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Abstract. White-box cryptography was first introduced by Chow et al.
in 2002 as a software technique for implementing cryptographic algo-
rithms in a secure way that protects secret keys in an untrusted environ-
ment. Ever since, Chow et al.’s design has been subject to the well-known
Differential Computation Analysis (DCA). To resist DCA, a natural ap-
proach that white-box designers investigated is to apply the common
side-channel countermeasures such as masking. In this paper, we sug-
gest applying the well-studied leakage detection methods to assess the
security of masked white-box implementations. Then, we extend some
well-known side-channel attacks (i.e. the bucketing computational anal-
ysis, the mutual information analysis, and the collision attack) to the
higher-order case to defeat higher-order masked white-box implemen-
tations. To illustrate the effectiveness of these attacks, we perform a
practical evaluation against a first-order masked white-box implementa-
tion. The obtained results have demonstrated the practicability of these
attacks in a real-world scenario.

Keywords: white-box cryptography, masking, higher-order computational
attacks, leakage detection, AES.

1 Introduction

White-box Implementations and Computational Attacks. In 2002, Chow
et al. introduced the first white-box implementations of AES and DES block
ciphers [5, 6]. The main idea behind was to embed the secret key in the imple-
mentation using a network of precomputed Look-Up Tables (LUTs) composed
with some linear and non-linear random encodings to protect the intermediate
states between the LUTs. The knowledge of one or all of these LUTs shall not
give any information about the embedded secret key. To implement this design,
two types of encodings shall be considered:

– Internal encodings: are non-linear bijections applied to the input and/or the
output of each LUT to hide its entries and/or its outputs. This category
encompasses the so-called mixing bijections which are linear transformation
applied to the input and output of each LUT to add more confusion to the
implementation and ensure the cryptographic diffusion property.



– External encodings: are bijective mappings applied to decode the plaintext
from the sending process and to encode the resulting ciphertext to the re-
ceiving process.

To defeat white-box implementations, Bos et al. proposed in [4] the Differ-
ential Computational Analysis (DCA). This attack is the software adaptation
of the well-known Differential Power Analysis (DPA) [10]. Specifically, the idea
of the DCA consists in monitoring the memory addresses (as well as the stack,
the CPU instructions, . . . ) accessed during the encryption process and recording
them in the so-called computation traces (aka software execution traces). Then,
a statistical analysis is performed to compute the correlation between a predic-
tion of the targeted sensitive variable (that depends on a key guess) and each
sample of the collected computation traces. The secret key corresponds to the
key guess for which the highest correlation peak is obtained.

Since the publication of the DCA, several researchers have investigated the
adaptation of either the well-studied side-channel attacks [14] or the algebraic
cryptanalysis techniques [16] to perform computational attacks in the white-box
context. For instance, authors in [14] proposed a software version of the collision
attack and the Mutual Information Analysis (MIA). The experimental results
performed on several publicly available white-box AES implementations have
shown significant improvements in terms of trace complexity compared to the
DCA. Recently, Zeyad et al. have suggested the Computational Bucketing Attack
(BCA) in [16]. This attack is inherently inspired by a cryptanalysis technique
named statistical bucketing attack. The authors have demonstrated that this
attack is very efficient to defeat some sophisticated white-box AES implemen-
tations (e.g. the WhibOx 2016 contest) with a fixed amount of traces (precisely
1024 traces to break a white-box AES implementation).

Masking and Higher-Order Computational Attacks. Obviously, the well-
studied side-channel countermeasures can be adapted and applied to protect
white-box implementations. One common countermeasure is to apply masking
which consists in sharing the intermediate variable into several mutually inde-
pendent shares. In [3], Bogdanov et al. investigated the approach of applying
higher-order masking to resist DCA attack. Furthermore, the authors intro-
duced, for the first time, the extension of the DCA to the higher-order case
and analyzed the security of the masking countermeasure against these attacks
in the context of white-box implementation.

