
Leakage-Resilient Lattice-Based Partially Blind
Signatures

D. Papachristoudis1,D. Hristu-Varsakelis1,F. Baldimtsi2,G. Stephanides1

1 Computational Systems and Software Engineering Laboratory, Department of
Applied Informatics, University of Macedonia, Thessaloniki, Greece

dpapachristoudis@uom.edu.gr
2 Department of Computer Science, George Mason University, Fairfax, Virginia, USA

Abstract. Blind signature schemes (BSS) play a pivotal role in privacy-
oriented cryptography. However, with blind signature schemes, the signed
message remains unintelligible to the signer, giving them no guarantee
that the blinded message he signed actually contained valid information.
Partially blind signature schemes (PBSS) were introduced to address pre-
cisely this problem. In this paper we present the first leakage-resilient,
lattice-based partially blind signature scheme in the literature. Our con-
struction is provably secure in the random oracle model (ROM) and of-
fers quasilinear complexity w.r.t. key/signature sizes and signing speed.
In addition, it offers statistical partial blindness and its unforgeability is
based on the computational hardness of worst-case ideal lattice problems
for approximation factors in Õ(n4) in dimension n. Our scheme benefits
from the subexponential hardness of ideal lattice problems and remains
secure even if a (1− o(1)) fraction of the signer’s secret key leaks to an
adversary via arbitrary side-channels. Several extensions of the security
model, such as honest-user unforgeability and selective failure blindness,
are also considered and concrete parameters for instantiation are pro-
posed.

1 Introduction

Typical digital signatures allow one party, termed the signer, to issue signatures
on messages or documents, validating their authenticity. Such schemes primar-
ily safeguard against impersonation of parties, tampering with messages, and
repudiation. However, when it comes to privacy-sensitive applications such as
electronic voting, e-cash, e-auctions, anonymous authentication via digital cre-
dentials, wireless sensor networks (WSN), or other cases in which preserving the
confidentiality of a user is paramount, the functionality of conventional digital
signatures falls short.

Blind Signature Schemes (BSS) are a variant of digital signatures that were
pioneered by Chaum in 1982 [14], and have since become a central point of

This paper is a postprint of a paper submitted to and accepted for publication in
IET Information Security and is subject to Institution of Engineering and Technology
Copyright. The copy of record is available at the IET Digital Library.

industrial and academic interest. Blind signature schemes separate the owner of a
message from the signer by allowing the owner of the message to interact with the
signer and obtain a signature on it that remains unintelligible from the signer’s
view. The resulting signature can still be verified against the signer’s public key,
just like with typical digital signatures. However, nobody – including the signer
himself – can link a message-signature pair to a signing transcript. As one would
suspect though, such a high level of privacy has some grave drawbacks. First, by
design, blind signatures provide perfect confidentiality for the receiving user with
regards to the message being signed. As a result, blind signatures can potentially
provide a gateway for committing “perfect” crimes [58] such as money laundering,
blackmailing, etc. Second, blind signing provides no guarantees to the signer that
the blinded message he signed, is of the right “format” or contains some valid
information that should be included in the message (e.g.: the denomination of a
digital coin, the date a voucher was issued, etc.). Moreover, given that the only
attributes over which the signer has control are those bound to his public key,
we might end up in a case where multiple keys need to be managed, resulting
to an increased complexity for both the signer and verifiers (which is even more
problematic if devices with constrained memory (e.g., smart-cards) are being
used [3]). Consider for example a signer that issues blind signatures which expire
at the end of the week, then the signer’s public key needs to be updated every
week, or consider the case of e-cash with multiple denominations: the signer/bank
will need to use a different public key for each allowable coin denomination.
These major shortcomings of blind signatures spurred the research community
to invent primitives with features that could bypass these issues.

