
Proceedings on Privacy Enhancing Technologies 2019

Sebastian Lauer*, Kai Gellert*, Robert Merget, Tobias Handirk, and Jörg Schwenk

T0RTT: Non-Interactive Immediate Forward-
Secret Single-Pass Circuit Construction
Abstract: Maintaining privacy on the Internet with the
presence of powerful adversaries such as nation-state at-
tackers is a challenging topic, and the Tor project is cur-
rently the most important tool to protect against this
threat. The circuit construction protocol (CCP) negoti-
ates cryptographic keys for Tor circuits, which overlay
TCP/IP by routing Tor cells over n onion routers. The
current circuit construction protocol provides strong se-
curity guarantees such as forward secrecy by exchanging
O(n2) messages.
For several years it has been an open question if the
same strong security guarantees could be achieved with
less message overhead, which is desirable because of the
inherent latency in overlay networks. Several publica-
tions described CCPs which require only O(n) message
exchanges, but significantly reduce the security of the
resulting Tor circuit. It was even conjectured that it
is impossible to achieve both message complexity O(n)
and forward secrecy immediately after circuit construc-
tion (so-called immediate forward secrecy).
Inspired by the latest advancements in zero round-trip
time key exchange (0-RTT), we present a new CCP
protocol Tor 0-RTT (T0RTT). Using modern crypto-
graphic primitives such as puncturable encryption allow
to achieve immediate forward secrecy using only O(n)
messages. We implemented these new primitives to give
a first indication of possible problems and how to over-
come them in order to build practical CCPs with O(n)
messages and immediate forward secrecy in the future.

Keywords: Tor, onion routing, circuit construction, nTor
handshake, 0-RTT, puncturable encryption

*Corresponding Author: Sebastian Lauer:
Ruhr University Bochum, Bochum, Germany, E-mail:
sebastian.lauer@rub.de
*Corresponding Author: Kai Gellert: Bergische
Universität Wuppertal, Wuppertal, Germany, E-mail:
kai.gellert@uni-wuppertal.de
Robert Merget, Jörg Schwenk: Ruhr University
Bochum, Bochum, Germany, E-mail: {robert.merget,
joerg.schwenk}@rub.de
Tobias Handirk: Paderborn University, Paderborn, Ger-
many, E-mail: thandirk@mail.uni-paderborn.de

1 Introduction
Providing the ability to browse the web anonymously is
important to guarantee freedom-of-speech and freedom-
of-information in authoritarian states, and to protect
civil rights activists all over the world. Maintaining this
ability has become more and more challenging in the
last years, with more and more nation-state adversaries
establishing Internet surveillance programs to monitor
their citizens.

Onion Circuit Construction. To protect against
such surveillance, overlay networks based on the concept
of onion routing can be used. In onion routing networks,
the onion proxy (OP) wraps each message with multiple
layers of encryption. Then, the message is transported
through a path of nodes, called onion routers (OR),
in an overlay network where each node decrypts one
layer and sends the decrypted message to the next node
until it reaches its destination. To encrypt a message
in such a way, the onion proxy must negotiate crypto-
graphic keys with each of the onion routers on the se-
lected overlay path. Establishing those keys is the task
of the (onion) circuit construction protocol (CCP), an
n+1 party protocol performed between the onion proxy
and the n onion routers.

In early versions of onion routing protocols, RSA en-
cryption [46] was used in the circuit construction. This
allowed for single-pass circuit construction by simply en-
crypting the symmetric key to be used with the current
OR, and the cell to be forwarded to the next OR, with
the public RSA key of the current OR. Single-pass cir-
cuit construction has message complexity O(n) and is
therefore very efficient, but came at a large cost in se-
curity: If the secret key of an onion router was compro-
mised, all data relayed to that OR could be decrypted.

Eventual vs. Immediate Forward Secrecy. To en-
sure that protected information of closed sessions or
circuits stays secure even if an attacker compromises
the long-term secret of an onion router, modern pro-
tocols aim to provide the property of forward secrecy
(FS) [31]. In 2007, the concept of FS in onion rout-
ing protocols was introduced and it distinguishes be-
tween two cases, eventual forward secrecy and immediate

T0RTT: Non-Interactive Immediate Forward-Secret Single-Pass Circuit Construction 2

forward secrecy [41]. If a circuit construction protocol
achieves FS a certain time period after the circuit has
been closed by replacing the long-term keys of a router,
then the protocol achieves eventual FS. If FS is achieved
immediately after the circuit is closed, then the protocol
provides immediate FS.

Currently the nTor protocol [26] is used for circuit
construction, where each of the three nTor instances
used in one circuit construction implements a variant
of an authenticated Diffie–Hellman key exchange. This
CCP achieves immediate FS, but has message complex-
ity O(n2).

In this paper, we apply novel results in zero round-
trip time key exchange (0-RTT) to construct a single-
pass circuit construction protocol with immediate for-
ward secrecy. 0-RTT protocols allow a sender to trans-
mit cryptographically protected data within the first
message, without prior exchange of key establishment
messages [33]. We show that our approach offers many
advantages compared to other single-pass circuit con-
structions. Additionally, we investigate the feasibility of
our construction against the currently most important
onion routing network, the Tor protocol [22].

Achieving Immediate FS with Puncturable En-
cryption. For our construction, we use a novel crypto-
graphic primitive called puncturable encryption [17, 18,
29, 32]. This primitive is an advanced variant of pub-
lic key encryption (PKE) schemes comparable to RSA
[46]. Like RSA, a puncturable encryption scheme has a
key pair (pk, sk) with a public key pk and a secret key
sk. The public key is static and publicly known. The
secret key, however, alters with every decryption. If sk
was used to decrypt ciphertext c∗, it is subjected to a
transformation Punct which transforms it into a new
secret key sk′: sk′ ← Punct(sk, c∗). This modified se-
cret key can be used to decrypt all ciphertexts c created
with the help of pk, except for ciphertext c∗. Repeatedly
“puncturing” the secret key allows to stepwise revoke
decryption capabilities of the secret key. This primitive
was introduced in [29], and can be implemented using
bilinear pairings.

In our construction, we use an efficient variant called
puncturable key encapsulation mechanism [17, 18]. A key
encapsulation mechanism (KEM) is a generalization of
the concept of PKE, inspired by the ElGamal scheme
[24]. In an ElGamal scheme, the sender of a message
does not choose a symmetric key to encrypt it with the
public key of the receiver, but the symmetric key is the
result of a computation on a randomly chosen value and
the sender’s public key. By using this generalization in

nTor

OP OR1 OR2 OR3

DH1

DH2

DH3

(a)

T0RTT

OP OR1 OR2 OR3

c1,EncK1(c2,EncK2(c3))

c2,EncK2(c3)

c3

EncK3(∇)

EncK2(EncK3(∇))

EncK1(EncK2(EncK3(∇)))

(b)

Fig. 1. Simplified comparison of message patterns in nTor (a)
and an abstraction of T0RTT (b), a single-pass circuit construc-
tion protocol. In order to achieve FS in (a) we have to perform
three ephemeral DHKE, the second and third exchange being re-
layed over one and two onion proxies, respectively. In T0RTT, ci

contains all necessary information to exchange a forward-secret
symmetric key.

our construction, we keep it generic and open for future
performance improvements in puncturable KEMs.

Typically, immediate FS in key exchange protocols
is achieved by performing an ephemeral Diffie–Hellman
Key Exchange (DHKE) [20], e.g. in TLS-DHE, IPSec
IKE, or in the Tor nTor-Protocol. However, this comes
at the cost of a two-message handshake before the first
message can be encrypted.

Intuitively, immediate FS can be achieved with
puncturable encryption (or puncturable KEMs) if the
Punct operation is performed on the secret key immedi-
ately after the decryption of c, but before the completion
of the handshake. If this is the case, then an adversary
will only learn sk′, and with this modified secret key it
will not be able to decrypt the intercepted ciphertext c,
due to the properties of puncturable encryption.

Our Contribution. Single-pass circuit construction
has a message complexity of O(n), whereas all currently
deployed immediate FS circuit construction schemes
have a message complexity of O(n2) (cf. Figure 1 (a)).
Due to significant delay and latency inherent to message
transmission on complex overlay networks such as Tor,
it is desirable to reduce this message complexity.

T0RTT: Non-Interactive Immediate Forward-Secret Single-Pass Circuit Construction 3

The general assumption in prior work on single-
pass circuit construction was that it is impossible to
achieve immediate FS in a single-pass circuit construc-
tion [13, 14, 37]. This is indeed true if the onion routers’
secret keys are static. Boyd and Gellert [10] give a more
comprehensive discussion on forward secrecy in the con-
text of single-pass protocols. In this work, we apply the
results work of Günther et al. [32] to circuit construction
protocols and disprove this assumption by proposing a
new non-interactive single-pass circuit construction pro-
tocol that utilizes non-static secret keys and achieves
immediate FS based on puncturable KEMs (cf. Figure
1 (b)). Our results can be summarized as follows:
– We present a generic construction for a single-pass

circuit construction protocol, T0RTT, which can be
instantiated with any IND-CCA-secure puncturable
KEM. This protocol is the proposal of a multi-hop
0-RTT protocol.

– Our generic construction is the first to achieve im-
mediate forward secrecy immediately after the cir-
cuit construction if an onion router updates its se-
cret key non-interactively.

– We provide a refined version of the security model
of Kate et al. [36], which includes definitions from
Camenisch and Lysyanskaya [11]. To simulate large-
scale adversaries we consider a network in which
all but one routers are corrupted by an attacker.
Additionally, the peculiarities of immediate forward
secrecy are captured by the security model.

– We prove the security of T0RTT even if a non-
negligible amount of errors occur during the cir-
cuit construction that leads to a termination of the
circuit by introducing the novel concept of dummy
onions.

– To examine the feasibility of our constructions in
the Tor network, we implemented the latest punc-
turable KEM presented in the work of Derler et
al. in [17, 18] to derive results on the compu-
tational overhead introduced through puncturable
KEMs. We thus compare the performance of our
constructions with the current Tor CCP implemen-
tation, and with other single-pass circuit construc-
tions from the literature [13, 14, 36, 37].

Related Work on Puncturable Encryption and
0-RTT Protocols. Since puncturable encryption has
been formally introduced by Green and Miers [29], sev-
eral new construction have been proposed [17–19, 32].
So far, puncturable encryption has shaped many results
in the area of 0-RTT protocols, where encrypted payload

data is send non-interactively along with key material
for key establishment.

One of the most prominent results is the work by
Günther et al. [32]. They showed that non-interactive
forward secrecy in 0-RTT protocols can be achieved us-
ing puncturable KEMs. This idea has since then been
generalized to achieve forward secrecy in non-interactive
protocols, such as email communication [49].

Aviram et al. [4] have developed a technique to over-
come the lack of forward secrecy in protocols where ses-
sion partners already share a symmetric secret, such
as session resumption protocols (e.g., TLS 1.3 in the
0-RTT mode), while utilizing a symmetric variant of
puncturable encryption called puncturable pseudoran-
dom functions. Since they require preshared secrets be-
tween sender and recipients, their techniques are not
applicable to our work.

2 Onion Routing
The preservation of privacy for users in the presence
of powerful adversaries is a challenging topic, espe-
cially when the well-being of users might be at stake.
To achieve this goal, Tor [22] was created. Tor is a
circuit-based low-latency protocol for anonymous com-
munication which tries to protect its users’ privacy from
non-global adversaries. In the Tor network, packets are
routed through multiple servers which apply multiple
layers of encryption to the actual data. This interleaved
encrypted data is called an onion, whereas the whole
process is called onion routing.

Despite many other constructions [25, 45], the most
famous onion routing scheme is Tor. The foundations of
the Tor network were laid by the work of Goldschlag,
Reed, and Syverson in which they describe the basics
and analyze the security of onion routing [27, 28, 44, 47].
The idea of onion routing was based on the ideas of
anonymous communication presented by David Chaum
in 1981 [15].

A route usually consists of three servers and is called
a circuit. Servers within a circuit are called onion routers
(OR), while the last server is oftentimes also called exit
router. ORs are connected to each other via TLS and re-
lay traffic through the network. Each router can be iden-
tified by an identity key and additionally, each router
holds a short-term onion key. All information that is
necessary to connect to an OR is stored in a descriptor
file on a publicly available directory server.