Our Contributions. Following the investigations done in [3], we propose in
this work:

– The use of leakage detection for white-box assessment: We discuss
in Sec. 3 how the side-channel leakage detection techniques can be applied
to assess the leakage of white-box implementations. These techniques are of
great interest from an adversary’s perspective and from a security developer’s
perspective as well.



– A higher-order BCA attack: We extend in Sec. 4 the BCA attack to the
second-order. Then, we demonstrate how this attack can defeat an internally
encoded masked white-box implementation with exactly the same low trace
complexity as for the first-order version studied in [16].

– A higher-order MIA attack: We suggest in Sec. 5 two fashions of ap-
plying higher-order MIA in the context of white-box implementation. Both
approaches are compared through practical experiments in terms of key-
recovery efficiency and performance.

– A higher-order collision attack: We study in Sec. 6 the higher-order ver-
sion of collision attacks to defeat masked implementations. Then, we provide
in Sec. 7 a comparison of the efficiency of the proposed attacks.

All our analyses are validated through practical experiments on the same
first-order masked white-box AES implementation. Furthermore, we made the
computation traces collected on this reference implementation publicly avail-
able [1]. The goal is twofold: (1) to ease the reproduction of our results by the
white-box community and (2) to provide a commonly masked database (as no
such traces from a masked implementation are available so far). In addition, the
source code of some of our proposed attacks is publicly available as well.

2 Preliminaries and Study Framework

2.1 Notations and Definitions

Along this paper, we use the following notations. The bold block capitals X
denote matrices. The ith column vector of a matrix X is denoted by X[i]. The
random variables are denoted by uppercase Latin letters, like X, while the low-
ercase letter x denotes a particular realization of X. The entropy H[X] of a
random variable X aims at measuring the amount of information provided by
an observation of X.

The intersection of two sets of values A and B is denoted by A ∩ B and is
defined as A∩B = {x | x ∈ A and x ∈ B}. Two sets are disjoint if they have no
elements in common, that is, A and B are disjoint if A ∩B = ∅.

To perform his attack, the adversary targets an intermediate sensitive vari-
able which is a function of a plaintext x and a guessable secret key k∗. Then,
for each key guess k, he computes a prediction of the target sensitive variable
denoted φ(x, k) (or φ(k) for short) and measures the dependency between this
prediction and the acquired traces. For our practical experiments, we target the
Sbox output of the first round of an AES, i.e. φ(x, k) = Sbox(x⊕ k).

2.2 Assumptions

The analyses and conclusions drawn in this work are done under the three fol-
lowing assumptions:



Assumption 1 (Nibble-encoded naked white-box implementations) The
targeted white-box implementations are nibble-encoded using an internal encod-
ing. No external encoding is applied.

Remark 1. Nibble-encoding is the most common encoding size used for white-
box AES implementations. We stress the fact that Assumption 1 is mandatory
(according to [16]) for the study of the BCA described in Sec. 4. However, for the
other investigated attack techniques in this work this assumption can be relaxed
(i.e. the results can be generalized to any encoding size).

Assumption 2 (Similarity encoding) The most significant (respectively the
least significant) nibbles of the masks used to protect the sensitive variable are
encoded with exactly the same encoding function applied on the most significant
(respectively the least significant) nibbles of the masked sensitive variable.

Assumption 3 (Perfect synchronization) The targeted white-box implemen-
tations are only protected with higher-order masking. No shuffling or any random
delays is introduced to de-synchronize the acquired computation traces.

2.3 Targeted White-box Implementation

As introduced earlier, we study in this work the extension of some well-known
side-channel attacks to the higher-order case when applied on masked white-box
implementations. When a dth-order masking is applied, each sensitive variable
Z is split into d+1 shares s0, s1, . . . , sd such that s0⊕s1⊕· · ·⊕sd = Z. Usually,
the d shares s1, . . . , sd (called the masks) are randomly picked up and the last
one s0 (called the masked variable) is processed such that it satisfies the previous
equality. Under assumption 3, we only focus on higher-order masking as a unique
countermeasure applied to ensure protection.

