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ABSTRACT
Winkle protects any validator-based byzantine fault tolerant con-

sensus mechanisms, such as those used in modern Proof-of-Stake

blockchains, against long-range attacks where old validators’ sig-

nature keys get compromised. Winkle is a decentralized secondary

layer of client-based validation, where a client includes a single

additional field into a transaction that they sign: a hash of the previ-

ously sequenced block. The block that gets a threshold of signatures

(confirmations) weighted by clients’ coins is called a “confirmed”

checkpoint. We show that under plausible and flexible security

assumptions about clients the confirmed checkpoints can not be

equivocated. We discuss how client key rotation increases secu-

rity, how to accommodate for coins’ minting and how delegation

allows for faster checkpoints. We evaluate checkpoint latency ex-

perimentally using Bitcoin and Ethereum transaction graphs, with

and without delegation of stake.
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1 INTRODUCTION
A number of blockchains are considering proof-of-stake mech-

anisms in place of proof-of-work, attracted by faster and deter-

ministic finality as well as lower energy costs. In proof-of-stake

blockchains a set of validators run a consensus protocol between

themselves and agree on the next block of ordered transactions

by collectively signing the block. Such protocols rely on the long-

term security of validators’ signature keys and a compromise of

validators’ past keys threatens full auditability through Long-Range
Attacks [11]. A long-range attack is considered successful if an

adversary was able to create an alternative chain of transactions,

starting with the same genesis block, that can not be distinguished

from the real chain. A number of solutions have been proposed to

foil long-range attacks such as publishing checkpoints off-chain in

software updates or in a reputable archive (such as the front page

of a national newspaper). Those solutions are difficult to deploy

without introducing a highly unsatisfactory vector of centralization.
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Validator key rotations help alleviate the problem, assuming

secure destruction of older keys. However, validators might have

auxiliary incentives to sell their old keys to an adversary, espe-

cially when real-world identities of validators are unknown in a

permissionless system and reputation is not at risk. When dishonest

behaviour of a validator becomes rational, real-world security of

the whole system is at great risk. We notice that corrupting a signif-

icant number of coin holders, even after they have no more stake in

the system, is far more challenging as they are much more numer-

ous than validators (we justify this assumption in Section 4). This

observation brings us to introducing Winkle — a novel mechanism

that leverages votes from clients creating a decentralized secondary

layer of client-based validation to confirm checkpoints (snapshots

of the blockchain) and to prevent long-range attacks on proof-of-

stake protocols. The voting mechanism is very simple: each client

augments their transaction with a single additional field — a hash

of a previously sequenced block. Once this transaction gets signed

by the client and submitted to the chain, it serves as a vote or a

confirmation for a block weighted by the number of coins the client

holds under their account. The block that gets a threshold of con-

firmations is called a “confirmed” checkpoint. We show that under

plausible and flexible security assumptions confirmed checkpoints

can not be equivocated and serve as irreversible snapshots of the

blockchain.

Our contributions. We design Winkle to strengthen consensus

protocols with dynamically changing validators against long-range

attacks (Sec. 2-3). Though Winkle can secure other systems as well,

it is mainly applicable to blockchains based on Byzantine Fault

Tolerant (BFT) consensus such as PBFT [29], LibraBFT [33], Tender-

mint [7], HotStuff [35], or SBFT [20]. Our solution does not require

unincentivized validators to remain honest. Instead, Winkle allows

each coin holder to augment a transaction with a vote for a previ-

ous block. We prove that after a critical mass of coins has voted

for a block, the block becomes a “confirmed checkpoint” and can-

not be equivocated even if validators who worked on constructing

this block have leaked their keys to the adversary. Furthermore, in

systems protected by Winkle, an adversary enacting a long-range

attack and building a forking chain cannot freely replicate transac-

tions from honest users since those commit to checkpoints on the

real chain. In systems with probabilistic finality (not typical proof-

of-stake systems) this mechanism also gives protection against

replay attacks as was previously observed in [15].

We give plausible and flexible security assumptions (Sec. 4),

showing trade-offs between the fraction of byzantine accounts and

the quorum size. We notice that the assumptions are far more flex-

ible than the byzantine bounds in the BFT protocols, e.g. if the
disconnected users constitute a negligible fraction, the quorum size

in Winkle can be just slightly above the bound on the byzantine

accounts. Our assumptions are also tuned to key rotations, allowing
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accounts to recover following a compromise. We put up a defini-

tion for the long-term security of the validator-based consensus

protocol (Sec. 5) and prove that Winkle satisfies the definition over-

coming challenges of weighted-by-stake voting in the presence of

constantly moving weights. We introduce a delegation mechanism,

where less active accounts can delegate their stake to more active

accounts, in order to facilitate faster confirmation of checkpoints

(e.g. a cold wallet could delegate to a hot wallet). We discuss how

to safeguard minting of coins. Finally, we simulate Winkle on the

real-world datasets of Bitcoin and Ethereum and evaluate check-

pointing delays with and without delegates (Sec. 6) showing that

the block can be confirmed within several hours to a few days,

allowing validators to safely leak their old keys after a few days of

use. We discuss related work, other applications and future research

directions (Sec. 7-9).

2 BACKGROUND AND RESEARCH
QUESTION

An account-based blockchain model. A blockchain maintains

an evolving decentralized database that keeps track of the owner-

ship of assets, and allows their transfer according to rules encoded

in transactions. We represent the database, at any consistent point,

as a key-value store, which maps account addresses to account

states: DB = {(Aj , statej ) | j = 1, 2, . . . ,N }, where Aj ∈ {0, 1}256

is the account address, statej ∈ S is the value under the account,

N is the number of accounts. The account state holds the following

values:

- pk: public key for signature verification,

- seq: an incrementing sequence number, that prevents replay

attacks,

- value: number of coins, that maps to the “voting power”.

The account’s state may also hold other meta-data or auxiliary in-

formation. To simplify notation we write DB[A] to denote account

A’s state and use field notation to represent its values: DB[A].pk,
DB[A].seq, DB[A].value. We denote by DB.N the number of ac-

counts in the database and by DB.Stot the total number of coins,

both numbers may be changing with the modifications to the data-

base, i.e. when accounts and coins get created or destroyed.

Transactions. The database evolves, from one consistent state to

the next, via processing transactions. A transaction (tx) is comprised

of the following data:

- sender: the address of the transaction’s sender,
- seq: sequence number that should match the sender’s account

seq plus one,

- program: an efficiently computable deterministic function that

mutates the state of the database, i.e. program(DB) → DB′,
- σ : a cryptographic signature over the previous fields.
To clarify expositionwe represent those values as tx.sender, tx.seq,

tx.program, tx.σ . Furthermore, we assume that we can derive from

tx.program a list of accounts that receive coins, denoted as tx.raddrs,
and corresponding amounts. In this work we principally consider

programs associated with asset transfers implementing a monetary

system, relevant to cryptocurrencies, but we also allow transactions

mutating other meta-data of user accounts (e.g. for key rotation

and delegation introduced later).

Validator BasedConsensuswithReconfiguration.We abstract

a Validator Based Consensus with Reconfiguration (VBCR) as a

mechanism that provides a chain of collectively signed blocks on

which consensus has been reached. In this work a block refers

to a long sequence of transactions (e.g. a day of activity or an

epoch of a different duration), rather than a short-term block within

the low-level consensus protocol. The first block (genesis block)

determines the initial state of the database: B0 = DB0. A chain of
blocks (B1,B2, . . .) modifies the state of the database. Each block
Bi for i > 0 is of the form Bi = [hi−1,Ti ,σi ], where hi−1 is the

hash of the previous block, i.e. hi−1 = H(Bi−1); Ti is an ordered

list of transactions and σi is a signature over (hi−1,Ti ). Given a

genesis state DB0 and the chain of blocks, we define recursively

DBi = Ti (DBi−1). Here DBi is a result of application of programs

in transactions’ list Ti one by one in a given order to DBi−1.