T0RTT: Non-Interactive Immediate Forward-Secret Single-Pass Circuit Construction 4

A user can connect to the network by running an
onion proxy (OP). An OP builds circuits in the network
by choosing a path of nodes and exchanging symmet-
ric keys with each node on the path. Application data
is then sent over the path in so-called cells which are
wrapped in multiple layers of encryption.

A command embedded within each cell instructs the
receiver how to handle the contents of the cell. If an
OP wants to send data to a server outside of the Tor
network, it creates a relay cell which contains the ap-
plication data encrypted with the symmetric keys that
were exchanged during the circuit construction. Each
OR then decrypts the payload of the relay cell with its
key and forwards it accordingly.

Once the cell reaches the exit router the payload
is forwarded to the target server. The answer from the
target server is then encrypted and forwarded by each
OR accordingly until it reaches the OP. The OP then
decrypts the received cell with each of the respective
symmetric keys. Along the path, each node only knows
its predecessor and successor and for this reason, the
user stays anonymous to all other nodes except the first
node on the path. In this work, we focus on the process
of circuit construction which is explained in more detail
in the following section.

2.1 Single-Pass Circuit Construction

The first work on onion routing in 1996 [28] describes
the circuit construction as follows. The client sends one
onion message to the first node on the path in which
each layer contains a symmetric key and the identifier
for the next node on the path. All layers of this message
are encrypted using the public keys of the respective
nodes. The method to construct a circuit with only one
message sent by the client, which is then passed through
a path of nodes is called single-pass circuit construction.
The biggest advantage of this construction is that the
required number of messages to build a circuit is only
O(n).

Unfortunately, the original circuit construction does
not provide FS. If an attacker learns all secret keys of
the nodes on the path, then the attacker is able to de-
crypt past communications as long as the secret key is
not replaced by a new key. The current circuit construc-
tion handshakes used in Tor (TAP and nTor) provide
immediate FS, but require O(n2) messages to build a
circuit of length n. To reduce this overhead of messages
required for the circuit construction many works have
been published in the last years.

Kate et al. propose a handshake in an identity-based
infrastructure setting [36, 37] which achieves single-pass
circuit construction and FS. Their paring-based onion
routing (PB-OR) protocol uses identity-based encryp-
tion schemes, whereby the router’s identity can be used
as the public key. The main disadvantage of their pro-
posal is the requirement of a trusted third party (TTP).
The Key Generation Center (KGC), used in their set-
ting, provides secret keys for the onion routers which
are replaced after a certain time period. Corrupting the
KGC means that an attacker corrupts the whole net-
work. The authors present different solutions for this,
but interaction between router and KGC is still needed
to replace the current secret key after a certain time
period. Hence, their protocol only achieves eventual FS.

In [14] the authors published a single-pass circuit
construction scheme based on certificateless encryption.
Their certificateless onion routing (CL-OR) uses a mix
between public key encryption and identity-based en-
cryption to achieve FS. In the certificateless setting the
routers additionally hold a secret and public key pair
which does not need to be certified. The property of
eventual forward secrecy is achieved after a router re-
places this pair of keys, which leads to interaction with
the users.

In 2011, Catalano et al. presented a fully non-
interactive single-pass circuit construction protocol
with eventual forward secrecy based on forward-secret
identity-based encryption [13]. Their single-pass circuit
construction scheme provides efficient performance com-
bined with static public keys. As in the works before,
they only achieve eventual forward secrecy.

In the following section, we present the first non-
interactive single-pass circuit construction with imme-
diate FS without using a trusted third party.

Other Approaches. Besides the above mentioned
single-pass circuit construction protocols there exist
other approaches to improve the efficiency of the cir-
cuit construction in onion networks. More efficient pro-
tocols based on the TAP handshake combined with half-
certified DHKE were presented in [41]. Unfortunately,
in 2012 Goldberg et al. presented a work in which they
show that a man-in-the-middle attack is possible against
the new protocols [26]. Based on the ideas of Øverlier
and Syverson, Goldberg et al. presented a new proto-
col which is known as the nTor protocol. In their work
they have additionally shown that nTor is a secure one-
way authenticated key exchange protocol. In the same
year Backes et al. proposed ACE, an efficient protocol
which reduces the computational cost of the nTor pro-

T0RTT: Non-Interactive Immediate Forward-Secret Single-Pass Circuit Construction 5

tocol at the expense of communication cost [5]. Just
like nTor, the proposed protocol uses a telescoping ap-
proach for the circuit construction. Using the efficient
message format Sphinx, Kate et al. are able to compress
the messages needed in the single-pass constructions in
[13, 36, 37]. However, their approach comes with higher
computational costs for onion routers. Surveys on per-
formance and security improvements for the Tor net-
work are given in [2, 23].

3 Forward-Secret Single-Pass
Circuit Construction

In this section we introduce the notion of forward-secret
single-pass circuit construction (FSSPCC) and the secu-
rity model for FSSPCC which we will use in this work
to prove the security of our generic construction. For
this we assume a network in which different ORs are
located. Each OR is associated with a unique identifier
IDOR and has a secret and public key. Each onion proxy
that wants to build a circuit in this network has access
to the respective public keys of the ORs.

Optimal Circuit Length. Many academic results on
circuit construction have considered circuits of length n
[13, 14, 36, 37], while in practice only a length of n = 3
is deployed. This is mainly due to efficiency reasons and
the fact that it is not known whether a circuit length of
n > 3 does indeed increase security [43]. Even if greater
path lengths would be allowed, it might pose a threat
against anonymity:
– The path length could act as identifier if not all

users commit to same length [7], and
– Mounting Denial-of-Security attacks gets easier [9].

In the following we will hence consider a path length
of n = 3 to improve readability. Should any of our re-
sults also trivially hold for path lengths n > 3, we will
explicitly state it.

Definition 1. A forward-secret single-pass circuit con-
struction protocol FSSPCC with n = 3 hops consists of
the following algorithms:
FSSPCC.KGen(1λ)→ (pk, sk). On input of a security

parameter λ, this algorithm outputs a key pair
(pk, sk).

FSSPCC.RunOP(pk1, pk2, pk3)→ (K1,K2,K3, O0). On
input of n = 3 public keys, this algorithm outputs

n = 3 session keys K1,K2,K3, and an onion

O0 = `1 = (IDOR1 , c1, O1), where
O1 = EncK1(`2 = (IDOR2 , c2, O2)), where
O2 = EncK2(`3 = (IDOR3 , c3, O3)), where
O3 = EncK3(∇),

where ∇ denotes the end of the path. We call the
3-tuple (ID, c, O) a layer.

FSSPCC.DecOR(sk, c, O)→ (K, sk′, `). On input of a se-
cret key sk, a ciphertext c and an onion O the algo-
rithm outputs a session key K, a (potentially mod-
ified) secret key sk′, and a layer ` that is either a
tuple consisting of an identifier ID, a ciphertext c′

and an onion O′, or equal to ∇, indicating the end
of the routed path.

We call an FSSPCC correct if all onions are routed cor-
rectly (i.e., all identifiers are decrypted correctly and all
onions reach their intended destination; cf. [11, Def. 3])
and all ciphertexts decrypt their original encrypted mes-
sages. Additionally, we allow for an non-negligible cor-
rectness error of ε.

An FSSPCC protocol between an onion proxy and three
onion routers is used as follows. First, the ORs generate
a key pair using (pk, sk) $← FSSPCC.KGen(1λ). The OP
then chooses a path of three different onion routers and
uses their public keys to run FSSPCC.RunOP to produce
the session keys K1,K2,K3 and an onion of the form
O0 = (IDOR1 , c1,EncK1(IDOR2 , c2,EncK2(IDOR3 , c3,

EncK3(∇))). On input of the onion O0 the first router
on the path runs FSSPCC.DecOR with input of its cur-
rent secret key, the ciphertext c1 and the onion O1 and
outputs the session key K1 which is used to remove the
first layer of encryption. Additionally, the OR computes
a potentially altered secret key sk′. Then, the new onion
is send to the next router on the path. Each router re-
peats this process until a router decrypts the symbol ∇.
Then the last router OR3 computes a confirmation mes-
sage of the form EncK3(>), where > is a special confir-
mation symbol, which indicates the success of the circuit
construction. This onion is send to the previous router
on the path back to the OP and each OR adds a layer
of encryption using the computed session keys.

See Figure 2 for a more detailed description of a
FSSPCC protocol run with three nodes.

Security Model for FSSPCC. We have to consider
two separate security goals: (1) The security of the key
agreement between the onion proxy OP and each onion
router. We must especially show that in contrast to pre-
vious proposals for single-pass circuit construction, we

T0RTT: Non-Interactive Immediate Forward-Secret Single-Pass Circuit Construction 6

FSSPCC Protocol Run with Three Onion Routers

OP OR1

(pk1, sk1)
OR2

(pk2, sk2)
OR3

(pk3, sk3)

−
IDOR1

,c1,EncK1
(IDOR2

, c2,EncK2
(IDOR3

, c3,EncK3
(∇)))

−−−→

−
IDOR2 , c2,EncK2(IDOR3 , c3,EncK3(∇))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

−
IDOR3

, c3,EncK3
(∇)

−−−−−−−−−−−−−−−−−→

←−−−−−
EncK3(>)−−−−−−−−−−−−

←−−−−−−−−−
EncK2

(EncK3
(>))

−−−−−−−−−−−−−−−−−−−−−−

←−−−−−−−−−−−−−
EncK1(EncK2(EncK3(>)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Fig. 2. Messages sent during the circuit construction, where ∇ denotes the end of a path, and > is a special confirmation symbol.

achieve immediate forward secrecy here. (2) The secu-
rity of the overall circuit construction protocol should
not be compromised, especially the unlinkability of cir-
cuits if at least one OR is not under the control of the
adversary.

3.1 Adversarial Model

Our adversary is the classical cryptographic adversary
who actively monitors all traffic on arbitrary sections of
the Internet and who may delete, modify, insert or re-
arrange messages sent over this network. Our adversary
is, however, not capable of performing traffic analysis,
because it only controls a small part of the Internet at
the same time. In addition, we provide it with the ca-
pability to corrupt and learn their secret keys.

3.2 Two-Party Security Goals: Key
Secrecy and Immediate FS

A Tor circuit should remain indistinguishable from
other Tor circuits even if an adversary controls two out
of three onion routers. From this main security require-
ment (detailed in Section 3.3) two necessary crypto-
graphic security requirements on the key establishment
protocol performed between the onion proxy OP and
the honest onion router OR can be derived:
– Key Secrecy: The key negotiated between an

onion proxy OP and an onion router OR cannot be
computed by any other party including the adver-
sary, since otherwise, the Tor circuit would become
traceable.

– Immediate Forward Secrecy: If an honest onion
router OR is seized by the adversary and its secret
key gets compromised, OR can be removed from the
Tor directories to protect future circuits. However,

the seizure should not endanger the anonymity of
previously established and closed Tor circuits.1

Key Secrecy. Key secrecy (cf. [36]) can be defined as
follows.

Definition 2. Let A be an active adversary who con-
trols the network over which OP and OR communicate.
To be precise, A can read, delete, modify or rearrange
the sequence of all messages sent over this network. Let
Π be a server-only authenticated key exchange protocol
executed between client C and server S, and let pkS be
the public key of S used to authenticate S.

We say that Π guarantees key secrecy if the success
probability of A in computing the session key K estab-
lished between C and S is negligible.

Immediate Forward Secrecy. The current imple-
mentation of the nTor protocol achieves forward secrecy
in a strong sense, which can be defined as follows.

Definition 3. Let A be an active adversary who con-
trols the network over which OP and OR communicate.
To be precise, the A can read, delete, modify or re-
arrange the sequence of all messages sent over this net-
work. Let Π be a server-only authenticated key exchange
protocol executed between client C and server S, and
let pkS be the public key of S used to authenticate S.

We say that Π provides immediate forward secrecy
if, when A learns the secret key skS corresponding to
the public key pkS at time τ , then his success probabil-

1 Note that this goal depends on the number of parties. If we
consider immediate FS as a two-party security goal, we only
need that corruption of an onion router does not affect key se-
crecy. If, however, we consider multiple parties, we also need to
ensure that protected information such as anonymity still re-
mains protected after corruption. This is implicitly reflected in
the formalization of cryptographic unlinkability in Section 3.3.