The two major models that have been proposed, in an effort to overcome
these issues are: fair blind signature schemes (FBSS) [56,26] and partially blind
signature schemes (PBSS) [3,4]. Fair blind signatures allow a trusted third party
to revoke blindness in order to identify either the session during which a given
signature was issued (session tracing), or a signature, given a signer’s view of a
specific session (signature tracing). On the other hand, partially blind signatures
allow a signer and a user to include a commonly agreed upon piece of information
(denoted info) to the signature. The key idea for achieving this in [4] was to adapt
a method proposed in [18] by letting the signer use a secret key, along with two
public keys, one of which includes info, with the help of a public hash function. As
a result, the final signature is bound to these public keys and thus, to info as well.
This approach has the benefit of greatly simplifying key management, because
the signer only needs a single key in order to be able to include any auxiliary
information (i.e. expiration date or denomination value). Note that PBSS do
not immediately solve the problem of whether the blinded message to be signed
is of the right format (this problem would be solved generically by including
a zero-knowledge proof of knowledge on the format of the message), however,
they provide an efficient way to make sure that the info part of the message
included the necessary to application information and is of the right format. We
would also like to mention that the more recent work of [52] proposed a unified
security model called fair partially blind signatures (FPBSS), which combines

the security models of both aforementioned primitives into a single. Building a
construction in that model would be ideal for real-world applications, balancing
the individual needs of customers (blindness), service providers (partial control),
and authorities (fairness), and is currently an open problem.

However, when designing secure cryptographic schemes, one has to be mind-
ful of developments both in technology and also in the field of cryptanalysis.
Indeed, following the formulation of Shor’s algorithm [55] in 1994, the need
for alternative hardness assumptions that remain intractable even in the pres-
ence of quantum computers became as imperative as ever. By now, lattice-based
cryptography is one of the predominant approaches for constructing provably se-
cure and efficient cryptographic primitives that can withstand attacks even by a
quantum computer. This is largely due to the fact that unlike number-theoretic
hardness assumptions, there are no known algorithms for solving the lattice
problems that are typically used at the foundation of cryptographic construc-
tions, which has led to their conjectured intractability even against quantum
computer attacks. Aside from quantum-resistance, lattices additionally have the
unique feature of allowing for worst-case to average-case reductions. Phrased dif-
ferently, a randomly selected (according to some distribution) problem instance,
is at least as hard to solve as some related lattice problem in the worst case.
This feature not only allows us to reliably base security on worst-case hardness,
but also greatly simplifies key selection for constructed cryptosystems. This ex-
traordinary observation was first made by Ajtai in [5]. Moreover, lattice-based
constructions are characterized by simplicity, efficiency, and parallelizability as
one typically has to perform linear operations on vectors and matrices, as well
as reductions modulo some small integer. Finally, lattice-based cryptography
offers great versatility and is suitable for a plethora of advanced applications
like: fully-homomorphic encryption (FHE), attribute-based encryption (ABE),
general-purpose code obfuscation, hierarchical ID-based constructions, and much
more. For a more detailed listing of applications, the reader is referred to surveys
like [46].

1.1 Contributions and Related Work

A previous attempt to construct partially blind signatures from lattices was
made in [57]. However, the construction of [57] does not prove partial blindness
concretely and in fact seems to prove something weaker than the required notion
as it relies on qualitative (if not ambiguous) properties of the signer that cannot
be captured by the security model of PBSs. Furthermore, its scope is more
limited compared to our proposal because it allows disclosures of the signed
message which are acceptable in some applications (e-cash) but unacceptable in
others (e-voting, e-auctions). Finally, the scheme of [57] is vulnerable to side-
channel attacks, because of the use of discrete Gaussian sampling for the blind
signing step [29,47,22].

We propose the first leakage-resilient, lattice-based partially blind signature
scheme in the literature. Our construction is inspired by the work of [50] which
is currently the best known leakage-resilient BSS based on lattices. However,

being a regular BSS, it is subject to the limitations discussed above. Our ap-
proach represents a significant step forward for partially blind signature schemes
because:

– First, because the vast majority of previous PBSS proposals [2,3,4,16,45,35]
are based on number theoretic assumptions, such as the hardness of large in-
teger factorization, or the computation of discrete logarithms. Unfortunately,
the security of these schemes would be in jeopardy should a reasonable scale
quantum computer be constructed, thanks to Shor’s algorithm [55]. Conse-
quently, all of these constructions are ill-suited for the post-quantum era.