For our experimental validation, we restrict the assessment of our proposed
higher-order attacks against first-order masked white-box AES implementations.
That is, we only evaluated the second-order versions. To do so, we implement
a first-order white-box AES implementation under the three assumptions for-
mulated in Sec. 2.2. This implementation is based on the classical Chow et al.’s
white-box design based on an internal encoding but with the major difference
that every Tbox input and output is protected with an independent random
mask. Then, we collect the computation traces using an internal tool that moni-
tors the read memory access during the execution of this first-order masked im-
plementation. Each collected value during the acquisition phase is decomposed
into several nibbles and then stored in the computation trace (Assumption 1).
The collected traces are publicly available in [1] to ease the reproducibility of our
results. This trace database will serve as a reference for evaluating our proposed
attacks in practice.

To check that this reference masked implementation is well protected against
first-order attacks (i.e. no obvious first-order leakage can be detected), we suggest
in the following section a study of the well-known leakage detection methods in
the white-box context.



3 Leakage Detection

3.1 Background

Leakage detection (aka leakage assessment) methods are commonly used in side-
channel context to perform preliminary evaluations of the resistance of the tar-
geted implementation. The Welchs t-test (aka Test Vector Leakage Assessment
(TVLA)) is a popular method that consists (in its most popular form, aka non-
specific test or fixed vs. random approach) in comparing the leakages of a cryp-
tographic implementation with fixed plaintexts to the leakages of the same im-
plementation with random plaintexts, both captured for the same fixed key [7].
Other methods exist such that the Signal-to-Noise Ratio (SNR) [11] and the
Pearson’s X 2-test [12]. The main advantages of leakage detection are its simplic-
ity, its efficiency (in time and data complexity) and its ability to be used with
minimum implementation knowledge.

To the best of our knowledge, the leakage detection methods have never been
applied in the white-box context despite their great interest from an adversary’s
perspective (i.e. to detect the leakiest time samples and hence to reduce the
dimensionality of processed traces) and from a security developer’s perspective
(to detect vulnerabilities and hence to add the appropriate countermeasures).
In this section, we emphasize the use of the leakage detection methods as a
primordial step in the evaluation roadmap of a white-box implementation.

3.2 Simulation Results

For our simulation, we mainly focus on two leakage detection methods. Namely,
we implement the Welchs t-test and the Pearson’s X 2-test. Then, we generate
1.000 simulated traces for the first-round SubBytes step of a first-order masked
and an unprotected nibble-encoded white-box AES implementation1. That is, we
obtain 500 simulated traces with a fixed plaintext and 500 simulated traces with
random plaintexts on which we run the t-test and the Pearson’s X 2-test. The
obtained results are plotted in Fig. 1 where the red horizontal curves represent
the threshold above which the implementation is leaking information on the
sensitive data.

As expected, when the implementation is masked, no first-order leakage was
detected2. It is worth noting that higher-order versions of t-test and Pearson’s
X 2-test exist [12, 15] and allow to detect higher-order leakage (e.g. to detect the
second-order leakage of a masked implementation). These extended versions of
leakage detection methods are not studied in this work for lack of room.

1 The used scripts to generate the simulated traces are available in [1].
2 For the X 2-test, the obtained −log10(p) values for the unprotected implementation

are equal to the infinity (since the simulated computation traces are unnoisy). For
clarity reasons, we fixed the −log10(p) at 50 for this particular case.



(a) T-test result. (b) T-test result.

(c) X 2-test result. (d) X 2-test result.

Fig. 1: Results of the fixed-vs-random t-test and X 2-test on the simulated traces:
unprotected (left-hand side) and masked (right-hand side).

3.3 Experimental Results

To validate the efficiency of the leakage detection methods in a real-world sce-
nario. We target two white-box implementations. The first one is Chow’s white-
box AES implementation. The second one is our reference masked AES imple-
mentation described in Sec. 2.3. The used traces for this assessment are publicly
available in [1]. The obtained are results are depicted in Fig. 2.