T0RTT: Non-Interactive Immediate Forward-Secret Single-Pass Circuit Construction 7

ity in computing any of the session keys K established
between C and S before time τ does not increase.

For a more formal definition of FS, please see [34] and
[35]. Please note that this definition does cover nTor, but
does not cover the notion of eventual FS introduced in
[41]. In our definition, the public key pkS of S remains
unchanged when A learns the secret key (as for nTor),
whereas in eventual FS the public key must be changed
at exactly the same time τ when the secret key is re-
vealed.

3.3 N-Party Security Goals

Since we focus on onion routing and the Tor network
in this work, any forward-secret single-pass circuit con-
struction protocol should provide the following proper-
ties in presence of an adversary who “can observe some
fraction of network traffic; who can generate, modify,
delete, or delay traffic; who can operate onion routers
of his own; and who can compromise some fraction of
the onion routers” [22].

In this work we adapt the model used in [13, 36,
37] and refine it so that the model represents the Tor
network as realistically as possible. In our security game
on the property of unlinkability we therefore consider an
honest onion router that maintains many incoming and
outgoing connections.

We will later instantiate our generic protocol with
a puncturable KEM that contains a non-negligible cor-
rectness error. Hence, we also have to consider this fail-
ure probability in our model. Our aim is to show that
even if this error occurs, all circuits that have been es-
tablished still provide unlinkability.
– Integrity: Integrity requires that even for an onion

created by an adversary, the path length of this
onion cannot exceed the maximum path length or
the circuit construction fails (cf. [11, Def. 4]).

– Cryptographic Unlinkability: This property is
given if no adversary can link messages between a
sender and receiver if there exists at least one hon-
est node on the circuit path. A formal definition of
this property will be given below. As stated in [36],
network-level linking attacks are excluded.

Unlinkability of Unclosed Circuits. Unlinkability
ensures that an attacker is not able to link the OP and
the final OR if there exists at least one honest node in
the path. This property obviously needs to be ensured
for all closed circuits. It is, however, not clear if a failed

circuit construction might affect unlinkability. We are
indeed able to relax this property for unclosed circuits.
Namely, should the construction of a circuit fail, it does
not immediately affect unlinkability. We argue that un-
linkability for a closed connection has to be given among
other (potentially failed) circuits. To be precise, unlink-
ability would only be at risk if an attacker is able to
ensure the failing of all but one connection in the net-
work. In this case, the attacker would trivially be able
to break unlinkability of this one connection.

Circuit Position Hiding. In the literature [5, 13, 36,
37], there are other security goals mentioned such as
circuit position hiding, which is achieved if it is not pos-
sible to learn the position of a router in the circuit by
observing the incoming traffic of the router.

Intuition of Cryptographic Unlinkability. To pro-
vide anonymity, onion networks should ensure that
there is no link between a sender of a circuit construc-
tion message and the last router on the path. Since tim-
ing attacks or traffic analysis have a high probability to
find a link between sender and receiver, we only consider
cryptographic unlinkability as explained in [13, 36, 37].
For this, consider a network in which multiple users send
onion messages over a path with three ORs and an ad-
versary controls all but one honest OR. Before we pro-
vide a formal definition for the property of unlinkability,
we would like to give a brief intuition for our security
experiment. In the security game played between an ad-
versary and a challenger, the adversary gains full con-
trol over the routers in the onion network except for one
router which is controlled by the challenger. This repre-
sents an honest node in an onion network. The adversary
can actively build arbitrary circuits even over the honest
node by interacting with the challenger. In the second
phase of our experiment, the attacker is given two cir-
cuits in which the honest node acts as the middle node
in the path and the decryption of one of those onions (to
be specific, it is given the onion decrypted by the hon-
est node). In contrast to the security experiment used in
[13, 36, 37], we give the adversary access to the honest
node’s modified secret key immediately after the chal-
lenger decrypts the challenge onion for the honest node.
Note that the adversary now controls the entire net-
work. This simulates a corruption of the honest router
after creating a circuit and thus models immediate FS
according to Definition 3.

Unlinkability Security Experiment ULunlink
FSSPCC(A).

Setup: The challenger C generates the key pair
(pkH , skH) $← FSSPCC.KGen(1λ) of the honest

T0RTT: Non-Interactive Immediate Forward-Secret Single-Pass Circuit Construction 8

router ORH and sends the public key pkH to the
attacker. The attacker then sends a list of public
keys pk1, . . . , pkn to the challenger.

Phase 1: In this phase the attacker may build circuits
using the secret and public keys it received in the
setup phase. For decapsulations and decryption of
onions destined for the honest node, the attacker
may interact with the challenger by sending onions
(ORH , c, O) and receives the layer ` from the output
of FSSPCC.DecOR(skH , c, O).

Challenge: The attacker may then start Phase 2 by
sending an indicator symbol > to the challenger.
Upon receipt of this symbol, the challenger com-
putes two onions sent over the honest router of form

Oj0 = `j1 = (IDORv , c
j
1, O

j
1), where

Oj1 = EncK1(`j2 = (IDORH , c
j
2, O

j
2)), where

Oj2 = EncK2(`j3 = (IDORw , c
j
3, O

j
3)), where

Oj3 = EncK3(∇),

with j ∈ {0, 1}, (v, w) $← [n] × [n] and v 6= w by
invoking FSSPCC.RunOP(pkv, pkH , pkw). Note that
the challenger computes all values (cji , O

j
i) and thus

knows them even without knowing skv, skw. Both `01
and `11 are send to the attacker.
The challenger now flips a coin b $← {0, 1}, decrypts
both onions (K2, sk′, `j3) = FSSPCC.DecOR(sk, Oj2).
– If b = 0: The attacker receives `03 along with the

secret key sk′ of the honest router ORH .
– If b = 1: The attacker receives `13 along with the

secret key sk′ of the honest router ORH .
Note that the attacker is now in possession of the
honest router’s secret key and thus controls the en-
tire network.

Guess: A may output a guess b′.

We define the advantage of an adversary A to win the
cryptographic unlinkablity game ULunlink

FSSPCC(A) as

Advunlink
FSSPCC,A(λ) :=

∣∣∣∣Pr[b = b′]− 1
2

∣∣∣∣ .
Definition 4. We say the circuit construction protocol
Π provides cryptographic unlinkability if the advantage
for any PPT attacker A to win experiment ULunlink

FSSPCC(A)
is negligible.

Limitation of the Model. In our model, the client
always chooses a new path through the network should
it establish a new circuit, that is, an adversary should
not be able to recognize that a client attempts to build

another circuit. Mounting attacks that utilize tricking
onion routers to fail connection establishment with hon-
est clients hence requires some sort of traffic analy-
sis by the adversary. Similar to previous research (e.g.,
[13, 36, 37]), we assume that our adversary is not able
to perform traffic analysis. Hence, we only achieve cryp-
tographic unlinkability rather than “real-world unlika-
bility”.

This is a general modeling problem and not lim-
ited to our work. Our current modeling techniques are
limited to ideal-world constraints that do not properly
model and capture attack vectors as mentioned above.

4 T0RTT
In this section we construct a secure FSSPCC protocol,
which provides immediate FS. To this end, we introduce
Bloom filter KEMs, a variant of puncturable KEMs, and
symmetric encryption as building blocks. After that, we
present a generic construction based on the aforemen-
tioned building blocks.

4.1 Building Blocks

Bloom Filter KEMs. For efficiency reasons, we con-
sider a special variant of puncturable KEMs: Bloom fil-
ter key encapsulation mechansims (BFKEM) [17, 18].
BFKEMs achieve highly efficient puncturing procedures
at the cost of a non-negligible correctness error when de-
capsulating.

Definition 5. A Bloom filter key encapsulation mecha-
nism BFKEM consists of four probabilistic polynomial-
time algorithms BFKEM = (KGen,Encap,Decap,Punct)
with the following properties.
KGen(1λ,m, k)→ (pk, sk). On input of a security pa-

rameter λ, parameters m and k, the algorithm out-
puts a key pair (pk, sk).

Encap(pk)→ (K, c). On input of a public key pk, the
algorithm outputs a symmetric key K ∈ {0, 1}∗ and
the encapsulated symmetric key c ∈ {0, 1}∗.

Decap(sk, c)→ K. On input of a secret key sk and the
encapsulated symmetric key c, the algorithm out-
puts a symmetric key K ∈ {0, 1}∗ ∪ {⊥}.

Punct(sk, c)→ sk′. On input of a secret key sk and the
encapsulated symmetric key c, the algorithm out-
puts a (potentially modified) secret key sk′.

T0RTT: Non-Interactive Immediate Forward-Secret Single-Pass Circuit Construction 9

In this paper we use the BFKEM construction intro-
duced in [17] to instantiate our generic circuit construc-
tion protocol (we refer to Appendix D for a complete
description). The construction presented there allows
for non-negligible correctness errors. We will show that
these errors can be tolerated and do not impact security.

Definition 6. We say that a BFKEM is correct with
an ε-error if for all λ,m, k ∈ N, for all (pk, sk) $←
KGen(1λ,m, k), and for all (K, c) $← Encap(pk), we have
that Decap(sk, c) = K. Moreover, for any sequence
i = 0, . . . , n − 1 (where n is determined by m, k) of in-
vocations of sk′ ← Punct(sk, ci) for any ci 6= c it holds
that Pr[Decap(sk′, c) = ⊥] ≤ ε(m, k) where ε is some
(possibly non-negligible) bound.

It is easy to see, that all known BFKEM constructions
[17, 18] are correct with an ε-error equal to the false-
positive probability of the Bloom filter, as the compu-
tation of c is independent of the sequence ci. Security
is defined via the IND-CCA security game for BFKEM
[18] described in Appendix B.

Additionally, we need a property called publicly-
checkable puncturing, also defined by Derler et al. in
[18], which enables checking if a ciphertext can be de-
capsulated without access to the secret key.

Definition 7. Let Q = (c1, . . . , cw) be any sequence
of ciphertexts. We say that BFKEM allows publicly-
checkable puncturing, if there exists an efficient algo-
rithm CheckPunct with the following correctness prop-
erty:
1. Run (pk, sk) $← KGen(1λ,m, k).
2. Compute Ci

$← Encap(pk) and sk := Punct(sk, ci)
for all i ∈ [w].

3. Let c be any ciphertext. We require that

⊥ = Decap(sk, c) ⇐⇒ ⊥ = CheckPunct(pk,Q, c).

Derler et al. show that all currently known construc-
tions of BFKEMs have this property. Note also that
any puncutrable KEM with perfect correctness achieves
this property trivially by checking whether c ∈ Q.

Symmetric Encryption. Another building block used
in our circuit construction protocol to ensure the secu-
rity of an onion routing system is symmetric encryption.
A symmetric encryption scheme consists of three algo-
rithms ENC = (Gen,Enc,Dec). Due to space constraints,
we provide the standard definitions of symmetric en-
cryption in Appendix A.

4.2 T0RTT

In this section we describe our generic protocol. We
stress that our protocol may be instantiated with any
puncturable KEM. However, in order to capture the
technical challenges of instantiating our protocol with
a puncutrable KEM that features a non-negligible cor-
rectness error, we briefly discuss these challenges before
presenting our protocol.

Unlinkability in the Presence of a Correctness
Error. Consider our unlinkability experiment presented
in Section 3.3, where the challenger constructs two chal-
lenge circuits and the attacker wins if it can link the cir-
cuits. The attacker is able to observe both incoming and
outgoing messages of the honest onion router. Assume
now that one of the two challenge circuits can be pro-
cessed correctly, while the other fails during decryption
at the honest node.

If the attacker is able to recognize that processing
of an onion has failed (e.g., by outputting an error sym-
bol or aborting the protocol) and be able to retroac-
tively check whether one of the incoming messages for
the honest router is destined to fail during decryption,
it could trivially link the failed connection (and thus
the succeeded connection as well). The technical chal-
lenge of achieving unlinkability in the presence of a non-
negligible correctness error is hence to strip the attacker
of the capability to recognize such behavior.