– Second, although a tremendous amount of progress has been made in the
design of conventional digital signatures from lattices over the past decade
[28,37,38,39,30,20,6,40,21,33], there is a serious relative dearth when it comes
to lattice-based blind signatures [50,59] (the latter of which has recently been
shown to be problematic [15]) despite their importance for privacy-preserving
applications.

– Regarding efficiency, our construction is as efficient as the state-of-the-art
lattice-based blind signature scheme in [50], both in terms of key sizes (ours
are slightly smaller) and in computational complexity. However, our con-
struction is not only one step closer to practical applications by allowing
the inclusion of a commonly agreed piece of information in the final signa-
ture, but also relies on a milder - by a factor of n (the security parameter)
- hardness assumption for the underlying worst-case lattice problem. This
is important because one has to rely on as mild assumptions as possible in
anticipation of attacks arising from emerging technologies. We show that all
of the extensions considered in [50] are also satisfied by our scheme, along
with an additional extension discussed in Section 5.1. In that case, we show
that the efficient transformation that was proposed in [54] can also be used
for PBSS, which we believe might be a result of interest on its own when
designing such schemes.

Our technique and main challenges Extending [50] to a PBSS was conjec-
tured to be possible in [51]. However, no suggestions as to how this could be
realized were given, and the problem was not formally addressed until now as
it apparently involved several technical challenges. As per the security model
of PBSS [4], we need to show that our scheme is complete, partially blind, and
unforgeable. Unfortunately, lattices lack the algebraic structure that is present
in (finite) cyclic groups, and which very naturally allows one to achieve partial
blindness by simply computing the product/sum of any group element with a
random group element. This problem can be rectified through rejection sam-
pling [50,38], which allows us to make the distributions of exchanged messages,
independent of the respective messages that they “hide”. However, this comes at
the price of added complexity. Reducing this complexity is by no means trivial:
being able to avoid/simplify rejection sampling would in turn impact many other
lattice-based constructions such as [38,20,21,50]). The complexity introduced by
rejection sampling makes all of the aforementioned security properties (as well

as the extensions that we consider) non-trivial to achieve simultaneously because
they are interconnected to one another. In particular:

– Completeness is hindered, meaning that even if both parties involved in the
signature issuing protocol are honest, the protocol may need to be restarted.
We address this issue in the same way as [50]. However, since it is possible
for the signature issuing protocol to restart, it is important to make sure
that both partial blindness and unforgeability hold, even across restarts.

– Regarding partial blindness, PBSS are built by combining the framework
of [4] with witness-indistinguishable identification protocols. For this work,
we will use (a slight variant of) the witness-indistinguishable identification
scheme of [38] as a basis. However, due to the aforementioned rejection
sampling strategy, it is not possible to apply the transformation of [4] in
a straightforward manner. This is due to the fact that rejection sampling
causes the coefficients of a blinded message to come from a larger set (roughly
by a factor of at least n) than the original message’s, whenever applied. This
turns out to be problematic when we want to “unblind” to produce the fi-
nal signature. We address this issue by having the user send a “shrinked”
version of the blinded challenge to the signer (i.e., reducing it modulo the
range of the challenge space’s coefficients - typically, modulo 3), by carefully
setting our scheme’s multiple interconnected parameters, and analyzing the
distributions of messages exchanged between the two parties. Our scheme is
shown to be partially blind and an important implication of our approach is
obtaining a milder by n hardness assumption for our scheme’s unforgeability
property. In addition, we employ a statistically hiding commitment scheme
to make sure that partial blindness is preserved across protocol restarts.