From Fig. 2, it is noticeable that the unprotected white-box leaks informa-
tion on the sensitive data which is easily detected by both tests. Regarding our
masked implementation, one can identify some leakage (for the t-test and the
X 2-test) at the very beginning of the AES execution. In fact, this leakage corre-
sponds to the loading of the plaintexts. To confirm this claim, we run a first-DCA
and a first-order BCA when targeting the area where this leakage is detected
and both attacks fail to recover the used AES key. For the remaining area, one
can conclude that no first-order leakage can be identified for the masked AES
implementation.



(a) T-test result. (b) T-test result.

(c) X 2-test. (d) X 2-test result.

Fig. 2: Results of the fixed-vs-random t-test and X 2-test on white-box AES im-
plementations: unprotected (left-hand side) and masked (right-hand side).

4 Bucketing Computational Attack

4.1 Background

In [16], Zeyad et al. introduced a new computational attack called Bucketing
Computational Analysis (BCA) to defeat unprotected white-box implementa-
tion. The core idea of BCA is that if two sensitive intermediate variables for two
different plaintexts do not collide, then their encodings (using a deterministic
bijection) should not collide as well. We recall in Algorithm 1 the pseudo-code
describing the different steps of the BCA attack when applied on white-box AES
implementations [16].

The BCA attack consists of 3 phases. During the pre-computation phase, for
each key guess k, the attacker split the 256 plaintexts x (each corresponds to
a different Sbox input) into two sets (I0,k and I1,k) according to the resulting
bucketing nibble d = S′(x⊕k) = S(x⊕k)&0xF; i.e. x in I0,k (respectively in I1,k)
if d = d0 (respectively if d = d1). Regarding the choice of the values d0 and d1,
the authors in [16] emphasized the use of d0 = 0 and d1 = 0xF. In the sequel, we
will use these two values as recommended. Then, during the acquisition phase,



Algorithm 1 BCA on white-box AES implementations.

Inputs: a targeted AES Sbox S of the first round and its corresponding S′ (s.t. ∀x ∈
GF (28), S′(x) = S(x)&0xF)

Output: good guess of the sub-key
∗ ∗ ∗ Pre-computation phase ∗ ∗ ∗

1: Compute a set I of 256 plaintexts each corresponding to a different input of S
2: Pick two values d0 and d1 such that: 0 ≤ d0 < d1 ≤ 15
3: for each key guess k ∈ [0, 255] do
4: Split the plaintexts into two sets I0,k and I1,k w.r.t to the nibble d of S′

5: end for
∗ ∗ ∗ Acquisition phase ∗ ∗ ∗

6: Acquire a set of 256 traces T = (ti,j)0≤i≤255
0≤j≤n

∗ ∗ ∗ Key-recovery phase ∗ ∗ ∗
7: Initialize a result vector R with 256 zeros
8: for each key guess k ∈ [0, 255] do
9: Group the traces into V0 and V1 w.r.t. to the sorted plaintexts in I0,k and I1,k

10: for each sample j in the trace do
11: if V0[j] ∩V1[j] = ∅ then : R[k] = R[k] + 1
12: end if
13: end for
14: end for
15: The good sub-key guess corresponds to k ∈ [0, 255] that maximizes R[k]

the attacker acquires 256 computation traces. Finally, the key recovery phase
consists in sorting the computation traces into two buckets denoted V0 and
V1 depending on the bucketing nibble d (whose value depend on a key guess).
Then, it counts the number of disjoint columns in V0 and V1. The good key
value corresponds to the key guess for which the number of disjoint columns is
maximal.

Throughout several experiments, the authors have demonstrated that this
attack is an efficient alternative to the DCA. Indeed, the required amount of
traces to recover 4 bytes of the key is fixed (256 traces for a white-box AES
implementation). However, as stated by the authors in [16], when masking is
properly applied as a countermeasure, then the BCA attack fails to recover the
key. Our goal is to extend the BCA to the second-order case to defeat masked
white-box implementations. We keep the study of the generalization of BCA to
an order greater than two as a future work.

