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