– Proving unforgeability is also non-trivial because a malicious user might
falsely claim that he failed to obtain a valid signature out of a protocol exe-
cution, thus causing the protocol to abort and potentially “buying” himself
multiple valid signatures (this scenario would obviously be catastrophic for
applications like e-cash or e-voting). We address this issue by introducing
a fourth move to our signature issuing protocol, which serves as a special
proof of failure in case the protocol has to be restarted and is akin to [50].
As in [50], we need to show that a malicious user cannot obtain a valid
signature out of an aborted protocol execution, unless he is able to solve a
computationally hard lattice problem. However, as we will see in Section 4.3,
this is considerably trickier to achieve compared to [50] because in our PBSS
setting there are multiple scenarios which may cause the protocol’s restart
(in [50] there is only one). Nevertheless, our construction’s security will be
formally proven in the ROM [10] under standard worst-case lattice problems
pertaining to ideals [41].

– Finally, with respect to leakage resilience, we will show that if we impose an
additional requirement on the size of one of our scheme’s parameters, then
it is also resistant against key-leakage via arbitrary side-channels.

Relationship between the present work and impossibility results for
blind signature schemes In [25], the authors give an impossibility result for
3-move BSS with the help of a meta-reduction (i.e., a reduction between reduc-
tions). Their approach plays the two security requirements of BSS (blindness and
unforgeability) against each other, resulting in a proof that finding black-box re-
ductions from unforgeability to non-interactive problems (like RSA, or discrete
logarithm) is hard, unless the problems involved were already easy. Their work
covers a broad class of BSS in the literature [2,14,49] and subsumes many prior
impossibility results for BSS [11,36,12]. However, the main result of [25] does
not apply to our construction. First, the results of [25] are given for BSS rather
than PBSS which means that one would first have to show that a corresponding
result also holds for PBSS. Second, [25] does not rule out reductions in the ROM
[8, p. 3]. Third and most importantly, [25] only applies to BSS with at most three
moves, that admit statistical signature-derivation checks (i.e., an observer can
determine only from the public data and messages exchanged between a mali-
cious signer and an honest user, whether the user successfully obtained a valid
signature or not). In our 4-move scheme however, it is impossible for one to tell
whether the user truly obtained a valid signature or not within 3 moves because
the user has not revealed all of the relevant information that he uses to produce
his final signature. This is important because the components of the final signa-
ture must satisfy a certain relation but also fall within certain bounded domains
for the signature to be deemed valid. This originates from our rejection sampling
strategy and is in sharp contrast to previous number theoretic BSS (and PBSS),
where all of the final signature’s components would always fall within some finite
group (e.g., ZN in the case of [14]), and thus checks like these would trivially
be true due to finite group arithmetic rules. This is in accordance with an ob-
servation made by [25], stating that if the user sends a second message to the
signer, which depends on his first message, then the resetting strategy of their
meta-reduction cannot be applied. The same argument can also be used for [50].
Additionally, the fairly more recent results of [8] also do not apply to our work.
The reason is that the results of that paper only concern schemes with a unique-
witness relation between the public and secret key. While many constructions
like the original Schnorr BSS fall under that category, our construction relies on
a many-to-one witness relation between its public and secret keys (see Lemma
5 in Section 4.3).

1.2 Organization of the Paper

The remainder of the paper is organized as follows. Section 2 sets the required
theoretical and notational groundwork. In Section 3, we describe the formal secu-
rity model of leakage-resilient PBSS. In Section 4, we give a detailed description
of our construction and show that it abides by the formal security model of
PBSS, and that it is leakage resilient. Once we have established the baseline
security, we examine additional security properties for our proposal.