4.2 Extension to the Higher-Order Case

Let’s consider a first-order masked white-box AES implementation for which
c computation traces of n samples each were acquired T = (ti,j)0≤i≤c

0≤j≤n
. Then,

according to Sec. 4 of [3] and under Assumption 3 there exists a fixed couple
(j∗1 , j

∗
2 ) such that (ti,j∗1 , ti,j∗2 ) are the shares (i.e. the mask and the masked value)



of the target secret variable S(xi⊕k∗) for any i in [0, c]. To check if the BCA can
be extended to the second-order case, the arising question is whether (V0[j∗1 ]⊕
V0[j∗2 ]) and (V1[j∗1 ]⊕V1[j∗2 ]) are disjoint sets only for the correct key guess k∗?

To answer this question, let’s consider a couple of plaintexts (x0, x1) such
that x0 ∈ I0,k∗ and x1 ∈ I1,k∗ , B a 4-bit encoding function, and m0 and m1 the
masks used during the encryption of x0 and x1 respectively. Then, on one hand,
we have x0 ∈ I0,k∗ implies (under Assumption 2) that:

V0[x0][j∗1 ]⊕V0[x0][j∗2 ] = B
(
m0&0xF

)
⊕B

(
(S(x0 ⊕ k∗)⊕m0)&0xF

)
= B

(
m0&0xF

)
⊕B

(
(S(x0 ⊕ k∗)&0xF︸ ︷︷ ︸

=0

)⊕ (m0&0xF)
)

= B
(
m0&0xF

)
⊕B

(
m0&0xF

)
= 0 . (1)

On the other hand, x1 ∈ I1,k∗ implies that:

V1[x1][j∗1 ]⊕V1[x1][j∗2 ] = B
(
m1&0xF

)
⊕B

(
(S(x1 ⊕ k∗)⊕m1)&0xF

)
= B

(
m1&0xF

)
⊕B

(
(S(x1 ⊕ k∗)&0xF︸ ︷︷ ︸

=0xF

)⊕ (m1&0xF)
)

= B
(
m1&0xF

)
⊕B

(
0xF⊕ (m1&0xF)

)
= B

(
m1&0xF

)
⊕B

(
m1&0xF

)
. (2)

Since B is bijective then V1[x1][j∗1 ] ⊕V1[x1][j∗2 ] is non-null. Consequently,
Eq. (1) and Eq. (2) prove that the sets (V0[j∗1 ]⊕V0[j∗2 ]) and (V1[j∗1 ]⊕V1[j∗2 ])
are disjoint for the good key guess. For a wrong key guess k, it is obvious that
these sets have common values. Indeed, for any x0 ∈ I0,k (respectively x1 ∈ I1,k)
such that k 6= k∗, S(x0 ⊕ k∗) (respectively S(x1 ⊕ k∗)) is a random value. Now,
as the intersection between two sets containing random values is non-null (for
some cardinality), then the sets (V0[j∗1 ]⊕V0[j∗2 ]) and (V1[j∗1 ]⊕V1[j∗2 ]) are only
disjoint for the good key guess k∗ which prove the soundness of our proposal. It
is worth noting that the same soundness proof can be generalized to handle any
value of the bucketing nibble pair (d0, d1).

So, the core idea of the second-order BCA is to search for two time samples
(j∗1 , j

∗
2 ) in the traces such that (V0[j∗1 ] ⊕ V0[j∗2 ]) and (V1[j∗1 ] ⊕ V1[j∗2 ]) are

disjoints. To further discard the false positives, we emphases the use of the two
following additional criteria that should be only fulfilled for the good key guess:
(1) the set (V0[j∗1 ] ⊕V0[j∗2 ]) is null and (2) the set (V1[j∗1 ] ⊕V1[j∗2 ]) contains
non-constant values (as the mask m1 in Eq. (2) should be different from one
encryption to another).