Unfortunately, all currently known constructions of
BFKEMs allow to check in advance whether an incom-
ing message is destined to fail during decryption as the
randomness of a ciphertext is sent in the clear.2 This
recognizing property could by avoided by, for exam-
ple, encrypting the randomness with a standard pub-
lic key encryption scheme (e.g., RSA encryption). This
approach would, however, cost us forward secrecy. As
soon as an attacker comes into possession of the honest
router’s secret key, it can again retroactively check if
an incoming ciphertext will fail. This could (in theory)
be overcome by using another instance of a puncturable
encryption scheme dedicated to the ciphertext random-
ness, but would render the scheme even more inefficient,
both in storage and running time. This approach is in
our opinion infeasible.

2 More technical: An attacker can keep track of the random-
ness r of every ciphertext sent to the honest router this enables
the attacker to compute a copy of the honest router’s Bloom
filter which in turn allows it to predict if a ciphertext can be
decapsulated.

T0RTT: Non-Interactive Immediate Forward-Secret Single-Pass Circuit Construction 10

We propose to hide that a failure has happened.
Instead of, for example outputting a failure symbol or
aborting the protocol, the honest router could output a
“dummy onion,” an onion that looks correct to the ad-
versary, but was fabricated by the router. This technique
is related to the so-called “cover traffic” that originates
from a slightly different context. It is used in anony-
mous communication to blend the sender’s traffic into
the noise of random cover traffic (e.g., [30]), thus hiding
when it is really sending. We will utilize the “dummy
onion” to hide that a decapsulation has failed.

Dummy Onions. On a technical level, dummy onions
will look as follows. Let O be a received onion that will
fail during processing. In this case, the onion router gen-
erates a dummy onion by first selecting a random router.
The dummy onion contains a newly encapsulated key for
the randomly chosen router and the encrypted message
∇, indicating the end of the circuit path. This concept
ensures 1) that the router’s output has the correct for-
mat and is therefore indistinguishable from an onion
which was correctly decapsulated 2) that even if the
dummy onion will fail at a later position in the path,
the circuit construction protocol will terminate eventu-
ally.

We can easily bound the probability of termina-
tion. Let ε be the worst-case failure probability. We can
bound the termination probability by 1− εM , where M
is the number of consecutive failures. It is easy to see,
that the termination probability is overwhelmingly high
for real-world parameters such as ε = 1/1000. The ad-
ditional network load induced by dummy onions is thus
negligible in comparison to the regular network load.

Note that computing a dummy onion is not more ex-
pensive than properly decapsulating a ciphertext when
instantiated with a BFKEM as recommended in Sec-
tion 6.1. All known BFKEMs only use symmetric com-
putations (i.e., evaluation of universal hash functions
and table look-ups) to recognize a decapsulation fail-
ure. As encapsulation and decapsulation are similarly
expensive, the router does not suffer additional compu-
tational load when computing the “dummy onion” in
comparison to a proper decapsulation.

We would like to point out that the use of a dummy
onion is not possible if at the same time the property of
“circuit position hiding” is required, since each router
has to output an onion with the correct format accord-
ing to its position in the circuit. The property of “circuit
position hiding” means that in an onion routing network
it should not be possible for a router to estimate the
approximate position in a circuit. However, preventing

routers from learning their position is impossible in a
single pass circuit construction protocol with n = 3 and
can be explained as follows. In a 3-hop circuit, nodes
may check whether the sender of a message is a non-
router. With this knowledge, a router can determine if
it acts as the first node. The last router on the path
decrypts the symbol ∇ which trivially leads to the con-
clusion that its the last router on the path. If a router
acts neither as an entry nor as an exit node, then its
position in a 3-hop circuit can logically only be that of
the middle node. For this reason we are convinced that
the instantiation with dummy onions is justified for 3-
hop circuits, but we would like to point out that this
solution is unsuitable for longer circuits.

Our Construction. In the following we describe the
protocol for our BFKEM-based circuit construction for
n = 3 onion routers. The protocol can be instanti-
ated with any IND-CCA-secure BFKEM scheme. Ad-
vantages and disadvantages of different BFKEM con-
structions will be discussed in Section 6.1.

Definition 8. Let BFKEM = (KGen,Encap,Decap,Punct)
be a Bloom filter key encapsulation mechanism and
ENC = (Gen,Enc,Dec) a symmetric encryption scheme.
We construct a forward-secret single-pass circuit con-
struction protocol FSSPCC as follows:
FSSPCC.KGen(1λ) $→ (pk, sk). Given a security param-

eter λ compute a key pair by running (pk, sk) ←
BFKEM.KGen(1λ,m, k), where the global parame-
ters m and k denote the size of the Bloom filter
and the number of universal hash functions, respec-
tively.

FSSPCC.RunOP(pk1, pk2, pk3)→ (K1,K2,K3, O0). On
input of three public keys, the OP computes the
following:
1. For each i ∈ [3], the OP computes (Ki, ci) ←

BFKEM.Encap(pki).
2. After computing the symmetric keys the client

builds the onions (O0, . . . , O3) as

O0 = `1 = (IDOR1 , c1, O1), where
O1 = EncK1(`2 = (IDOR2 , c2, O2)), where
O2 = EncK2(`3 = (IDOR3 , c3, O3)), where
O3 = EncK3(∇),

FSSPCC.DecOR(sk, c, O)→ (K, sk′, `). On input of the
current secret key of the router OR, a ciphertext c
and an onion O, the router computes the output of
BFKEM.Decap(sk, c).

T0RTT: Non-Interactive Immediate Forward-Secret Single-Pass Circuit Construction 11

– In case of a decapsulation error, the router out-
puts a dummy onion according to its position
as follows:
– If OR is the first router on the path.

OR randomly chooses two distinct identi-
ties IDOR′2 and IDOR′3 with pk′2 and pk′3,
computes (K′2, c′2) ← BFKEM.Encap(pk′2)
and (K′3, c′3) ← BFKEM.Encap(pk′3). We
define the layer as ` = (IDOR′2 , c

′
2,

EncK′2(IDOR′3 , c
′
3,EncK′3(∇)) and output

(⊥, `, sk).
– Else OR randomly chooses one identity

IDOR′3 which has to be different from the
identity of its predecessor. Then OR com-
putes (K′3, c′3) ← BFKEM.Encap(pk′3) and
defines ` = (IDOR′3 , c

′
3,EncK′3(∇)). Output

is (⊥, `, sk).
– Otherwise, the router punctures its secret key

sk′ ← BFKEM.Punct(sk, c) to achieve immediate
FS. Using the derived symmetric key, the OR
decrypts the current layer of the onion message
and forwards the message to the next router on
the path.

In an FSSPCC protocol, a router recognizes that it is
the last router on the path after decrypting ∇. In case
of a decapsulation error, a router would not be able to
decrypt this message and therefore does not retrieve the
information that it has to send the first message back
to the onion proxy. In our construction the last router
outputs an onion with the encrypted ∇ symbol. This
approach does not affect the cryptographically unlinka-
bility property, since the receiver of the regular message
would be the known predecessor.

Remark on Instantiation. We want to stress once
more that our construction is generic and can be instan-
tiated with any puncturable KEM. Only puncturable
KEMs with non-negligible correctness error [17, 18]
need to utilize the dummy onion technique to prevent
failure detection. All other known puncturable KEMs
[19, 29, 32] provide perfect correctness and thus even
allow for an extension of the path length to n > 3.

5 Security Analysis
In this section we discuss the security of our construc-
tion. Since our construction trivially achieves key se-
crecy and immediate FS, the main focus is to prove
cryptographic unlinkability.

5.1 Two-Party Security

Key Secrecy. The key secrecy property follows from
the properties of the used puncturable KEM.

Theorem 1. If one of the IND-CCA-secure puncturable
KEMs from [17–19, 32] is used for key establishment,
then key secrecy is guaranteed.

Proof. (Sketch) The puncturable KEM mentioned in
the theorem provide IND-CCA security, i.e., the key
that is established is indistinguishable from a random
value, and can thus not be computed from the inter-
cepted messages. This even holds for CCA adversaries
which may invoke the Decap operation several times,
thus the result holds in our weaker adversarial model.
See [17–19, 32] for detailed proofs. �

Immediate FS. Immediate FS follows from the fact
that Encap is a probabilistic algorithm, and that the
Punct operation prohibits decapsulating a ciphertext
twice.

Theorem 2. If a puncturable KEM with key secrecy is
used for key establishment, and if the combination of
Decap and Punct is implemented as one atomic opera-
tion, then immediate FS is guaranteed.

Proof. (Sketch) Our first assumption, which is satisfied
by all KEM and puncturable KEM schemes proposed in
the literature, is that the probabilistic Encap algorithms
have entropy, say δ bit, to produce real pseudorandom
output. Thus the probability 2−δ that the same pair
(K, c) is computed twice during the lifetime of the key
pair (pk, sk) can be made negligible, by choosing δ ap-
propriately. This large entropy is also necessary to avoid
decapsulation failures by the punctured secret key.

For each encapsulated key c that the adversary may
record while observing the circuit construction protocol,
the secret key sk is immediately punctured after decap-
sulation of c. We may now distinguish two cases: (1)
The adversary has learned sk prior to an atomic call
to (Decap(sk, c),Punct(sk, c)). That case does not vio-
late the definition of immediate FS (cf. Def. 3), because
the adversary learned sk at time τ , but the key K was
established after time τ . (2) The adversary has learned
sk′ after the atomic call to (Decap(sk, c),Punct(sk, c)). In
this case, the new secret key sk′ cannot be used to de-
capsulate K anymore; a call to Decap(sk′, c) will return
⊥. Since the puncturable KEM provides key secrecy,
there is no other way for the adversary to compute K.

T0RTT: Non-Interactive Immediate Forward-Secret Single-Pass Circuit Construction 12

This completes the proof. �

5.2 N-Party Security

Circuit Position Hiding. We distinguish two cases
depending on the instantiation. Should the instantiation
have a correctness error (and thus use dummy onions),
we need to sacrifice the property of circuit position hid-
ing. Otherwise, routers would not be able to fabricate
onions. Note that the current Tor circuit construction
protocol also does not satisfy this goal. In [11] the au-
thors show that an attacker is always able to derive in-
formation about the router’s position by looking at the
ciphertext’s size.

Should the instantiation, however, be perfectly cor-
rect, we can achieve circuit position hiding by applying
the techniques described in [11].

Cryptographic Unlinkability. The core security re-
sult of this paper is a proof that our construction sat-
isfies unlinkability as the central cryptographic security
goal of the circuit construction protocol for all circuits
established prior to some point in time τ , even if
– the adversary controls two out of three onion

routers, and
– the adversary learns the secret key of the third

router at time τ .

In the following we will prove that our generic construc-
tion provides cryptographic unlinkability if the under-
lying BFKEM scheme and the underlying encryption
scheme are IND-CCA secure. In our proof, we need
IND-CCA security for both of our building blocks to
correctly simulate decryption queries of an adversary
for onions. Decryption queries simulate a realistic at-
tacker who can send encrypted onions to routers in the
network and wait for the decrypted messages. This was
already discussed in [13].

Theorem 3. Let BFKEM be a BFKEM that is correct
with an ε-error and has publicly-checkable puncturing,
and let ENC be a symmetric encryption scheme. For any
efficient polynomial-time adversary A in the experiment
ULunlink

FSSPCC(A) there exist efficient polynomial-time algo-
rithms B1,B2 such that

Advunlink
FSSPCC,A(λ) ≤ 2·

(
AdvIND-CCA
B1,BFKEM(λ) + AdvIND-CCA

B2,ENC (λ)
)
.

Due to space constraints, we provide the complete proof
in Appendix C.

6 Performance Analysis
We will now show how our construction can be instan-
tiated and how it performs compared to other known
single-pass circuit constructions.

6.1 Instantiation

Our construction presented in Section 4.2 can be instan-
tiated with any IND-CCA-secure puncturable KEM.
Furthermore, we require two properties for practical in-
stantiations.
– Fast decryption and puncturing procedures.

Known puncturable KEMs typically invoke a heavy
computational load when decrypting a ciphertext.
Since onion routers have to perform multiple de-
cryptions within a short time, a puncturable KEM
with as little computational load as possible is de-
sirable.

– Short ciphertexts. The current specification al-
lows 509 bytes of payload per cell [21], limiting the
maximum size of a ciphertext. Even though it is be-
ing discussed whether this payload size should be
increased in the future [39], short ciphertexts are
desired.

– Reasonably short secret keys. Efficient punc-
turable KEMs often incur large secret keys up to
several gigabytes in size due to heavy precomputa-
tions upon key generation. While this is often un-
avoidable, it is desirable to choose a scheme that
generates secret keys of manageable size.