2 Preliminaries

2.1 Notation

Throughout this paper, n will be used to denote the main security parame-
ter. In order to formally define partially blind signatures, we adopt the fol-
lowing notation from [24]. Let X and Y be two algorithms. We denote by
(a, b) ← 〈X (x),Y(y)〉, the joint execution of X and Y in an interactive way
with private inputs x and y respectively. The respective private outputs are a
for X and b for Y. By 〈X (x),Y(y)〉k, we mean that the interaction can occur
at most k times, where k ∈ N+ ∪ {∞}. Accordingly, if Y can invoke an un-
bounded number of executions of an interactive protocol with X in arbitrarily
interleaved order, we write Y〈X (x),.〉∞(y). Finally, Y〈X (x0),.〉1,〈X (x1),.〉1(y) means
that Y can invoke arbitrarily ordered executions with X (x0) and X (x1), but
interact with each algorithm only once. An algorithm is considered efficient if
it runs in probabilistic polynomial time (PPT). For asymptotics, we assume the
standard Landau notation [17]. Additionally, we will use “soft-O” notation to
ignore any polylogarithmic factors.

We will write x ←$ S if x is sampled uniformly from a finite set S. If A
is a probabilistic algorithm, we will write y ←$ A to denote that the output
of A is assigned to y, and that A is running with randomly chosen coins. All
logarithms are considered to be base 2. We denote the concatenation of strings
or matrix columns by ‖. A positive function f(n) is called negligible in n if for
any polynomial p(n), there exists a n0 ∈ N, such thatf(n) ≤ 1/p(n),∀n ≥ n0.
A positive function f(n) is called noticeable (or non-negligible), if there exists
a positive polynomial p(n) and a n0 ∈ N, such that f(n) ≥ 1/p(n),∀n ≥ n0. A
function f(n) is called overwhelming if 1− f(n) is negligible.

Statistical distance provides us with a means of quantifying how “far apart”
two probability distributions (or random variables) are. Although there are many
definitions of statistical distance in the literature, our analysis uses the following:

Definition 1. (Statistical Distance) Let X and Y be two discrete random
variables over a (countable) set S. The statistical distance ∆(X,Y) between X

and Y is defined as ∆(X,Y) := 1
2

∑
v∈S

∣∣∣Prob[X = v]− Prob[Y = v]
∣∣∣

A well-known property of statistical distance is that it does not increase if we
apply a function f to its arguments [42].

Lemma 1. Let S and T be finite sets, X and Y are random variables taking
values in S, and f : S → T be a function. Then ∆(f(X), f(Y)) ≤ ∆(X,Y).

2.2 Rejection Sampling

Rejection sampling is a technique that allows us to draw samples from arbitrarily
complex probability distributions. In [38], it was shown how this technique can
be utilized to construct a canonical identification scheme from lattices. Because

this technique is a crucial component to understanding our construction, we give
here a brief overview.

Let 0 < A ≤ B be two integer numbers. Now, consider the set of constant
random variables {Xc := c : c ∈ {−A, . . . , A}} with respective probability mass
functions: fXc(x) := 1, if x = c, and 0 otherwise. Furthermore, let Y be an
independent, discrete uniform random variable, taking values in the set {−B, . . .,
B} ⊇ {−A, . . . , A} and with probability mass function: gY (y) := 1

2B+1 , if y ∈
{−B, . . . , B}, and 0 otherwise.
We now define a new random variable Zc as the sum of Xc and Y , for any fixed
c ∈ {−A, . . . , A}. Obviously, Zc takes values in the set {−(A+B), . . . , A+B}.
The distribution hZc of Zc is thus the convolution of distributions fXc and
gY , and its probability mass function is given from the formula [48]: hZc(z) =∑∞
k=−∞ fXc(k)gY (z − k) =

∑A+B
k=−A+B fXc(k)gY (z − k) = Prob [Y = z − c]. No-

tice that if |z − c| > B, then the above probability is zero. On the other hand,
if |z − c| ≤ B, i.e., if −B + c ≤ z ≤ B + c, then the above probability equals

1
2B+1 . Therefore, the probability mass function of hZc is hZc(z) :=

1
2B+1 , if z ∈

{−B + c, . . . , B + c}, and 0 otherwise.
Thus, hZc is just a “shifted” version of gY by c “places”. It is not difficult to notice
that Zc is uniformly distributed over {−(B−A), . . . , B−A},∀c ∈ {−A, . . . , A}.
Thus, if we compute Zc := Xc + Y = c + Y , and only output the result if it
falls within {−(B−A), . . . , B−A} (and resample Y otherwise), then each value
z ∈ {−(B − A), . . . , B − A} will be equally likely to occur. As a result, we can
use this technique to “hide” the value of c (In other words, Zc is distributed
independently of c). We will revisit this discussion more formally in Section 4.3.