The complexity of the second-order BCA attack (as for any higher-order
attack investigated in this work) highly depends on the size of the targeted area



of interest to detect the leakages of the mask and the masked variable. To reduce
this complexity, we recommend filtering the computation traces (i.e. removing
the common constant values) as suggested in [16] and applying the different
hints proposed in [9] to reduce the dimensionnality of the traces.

Finally, we suggest an improvement for the first-order BCA reported in [16]
to avoid the appearance of some false positive in some practical white-box eval-
uations. The idea is that, for each disjoint columns in V0 and V1, the attacker
has to check if V0 and V1 are constant sets. Indeed, following the reasoning in
Eq. (1) and Eq. (2), V0 and V1 should contain respectively B(0) and B(0xF)
for the good key guess.

4.3 Experimental Results

To check the effectiveness of the extended BCA in a real-world scenario, we
develop the second-order BCA. The source code of our implementation is publicly
available in [1]. Then, we run the attack on the acquired traces of our masked
white-box AES implementation described in Sec. 2.3. The obtained results are
shown in Fig. 3.

Fig. 3: Second-order BCA results when targeting the 16 AES Sboxes.

The results demonstrate that the 16 bytes of the AES key were recovered. It
is worth noting that thanks to the new criteria suggested in this work, no false
positives were detected for the false key guesses (i.e. R[k] remains equal to zero
when k is different from k∗).

5 Mutual Information Attack

5.1 Background

In 2008, Gierlichs et al. have proposed a new side-channel distinguisher called
Mutual Information Analysis (MIA) [8]. It is an attractive alternative to the
Correlation Power Analysis as it exploits any kind of dependency (linear or
non-linear) between the leakage measurements and the predicted data. The
MIA has been largely studied and tested on several implementations [2, 8, 13].



The core idea consists in estimating the mutual information between the leak-
age measurements L and the predictions φ(k) for every key guess k, that is:
∆MIA(k) = H[L] − H[L|φ(k)]. The correct guess of the key k∗ corresponds to
the key for which ∆MIA(k) is maximum. Since H[L] does not depend on the key
guesses, then the adversary can equivalently look for the key that minimizes the
conditional entropy H[L|φ(k)]. The major practical issue of mutual information
is the estimation of the statistical distribution of the leakages. Several methods
have been proposed in the literature: histograms, kernel density function, para-
metric estimation [13]. We discuss in Sec. 5.2 how we dealt with this problematic
to conduct our practical attacks.

To the best of our knowledge, the first report on the use of MIA in the context
of white-box evaluation was provided by Rivain et al. in [14]. Indeed, the authors
have assessed the publicly available white-box AES implementation NoSuchCon
2013) against an improved version of the MIA. The obtained results have proven
that this attack is efficient to break internally-encoded implementation with only
few traces (60 traces) compared to the DCA (4000 traces). This is expected as the
dependency between the leakage and the predictions in the white-box context is
non-linear (due to the usage of the internal-encoding to hide the implementation
intermediate values). In the following section, our goal is to extend the MIA to
higher-order context to target masked white-box implementations.

5.2 Extension to the Higher-Order Case

In 2009, Prouff et al. have proposed in [13] a generalization of the MIA to higher-
orders. Let’s consider a dth-order masked implementation and assume that the
adversary knows exactly the manipulation times of the used masks and masked
data. Hence, he is able to recover the corresponding (d + 1)-tuples of leakages
L = (L0, L1, . . . , Ld). Then, the higher-order MIA consists in finding the key
guess that minimizes the conditional entropy H[L|φ(k)]. It is noticeable that the
probability density function (pdf) of the variable L|φ(k) is often assumed to be
a multivariate Gaussian mixture whose entropy can be estimated as for the first-
order case using histograms, kernel density function or parametric estimation.