In the past, several puncturable KEMs have been pro-
posed [17, 18, 29, 32]. Some of those constructions are
not suitable for our protocol due to their drawbacks.
The schemes proposed by Green and Miers [29] suf-
fer from a decapsulation time that grows linear in the
number of punctures, rendering them unsuitable to use
in high-traffic scenarios. Similarly, the scheme proposed
by Günther et al. and Derler et al. are impractical since
puncturing takes up to several seconds for reasonable
deployment parameters [19, 32].

A promising attempt for practical puncturable en-
cryption schemes in high-traffic scenarios are Bloom fil-
ter key encapsulation mechanisms [17, 18]. Bloom fil-
ter key encapsulation mechanisms is a variant of punc-
turable KEMs that achieves highly efficient puncturing
procedures (deleting few parts of the secret key) while
keeping the secret key reasonably small. This, however,

T0RTT: Non-Interactive Immediate Forward-Secret Single-Pass Circuit Construction 13

comes at the cost of a non-negligible correctness error
that might occur when puncturing too often.

In order to better understand the properties of
BFKEM, we will give a brief intuition of its concept be-
fore discussing suitable choices to instantiate our proto-
col. The core idea of BFKEM is to precompute an array
of secret keys, where puncturing consists of deleting a
few entries of this secret key array. Naïve constructions
(e.g., one secret key per ciphertext) suffer under expo-
nentially large secret keys. Using Bloom filters as a prob-
abilistic data structure helps to overcome this obstacle.
Intuitively, a Bloom filter allows keeping track on which
parts of the secret keys have already been punctured
while maintaining a shorter secret key array compared
to naïve approaches (we provide a proper definition of
Bloom filters in Appendix D).

Simplified, a typical BFKEM works as follows:
Imagine a cryptographic primitive that upon initializa-
tion computes a public key pk and a master secret key.
The master secret key msk is used to issue additional
secret keys ski for arbitrary identities i. Encapsulation
takes as input the public key pk and a (subset of) iden-
tities. Anyone who possesses a secret key ski, where i
was used in the encapsulation, is able to decapsulate.3

For BFKEM we use a primitive with the aforemen-
tioned properties. We generate a BFKEM key pair by
computing a public key pk and a master secret key msk.
Then we use msk to compute secret keys for all possible
identities. We store the computed identity secret keys
in an array and discard msk.

To encapsulate, a client draws some randomness
r ← R from a randomness space R. This randomness
r implicitly defines a subset of random identities under
which the client encapsulates a fresh session key (e.g.,
by encrypting the session key with respect to each of
the identities in the subset). The encapsulated key is
then sent to the server along with the chosen random-
ness r. The server decrypts by recomputing the subset
of chosen identities with r and choosing one existing
identity secret key from its secret key array to retrieve
the session key.

The puncturing procedure uses the randomness r to
delete all identity secret keys associated with the sub-
set of identities implicitly defined by r. This ensures
that encapsulated keys cannot be decapsulated when
the same r is used twice. Since each invocation of the
puncturing procedure leads to the deletion of multiple

3 On a technical level, this primitive is called an identity-based
KEM.

parts of the secret key, it may happen that for an “un-
punctured” randomness r′ no identity secret keys are
leftover, rendering decryption impossible.

A Bloom filter is a way to parametrize such con-
structions. That is, given a maximum number of punc-
tures throughout the key pair’s lifetime n and a tol-
erated correctness error p (after n punctures), we can
compute the optimal size m = −n ln(p)/(ln(2))2 of the
secret key array. BFKEM is highly parameterizable and
suitable parameters have to be chosen according to ap-
plication and requirements.

While the puncturing procedure of Bloom filter en-
cryption is highly efficient, most BFKEM schemes have
ciphertexts that grow linearly in the size of the iden-
tity subset (i.e., we encrypt the session key for each
identity separately). However, Derler et al. also propose
a BFKEM based on identity-based broadcast encryp-
tion (IBBE) [17], which allows to aggregate encapsu-
lated keys for several identities, yielding constant size
ciphertexts (when instantiated with the constant-size
ciphertext IBBE by Delerablée [16]).

The IBBE-based BFKEM instantiated with the
Delerablée IBBE yields constant size ciphertexts that
consist of four elements and constant size identity se-
cret keys that consist of a single group element. In con-
clusion, we consider this construction to be a suitable
choice for our protocol. For completeness, we provide the
technical details of our chosen BFKEM in Appendix D.

6.2 Efficiency and Comparison

In order to compare our proposed construction to pre-
vious single-pass circuit constructions, we evaluated
the computational costs required by nTor [26], PB-
OR [36, 37], CL-OR [14], and NI-OR [13] and visualized
our results in Table 1.

To evaluate the performance of our T0RTT protocol
we developed a single core implementation in the C pro-
gramming language based on the RELIC [3] framework.
To configure RELIC we used the presets for Barreto-
Naehrig (BN) curves [6] with an estimated security level
of 78, 112 and 128 bit, respectively, which are provided
by RELIC’s authors. The parameter choice for the BN
curves is in line with the analysis of Menezes et al. [40]
who advise for conservative parameter choices due to re-
cent advances in solving the discrete logarithm problem
in GT [38]. For the evaluation we chose the parame-
ters m = 14 377 588 and k = 10 which corresponds to a
total number of n = 1 000 000 punctures over the life-
time of the public key and a tolerated correctness error

T0RTT: Non-Interactive Immediate Forward-Secret Single-Pass Circuit Construction 14

Security Level Times nTor PB-OR CL-OR NI-OR T0RTT

78 bit
User 0.30 1.41 0.54 2.01 8.03
OR 0.10 0.71 0.16 2.09 5.52
Circuit Construction 1200.60 603.54 601.02 608.28 624.59

112 bit
User 0.30 2.1 0.84 3.12 13.79
OR 0.10 0.94 0.28 2.92 9.07
Circuit Construction 1200.60 604.92 601.68 611.88 641.00

128 bit
User 0.30 4.53 1.95 6.93 30.54
OR 0.10 2.03 0.62 6.37 19.52
Circuit Construction 1200.60 610.62 603.81 626.04 689.10

Table 1. Comparison of computation and execution times (in ms) for 3-hop circuits with a latency of 100 ms and a security level of
78, 112 and 128 bit, respectively. All measurements except T0RTT are estimates. The parameters for T0RTT are n = 1 000 000 and
p = 10−3.

p = 10−3. Our implementation makes use of precompu-
tation wherever possible. That is, each OR precomputes
certain exponentiations for all elements from G1 and G2
of its public key. This allows the OR to significantly
speed up the decapsulation since all exponentiations in
both of those groups are with a base from the public
key. Users cannot benefit from precomputation since all
exponentiations depend on the public key of the ORs.
In our proposed T0RTT construction the entire encap-
sulation performed by the user can be computed offline.
The whole decapsulation process can be highly paral-
lelized which would significantly decrease the computa-
tion time needed by an OR.

We did not implement the other circuit construction
schemes but estimated their performance by measuring
the runtime of the individual cryptographic operations.
We consider the symmetric encryption required by all
circuit constructions as computationally free since they
are negligibly small in comparison to public key opera-
tions. This methodology is analogous to the comparison
in [13] and considers the same required operations for
the different single-pass circuit constructions. We again
chose the same parameters as for the evaluation of our
protocol implementation, i.e. BN curves with an esti-
mated security level of 78, 112, and 128 bit, respec-
tively, using the RELIC library.4 We evaluated the per-
formance for the exponentiations in G1, G2, GT and
the pairings with the benchmarking code included in
RELIC. We used OpenSSL[48] and X25519 for the per-
formance estimations of nTor for all security levels, as
OpenSSL’s X25519 outperformed all implementations

4 Although the evaluated constructions are defined over Type-I
bilinear pairings G×G→ GT one can transform them to using
Type-III pairings G1 × G2 → GT [1].

of smaller curves. All measurements were performed on
a MacBook Pro running MacOS 10.14.6 with an Intel
Core i5-6267U Processor with 2.9 GHz. We provide the
measurements of the individual operations in Appendix
E. A comparison of the properties of the different meth-
ods can be found in Table 2.

A ciphertext in our construction consists of one el-
ement from G1 and one from G2 together with two ele-
ments from {0, 1}λ. Depending on the security level the
size of an element from G1 is 20, 32 and 48 bytes, re-
spectively, and the size of an element from G2 is 40, 64
and 96 bytes, respectively. This results in a ciphertext
sizes of 80, 124, and 176 bytes. In addition to the secu-
rity level, the size of the public key also depends on the
tolerated correctness error p. Again, assuming a correct-
ness error p = 10−3, the public key has a size of 700,
1120 and 1680 bytes, respectively. Given that there are
less than 10 000 relays [42] the size of the public keys of
all relays will be less than 20 MB.

While we are able to keep the public key and cipher-
text relatively short, the array of secret keys is rather
large. The relay has to precompute enough secret keys,
such that at the end of the public key lifetime there are
still enough secret keys left so that the failure probabil-
ity is still smaller than the tolerated correctness error
p. That is, depending on the public keys lifetime and
the number of requests n the relay has to serve within
this lifetime, we are able to compute the optimal size
of the secret key array, such that the chance of failure
is p if the secret key has been punctured n times. The
time needed to compute the secret key grows linearly in
the size of the array. We measured the time it takes to
compute a single entry of the array and thus we can es-
timate the time it takes to compute the whole array on
a single core. We provide computations of the resulting
secret key size and computation times in Table 3.

T0RTT: Non-Interactive Immediate Forward-Secret Single-Pass Circuit Construction 15

Feature nTor PB-OR CL-OR NI-OR T0RTT
No. of messages n(n + 1) 2n 2n 2n 2n

Immediate PFS 3 7 7 7 3

No TTP 3 7 (3) 7 3

Static public key 7 3 7 3 7

Table 2. Comparison of features for circuits of length n for the different circuit construction schemes.

Security
Level

Lifetime of
pk in days

Requests per day
10k 100k 1000k 10000k 100000k

m t m t m t m t m t

78 bit

1 3 9 s 29 1.5 m 289 15.1 m 2886 2.5 h 28854 1 d
7 21 1.1 m 202 10.6 m 2020 1.8 h 20198 17.6 h 201978 7.3 d
14 41 2.1 m 404 21.1 m 4040 3.5 h 40396 1.5 d 403955 14.7 d
28 81 4.2 m 808 42.3 m 8080 7 h 80791 2.9 d 807910 29.4 d

112 bit

1 5 15.6 s 47 2.6 m 462 26 m 4617 4.3 h 46167 1.8 d
7 33 1.8 m 324 18.2 m 3232 3 h 32317 1.3 d 323164 12.6 d
14 65 3.6 m 647 36.3 m 6464 6.1 h 64633 2.5 d 646328 25.2 d
28 130 7.3 m 1293 1.2 h 12927 12.1 h 129266 5 d 1292655 50.5 d

128 bit

1 7 33.6 s 70 5.6 m 693 56 m 6925 9.3 h 69250 3.9 d
7 49 3.9 m 485 39.3 m 4848 6.5 h 48475 2.7 d 484746 27.2 d
14 97 7.9 m 970 1.3 h 9695 13.1 h 96950 5.5 d 969492 54.5 d
28 194 15.7 m 1939 2.5 h 19390 1.1 d 193899 10.9 d 1938983 109.1 d

Table 3. Comparison of the secret key size m = −n ln(p)/(ln(2))2 in MB and estimated time t needed for key generation for different
lifetimes of the public key and number of requests within this lifetime n ∈ {104, 105, 106, 107, 108} for a correctness error p = 10−3

and a security level of 78, 112 and 128 bit, respectively.

These computations show that our proposed
T0RTT instantiation can perform considerably faster
than the current nTor protocol, although computational
intensive operations are used. The biggest drawback of
our instantiation is the secret key size, which can grow
to unmanageable sizes if the key is not frequently ro-
tated on a busy OR. We believe that although the key
can get quite large they could still be managed when
the parameters for the ORs are carefully chosen. We re-
mark that puncturable KEMs are a relatively novel area
of research and hope to see further constructions that
mitigate current drawbacks. More efficient puncturable
KEMs immediately yield a more efficient FSSPCC pro-
tocol.