The system is governed by the consensus protocol run between

the validators. The validator set is determined by the set of veri-

fication keys: V = {pkk }
|V |
k=1

. Each signature key skk is private to

k-th validator. We assume there is a function gov(·) on the previous

block (or the genesis block initially)
1
, that returns the current set of

validators: Vi = gov(Bi−1). Typically, we consider the signature σi
in the block Bi = [hi−1,Ti ,σi ] as being valid if a certain threshold

of validators Vi = gov(Bi−1) have contributed to the aggregate

signature σi .
For each block Bi we define a function seq(·) which returns the

height of the block namely the number of blocks preceding it up

to the genesis block B0, the function implicitly takes the chain of

blocks as input. By convention, we use a subscript of the block to

denote the height, e.g. i = seq(Bi ).

Chain validation. A public verification function validate(·, ·) de-
fines a predicate that takes a chain of blocks as a first argument and

a new block as a second argument: validate(B,Bi+1). The output in-

dicates whether the block Bi+1 can be successfully chained with the

previous blocks B = (B0, . . . ,Bi ). The predicate encodes the busi-
ness logic of the state machine describing the blockchain. A chain

of blocks B = (B0,B1, . . . ,Bi ) is valid if either B = (B0) or recur-

sively computed predicate is true, i.e. ∀i > 0 validate(B,Bi ) = true.
Auditing any chain of blocks B, would start at block B0, append

the blocks one-by-one and test the validity of the chain incremen-

tally. The predicate validate checks validators’ signature on the

new block, checks transactions’ signatures within the new block

and applies transactions one-by-one to the database state, checking

the sequence numbers to prevent replay attacks. In more details,

taking as input B = (B0, . . . ,Bi ) and Bi+1, the predicate assumes

that ∀j ≤ i validate((B0, . . . ,Bj−1),Bj ) = true and H(Bi−1) = hi .
Let the state of the database after applying all the transactions from

the chain of blocks B in sequence be DBi . Let Bi+1 = [hi ,T,σ ].
First, the validators’ public keys are retrieved from the previous

block: pki+1
= gov(Bi ), the signature σ is verified under that key:

verify(pki , (hi ,T),σ ). If the verification fails, verify outputs false

and halts, otherwise it continues. Transactions are processed from

the list T = (t1, . . . , tk ) in order. LetDB0

i = DBi and for j = 1, . . . ,k
we verify that: (1) the sequence number is equal to the value under

1
In the VBCR abstraction block’s boundaries capture events of validators’ set change,

as those are relevant to long-range attacks.
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the account plus one: tj .seq = DBj−1

i [tj .sender].seq+ 1, (2) the sig-

nature tj .σ verifies under the public key stored under the sender’s

account (DBj−1

i [tj .sender].pk), (3) additional checks can be applied

to validate the transaction depending on the business logic of the

blockchain, encoded in the transaction program. If any of the trans-

actions fail at least one check then the procedure returns false and

halts. If transaction tj passed the checks successfully, it gets applied

to the database to advance it’s state: DBji = tj .program(DB
j−1

i ),

the sequence number under the account is incremented by one. If

the transaction was not applied successfully, the procedure outputs

false and halts.

Safety of VBCRs. We say that the chain validation audit is safe if
and only if any two parties that successfully completed the chain

validation procedure would have a consistent view of the chain of

blocks (i.e., the chains will be equivalent or a chain of one party

will be a subchain of another party’s chain).

Definition 2.1. (Perpetually honest validator) A perpetually hon-

est validator follows the protocol and maintains the secrecy of their

signing keys in perpetuity (the adversary may never have access to

them), and only signs a single block at each height.

If a sufficient number of validators are perpetually honest in

keeping all their keys (gov(Bi )) unknown to the adversary in per-

petuity, then the verification procedure ensures audit safety.

Long-Range Attacks on VBCRs. The safety of chain validation

audit described depends on validators being perpetually honest.

This imposes a heavy burden on the security of the validators’

signature keys: they need to remain secret forever, otherwise the

validity of the sequence cannot be safely audited. This motivates

us to define Eventually compromised validators as follows:

Definition 2.2. (Eventually compromised validator) An eventu-

ally compromised validator after a block Bi , leaks all its previous
signature keys {ski′ | 0 < i ′ < i} to the adversary.

Any VBCR protocol becomes unauditable under eventually com-

promised validators. For block Bi and any block Bi′ in the history

of Bi (i ′ < i), eventually the adversary will compromise sufficient

number of validators and sign an alternative block to follow Bi′
with a different set of transactions, defeating the Audit Safety prop-

erty. This problem is referred to in the literature as a long-range
attack, and Winkle strengthens Validator Based Consensus with

Reconfiguration systems against those types of attack. We note that

the assumption that eventually compromised validators provide

all signing keys before height i represents a strong adversary, and

subsumes any adversary that may have access to a subset of past

keys instead. The compromise of the old keys in BFT or proof-of-

stake consensus protocols is particularly devastating as creating an

alternative chain is computationally inexpensive.

3 THEWINKLE MECHANISM

Definitions. Without losing generality we assume that the set

of validator keys may change at each block. Each block defines a

checkpoint that coin holders can vote to confirm in the future, as

illustrated (see Fig. 1). A checkpoint is a binding commitment to a

chain of blocks sequenced by the VBCR: ckpti = H(B), where B is

the last block the checkpoint points to. We abuse the notation and

define the height written as a subscript of a checkpoint as being

equal to the height of a block it is committing to. In turn this height

defines a global order on all checkpoints referring to a sequence of

blocks produced by a secure VBCR.

We call two checkpoints ckpti , ckptj consistent if they commit

to blocks Bi , Bj such that Bi is an ancestor of Bj (we write ckpti <
ckptj )) or vice versa. Checkpoints that are not consistent commit to

blocks that are on different sides of a fork and therefore cannot be

part of a sequence produced by a safe VBCR. We assume everybody

agrees on the genesis checkpoint: ckpt
0
= H(B0).

3.1 Basic Winkle scheme

Checkpoint voting. Each account may vote for a checkpoint by

including it in a signed transaction, and every coin carries the vote

of its sender (we call this the propagation rule). The vote is also
associated with the remaining value in the account.

For example, if an account A1 has 10 coins and sends 1 coin

to an account A2 with a vote for checkpoint ckpt, then there is a

system-wide vote with weight of 10 for checkpoint ckpt: 9 of which
is associated with A1 and 1 associated with A2. This also means

that an account could have different votes for different coins held,

e.g., if A2 received one coin from account A1 with a vote for ckpt
and one coin from another account A3 that voted for a previous

checkpoint ckpt′, then A2 carries one vote for ckpt and one vote for
ckpt′. Whenever A2 sends a new vote, then all of the coins in the

account will be counted towards that new vote, and the previous

votes are over-written. An account sending a transaction has to vote

on the latest available checkpoint, otherwise its transaction will not

get sequenced. As we show, there cannot be any two inconsistent

checkpoints within one account due to new chain validation rules.

More formally, we define a weighted vote as a tuple wVote =
(ckpt,w), where ckpt is a checkpoint andw is a real positive number.

We augment transactions and accounts with additional information:

(1) we augment each transaction txwith a parameter tx.vote that we
call a checkpoint vote: tx.vote = ckpt; (2) we change the structure
of the database: for each account A in place of value DB[A].value
we now store a set of weighted votes DB[A].votes.

Accounts managed by honest and active users follow some con-

straints: (1) all their votes are for pairwise consistent checkpoints;

and (2) each of their transactions always contains a vote for the

latest available checkpoint. Condition (2) introduces a synchrony

assumption, however this should not represent a bottleneck: first of

all, we assume blocks are abstractions of long periods of consensus

under the same set of validators (e.g. many hours or days); and,

second, clients need to be aware of the latest checkpoint since they

anyway need to know the latest validator set (from the previous

block). The set is required in order to know which entities to direct

transactions to, and also to be able to authenticate reads from the

latest state of the database.