To efficiently apply the higher-order MIA [13] in the context of masked white-
box implementation, we focus on the two following practical challenges:

The choice of the pdf estimation method. In side-channel context, the
estimation of the mutual information is a major practical issue as it involves
some complex pdf estimation methods. It is worth noting that the results of
these methods have a strong impact on the efficiency of the MIA [2]. In white-
box context, the computation traces contains non-noisy values. Hence, the es-
timated pdfs are discrete which makes the practical evaluation simpler (as also
argued in [14]). In such context, the histogram estimation seems to be the easier
(natural) method to consider. That said, the optimal choice of the bin width
is also an issue in statistical theory. For simple distribution, reasonable choices
of the bin width are the Scott rule and the Freedman-Diaconis rule. However,
under Assumption 1, the computation traces contain values in the range [0, 15].



Thus, the natural choice of the number of bins we consider is 16 (i.e. bin width
equals to 1)3.

The choice of the leakage combination function. To apply a dth-order
MIA in the white-box context, one can apply directly the side-channel approach
described in [13]. That is, the adversary has to consider d-tuples of leakages and
look for the key guess that minimizes the conditional entropy of the multivari-
ate pdf (L|φ(k)). Another approach, that we investigate in this work, consists
in combining the d-tuples of leakages by applying the XOR function. Said dif-
ferently, the idea is to minimize the conditional entropy of the uni-variate pdf

(
i=d⊕
i=0

Li|φ(k)). Indeed, under Assumption 3, the computation traces (and hence

the leakages Li) contains the exact value of the manipulated variable. Thus,
by applying the XOR combination, the adversary converts the leakages from
multivariate to uni-variate context where the pdf estimation is much easier. In
the following section, we compare both approaches when targeting our reference
masked white-box AES implementation.

5.3 Experimental Results

We implement two versions of a second-order MIA: the first one is based on
an estimation of a bi-variate pdf and the second one is based on the XOR
combination of the leakages and then an estimation of the resulting uni-variate
pdf. The pdf estimation is based on the histogram method with a fixed number
of bins (16) as discussed previously. Then, we target our masked white-box
implementation when using 150 computation traces.

The obtained results have proven that both attack versions have succeeded
to recover the complete AES key. In the meantime, and as expected, the XOR
combination based second-order MIA is two times faster than the multivariate
one. We provide the source code of our second-order MIA in [1].

6 Collision Attack

6.1 Background

Recently, Rivain et al. have proposed a collision attack to defeat internally-
encoded white-box implementations [14]. The proposed attack is inspired by the
DCA. The major difference is that the collision attack is based on the process-
ing of a pair of plaintexts (instead of one plaintext as for DCA) to build the
prediction vector and the corresponding Collision Computation Traces (CCT).
That is, for each key guess k and each pair of inputs (x1, x2), the adversary com-
putes the Pearson correlation coefficient ρ(δL(x1)L(x2), δφ(x1,k)φ(x2,k)) where δxy
is the “vector adaptation” of the well-known Kronecker delta function and L(x)
is the computation trace collected while processing the input x. The secret key
corresponds to the key guess for which the highest correlation peak is obtained.

3 Commonly, the number of bins should be equal to 2(encoding size).



So, the core idea of this DCA-like collision attack is that if some sensitive
variable collides for a pair of inputs, so does the corresponding encoded variable
in the computation (as the encoding functions are bijective). One improvement
of this attack we suggest from a performance perspective and which we validate
through simulation and practical experiments is to consider the equality distin-
guisher instead of computing the correlation. Indeed, the adversary can count,
for each key guess, the number of times the prediction vector δφ(x1,k)φ(x2,k) and
the vector of the targeted samples in the CCT δL(x1)L(x2) are equal. This equality
counter is maximum for the good key guess.

The authors in [14] have successfully applied this attack on some publicly
available white-box implementations and have demonstrated that the trace com-
plexity is quite low compared to DCA. In the following section, we study the
extension of this DCA-like collision attack to target higher-order masked white-
box implementations.