7 Issues and Solutions
One major drawback of our proposed T0RTT construc-
tion is the increased resource consumption in regards to
CPU and RAM. This can be especially challenging for
exit nodes and constrained relay-nodes. As shown by
[42] a major part of the Tor network are very network

constrained devices. With the assumption that a device
with little bandwidth is likely also not strong in regards
to computational power5, large parts of the Tor network
are very restricted in their processing power.

Typically, our construction has large secret keys
upon initialization which decrease with each punctur-
ing operation. The initial size of the secret key depends
on the number of connections a node needs to serve in
its lifetime. That is, the secret key for a high-traffic node
is much larger than of a node with less traffic.

Additionally, our proposed construction has an in-
creasing chance of failure with each puncturing opera-
tion, which would result in even higher circuit construc-
tion times. Recall that this chance of failure depends on
how the key has been generated. That is, we can gen-
erate a key in such way, that after n puncturings the
chance of decapsulation failure is p = 1/1000. A smaller
value of p and larger values of n will both increase the
secret key size, respectively.

5 If this assumption does not hold, T0RTT would be even more
efficient.

T0RTT: Non-Interactive Immediate Forward-Secret Single-Pass Circuit Construction 16

For RAM-constrained devices, it might be infeasi-
ble to keep the initial secret key in its memory and it
has to be outsourced to its hard drive, which in return
decreases the performance of the proposed algorithm.
Additionally, the large secret key is harder to manage
than traditional Tor secret keys, since it is constantly
changing, and a backup of a non-punctured key would
break the immediate FS (while still achieving eventual
FS after modifying or deleting the backup key as well).
Should the server crash and thus lose its secret key, a
new one must be generated. Note that the expensive
computation of a new secret key can be avoided by pre-
computing and storing it on hard drive until needed.

Another issue concerns key propagation. Typically,
key lifetimes overlap, so that clients have time to learn
about new keys before the old one is discarded. If, how-
ever, a secret key is exhausted too quickly or lost due
to a server crash, a new public key needs to be issued
immediately for the node to still function. This requires
both the server to adjust its public directory and the
client to potentially download the new key material, sac-
rificing any performance gains at initial communication
with the node.

We argue that these problems are most likely not
a problem for the Tor protocol. Frequent key updates
are already part of the established protocol. In the cur-
rent default configuration, the Tor protocol updates the
public key already every 28 days. This number can
be tweaked by relays to better fit their hardware con-
straints, meaning a smaller relay could update its key
more frequently while a stronger relay could update less
often.

Since the newly proposed scheme is a lot more
computationally intensive, the new scheme must be
hardened against Denial-of-Service attacks. A Tor re-
lay should only process T0RTT messages while it still
has resources left. If a relay is already busy it should
fall back to the classic nTor handshake.

If clients wish to prevent falling back to nTor due to
failing decryption they could theoretically send multiple
onions at once. This would drastically reduce the chance
for a failed decryption, at the cost of more encapsula-
tions from the client and more network overhead. We
discourage this construction since it increases the com-
plexity of the protocol.

Another disadvantage, which should not go unmen-
tioned, is the aspect of post-compromise security. After
compromising an OR in the current setup of the Tor
network, the adversary still has to interact actively as a
Man-in-the-Middle attacker to read or alter messages.
In our construction compromising an OR results in an

adversary that can act passively to decrypt messages
intended for the OR. However, replacing the secret key
of the onion router once a month, does not only im-
prove the performance but also strengthens the post-
compromise security of T0RTT.

Possible Research Direction. We give a possible re-
search direction in Appendix F.

8 Conclusion
In this paper, we disproved the assumption that it is
impossible to achieve immediate forward secrecy for
single-pass circuit construction. Despite the fact that
current puncturable KEMs involve high computation
costs and large secret keys, our performance evalua-
tions have shown that the proposed protocol T0RTT
is a plausible application scenario for this new crypto-
graphic primitive.

Puncturable KEMs usually do not scale well, since
they require a centralized architecture and get unman-
ageable with a growing number of connections. Neither
of those drawbacks affect their use in onion networks.
Especially in the Tor network, onion routers already re-
place their onion keys frequently and are usually com-
putationally idle since they do not host other applica-
tions. Our evaluation showed that our proposed protocol
is able to establish circuits faster than the current cir-
cuit construction protocol based on nTor handshake. In
contrast to prior work, our protocol does not have to
sacrifice security properties such as immediate forward
secrecy to achieve this performance. Moreover, we do
not require a trusted third party to be involved in the
secret key generation.

Our proposed construction is only the first step in
this direction. Additional improvements in the construc-
tion of puncturable KEMs can further improve our pro-
posed generic approach. Although we propose this con-
struction for the Tor protocol, other applications might
benefit from similar approaches as well.

Acknowledgments. Funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foun-
dation) under Germany’s Excellence Strategy – EXC
2092 CASA – 390781972 and under project JA 2445/2-
1. We thank our shepherd Wouter Lueks for many
fruitful discussions, Tibor Jager for suggesting the use
of dummy onions, and Fynn Dallmeier as well as all
anonymous reviewers for their valuable comments.

T0RTT: Non-Interactive Immediate Forward-Secret Single-Pass Circuit Construction 17

References
[1] Masayuki Abe, Jens Groth, Miyako Ohkubo, and Takeya

Tango. Converting cryptographic schemes from symmetric
to asymmetric bilinear groups. In Juan A. Garay and Rosario
Gennaro, editors, Advances in Cryptology – CRYPTO 2014,
Part I, volume 8616 of Lecture Notes in Computer Science,
pages 241–260, Santa Barbara, CA, USA, August 17–21,
2014. Springer, Heidelberg, Germany.

[2] Mashael Alsabah and Ian Goldberg. Performance and secu-
rity improvements for tor: A survey. ACM Comput. Surv.,
49(2):32:1–32:36, September 2016.

[3] D. F. Aranha and C. P. L. Gouvêa. RELIC is an Efficient
LIbrary for Cryptography. https://github.com/relic-toolkit/
relic.

[4] Nimrod Aviram, Kai Gellert, and Tibor Jager. Session re-
sumption protocols and efficient forward security for TLS
1.3 0-RTT. In Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, pages
117–150. Springer, 2019.

[5] Michael Backes, Aniket Kate, and Esfandiar Mohammadi.
Ace: An efficient key-exchange protocol for onion routing. In
Proceedings of the 2012 ACM Workshop on Privacy in the
Electronic Society, WPES ’12, pages 55–64, New York, NY,
USA, 2012. ACM.

[6] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-
friendly elliptic curves of prime order. In Bart Preneel and
Stafford Tavares, editors, SAC 2005: 12th Annual Interna-
tional Workshop on Selected Areas in Cryptography, volume
3897 of Lecture Notes in Computer Science, pages 319–331,
Kingston, Ontario, Canada, August 11–12, 2006. Springer,
Heidelberg, Germany.

[7] Kevin Bauer, Joshua Juen, Nikita Borisov, Dirk Grunwald,
Douglas Sicker, and Damon McCoy. On the optimal path
length for Tor. In HotPETS in conjunction with Tenth
International Symposium on Privacy Enhancing Technologies
(PETS 2010), Berlin, Germany, 2010.

[8] Burton H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13(7):422–426, July
1970.

[9] Nikita Borisov, George Danezis, Prateek Mittal, and Parisa
Tabriz. Denial of service or denial of security? In Peng
Ning, Sabrina De Capitani di Vimercati, and Paul F. Syver-
son, editors, ACM CCS 07: 14th Conference on Computer
and Communications Security, pages 92–102, Alexandria,
Virginia, USA, October 28–31, 2007. ACM Press.

[10] Colin Boyd and Kai Gellert. A modern view on forward
security. Cryptology ePrint Archive, Report 2019/1362,
2019. https://eprint.iacr.org/2019/1362.

[11] Jan Camenisch and Anna Lysyanskaya. A formal treat-
ment of onion routing. In Victor Shoup, editor, Advances in
Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes
in Computer Science, pages 169–187, Santa Barbara, CA,
USA, August 14–18, 2005. Springer, Heidelberg, Germany.

[12] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-
ciphertext security from identity-based encryption. In Chris-
tian Cachin and Jan Camenisch, editors, Advances in Cryp-
tology – EUROCRYPT 2004, volume 3027 of Lecture Notes
in Computer Science, pages 207–222, Interlaken, Switzer-

land, May 2–6, 2004. Springer, Heidelberg, Germany.
[13] Dario Catalano, Mario Di Raimondo, Dario Fiore, Rosario

Gennaro, and Orazio Puglisi. Fully non-interactive onion
routing with forward secrecy. Int. J. Inf. Secur., 12(1):33–47,
February 2013.

[14] Dario Catalano, Dario Fiore, and Rosario Gennaro. Certifi-
cateless onion routing. In Ehab Al-Shaer, Somesh Jha, and
Angelos D. Keromytis, editors, ACM CCS 09: 16th Con-
ference on Computer and Communications Security, pages
151–160, Chicago, Illinois, USA, November 9–13, 2009.
ACM Press.

[15] David L. Chaum. Untraceable electronic mail, return ad-
dresses, and digital pseudonyms. Commun. ACM, 24(2):84–
90, February 1981.

[16] Cécile Delerablée. Identity-based broadcast encryption with
constant size ciphertexts and private keys. In Kaoru Kuro-
sawa, editor, Advances in Cryptology – ASIACRYPT 2007,
volume 4833 of Lecture Notes in Computer Science, pages
200–215, Kuching, Malaysia, December 2–6, 2007. Springer,
Heidelberg, Germany.

[17] David Derler, Kai Gellert, Tibor Jager, Daniel Slamanig, and
Christoph Striecks. Bloom filter encryption and applications
to efficient forward-secret 0-RTT key exchange. Cryptology
ePrint Archive, Report 2018/199, 2018. https://eprint.iacr.
org/2018/199.

[18] David Derler, Tibor Jager, Daniel Slamanig, and Christoph
Striecks. Bloom filter encryption and applications to effi-
cient forward-secret 0-RTT key exchange. In Jesper Buus
Nielsen and Vincent Rijmen, editors, Advances in Cryptol-
ogy – EUROCRYPT 2018, Part III, volume 10822 of Lecture
Notes in Computer Science, pages 425–455, Tel Aviv, Israel,
April 29 – May 3, 2018. Springer, Heidelberg, Germany.

[19] David Derler, Sebastian Ramacher, Daniel Slamanig, and
Christoph Striecks. I want to forget: Fine-grained en-
cryption with full forward secrecy in the distributed set-
ting. Cryptology ePrint Archive, Report 2019/912, 2019.
https://eprint.iacr.org/2019/912.

[20] Whitfield Diffie and Martin E. Hellman. New directions in
cryptography. IEEE Transactions on Information Theory,
22(6):644–654, 1976.

[21] Roger Dingledine and Nick Mathewson. Tor protocol specifi-
cation.

[22] Roger Dingledine, Nick Mathewson, and Paul Syverson.
Tor: The second-generation onion router. In Proceedings
of the 13th Conference on USENIX Security Symposium
- Volume 13, SSYM’04, pages 21–21, Berkeley, CA, USA,
2004. USENIX Association.

[23] Roger Dingledine and Steven J. Murdoch. Performance
Improvements on Tor or, Why Tor is slow and what we’re
going to do about it. https://www.torproject.org/press/
presskit/2009-03-11-performance.pdf.

[24] Taher ElGamal. A public key cryptosystem and a signature
scheme based on discrete logarithms. IEEE Transactions on
Information Theory, 31:469–472, 1985.

[25] Michael J. Freedman and Robert Morris. Tarzan: a peer-
to-peer anonymizing network layer. In Vijayalakshmi Atluri,
editor, ACM CCS 02: 9th Conference on Computer and
Communications Security, pages 193–206, Washington D.C.,
USA, November 18–22, 2002. ACM Press.

https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://eprint.iacr.org/2019/1362
https://eprint.iacr.org/2018/199
https://eprint.iacr.org/2018/199
https://eprint.iacr.org/2019/912
https://www.torproject.org/press/presskit/2009-03-11-performance.pdf
https://www.torproject.org/press/presskit/2009-03-11-performance.pdf

T0RTT: Non-Interactive Immediate Forward-Secret Single-Pass Circuit Construction 18

[26] Ian Goldberg, Douglas Stebila, and Berkant Ustaoglu.
Anonymity and one-way authentication in key exchange
protocols. Des. Codes Cryptography, 67(2):245–269, May
2013.