Chain validation. We augment the predicate validate executed on
input B = (B0, . . . ,Bi ) and Bi+1 with an additional check on each

of the transactions in block Bi+1 (see the ‘Chain Validation’ rules in

Section 2). Each transaction txj in Bi+1 for j = 1, . . . must contain

a vote on ckpti , where ckpti = H(Bi ). If the transaction passes the



New-York ’20, October 21–23, 2020,
Sarah Azouvi, George Danezis, and Valeria Nikolaenko

B0
. . . Bi−1 Bi Bi+1

. . .

ckpt
0

ckpti−1
ckpti ckpti+1

pk
0

pki−1
pki pki+1

Figure 1: Each block commits the full sequence of previous blocks, and forms a potential checkpoint that clients vote to
confirm. Validator membership and keys may change across blocks (but not within them). Block Bi is signed by the key
pki−1

= gov(Bi−1), and the key defined in pki = gov(Bi ) signs Bi+1.
checks, given the previous set of the database DBj−1

i (DB0

i = DBi )
the next state of the database is the same, except for the following

changes. (1) For each of the receiving accounts A ∈ txj .raddrs that
obtain some amount v with transaction txj , if the vote is already
in the set: (txj .vote,w) ∈ DB

j−1

i [A].votes for some w then v gets

added to the weight w of the existing element, otherwise a new

tuple (txj .vote,v) is added to the set DBj−1

i [A].votes. (2) For the

sending account A: tx.sender = A, the set DBj−1

i [A].votes gets
squashed into a single element (txj .vote,v), where v is the sum of

all the values in the set DBj−1

i [A].votes minus the value sent in the

transaction txj .
We define the highest confirmed checkpoint as a function

HighestCkpt(DB) computed over all accounts in a database DB. It
represents the highest checkpoint ckptk (k ≤ i) which precedes the

checkpoint votes of q fraction of accounts’ (weighted), i.e.∑
A∈DB
wVote∈

DB[A].votes

I(wVote.ckpt ≥ ckptk ) · wVote.w ≥ q × DB.Stot

The indicator function I(wVote.ckpt ≥ ckptk ) takes value 1 if the
vote is for a checkpoint higher than k and consistent with ckptk ,
and otherwise takes value 0. The highest confirmed checkpoint of

the database: HighestCkpt(DB) is the one with the largest height

that is supported by a fraction q of the total stake.

Validator-free full audit. To validate a confirmed checkpoint, as-

sociated with a sequence of transactions T leading to it, a client

performs the following steps: the client starts the validation pro-

cess at the genesis state DB0, which needs to be known and to be

authentic. The client then applies each transaction in the sequence

in order, recomputes the state of the database and recomputes the

HighestCkpt(·) function, according to votes in each account, to

determine the confirmed checkpoint. The client accepts the highest

confirmed checkpoint.

We show that this audit process ensures safety, in the sense that

the confirmed checkpoint returned is guaranteed to be consistent

with the state of the honest chain (i.e. the chain of transactions built

from the genesis state up to the confirmed checkpoint is guaranteed

to be exactly the same as in the honest chain). However, it does

not guarantee freshness, in the sense that the checkpoint returned

may not be the highest one in existence. Clients can query multiple

sources, and pick the highest confirmed checkpoint.

Determining the latest confirmed checkpoint is especially impor-

tant to determine the latest set of validators currently maintaining

the consensus protocol. Once the current set of validators is se-

curely determined their (valid for some period) signatures can be

used to track updates of the database state starting from the highest

known confirmed checkpoint. Validation of the chain built prior to

the known confirmed checkpoint does not involve any checks of

validators’ signatures.

3.2 Delegation
The basic Winkle mechanism requires a mass of account holders to

vote for a checkpoint to become the highest confirmed checkpoint.

Our experiments (see Section 6), suggest that many accounts within

existing blockchains are dormant, and therefore would seldomly

vote. In turn this leads to checkpoints being confirmed in months

(up to three years for Bitcoin), during which the system is vulner-

able to validator old key compromise. To reduce this latency we

introduce a simple delegation model.

An accountmay be createdwith a ‘delegate’ fieldDB[A].delegate
referencing the address of another account Ad with no delegate

field. This indicates that the voting power of account A is dele-

gated, and therefore contributes, to the weight of account Ad . This
mechanism only allows for a single level of delegation. Accounts

that delegate still need to include a vote for the latest block when

they transact. When computing the highest confirmed checkpoint,

only the most recent vote of either the account that delegates or

its delegate is counted (i.e., the stake of accounts that delegate are

counted only once, either with the delegate or independently if

their transaction is more recent than the delegate’s vote). Accounts

that delegate may change their choice of delegate through a trans-

action. When an account changes its delegate, it also includes a

vote and thus our propagation rule stays the same. For security, we

assume that honest users delegate to honest delegates only. Note

that Winkle compared to the delegated proof-of-stake systems re-

quires weaker trust assumptions from the clients. Clients need to

trust the delegates which simply confirm checkpoints and are not

running consensus protocol between themselves, any client can

act as a delegate in Winkle and is not required to setup complex

infrastructure in contrast to nodes running consensus. Moreover,

the number of delegates can be much higher than the number of

validators and each user is free to delegate to itself if he/she does

not trust other delegates.

Voting accounts act as pools, for accounts that delegate. When

pools vote often on behalf of dormant accounts, we expect check-

points to be confirmed faster. To further speedup check-pointing a

system of economic incentives may be set up to encourage pools

to vote often, as well as for other accounts to delegate to those that

do—all while preventing over-concentration of stake.

Economics of pools & decentralization. A key issue with dele-

gation is the tendency towards centralization: delegating votes to
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well operated pools is simpler for a user than voting themselves

(which requires sending transactions). At a logical extreme, one

pool may emerge with a large amount of voting power, which may

later have its key compromised and used to perform long-range

attacks. To disincentives such concentration of voting power we

use crypto-economic ideas from [6] and design an incentive scheme

that should maintain close to a constant number of pools in the

system.

We define asU > 1 a parameter to affect target number of pools

we wish to incentivize in the system. Each pool incurs some fixed

cost for operating, which we denote as Ei for pool i . Ei represents
the operational pool cost, since it must be online to execute trans-

actions and vote in an epoch, as well as an additional fee each

pool must provide the system per epoch to vote. We denote as si
the weighted vote delegated to a pool i , and as S the total vote

weight in Winkle. For each pool i we define its incentive weight as

wi = min(si ,
q·S
U ). The value q is the fraction of the vote necessary

to confirm a checkpoint.

We assume that during an epoch of length T time units some

monetary value is set aside to reward users and pools that vote to

confirm this checkpoint. We define the rate of reward per unit time

for each coin in an epoch as d . When a checkpoint is confirmed we

observe which fraction of q votes contribute to its confirmation. We

split and assign the total reward, of total value d ·T ·S , to each pool i
proportionately to its incentive weightwi . Taking into account the

costs advertised by each pool, its ‘profit’ for an epoch it contributed

to confirming is:

Ri =
wi
q · S

d ·T · S − Ei =
wi
q
d ·T − Ei

However, if the pool did not contribute a vote to confirm the

epoch, then the reward is zero – and for simplicity we assume that

the cost Ei for this epoch is also zero. Assuming that a pool manages

to participate in a fraction a′ of confirmations then its expected

reward per epoch is:

R̄i =
a′

q
wi · d ·T − a

′ · Ei

During each epoch any reward that is not distributed to pools

is kept to reward future epochs (increasing future d values). We

assume that each pool keeps a fee Fi for itself, and then distributes

the remaining Ri − Fi to the pool participants as an incentive to

remain in the pool, according to their contribution in terms of

weighted votes. If a pool does not contribute to the vote we assume

it does not keep any fee or distributes any incentive to participants.

We now determine a number of properties for the incentive

scheme above. We assume that both pool operators and users are

honest – in that they follow the Winkle protocol correctly – but are

however rational in their choice of pools. We therefore stress (in

line with recent thinking [2, 16]) that the incentive mechanism is

there to protect honest users against perverse incentives creating a

more brittle system, rather than argue that the incentive mechanism

prevents malicious users from participating (such an argument is

impossible without considering external incentives they may have

to do so, with potentially unbounded rewards).