2.3 Commitment Schemes

Commitment schemes are fundamental cryptographic primitives that lie at the
heart of many modern cryptographic protocols. Informally, they allow a party to
commit to a certain value (or statement), while keeping the actual value hidden
from all others, with the ability to reveal that value at a later point.

Definition 2. (Commitment Schemes) Let com : {0, 1}∗×{0, 1}n → {0, 1}∗
be a deterministic polynomial time algorithm, where n is a security parameter.
A (non-interactive) commitment scheme consists of two protocols between two
parties which are typically named “sender” and “receiver”:
Commit phase. The sender commits to a value µ ∈ {0, 1}∗ by computing
C ← com(µ, r), where randomness r ←$ {0, 1}n, and sends C to the receiver.
Reveal phase. The sender “opens” commitment C ← com(µ, r) by revealing the
“decommitment” parameter r to the receiver. The receiver can then verify that
C = com(µ, r).

Commitment schemes need to satisfy two properties: hiding and binding. The
hiding property requires that C does not reveal any information about the com-
mitted message µ, whereas the binding property requires that no algorithm can
substitute the committed message µ with some other message µ′ 6= µ, in such

a way that C = com(µ′r) = com(µ, r′), for some randomness r′ ∈ {0, 1}n. A
commitment scheme is (t, θ)-hiding (resp. binding) if no algorithm exists run-
ning in time at most t, that can break the hiding (resp. binding) property with
a probability of at least θ. Both properties can be satisfied computationally
or unconditionally. It has been shown that a commitment scheme cannot be
unconditionally hiding and unconditionally binding at the same time [19]. For
our construction, we will assume a statistically θ(h)com-hiding and computationally
(tcom, θ

(b)
com)-binding commitment scheme. As with [50], we can use a lattice-

based cryptographic hash function such as [7] as a message authentication code
to construct a purely lattice-based scheme.

2.4 Lattices

A lattice is a set of points in n-dimensional space with a periodic structure. The
easiest way to represent a lattice is as the set of all integer linear combinations
Λ = {

∑d
i=1 xibi|xi ∈ Z} of d linearly independent vectors b1, . . . ,bd ∈ Rn.

These vectors are called a basis for the lattice Λ and are often represented as
a matrix B = [b1‖ . . . ‖bd] ∈ Rn×d. We will write Λ = Λ(B) to express this
fact. We say that the rank of the lattice is d and its dimension is n. If d = n,
the lattice is called full-rank. One of the main computationally hard problems
involving lattices is the Shortest Vector Problem (SVP) [5].

Definition 3. (The Approximate Shortest Vector Problem - SVPpγ) Let
Λ = Λ(B) be a lattice and γ ≥ 1. Find a vector v ∈ Λ \ {0}, such that ‖v‖p ≤
γminw∈Λ\{0}(‖w‖p).

SVP is conjectured to remain computationally intractable for polynomial ap-
proximation factors, even by quantum algorithms [43].