[27] David Goldschlag, Michael Reed, and Paul Syverson. Onion
routing. Commun. ACM, 42(2):39–41, February 1999.

[28] David M. Goldschlag, Michael G. Reed, and Paul F. Syver-
son. Hiding routing information. In Proceedings of the
First International Workshop on Information Hiding, pages
137–150, London, UK, UK, 1996. Springer-Verlag.

[29] Matthew D. Green and Ian Miers. Forward secure asyn-
chronous messaging from puncturable encryption. In 2015
IEEE Symposium on Security and Privacy, pages 305–320,
San Jose, CA, USA, May 17–21, 2015. IEEE Computer So-
ciety Press.

[30] Tim Grube, Markus Thummerer, Jörg Daubert, and Max
Mühlhäuser. Cover traffic: A trade of anonymity and ef-
ficiency. In International Workshop on Security and Trust
Management, pages 213–223. Springer, 2017.

[31] Christoph G. Günther. An identity-based key-exchange pro-
tocol. In Jean-Jacques Quisquater and Joos Vandewalle,
editors, Advances in Cryptology – EUROCRYPT’89, volume
434 of Lecture Notes in Computer Science, pages 29–37,
Houthalen, Belgium, April 10–13, 1990. Springer, Heidel-
berg, Germany.

[32] Felix Günther, Britta Hale, Tibor Jager, and Sebastian
Lauer. 0-RTT key exchange with full forward secrecy. In
Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
Advances in Cryptology – EUROCRYPT 2017, Part III, vol-
ume 10212 of Lecture Notes in Computer Science, pages
519–548, Paris, France, April 30 – May 4, 2017. Springer,
Heidelberg, Germany.

[33] Britta Hale, Tibor Jager, Sebastian Lauer, and Jörg
Schwenk. Simple security definitions for and constructions
of 0-RTT key exchange. In Dieter Gollmann, Atsuko Miyaji,
and Hiroaki Kikuchi, editors, ACNS 17: 15th International
Conference on Applied Cryptography and Network Secu-
rity, volume 10355 of Lecture Notes in Computer Science,
pages 20–38, Kanazawa, Japan, July 10–12, 2017. Springer,
Heidelberg, Germany.

[34] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg
Schwenk. On the security of TLS-DHE in the standard
model. In Reihaneh Safavi-Naini and Ran Canetti, editors,
Advances in Cryptology – CRYPTO 2012, volume 7417 of
Lecture Notes in Computer Science, pages 273–293, Santa
Barbara, CA, USA, August 19–23, 2012. Springer, Heidel-
berg, Germany.

[35] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg
Schwenk. Authenticated confidential channel establish-
ment and the security of TLS-DHE. Journal of Cryptology,
30(4):1276–1324, October 2017.

[36] Aniket Kate, Greg Zaverucha, and Ian Goldberg. Pairing-
based onion routing. In Proceedings of the 7th International
Conference on Privacy Enhancing Technologies, PET’07,
pages 95–112, Berlin, Heidelberg, 2007. Springer-Verlag.

[37] Aniket Kate, Greg M. Zaverucha, and Ian Goldberg. Pairing-
based onion routing with improved forward secrecy. ACM
Trans. Inf. Syst. Secur., 13(4):29:1–29:32, December 2010.

[38] Taechan Kim and Razvan Barbulescu. Extended tower num-
ber field sieve: A new complexity for the medium prime case.

In Matthew Robshaw and Jonathan Katz, editors, Advances
in Cryptology – CRYPTO 2016, Part I, volume 9814 of Lec-
ture Notes in Computer Science, pages 543–571, Santa Bar-
bara, CA, USA, August 14–18, 2016. Springer, Heidelberg,
Germany.

[39] Nick Mathewson and Isis Lovecruft. Allow CREATE cells
with >505 bytes of handshake data. https://dip.torproject.
org/dgoulet/torspec/blob/master/proposals/249-large-
create-cells.txt.

[40] Alfred Menezes, Palash Sarkar, and Shashank Singh. Chal-
lenges with assessing the impact of nfs advances on the
security of pairing-based cryptography. In International Con-
ference on Cryptology in Malaysia, pages 83–108. Springer,
2016.

[41] Lasse Overlier and Paul Syverson. Improving efficiency
and simplicity of Tor circuit establishment and hidden ser-
vices. In Proceedings of the 7th International Conference on
Privacy Enhancing Technologies, PET’07, pages 134–152,
Berlin, Heidelberg, 2007. Springer-Verlag.

[42] Tor Project. Tor Metrics. https://metrics.torproject.org/.
[43] Tor Project. Tor FAQ. https://www.torproject.org/docs/

faq.html.en, November 2018.
[44] M. G. Reed, P. F. Syverson, and D. M. Goldschlag. Anony-

mous connections and onion routing. IEEE J.Sel. A. Com-
mun., 16(4):482–494, September 2006.

[45] Marc Rennhard and Bernhard Plattner. Introducing mor-
phmix: Peer-to-peer based anonymous internet usage with
collusion detection. In Proceedings of the 2002 ACM Work-
shop on Privacy in the Electronic Society, WPES ’02, pages
91–102, New York, NY, USA, 2002. ACM.

[46] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A
method for obtaining digital signature and public-key cryp-
tosystems. Communications of the Association for Comput-
ing Machinery, 21(2):120–126, 1978.

[47] Paul Syverson, Gene Tsudik, Michael Reed, and Carl
Landwehr. Towards an analysis of onion routing security.
In International Workshop on Designing Privacy Enhancing
Technologies: Design Issues in Anonymity and Unobservabil-
ity, pages 96–114, Berlin, Heidelberg, 2001. Springer-Verlag.

[48] The OpenSSL Project. OpenSSL: The open source toolkit
for SSL/TLS, April 2003. www.openssl.org.

[49] Jianghong Wei, Xiaofeng Chen, Jianfeng Wang, Xuexian
Hu, and Jianfeng Ma. Forward-secure puncturable identity-
based encryption for securing cloud emails. In European
Symposium on Research in Computer Security, pages 134–
150. Springer, 2019.

A Building Block: Symmetric
Encryption

Definition 9. A symmetric encryption scheme consists
of three algorithms ENC = (Gen,Enc,Dec) with the fol-
lowing properties.
Gen(1λ)→ K. On input of a security parameter λ, the

algorithm outputs a key K.

https://dip.torproject.org/dgoulet/torspec/blob/master/proposals/249-large-create-cells.txt
https://dip.torproject.org/dgoulet/torspec/blob/master/proposals/249-large-create-cells.txt
https://dip.torproject.org/dgoulet/torspec/blob/master/proposals/249-large-create-cells.txt
https://metrics.torproject.org/
https://www.torproject.org/docs/faq.html.en
https://www.torproject.org/docs/faq.html.en
www.openssl.org

T0RTT: Non-Interactive Immediate Forward-Secret Single-Pass Circuit Construction 19

EncK(m)→ C. On input of a key K and a message m,
the algorithm outputs ciphertext C.

DecK(C)→ m. On input of a key K and ciphertext C,
the algorithm recovers a message m or returns a
failure symbol ⊥.

We say that a symmetric encryption scheme is correct
if for all m it holds that

Pr[DecK((EncK(m)) = m | KGen(1λ)→ K] = 1.

Definition 10. Consider the following IND-CCA-
security game played between an adversary A and a
challenger C
1. The challenger generates a key KGen(1λ) → K and
A is given access to the oracles EncK(·) and DecK(·).
Using these oracles, A is able to encrypt (resp. de-
crypt) arbitrary messages (resp. ciphertexts).

2. A outputs two messages m0 and m1. The challenger
flips a coin b $← {0, 1} and encrypts c $← EncK(mb)

3. The adversary receives c and may now use the ora-
cles EncK(·) and DecK(c′) for c′ 6= c.

4. Eventually, A outputs a guess b′

We define the advantage of an adversary to win the
IND-CCA security game as

AdvIND-CCA
A,ENC (λ) :=

∣∣∣∣Pr[b = b′]− 1
2

∣∣∣∣ .

B IND-CCA Security for BFKEM
Derler et al. describe the following IND-CCA security
experiment for BFKEM [18].

Definition 11. The security of a BFKEM is defined by
the following IND-CCA security game played between
an adversary A and a challenger C.
1. Challenger C generates a fresh key pair (pk, sk) $←

KGen(1λ,m, k). It computes (c∗,K0) $← Encap(pk)
and selects K1

$← K, where K is the symmetric key
space. Additionally, it draws a random bit b $← {0, 1}
and sends (pk, c∗,Kb) to the adversary A.

2. Adversary A may now ask a polynomial number of
the following queries.
– Decap(c): If c = c∗ the challenger outputs
⊥. Otherwise, the challenger computes K :=
Decap(sk, c) and returns K to A.

– Punct(c): The challenger computes sk′ :=
Punct(sk, c) and returns >.

– Corrupt: The challenger aborts if Punct(c∗) has
not been queried before. Otherwise, the chal-
lenger returns the current secret key sk to A.

3. Eventually, A will output a guess b′.
We define the advantage of an adversary A to win the
IND-CCA-security game as

AdvIND-CCA
A,BFKEM (λ) :=

∣∣∣∣Pr[b = b′]− 1
2

∣∣∣∣ .

C Proof of Theorem 3
We will conduct this proof in a sequence of games be-
tween a challenger C and an adversary A. We start with
the adversary playing the unlinkability security game.
Over a sequence of hybrid arguments, we will stepwise
transform the security game to a game where the chal-
lenger is independent of bit b. The claim then follows
from bounding the probability of distinguishing any two
consecutive games. Let Advi := |Pr[b′ = b]− 1/2| be the
advantage of A in Game i.

Game 0. This is the original unlinkability security
game ULunlink

FSSPCC(A) and therefore it holds

Pr[b = b′] = 1
2 + Advunlink

FSSPCC,A = 1
2 + Adv0.

Game 1. In this game, the challenger replaces the key
used to encrypt the onion (O0

2 = EncK(IDORw , O
0
3, c

0
3))

by a random value K∗. We claim that

Adv0 ≤ AdvIND-CCA
B1,BFKEM(λ) + Adv1.

Suppose an attacker A that can distinguish between
Game 1 and Game 0. We use A to build an attacker
B1 to break the IND-CCA security of the BFKEM
scheme. B1 plays the IND-CCA security game and re-
ceives (pk, c∗,Kb). The attacker B then queries Punct(c∗)
and Corrupt to receive the punctured secret key sk∗.
The received secret key sk∗ will be used as the se-
cret key of the honest router ORH . All other secret
and public keys are generated by A. Adversary B1 then
interacts with A as described in the security exper-
iment. Whenever the adversary B1 receives an tuple
(IDORH , c, O), B1 runs FSSPCC.DecOR(skH = sk∗, c, O)
and returns the decryption of the onion O or a dummy
onion according to Definition 8. Additionally, the ad-
versary B1 stores the received ciphertext c. After re-
ceiving the indicator symbol >, B1 computes the chal-
lenge circuits but uses the key Kb to encrypt the onion
(O0

2 = EncKb(IDORw , O
0
3, c

0
3)) with c0

2 = c∗. Since
(IDORw , O

0
3, c

0
3) is known to B1, the adversary can be-

have correctly in the challenge phase according to the
security experiment. Here it should be mentioned that

T0RTT: Non-Interactive Immediate Forward-Secret Single-Pass Circuit Construction 20

storing the ciphertexts c from Phase 1, allows the adver-
sary B1 to use the publicly-checkable puncturing por-
perty of the BFKEM. Given the challenge ciphertext
c∗, B1 can check whether O0

2 can be decapsulated or
adversary B1 must output a dummy onion where ∇ is
encrypted under a random key.
B1 checks whether c∗ can be decapsulated given

the queries made by A so far. If it can, then it re-
turns Dec(O0

2) as above. Otherwise it samples a ran-
dom identity IDOR′3

$← {ID1, . . . IDn} \ {IDORv} and
computes (K′3, c′3) $← BFKEM.Encap(pk′3). Finally, the
dummy layer ` = (IDOR′3 , c

′
3,EncK′3(∇)) is given to A.

If Kb is the real key, then we are in Game 0 and if
Kb is a random we simulate perfectly Game 1, and every
attacker that can distinguish both games can be used
to break the IND-CCA security of the BFKEM scheme.