Equilibrium implies si ≤ q·S/U . Our first argument is that a user

does not have incentive to participate in a pool with voting weight

larger than q ·S/U , and in fact a pool operator also has no incentive

to operate such a pool. This is a straight forward implication of

the incentive weight wi being capped at q · S/U : any additional

votes contributed to the pool have a zero marginal rate of return for

the pool, and a negative rate of return for users (since distribution

of the user incentives Ri − Fi is done per contribution to the pool

with no cap). A rational user will always have incentives to defect

from a pool with voting weight larger than q · S/U to a pool with

equivalent characteristics Ei , Fi and a
′
with a lower voting weight.

Therefore in an equilibrium allocation of user voting weights to

pools it must be that si ≤ q · S/U . As a result for the remaining

of our analysis we consider that wi = si ≤ a · S/U . The lack of

incentive to operate larger pools is a key part for our argument

that there will be aboutU /a pools in the system (the second part

involves bounding the number from below).

Delay to confirm an epoch. For a pool to participate and vote

it should expect at the very least a positive return. Since a vote

for a later block also counts as a vote for earlier ones, a pool may

chose to vote seldomly to reap high rewards per action. We would

instead like pools to vote on each block to ensure blocks are quickly

confirmed:

To generate a positive return on a single block it should hold

that:

a′

q
wi · d ·T − a

′ · Ei ≥ 0, therefore T ≥
q
d
·
Ei
si
.

As the cost Ei of participating as a pool increases, so does the

minimum time a pool will wait before it votes in order to guarantee

a positive return. On the other hand, the larger the voting power si
(subject to the upper bound above) the lower the delay in voting to

generate a return. This dynamic establishes a lower bound on the

pool delay in voting.

Competitive pressures also bound the delay in voting from above.

Pools observe the concentration of voting power amongst pools

(or their delay in voting). They have to compete to be within the

fraction q of voting power to confirm a block in order to generate

any returns. Therefore no pool has an incentive to vote any later

than the time a fraction q of voting power would have incentives

to vote, since it would risk not being included in the reward for the

confirmed blocks.

Characteristics of pools. Let’s call tm themaximum time atwhich

the fastest set of pools (in terms of Ei and si above) comprising a

fraction q of the voting power have incentives to vote. Any pool that
finds it unprofitable to participate before this time will be excluded

from the rewards systematically, and therefore will receive a zero

return (its value a′ will tend to zero). This establishes a couple

of constraints in terms of the size of the pools and their costs to

operate:

Assuming a pool expects to make a rate of return superior to the

fee Fi , it must hold that:

a′

q
si · d ·Tm − a

′Ei ≥ Fi

This constrains the fee pools can charge in relation to their voting

power and costs. Obviously the higher the costs they incur the

lower the fee; and the larger their voting power the higher the fees
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they can charge. This dynamic creates an upwards pressure on the

size of pools.

In fact small pools are simply not viable subject to the constraint

(by rewriting the bound above):

si ≥
q
a′

Fi + a
′Ei

d ·Tm
Even by setting a fee at Fi = 0, and making no profit, small enough

pools are not viable due to the fixed costs to participate Ei . Further,
all other things being equal users always have incentives to delegate

to larger pools, since those will make more profit and therefore

provide a potentially higher rate of user incentive. This competitive

pressure will ensure that we expect pools not only to be capped

from above to si ≤ q · S/U but also from below, leading the system

to having S/q pools of roughly equal size at equilibrium.

Competitions for user voting power. Pools have endogenous
incentives to keep their costs Ei down, since any surplus can be

turned into a larger profit Fi . Therefore if a pool has the options to
lower its cost it will. We assume that the system should require a

minimal payment of E to participate as a pool per epoch to ensure

those costs do not become zero.

However, pools also compete for users, since it is user voting

power that ultimately determines their voting power si . Users can
change their delegates, and we assume that they will move to pools

offering larger user incentives in terms of better rates of return per

vote weight delegated. The rate of return for a user delegating one

vote to pool i is:

ui =
R̄i − a

′Fi
si

=
a′

q
d ·T − a′

(
Ei + Fi

si

)
A pool can maintain an equal return to its users by either decreasing

its fee Fi or by attracting more users’ voting power to the pool. In

a competitive setting users will change their delegation to pools

offering higher returns. Therefore at equilibrium, for two pools the

rate of return per vote must be equal (ui = uj ) for users to not

switch.

Assuming two pools within the faction that confirms blocks

with likelihood a′ = q. Equality of rates of return reduces to the

constraint: sj/si = (Ej + Fj )/(Ei + Fi ), where each of the pools can

control only its own profit F , and can try to attract more user votes

s . Attracting more user votes allows a pool to increase F , but the
only tool available for doing so is increasing the rate of return per

user vote which involves decreasing F (subject to fixed costs E).
This puts a downward pressure on the fee F . Finally, for two pools

with equal user vote share s = si = sj , it holds that the difference
in fees that they are able to charge is: Fi − Fj = (Ei − Ej ). Any
fee differences are related to the difference in operational and pool

participation costs. Therefore if one pool defects from a cartel and

charges lower fees, all others will have to charge low fees, subject

to their respective costs to ensure they provide a comparable rate of

return to users, and to avoid them defecting. This dynamic supports

a competitive ecosystem of pools.

In order to propose a pool, the leader must deposit some stake,

which will be the basis of the voting power in that pool. Given

our assumption that the distribution of stake among stake holders

is more decentralized than among validators (which we justify in

section 4), there cannot be one entity that controls an important

number of pools (even though one stake holder could potentially

control more than one pool).

3.3 Minting and Stake Bleeding Attacks
Another type of a long-range attack are Stake Bleeding Attacks [17]:

an adversary, in a forking chain, may accumulate the rewards as-

sociated with creation of new blocks in order to inflate its stake

until it accumulates enough to confirm an inconsistent checkpoint.

To protect against such attacks we require every minting event to

take effect only after the block containing it gets confirmed as a

checkpoint.

Different Proof-of-Stake blockchains use different reward and

minting mechanisms, and some also contract the monetary supply.

For example, there can be a minting key capable of creating new

coins, this key does not have to stay honest and secure in perpe-

tuity. Since our mechanism guarantees that without minting an

alternative forking block can not be accepted as a checkpoint, even

if the old minting key is leaked to the adversary, the alternative

minting transaction will never take an effect, as it will have to get

checkpointed by the old money supply.

The amount of money allowed to get minted or destroyed at a

time does not have to be limited as long as the fraction of stake in

hands of the adversary remains bounded as per our assumptions

(see Section 4).

3.4 Key Rotation and Account Healing
Accounts are controlled by signature keys. Key rotation operations

shorten the lifetime of keys and prevent obsolete keys from issu-

ing new transactions. However, this does not prevent a variant of

long-range attacks on Winkle: an adversary that gains access to

an account’s old signature key that has been already rotated to a

new key, may still use the stolen key to create past transactions,

interfering with the safety of Winkle’s audit. It is prudent to expect

that any long term active account at some point may fail to protect

a historic key. In the purely static compromise model this account

would have to be considered under the control of the adversary

for ever after, it is then likely that eventually the volume of stake

under the control of such accounts would exceed any fractional

threshold, threatening the security of Winkle. Therefore we adopt

a more appropriate model where an adversary may compromise

an account’s key, but after the key is rotated may lose control over

the account. Such an adversary may also compromise some old key

that is not being currently active. An account holder Amay include

a special key rotation transaction t within block Bi , updating the

public key associated with the account to pk′. The transaction is

signed with the public key associated with the account (namely

DBi [A].pk). Following the transaction t being applied, the database
associates a new public key with account A.

We show, in our proof, that Winkle benefits from key rotations.

In cases when some historic account key is compromised, but subse-

quent keys included in a confirmed checkpoint are not, the account

does not have to be considered as contributing to the voting weight

that the adversary commands to mount a long-range attack there-

after. This provides a forward security property, which we call

account healing.
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4 SECURITY ASSUMPTIONS

Eventually Compromised Validators. In our model, we assume

that all validators are eventually compromised, and share their keys

with the adversary after a confirmed checkpoint has been generated

by Winkle. (In Section 6 we evaluate how long each block awaits

to become a confirmed checkpoint). The honest chain or database

is created by validators while they are honest and an adversarial
chain is created by the adversary after the keys have been leaked.