6.2 Extension to the Higher-Order Case

Let’s assume that an adversary recovers the d-tuples of leakages (L1, . . . , Ld)
from a (d − 1)th-order masked white-box implementation. Then, to apply the
dth-order collision attack, he has to compute for each key guess and each pair of
inputs (x1, x2) the following distinguisher:

ρ(

d⊕
i=1

Li(x1)⊕
d⊕
i=1

Li(x2), δφ(x1,k)φ(x2,k)) . (3)

The soundness of our proposed dth-order collision attack is inherently based
on the soundness of the dth-order DCA attack under Assumption 3. In fact,

the dth-order DCA is defined as ρ(
d⊕
i=1

Li(x), φ(x, k)) for every input x. When

considering any pair of inputs (x1, x2), the dth-order DCA rewrites ρ(
d⊕
i=1

Li(x1)⊕
d⊕
i=1

Li(x2), φ(x1, k) ⊕ φ(x2, k)). Now, since we are focusing on the study of the

collision during the processing of two different inputs x1 and x2, the relevant
values of the prediction vector are when φ(x1, k) ⊕ φ(x2, k) = 0. Thus, one
can transform the prediction vector from φ(x1, k)⊕ φ(x2, k) to δφ(x1,k)φ(x2,k) to
obtain the distinguisher described in Eq. (3). Said differently, the correlation is
only computed for the pair of plaintexts for which a collision occurs for a key
guess k (i.e. φ(x1, k) = φ(x2, k)).

6.3 Experimental Results

We validate first the soundness of the extended collision attack through simula-
tion and we provide the source code of its second-order version along with the
used simulated traces in [1]. Then, we run the attack on the computation traces



collected from our reference masked white-box implementation. The obtained
results have demonstrated the practicability of the attack. Indeed, we succeed
to recover the AES key using 500 computation traces.

7 Attack Comparison

We provide in Tab. 1 a comparison of the results obtained for the studied attacks
in this work. For the sake of comparison, we perform as well the second-order
DCA attack as described in [3]. For a fair comparison, we target the same areas
of interest to search for the leaking points of the mask and the masked sensitive
variable. All the attacks are executed on a Linux machine with an Intel Core i7
processor at 3.60GHz and 16 GB of RAM.

DCA BCA MIA (XOR) MIA (multivariate) Collision

Execution time (s) 4.28 5.67 15.58 34.11 70.15

Number of traces 310 256 150 150 500

Table 1: Comparison of the studied second-order attacks when targeting a
masked white-box implementation.

The most efficient attack in terms of traces complexity is the MIA. This
is expected due to its ability to capture the non-linear dependency between the
leakage and the predictions. In terms of performance, the MIA based on the XOR
combination is faster than the multivariate version. This could be explained, as
already discussed in Sec. 5, by the fact that the estimation of the conditional
entropy of multivariate random variables is more time-consuming compared to
the univariate case. The second-order BCA offers the best trade-off between the
execution time and trace complexity and hence it is a good alternative to the
second-order MIA attack. Finally, when masking is involved then the DCA is
better than the collision attack. Indeed, the collision attack (w.r.t. to Eq. (3))
can be seen as a particular case of the DCA attack where the correlation is only
computed when a collision is detected. However, the collision attack remains a
good candidate to consider in an unmasked context as demonstrated in [14].

8 Conclusion

In this work, we considered the evaluation of higher-order masked white-box
implementations. In particular, we proposed first to apply the well-known leakage
detection methods to help a security evaluator to assess the security level of the
targeted implementation. Then, to exploit a detected higher-order leakage, if
any, we extended some well-known computational attacks to the higher-order
context. The practical evaluation of these attacks had shown their efficiency to
defeat masked white-box implementations.

As a future work, we intend to study these higher-order computational at-
tacks when relaxing the assumptions formulated in Sec. 2.2. Namely, we plan to
evaluate some internally-encoded and masked white-box implementation com-
bined with shuffling countermeasure and such that the encoding functions ap-
plied on the masks and the masked variable are different.
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