Here, we will focus on a special family of lattices that possess additional al-
gebraic structure, called ideal lattices. In particular, throughout this paper, R
will denote the polynomial ring Zq[x]/〈f〉, where q is a prime and f ∈ Z[x] is any
monic, irreducible polynomial of degree n. For efficiency reasons, the preferred
choice for f is xn+1, where n is a power of 2 (although the ring-structure induced
by this choice of f allows for much shorter key-sizes and makes operations more
efficient through the Fast Fourier Transform, it provides no further functionality
[39, p. 2]). Furthermore, the ring of integers modulo q will be identified with the
set {− q−12 , . . . , q−12 }. It is not hard to see that Rm ∼= Zmnq ,∀m ∈ N+ with vector
addition corresponding to polynomial addition, and matrix-vector multiplication
corresponding to the convolution product

∑m−1
i=0 aibi (modulo f and q) of poly-

nomials in R. We will identify any polynomial g ∈ R with its coefficient vector
g = (g0, . . . , gn−1) ∈ Znq (i.e., we will treat polynomials of R and vectors of Znq
as equivalent). Conventionally, we will denote vectors in R with boldface letters
and m-tuples of vectors in Rm with boldface letters and a hat. We slightly abuse
notation and define ‖g‖∞ := maxi |gi| and ‖ĝ‖∞ := maxi(‖gi‖∞). A lattice cor-
responds to an ideal I ⊂ R, iff every lattice vector is the coefficient vector of

a polynomial in I. The SVP problem easily translates to ideal lattices and is
called Ring-SVP.

The average-case problem upon which we will base our construction’s security
is that of finding short vectors in the kernel of the family H(R,m) of module
homomorphisms hâ∈Rm : Rm → R, x̂ 7→ â ~ x̂ :=

∑m−1
i=0 aixi, when restricting

the domain to D ⊂ R, i.e., restricting the coefficients of the input to {−d, . . . , d}.
This is the collision problem [41], which we now formally state:

Definition 4. (Collision Problem) Given a function h ←$ H(R, m), the
collision problem Col(H(R,m), D) is to find a distinct pair of preimages (x̂, ŷ) ∈
Dm ×Dm such that h(x̂) = h(ŷ).

Evidently, h is linear overRm, i.e., it satisfies h(ax̂+bŷ) = ah(x̂)+bh(ŷ),∀a,b ∈
R, and ∀x̂, ŷ ∈ Rm. The Collision Problem can trivially be shown to be as hard
as Ring-SIS [42] in the average case and transitively, at least as hard as Ring-SVP
in the worst case. The next theorem from [41] provides this connection.

Theorem 1. (Worst-case to Average-case reduction) Let D = {f ∈ R :
‖f‖∞ ≤ d}, where m > log(q)/ log(2d), and q ≥ 4dmn

√
n

log(n). An adversary A that solves the Col(h,D) problem, i.e., finds preim-
ages x̂, ŷ ∈ Dm such that x̂ 6= ŷ and h(x̂) = h(ŷ), can then use them to solve
Ring-SVP∞γ with approximation factors γ ≥ 16dmn log2(n) in the worst case.

3 Syntax and Security Model of Leakage-Resilient PBSS

PBSS is an extension of regular blind signatures [14,31,49] and a simplification of
FPBSS [52]. The security model for PBSS was formalized in [4]. A PBSS is com-
prised by three algorithms (KG, Sign = 〈S,U〉,Vf), where Sign is an interactive
protocol executed between S and U . Their specification is the following:
Key Generation. Algorithm KG(1n) outputs a private signing key sk and a
corresponding public verification key pk.
Signature Issuing Protocol. Protocol Sign(sk, µ, info) jointly executes al-
gorithms S(sk, info) and U(pk, µ, info) in an interactive manner. The signer’s
private output is a view V consisting of all messages exchanged between the par-
ties, and the user’s private output is a signature σ on message µ and the common
information info under sk. The common information info is agreed upon by the
signer and the user prior to the protocol’s execution and is assumed to be a com-
mon input to both parties. We also assume that the protocol generates a status
message like “ok” or ⊥ for the signer, denoting success or failure, respectively.
Signature Verification. Algorithm Vf(pk, µ, info, σ) returns 1 if σ is a valid
signature on message µ and common information info under public key pk, and
0 otherwise.

Signer views can be interpreted as random variables and we will consider two
views V1 and V2 “equal” if no computationally unbounded algorithm A exists
that distinguishes them with non-negligible probability.