Without loss of generality we aggregate all validators into a single

validator and we let the concrete instantiation of the consensus

protocol to determine the number of validators, the exact form of

keys, signatures and the conditions on their validity.

Honesty of accounts. Winkle leverages honest account holders

for security. We assume account holders are harder to compromise

than validators because there are more numerous. For example

in Bitcoin, according to our experiments, as of September 2019

there are 889 accounts that hold one third of the total stake (see

Fig. 3) compared to four miners that control more than half of the

hashrate [5]. Accounts are of four types, and their type may change

over time:

- active and honest (fA) accounts are connected to the true chain,
they receive the latest checkpoint before the next checkpoint be-

comes available,

- byzantine (fB) accounts share keys with the adversary and

arbitrarily deviate from the protocol,

- eclipsed (fE) accounts get eclipsed from the honest chain during

the long-range attack and may transact on the adversarial chain

while the adversary does not control their keys,

- dead (fD) accounts that do not transact during the attack and

stay idle.

Each account belongs to only one category, therefore the fractions

representing each category add up to one fA + fB + fD + fE = 1.

Those fractions are calculated at the boundary of the blocks, i.e. for
any checkpoint ckpt we consider the corresponding state of the

database DB and look into the fraction of accounts of each type in

DB. As explained later, the fractions are weighted by the amount

of stake the accounts hold in database state DB.
Winkle operates by accounts voting for checkpoints, which are

commitments to blocks in the VBCR. Denote by q the fractional

voting power (the quorum) required to create a checkpoint. For

safety of the system, the eclipsed accounts and the adversarial

accounts should not constitute enough voting power to create a

forking chain: fE + fB < q. For liveness byzantine and active users

together should constitute a quorum: fA + fB ≥ q (we assume

byzantine nodes participate in the honest chain but also equivocate

to participate in an adversarial fork). The three equations above can

be satisfied in multiple ways, giving a trade-off between liveness

and safety of the system. At a high level we want to minimize the

voting power needed to advance the checkpoint: q → min and

we want to maximize the number of byzantine and/or eclipsable

nodes that the system can tolerate: fB, fE → max. We now discuss

different solutions to this system.

Typical BFT. In BFT systems typically the trade-offs are chosen in

the following way: q = 2/3, fA = 1/3 + δ , fB = 1/3 − δ , fE = 1/3

(where δ represents a single user’s fraction). More precisely: N =

3f + 1: q = (2f + 1)/N ; fA = (f + 1)/N ; fB = fE = f /N ; fD = 0.

Note that this solution also leads to quorum intersection, where any

two q quorums are guaranteed to intersect at some honest node.

The solution also maximizes the portion of eclipsable users.

Generic trade-off. The BFT assumption is very strong: the adver-

sary needs to compromise 1/3 of all the coin holders and eclipse

1/3 of coin holders from the network and make them believe the

adversarial fork. It is based on the assumption that the network is

adversarial and may separate honest users. In practice, it is quite

unlikely that a user will connect to the chain through a fully adver-

sarial network, and account holders are far more likely to query

multiple validators about the state of the chain. So it is far more

difficult to eclipse the accounts from the network [32], therefore

we can lower the bound on the eclipsed accounts and get a generic

trade-off between the number of byzantine users and the quorum

size as illustrated by the yellow-filled area on Fig. 2. The selected

points illustrate: Typical BFT solution (point “BFT”, Fig. 2); the

relaxed requirement on the quorum size: fB = 1/3 − δ , q = 1/2,

fA = 1/2+δ , fE = 1/6 (point #1, Fig. 2); and the increased resilience

to byzantine users (assuming those are not incentivised to break

liveness): fB = 2/3 − δ , q = 2/3, fA = 1/3 + δ , fE ≈ negl (point #2,
Fig.2).

Weighting accounts by value. To prevent Sybil attacks, where

an adversary creates many empty accounts in order to gain control

over more than fB fraction of accounts at no cost, we weight ac-

counts by the amount of coins that they hold — which we call stake.
For the rest of the paper when we talk about accounts’ fractions

(e.g. fB, q), we implicitly assume that those accounts are weighted.

Fig. 3 illustrates the number of keys protecting a given fractions of

stake for both Bitcoin and Ethereum blockchains: 2/3 of stake in

Bitcoin is protected by 14,800 keys and same fraction of stake for

Ethereum is protected by 800 keys (snapshot taken on 2019-08-01).

Note that the flexibility of the assumption may be used to enlarge

the bound on byzantine stake fB thus increasing the number of

keys required to be compromised in order to mount the long-range

attack.

Limiting transfers. Due to transactions being processed the set

of users and their stake is in constant flow. The adversary can

potentially manipulate this flow in its fork and accumulate more

than fB stake in its chain, for example, by including all transactions

where it is the recipient but no transactions where it is the sender of

coins. To mitigate this risk we additionally assume that at any state

of the honest database the adversary controls at most fy of accounts

and that the amount of stake moving during any given block is at

most fx of the total amount of stake in the system. We then choose

fy + fx /2 = fB to make sure that the adversary can not accumulate

more than fB coins in his fork (see Section 5 (Lemma 5.3)). For

example we could choose fy = 1/4 and fx = 1/6 or fy = 1/6 and

fx = 1/3 depending on the power we wish to give to the adversary.

For reference, based on measurements on Ethereum, one sixth of

the money moves in roughly a week (3 days in Bitcoin) and one

third in two weeks (one week for Bitcoin). This is consistent with

the block time frames we consider.
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Figure 2: Generic trade-off between the fraction of byzantine
users and the quorum size.

Figure 3: The number of keys holding a given fraction of
stake in logarithmic scale.

Minting. Note that the adversary is only allowed to control fyS
stake, where S is the total amount of stake in the system. But once

the minting transaction takes an effect and increases the amount

of stake to S ′ = S +M , the adversary is allowed to control more

stake: fyS
′ > fyS . In our mechanism we require that minting

happens only after the minting intent gets checkpointed: suppose

that the minting intent was issued in block Bi and the block Bi got
checkpointed in block Bj , where j > i , then the total stake increases
from S to S ′ starting in block Bj+1. This means that by the end of

block Bj , in state DBj , the adversary is still only allowed to hold at

most fyS stake compromised.

Delegation. Lastly, our protocol allows for the delegation of stake.

In this case, we assume that honest users always delegate to hon-

est pools. This strong assumption is necessary to ensure that no

adversarial pool leader can control more than fy fraction of stake

in a block. Additionally, let’s recall that since Winkle depends on

the difficulty of compromising coin-holders, we need to ensure

that enough pools are created (this is done using an appropriate

delegation scheme as shown in our analysis in Section 3.2).

5 SECURITY DEFINITION AND ARGUMENT
We provide a game-based definition for the security of Winkle

that closely mimics the interactive nature of the attacks. Without

losing generality we assume that there is a single validator, and that

they use a fresh key to sign each new block. The adversary may

adaptively compromise the users’ accounts even retrospectively, but

can not hold more than fy of accounts’ keys (and stake) at any given

block, we define this requirement formally below. The adversary can

submit transactions to be included in the next block and if the next

block advances the confirmed checkpoint, then the adversary gets

all the validator’s keys prior to this newly confirmed checkpoint.

The adversary wins if it outputs a forking chain of blocks, whose

tip, B∗, generates a confirmed checkpoint inconsistent with the

honest chain. We now put the game into more formal terms.

Definition 5.1. A validator based consensus with reconfiguration

VBCR is secure against eventually compromised validators if for any
genesis state B0 and for any polynomially bounded challenger who

holds all the secret keys in the system and outputs valid answers for

adversarial queries, for any probabilistic polynomial-time adversary

A , there is a negligible function ν (λ) such that

Pr(EXPVBCR,A (λ) = 1) ≤ ν (λ), for λ ∈ N.