Game 2. The next step in our proof is to replace the
encryption key for onion O1

2 = EncK(IDORw′ , O
1
3, c

1
3) by

a random value K∗. We claim that

Adv1 ≤ AdvIND-CCA
B1,BFKEM(λ) + Adv2.

The proof of this conclusion works in a similar way to
the proof given before.

Game 3. In Game 3 we replace the encrypted string
in the onion O0

2 = EncK(IDORw , O
0
3, c

0
3)) by a random

string of the same length. Any adversary that can dis-
tinguish between Game 3 and Game 2 leads to an ad-
versary that breaks the IND-CCA security of the en-
cryption scheme. Therefore we have

Adv2 ≤ AdvIND-CCA
B2,ENC (λ) + Adv3.

Again, suppose an attacker A that can distinguish be-
tween Game 3 and Game 2. We will use this attacker to
build an adversary B2 against the security of the sym-
metric encryption scheme. B2 plays against the IND-
CCA challenger. B2 interacts with A as described in
the experiment. After receiving the indicator symbol,
B2 builds the challenge circuits but replaces the onion
O0

2 with the following. B2 picks a random string Γ with
|Γ| = |(IDORw , O

0
3, c

0
3)| and sets m0 = (IDORw , O

0
3, c

0
3)

and m1 = Γ. Then, B2 uses m0 and m1 to receive a
challenge ciphertext c and sets O0

2 = c. The rest of the
experiment can be simulated by B2 correctly . If the
received ciphertext is the encryption of (IDORw , O

0
3, c

0
3)

we are in Game 2, else we simulate Game 3, and every
attacker that can distinguish both games can be used to
break the IND-CCA security of the encryption scheme.

Game 4. As before, we replace the encrypted string
in the onion O1

1 by a random string of the same length.

Thus,
Adv3 ≤ AdvIND-CCA

B2,ENC (λ) + Adv4.

The proof of this claim is similar to the proof for
Game 3.

We have now entirely replaced the plaintext and
the keys of the encrypted onions by random values. The
view of A in this game is independent from the chosen
values and from b. Therefore,

Adv4 = 0.

Summing up all advantages above we can conclude

Advunlink
FSSPCC,A(λ) ≤ 2·

(
AdvIND-CCA
B1,BFKEM(λ) + AdvIND-CCA

B2,ENC (λ)
)
.

Unlinkability and Dummy Onions. The unlinka-
bility property states that the input of an onion cannot
be linked to the output of an onion versa. To prove our
construction secure we replace the input onions with
random values in each game hop and show that an ad-
versary that can detect these changes leads to an at-
tacker that breaks the used primitive. In presence of a
correctness error it might happen, that a dummy onion
has to be generated by the reduction. If an adversary
A is able to distinguish a real output from a random
output, it would increase the advantage of A to dis-
tinguish the different games in our sequence-of-games
which in turn would lead to an attacker that can break
the security of the used BFKEM or encryption scheme.
However, this would contradict the assumption that the
respective primitive is secure.

D Instantiation in Detail
For completeness, we provide a brief overview of the
algorithms used in our implementation. Most parts of
this section are a shortened version of [18] (general defi-
nition of Bloom filters) and [17] (the construction). For
more detailed explanations we recommend reading the
corresponding sections of those publications.

In the following, we introduce Bloom filters as a
building block. Based on this building block we de-
scribe the Bloom filter encryption scheme from identity-
based broadcast encryption instantiated with Delera-
blée’s identity-based broadcast encryption scheme [16].

Additionally, we use the modified Fujisaki–Okamoto
transformation described in Section 2.6 of [18] to
achieve IND-CCA security. Alternatively, the CHK-
transformation [12] can be applied to the IBBE scheme

T0RTT: Non-Interactive Immediate Forward-Secret Single-Pass Circuit Construction 21

to achieve a more efficient decryption with the drawback
of a larger ciphertext.

Bloom Filters. A Bloom filter [8] is a probabilistic
data structure that allows a compact representation T

of a subset S ⊆ U . Formally, a Bloom filter can be con-
structed as follows.

Definition 12. A Bloom filter for set U consists of
three probabilistic polynomial-time algorithms BF =
(BFGen,BFUpdate,BFCheck) with the following proper-
ties.
BFGen(m, k)→ (H,T). On input two integers m, k ∈ N,

the algorithm samples k universal hash functions
H1, . . . ,Hk, where Hj : U → [m] and defines H :=
(Hj)j∈[k] and T = 0m. Output is (H,T).

BFUpdate(H,T, u)→ T ′. On input H = (Hj)j∈[k], T ∈
{0, 1}m and u ∈ U , the algorithm assigns T ′ := T .
It updates the i-th bit of T ′[i] := 1 for all i = Hj(u)
with j ∈ [k]. Output is T ′.

BFCheck(H,T, u)→ b. On input H = (Hj)j∈[k], T ∈
{0, 1}m and u ∈ U , the algorithm outputs a bit

b :=
∧
j∈[k]

T [Hj(u)].

Relevant properties of Bloom filters include
– Perfect completeness: A previously added element

will always be recognized by the Bloom filter,
– Compact representation: The size of the Bloom fil-

ter |T | = m is independent of S ⊆ U . A larger set S
increases only the false-positive probability,

– Bounded false-positive probability: The probability
that a Bloom filter recognizes an element u /∈ S, is
bounded by (1− e−k|S|/m)k.

For a more precise treatment of Bloom filters in the
context of Bloom filter encryption, we refer the reader
to Section 2.1 of [18].

Construction. In [17], the authors have shown how to
construct a BFKEM using any identity-based broadcast
encryption scheme as a building block. We instantiate
this construction with the identity-based broadcast en-
cryption scheme by Delerablée [16] and apply the modi-
fied Fujisaki–Okamoto transformation of [18] (in combi-
nation with the transformation to a BFKEM with sep-
arable randomness) to achieve CCA-security.

Let BF = (BFGen,BFUpdate,BFCheck) be a Bloom
filter. Let (p, e,G1,G2,GT) be public parameters of a
bilinear map e : G1 × G2 → GT with prime order p
and |p| = λ, where λ is the security parameter. Let H :
Z∗p → Z∗p, G : {0, 1}∗ → {0, 1}λ and R : {0, 1}∗ → Z∗p ×

{0, 1}2λ be cryptographic hash functions. We construct
a Bloom filter key encapsulation mechanism BFKEM =
(KGen,Encap,Decap,Punct) as follows:
– KGen(1λ,m, k): The key generation algorithm gen-

erates a Bloom filter instance by running (H,T)←
BFGen(m, k). It chooses two generators g1 ∈ G1 and
g2 ∈ G2 and a secret value γ ← Z∗p and defines

pk IBBE :=
(
w = gγ1 , v = e(g1, g2), g2, g

γ
2 , . . . , g

γk

2

)
.

For each i ∈ [m] it computes

ski = g
1

γ+H(i)
1 .

Finally, it discards γ and sets

pk := (H, pk IBBE) and sk :=
(
T, (ski)i∈[m]

)
.

– Encap(pk): Given a public key pk = (H, pk IBBE) with
pk IBBE = (w, v, g2, g

γ
2 , . . . , g

γk

2), it samples a random
seed S

$← {0, 1}λ and computes (ρ, r,K) := R(S).
Next, it computes K′ := vρ and generates indices
ij := Hj(r) for (Hj)j∈[k] := H.
Finally, the algorithm computes a ciphertext C′ =
(c1, c2, c3) with

c1 := w−ρ,

c2 := g
ρ·
∏k

j=1
(γ+H(ij))

2 ,

c3 := G(K′)⊕ S

and outputs (C,K), where ciphertext C := (C′, r).
– Decap(sk, c): The input is a secret key sk =

(T, (ski)i∈[m]) and ciphertext C = (C′, r). Again,
it generates indices ij := Hj(r) for (Hj)j∈[k] := H.
If BFCheck(H,T, r) = 1, then the algorithm returns
⊥. Else, there exists at least one index j∗ ∈ [k] such
that skij∗ 6= ⊥. The algorithm picks the smallest
index j∗ that meets the previous requirements and
computes

K′ =
(
e
(
c1, g

pj∗,r(γ)
2

)
· e(skij∗ , c2)

) 1∏k

j=1,j 6=j∗
H(ij)

,

where

pj∗,r(γ) = 1
γ

 k∏
j=1,j 6=j∗

(γ +H(ij))−
k∏

j=1,j 6=j∗
H(ij)

 .

Next, it retrieves the seed S = G(K′)⊕ c3, and veri-
fies that (C,K) = Encap(pk;S) (recomputing (C,K)
with given S). If this does not hold, it outputs ⊥.
Otherwise, it outputs K.

T0RTT: Non-Interactive Immediate Forward-Secret Single-Pass Circuit Construction 22

– Punct(sk, c): Given a secret key sk = (T, (ski)i∈[m])
and a ciphertext C = (C′, r), it invokes T ′ =
BFUpdate(H,T, r) and defines

sk′i :=

{
ski, if T ′[i] = 0
⊥, if T ′[i] = 1.

Finally, the algorithm returns sk′ = (T ′, (sk′i)i∈[m]).

This construction is IND-CCA-secure if the (f, g, F)-
GDDHE assumption, a variant of a generalization of a
Diffie–Hellman exponent assumption, holds [16–18].

E Measurements
Table 4 provides measurements of the individual oper-
ations used for the analysis in Section 6.2. The runtime
of the operations have been evaluated on a MacBook
Pro running MacOS 10.14.6 with an Intel Core i5-6267U
Processor with 2.9 GHz.

78 bit 112 bit 128 bit
Exp. Tor [O]a 0.05 0.05 0.05
Exp. in G1 [R] 0.08 0.14 0.31
Exp. in G1 [R,pc] 0.05 0.07 0.17
Exp. in G2 [R] 0.20 0.34 0.80
Exp. in G2 [R,pc] 0.12 0.22 0.47
Exp. in GT [R] 0.42 0.63 1.34
Pairing [R] 0.71 0.94 2.03

Table 4. Time required by a single operation at different secu-
rity levels in ms. R and O denotes that we measured the time
using the RELIC [3] or OpenSSL [48], respectively. pc denotes the
usage of precomputation.

a We used X25519 for all bit sizes, since OpenSSL’s implemen-
tation of X25519 has better performance than any implementa-
tion of smaller curves we tested.

F Possible Research Direction
As an alternative way to solve the efficiency issues
in Section 7, we propose a hybrid compatibility mode
which is backward compatible with the previous nTor
circuit construction. This mode would also allow a fluent
integration into the current ecosystem. This backward
compatibility mode would work as follows:

Each node in the Tor network submits its support
for T0RTT to the public directory servers. A user can
then choose his route through the Tor network as usual.
Whenever it would now send an extend cell he addi-
tionally sends a CreateT0RTT cell which is encrypted
with the appropriate keys and contains the data needed
to further extend the circuit. If an OR is not willing to
perform the T0RTT computations or is unable to since
the BFKEM decapsulation failed, it can simply fall back
to the nTor handshake.

This hybrid mode still allows constrained servers
to perform the usual nTor construction while less con-
strained nodes can take advantage of the faster and less
network intensive T0RTT circuit construction. Since the
decryption failure is basically computationally free in
the worst case our construction performs as bad as the
current nTor handshake. Depending on the position of
the nodes which do not speak T0RTT in the circuit the
improvement is greater. However, we do not claim any
security properties for this hybrid approach and leave
this as future work.

	T0RTT: Non-Interactive Immediate Forward-Secret Single-Pass Circuit Construction
	1 Introduction
	2 Onion Routing
	2.1 Single-Pass Circuit Construction

	3 Forward-Secret Single-Pass Circuit Construction
	3.1 Adversarial Model
	3.2 Two-Party Security Goals: Key Secrecy and Immediate FS
	3.3 N-Party Security Goals

	4 T0RTT
	4.1 Building Blocks
	4.2 T0RTT

	5 Security Analysis
	5.1 Two-Party Security
	5.2 N-Party Security

	6 Performance Analysis
	6.1 Instantiation
	6.2 Efficiency and Comparison

	7 Issues and Solutions
	8 Conclusion
	A Building Block: Symmetric Encryption
	B IND-CCA Security for BFKEM
	C Proof of Theorem 3
	D Instantiation in Detail
	E Measurements
	F Possible Research Direction