The experiment EXPVBCR,A (λ) is defined as the interaction with a

challenger, where the challenger is comprised of two algorithms:

key retrieval GetKey and next block creation NextBlock, these are
stateful algorithms that implicitly take the chain built up to this

point as an input.

GetKey(A, i,B) outputs the account key: let DBi be a state of

the database built using the first i blocks of B, sk ← DBi [A].sk,
Q = Q ∪ {(i,A, sk)}, output sk.

NextBlock(T∗i ,B) creates and outputs the next block and the

secret keys of the validators used prior to the highest confirmed

checkpoint: let the next block include adversarial transactions Bi ←
[hi−1,Ti | |T∗i ,σ ], outputBi and the validator’s keys: {skt<HighestCheckpoint(Bi ).seq}

EXPVBCR,A (λ) experiment runs as follows startingwith an empty

state = ∅ and i = 0:

1. the adversary queries the keys for block Bj with j ≤ i and cre-

ates transactions to inject: (T∗i , state) ← A
GetKey(·,(B1, · · · ,Bi ))
1

(Bi−1, state),
2. the adversary gets the next block: Bi := NextBlock(T∗i , state),
3. the adversary decides if his forgery is ready: (b, state) ←

A2(Bi , state),
4. IF b = 1, THEN i ← i + 1 and GOTO (1),
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5. B∗ ← A3(state) and output 1 iff HighestCkpt(B∗) is inconsis-
tent with Bi and in the adversarial queries Q the total amount of

stake in control of the adversary never exceeds fy .

Theorem 5.2. The validator based consensus with reconfiguration
VBCR as defined in Section 2 is secure against eventually compro-

mised validators as per Definition 3.

Informally, the adversary plays the following game:

Adversary Challenger
B0, i = 1

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A, i ′ < i
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

DBi′[A].sk
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Ti
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Bi = [hi−1,Ti | |T∗i ,σ ]
{skvt<HighestCheckpoint(Bi ).seq}
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B∗
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

i += 1

Lemma 5.3. For any fraction f , if an adversary is only allowed
to compromise keys that control at most f fraction of coins in each
of the two states of the database DB1 and DB2 = T(DB1) (here DB2

is the result of applying the sequence T of transactions to DB1) and
T moves at most p amount of stake between the keys, then for any
sub-sequence of transactions T∗ ⊆ T the amount of stake in hands of
the adversary in DB∗ = T∗(DB1) is at most f + p/2.

Proof. Suppose in DB1 the adversary controls f − ∆ of coins

for some ∆ ≥ 0. Suppose that in the sequence of transactions

T adversarial addresses send S amount of coins and receive R

amount of coins. To accumulate the maximum amount of stake in

T∗, the adversary needs to include transactions it receives and to

drop transactions that it is sending out. Therefore the adversary

will be able to accumulate at most maxamount = (f − ∆) + R. We

consider two different cases. In the first case let’s assume that the

adversary receives less than ∆ stake: R ≤ ∆, then we trivially have

maxamount ≤ f ≤ f + p/2.
In the second case we assume R > ∆. Let’s write R = ∆ + δ

for some δ > 0. In DB2 the adversary cannot hold more than f
and thus we have: (f − ∆) + (∆ + δ ) − S ≤ f . Which in turns

implies δ − S ≤ 0, adding (∆ + δ ) to both parts equivalently get (*)

∆ + 2δ ≤ S + ∆ + δ . Since no more than p stake can move in T, we
have R + S ≤ p, therefore (**) ∆ + δ + S ≤ p. Inequalities (*) and

(**) gives us that ∆ + 2δ ≤ p or equivalently δ ≤
p−∆

2
(***).

Now going tomaxamount, we have:maxamount = f −∆+∆+δ =

f +δ ≤ f +
p−∆

2
≤ f +

p
2
by (***). And hencemaxamount ≤ f +p/2,

therefore the adversary cannot obtain more than f + p/2 in its

sub-sequence of transactions T∗. □

Proof of Theorem 5.2. Suppose that the adversary has won

the game and successfully produced a forgery B∗, s.t. ckpt∗ :=

HighestCkpt(B∗) is inconsistent with Bi . Denote the latest com-

mon ancestor block of B∗ and Bi as Bparent. The adversary has

the validator’s key for Bparent to sign the conflicting descendant

block creating a fork. By definition of the checkpoints at least q of

weighted accounts in the adversarial chain has voted for ckpt∗ or
some later one. We prove that this event contradicts at least one

of our assumptions. We do so by first considering a very simple

variant of our system (Case 1) and incrementally adding additional

features (i.e. key rotations, minting, delegation) (Case 2-4).

Recall some of the important details ofWinkle’s design described

in Sections 3:

- Assumption 1: more than 1 − fy keys are safe in the beginning

of the block (the key is safe if all the keys under that account are
not compromised within the block),

- Assumption 2: at most fx stake moves within a block,

- Assumption 3: every transaction is included in some honest

block only if it votes for the latest checkpoint (the previous most

recent block).

We also assume that fy + fx /2 = fB.

Case 1. We first consider a simplified variant of our system with

no key rotations (accounts never rotate keys and new account are

not created), no delegation (no accounts have delegates), no minting

(new coins are never minted, the only coins in the system are those

created in B0).

Denote the first pair of diverging blocks Bparent+1 and B∗
parent+1

.

By design of the system (assumption 3), transactions can be se-

quenced in the block only if these transactions vote on the previ-

ous immediate block, thus only a subset of transactions from non-

adversarial accounts in Bparent+1 can be replayed in the fork as only

those sign Bparent as a checkpoint, moreover these transactions can

only get placed in the block B∗
parent+1

. No other transactions from

the honest chain can be replayed in the adversarial fork. Having

that under Assumption 1 the adversary can control at most fy keys

and eclipse at most fE keys and by Assumption 2 in block Bparent+1

at most fx of stake moves, by applying Lemma 5.3, we get that there

are no subset of transactions of the honest block Bparent+1 such that

if they are applied to DBparent more than fE + fy + fx /2 = fE + fB
of weight gets concentrated jointly under the compromised and

eclipsed accounts in the resulting state of the database. Thus since

fE + fB < q the adversary will be able to get more than q fraction

of stake and thus will not be able to create a new checkpoint on

a forking chain. Therefore the forgery is not possible and more-

over the eclipsed users can distinguish an adversarial chain from

a true chain by the fact that new blocks do not become confirmed

checkpoints on an adversarial chain.

Case 2: Case 1 + key rotation. We now prove the theorem in the

presence of key rotations. Let’s recall that our assumption in that

case is that 1− fy of the accounts are safe between two checkpoints,

meaning that none of the keys from those accounts are ever leaked

to the adversary during any given block.

Let’s assume that the adversary has corrupted fy accounts within

block Bparent+1 that we note (A1, · · · ,Ay ). To corrupt new account,

(A′
1
, · · · ,A′y′), account A

′
i has to perform a key rotation operation in

block Bparent+2 otherwise this account would be considered unsafe

in block Bparent+1 as well, making the number of unsafe accounts

go above the allowed threshold fy . Due to assumption 3, the key

rotation for account A′i will include a vote for Bparent+1, making it

impossible to replay this key rotation transaction in the adversarial
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B0 B1
. . . Bparent Bparent+1

. . . Bi

B∗
parent+1

. . . B∗

Figure 4: Illustration of an adversarial fork in an attempt to perform a long-range attack
fork. With a similar argument, accounts (A1, · · · ,Ay ) have to per-

form a key rotation in block Bparent+1 (otherwise these accounts

would not be safe in block Bparent+2). This ensures the adversary

cannot control more than fy in any block since it cannot accumu-

late corrupted accounts from multiple blocks (see Figure 5 for a

visual illustration). In block Bparent+2 the adversary has the choice

of using the new corrupted keys (A′
1
, · · · ,A′y′) which include the

key rotation of accounts (A1, · · · ,Ay ) or ommit all the key rotations

and keep account (A1, · · · ,Ay ) corrupted in the adversarial chain

but none of the (A′
1
, · · · ,A′y′) accounts. In both cases the same ar-

gument as in Lemma 5.3 can be made and the maximum amount

that the adversary can now hold is still fy + p/2 as the conditions

on money spent or received from either accounts are similar. The

proof from case 1 is thus still valid.

[pkA1

→ pkA2

,B0]σA
. . .

[pkB1

→ pkB2

,B1]σB
. . .

Block B1 Block B2

Figure 5: The adversary that knows pkA1
and pkB2

cannot use
both keys in its forking chain because the second key rota-
tion includes a commitment to block B1 which include the
first key rotation, healing the compromised key.

Case 3: Case 2 + delegation. We now prove the result in the case

where delegation is enabled. As a reminder, in the case of dele-

gation, we assume that honest users delegate to honest delegates

(assumption 4). Additionally, we require that each delegate is active

(as they are incentivized to be).

The adversary cannot control more than fy in the honest chain

by assumption 1 and 4 and cannot receive more than fx /2 of the

coins by a similar argument as in Lemma 5.3. The main difference

between the previous case is that now, eclipsed users may vote on

the adversarial chain, but have their delegate vote on the honest

chain and thus equivocate. Even in that case, under the assumption

that no more than fE users are eclipsed, we still have that the

adversary can get at most fB + fE < q of the vote in its chain.

Similarly as in case 2, if the adversary was to corrupt a previously

honest delegates, then they will have to make a key rotation that

includes a vote for the latest checkpoint, preventing the adversary,

as before, from accumulating stake over many blocks.

Case 4: Case 3 +Minting. We now prove that an adversary cannot

obtain more than fy of the stake in its chain even when money can

be minted. As explained in Section 3, the minting transaction is only

effective once the block that contains it has been checkpointed. We

will thus refer to the mint transaction as a mint-intent transaction.

If the minting key has been leaked to the adversary, the adversary

can include in its chain a mint intent that creates money for itself.

However as per Cases 1-3 of this proof the adversary cannot check-

point the alternative minting intent using the old stake. Though

the adversary can not create a minting transaction of its own it

can potentially take advantage of omitting the minting transaction

which we explore next.

Note that the adversary is only allowed to control fyS stake,

where S is the total amount of stake in the system. But once the

minting transaction takes an effect and increases the amount of

stake to S ′ = S +M , the adversary is allowed to control more stake:

fyS
′ > fyS . We now show that the adversary can not leverage

this fact, omit the minting transaction and hold compromised more

than fyS of stake in its forking chain.

Indeed, suppose that the minting intent was issued in block

Bi and the block Bi got checkpointed in block Bj , where j > i .
If the adversary tries to omit the checkpointing of the minting

intent, it has to modify block Bj or an earlier one and therefore

can not include any of the transactions from the subsequent blocks

B>j of the honest chain, but only those later transactions (e.g. key

rotations) actually allow the adversary to compromise more stake,

if the adversary can not leverage those, it can not accumulate more

than fyS stake.

In more details, after the minting intent got checkpointed the

adversary can either keep the same accounts compromised (and

receive more money on it) or compromise new accounts. In the

first case, the additional stake that the adversary receives in order

to own more than fyS of the stake must happen after Bj and thus,

by assumption 3, this stake includes a vote for checkpoint Bj . This
bounds the adversary to mint new coins. Thus if the adversary

wants to increase its stake it has to include the minting transac-

tions and cannot inflate its relative stake. Similarly, if the adversary

compromises new accounts after Bj , then by assumption these new

accounts need to be safe at state Bj and thus have operated a key

rotation after checkpoint Bj . This is because otherwise these ac-
counts would be unsafe in the previous block which contradicts our

assumption. Thus these new accounts that the adversary compro-

mises also have to include a vote for Bj by a similar argument as

before. Therefore, all the new stake that the adversary gets past the

block Bj has to include a vote for Bj and therefore the adversary

has to include the minting intent and the minting transaction to

keep a valid chain. □

6 EVALUATION OF CHECKPOINTING DELAY
The key barrier to reducingWinkle’s checkpoint confirmation delay

is users’ idleness, which is encouraged within some cryptocurrency

communities
2
. We estimate the checkpoint confirmation delay (the

2
A practice known as HODLing https://en.wikipedia.org/wiki/Hodl

https://en.wikipedia.org/wiki/Hodl
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finality time) of Winkle in the “real world”, using workloads from

the most popular cryptocurrency projects namely Ethereum and

Bitcoin. We pre-process the transactions graph for these projects by

assuming that each transaction in a block votes for the block that

precedes it; i.e., if a transaction appears in block Bi , we consider
that it votes for block Bi−1. For each block we then retroactively

determine the confirmed checkpoint as the block that has just

received q fraction of the votes. For our simulations we choose

q = 2/3 in line with the usual BFT assumptions. The finality time
shows how long the block awaits to get checkpointed by q fraction

of stake, i.e. the time validators need to stay honest.

We use Google BigQuery [19] on the Ethereum and the Bitcoin

blockchains to perform simulations. We build a database with all

addresses (or accounts) and the date of their last transaction, which

corresponds to their latest vote, voteSent. The value under the

account right after the last sent transaction is counted towards

the vote voteSent. We also list transactions received per account

after the last sent transaction, we apply the propagation rule (see

Sec. 3.1) and append them to the list of the account’s votes. This

gives us a global list of weighted votes. We rank the weighted votes

by decreasing checkpoint’s vote (i.e., most recent one first) and

retroactively determine the highest confirmed checkpoint.

Fig. 6 plots the confirmed checkpoint delays for databases at

different times. For Ethereum a checkpoint takes between 50 days

and up to a year to be confirmed (with mean 204 days), and for

Bitcoin a checkpoint takes between 4 months and up to three years

to be confirmed (with mean 601 days).

Delegation. As shown in Fig. 6, Winkle without delegation would

lead to finality times of months or years. We simulate simple del-

egation to estimate the improvement in the finality time. In our

delegation scheme, we incentivize the creation of k pools [6] of

roughly equal weight. To average out monthly fluctuations, we take

12 measurements, plot the mean as a line and standard deviation

as error bars on Fig. 7. For each month between Sep’18 and Jan’20

we choose delegates as the top k accounts that have been the most

frequently transacting during that month. More precisely, these

are the accounts whose maximum delay between two consecutive

transactions in the given month is the smallest. We assume those as

our delegates with equal voting power. We retroactively compute

the latest checkpoint confirmed on the last day of the month, by

taking the vote from the two third of delegates who sent the newest

vote. The results, depending on the number of delegates k between

a few and one million are presented in Fig. 7. To better understand

the x-axis scale, note the number of transacting Ethereum accounts

between Sep’18 and Aug’19 is 21 million and transacting distinct

Bitcoin addresses is 113 million. As expected, the delegation scheme

drastically reduces finality time: for one thousand delegates the

finality time is about 4 hours, for 10 thousand delegates it is 20

hours, and for 100 thousand delegates it is 3.5 days.

7 RELATEDWORK
An abstract VBCR can be instantiated through a Byzantine agree-

ment protocol such as PBFT [29], or HotStuff [35]. Systems such as

Tendermint [7], SBFT [20], and Libra [33] implement such mecha-

nisms and we have designed Winkle to be relevant to those designs.

Long-range attacks do not occur in Nakamoto consensus based

Figure 6: Checkpoint confirmation delay without delegates

Figure 7: Checkpoint confirmation delaywith different num-
ber of delegates

protocols such as Bitcoin [30] or Ethereum [34] that rely on Proof-

of-work, instead of validator signatures. However, those only offer

probabilistic finality and Winkle may act as a finality layer.

Previous approaches to defeating long-range attacks. Two ap-
proaches have been proposed in the literature to foil long-range

attacks, besides using secure hardware [26]. Software checkpoint-
ing [25] periodically includes in client software a ‘checkpoint’.

Clients never accept any past contradicting blocks. This relies on

centrally trusting the software distribution process and can be

modeled as a VBCR system, secured by software developers’ keys.

These keys leaking to the adversary allows for long-range attacks.

The second approach is based on validators locking deposits [8, 36]
that are not returned in case of equivocation. It is difficult to de-

termine how long the deposits should be locked, after a validator

becomes inactive. And locking deposits for any fixed time cannot

prevent validators from losing their key after that period suffering

no penalty.
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Winkle can be interpreted as a refinement of those two tech-

niques: it allows all to determine appropriate checkpoints in a highly

decentralized manner, and allows validators that were honest to

recover their deposits after their blocks become confirmed through

a checkpoint.

Background and related techniques. The core ofWinkle is based

on confirming checkpoints using a simplified Byzantine Consistent

Broadcast [21] based on stake. This primitive is always safe but

may not lead to a checkpoint in case the initiator (the VBCR in our

case) provides two equivocating checkpoints — hence we assume

that validators are only eventually compromized.

Winkle borrows ideas from Proof-of-Stake systems proposed

as early as 2012 in the context of the Ppcoin [25], and then Snow

White [10] and Ouroboros [24]. Winkle makes similar security

assumptions, namely that a fraction of the stake is controlled by

honest clients. However, Winkle is not a consensus mechanism

but rather a finality layer, similar to Casper [9]. Fantômette [1]

and Afgjort [27] are finality layers that resemble Winkle; they rely

however on validators rather than general users to provide finality.

Ouroboros Genesis [3] has a finality layer that allows new parties

to bootstrap the correct blockchain without checkpointing.

A number of blockchains employ client-led validation. In Iota [31]

clients include references to multiple past transactions. Consensus

is secure if honest clients make more transactions than dishonest

ones. EOS consensus [14] is based on clients delegating stake to

one of a set of validators, and uses ‘Transactions as Proof of Stake

(TaPoS)’ similar to Winkle. Winkle differs in that it is a finality

layer immune to long-range attacks, rather than a full consensus

protocol.

8 DISCUSSION
Winkle provides a finality layer based on account stake. Other proof-

of-stake protocols [3, 10, 18] allow for more validators than VBCR

protocols. A natural question to ask is how usingWinkle on top of a

VBCR protocol compare to these. First, even though these protocols

are open to every coin-holder for participation, they require parties

to run sophisticated interactive computations. Some protocols may

require participants to lock some of their funds for the duration

of the protocol (or more) and in some cases, a substantial amount

of stake must be acquired in order to participate (e.g., Ethereum

proof-of-stake protocol would require 32 ether = $12,000
3
). These

protocols thus still suffer from a relatively small committee size

compared to their user-base and would benefit from additional

security against long-range attacks. Furthermore, using Winkle

on top of a VBCR protocol provides instant confirmation under

the assumption that validators stay honest for at least finality (as

defined in this paper) with a smaller committee and hence better

efficiency. Snow-white [10] and Ouroboros [3] confirmation times

are quite long (on the order of magnitude of hundreds of blocks)

hence a VBCR protocol with Winkle provides much better latency.

Winkle was inspired by the proof-of-stake literature, but it is very

different from running another proof-of-stake protocol as a finality

layer to confirm checkpoints. Winkle does not require additional

participants to run a second-layer protocol, instead Winkle relies

3
https://www.exodus.io/blog/ethereum-proof-of-stake-date/

on existing non-interactive users that submit transactions in an

ordinary (one-way) fashion and only requires minimal changes to

the VBCR protocol itself, it is therefore much simpler that the proof-

of-stake protocols (it requires no leader elections, no complicated

cryptography, like cryptographic sortitions [18], nomultiple rounds

of voting and no separate special committee).

Limitations. One limitation of Winkle is that a client needs to

be aware of the latest state of the database, although this could

be solved by using some lighter client such as SPV
4
. Furthermore,

although Winkle’s security relies on a flexible set of assumptions it

remains an open problem to decide how to adjust the thresholds

dynamically. Finally, when discussing our security assumptions in

Section 4, we relied on the number of accounts used in Bitcoin and

Ethereum. We recognize that one user may hold multiple accounts

to achieve more privacy [28] and the number of users might be

a better parameter for our assumptions. But since this number is

unknown and can only be speculated, we rely on the number of

keys.

Extension. Winkle may also be adapted to provide finality to

proof-of-work based blockchains, that otherwise can only achieve

probabilistic finality. In such systems blocks are generated through

a proof-of-work and a fork choice rule that privileges forks with

the most work. Clients vote for the fork they consider authoritative,

after sufficient time to constitute an epoch and to ensure they are

likely to be correct. This means clients will be voting for a block

that has been confirmed in the proof-of-work sense (i.e., after x
blocks have been mined on top of it). Once q of stake confirms

a checkpoint all clients accept it, and no matter how much work

an adversary commits in the future it may never be reverted. It is

worth noting that in this case, the set of assumptions must change

as proof-of-work requires a majority of the computational power to

be honest (as opposed to validators) and Winkle would still require

a majority of the coin-holders to be honest.

Other protocols have been proposed to achieve finality in proof-

of-work systems. Karakostas et al. [22] for example proposed check-

pointing mechanisms on top of proof-of-work, but they require a

set of additional trusted parties, mitigating byzantine faults among

those parties brings significant complexity and interaction to the

protocol. Bissias and Levine [4] proposed an approach to stabilize

the block interval time, Keller and Böhme [23] built on their work

and designed a proof-of-work blockchain with a novel puzzle and a

quorum mechanism that brings finality. The solution looks promis-

ing but requires a different protocol back-bone which makes it hard

to apply to existing blockchains. Lastly, Duong et al. [13] followed

by Chepurnoy et al. [12] proposed a blockchain that combines the

proof-of-work and the proof-of-stake mechanisms, there in case

more than half of the compute power comes to the adversary, the

honest stake may still be able to protect the system. They claim to

improve scalability of proof-of-stake systems, however the proof-

of-stake layer requires active participation from the players, while

being registered to participate they need to stay alert, this is very

different fromWinkle that does not require stake holders to commit

to staying online.

4
https://en.bitcoinwiki.org/wiki/Simplified_Payment_Verification

https://www.exodus.io/blog/ethereum-proof-of-stake-date/
https://en.bitcoinwiki.org/wiki/Simplified_Payment_Verification
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Additionally to proof-of-work, Winkle could be used as a finality

layer to other proof-of-X-type protocols. For example, proof-of-

space such as Filecoin
5
or Chia

6
that are potentially vulnerable

to long-range attacks (e.g., some forms of stake-bleeding) unlike

proof-of-work cryptocurrencies.

A full proof-of-stake system may be bootstrapped through Win-

kle. Clients indicate on-chain whether they want to act as validators.

At each block, some of them are selected that represent the most

stake in the system. Their stake at this point is locked, and they

act as validators to produce a block. Once the stake has shifted

significantly, or after some number of blocks, they are rotated and

a new set is selected. Stake is released once the last checkpoint they

facilitated is confirmed by a fraction q of the stake as per Winkle.

9 CONCLUSIONS
Proof-of-stake systems based on validators are a promising way

to scale up blockchain, but are based on fundamentally different

security assumptions to proof-of-work. They are susceptible to

validators eventually becoming compromised, and to a long-range

attack. Winkle provides a decentralized approach for clients to de-

termine and validate checkpoints, that rests only on the short term

honesty of validators, and the longer term honesty of a more nu-

merous set of all the stake holders. We show that using delegation,

and assuming usage similar to Bitcoin or Ethereum, Winkle check-

points with a delay of hours or a few days. Thus validators need

only to keep their signature keys safe for this short window of time,

assuming validators frequently rotate the keys. A stake locking

mechanism incentivizing validators to stay honest can unlock stake

after a confirmed checkpoint giving tolerable delays.

Finally, Winkle as presented, has a key shortcoming: we assume

that an honest account votes for the latest checkpoint. However,

this creates a boundary race condition between blocks; it represents

a challenge for cold wallets; and it makes transactions in mempools

invalid between blocks. We took a pragmatic approach and assumed

those issues are alleviated by blocks representing periods that are

relatively long — in the order of a day or more. However, a key

open research question relates to relaxing this condition, while

preserving the security and simplicity of the Winkle scheme.
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