A partially blind signature scheme needs to satisfy three properties: com-
pleteness, partial blindness, and unforgeability [4,52].

Completeness for PBSS is defined as in regular digital signatures, i.e., if both
the signer and the user comply with the signature issuing protocol, then the user
successfully obtains a valid signature with overwhelming probability.

Partial blindness generalizes the notion of blindness [31,49], and informally
requires that it is infeasible for a malicious signer to link any valid signature to
the exact instance of the signature issuing protocol in which it was created. A
formal definition is given by means of the following experiment [4,52]:

Definition 5. (Partial Blindness) A partially blind signature scheme PBSS =
(KG, 〈S,U〉,Vf) is partially blind if for any efficient algorithm S∗ (working in
modes find, issue, and guess), the probability that experiment Exppartially blind

S∗,PBSS (n)
evaluates to 1 is negligibly close to 1/2 (as a function of n), where:
Experiment Exppartially blind

S∗,PBSS (n)
(pk, sk)←$ PBSS.KG(1n)
(µ0, µ1, info, statefind)←$ S∗(find, 1n)
b←$ {0, 1}
stateissue ←$ S∗〈.,U(pk,µb,info)〉

1,〈.,U(pk,µ1−b,info)〉1(issue, statefind)
Let σb and σ1−b be the private outputs of U(pk, µb, info) and U(pk, µ1−b, info),

respectively.
If σ0 =⊥ or σ1 =⊥

b′ ←$ S∗(guess,⊥,⊥, stateissue)
Else

b′ ←$ S∗(guess, σ0, σ1, stateissue)
Return 1 iff b′ = b.

Notice that the notion of partial blindness closely resembles that of blind-
ness [49], the only difference being that now there is an additional commonly
known factor, info, that needs to be taken into account. In the above experi-
ment, the malicious signer, S∗, generates his public/secret keys via the scheme’s
key generation algorithm (we relax this requirement in Section 5.2). He then
selects messages µ0, µ1 and common information info on his own (mode find).
He then interacts with honest users U(pk, µb, info) and U(pk, µ1−b, info), after
a secret coin flip b←$ {0, 1} (mode issue). If either user instance aborts before
completion, the signer is merely notified of the event, but receives no signa-
ture. After seeing the unblinded signatures in the original order, the signer’s
task is to correctly guess b (mode guess). We further parameterize the defini-
tion of partial blindness. We will say that a PBSS is (t, θ)-partially blind, if
there is no adversary S∗, running in time at most t, that wins in the above
experiment with advantage of at least θ, where S∗’s advantage is defined as:
Advpartially blind

S∗,PBSS =
∣∣∣Prob[Exppartially blind

S∗,PBSS (n) = 1] − 1
2

∣∣∣. We will call a PBSS
statistically partially blind if it is (∞, θ)–partially blind for a negligible θ, and
perfectly partially blind if θ is 0.

Unforgeability of PBSS is stronger than the one defined for regular blind
signatures [31,49], since “recombination” attacks should be ruled out [52]. Ad-

ditionally, the adversarial user is allowed to select both the messages and the
common information info that he queries, in an adaptive manner. Put another
way, a malicious user should be unable to generate a valid signature for a new
info, instead of just for a new message [52]. The notion of unforgeability of PBSS
is defined in terms of the following game, which we derive from the more general
game of [52], where H denotes a family of random oracles:

Definition 6. (Unforgeability of PBSS) An interactive partially blind sig-
nature scheme PBSS = (KG, 〈S,U〉, Vf) is unforgeable if the following holds:
For any efficient algorithm U∗, the probability that experiment Expomf

U∗,PBSS(n)
evaluates to 1 is negligible (as a function of n), where:
Experiment Expomf

U∗,PBSS(n)
H ←$ H(1n)
(pk, sk)←$ PBSS.KG(1n)
For each info, let kinfo denote the number of successful, complete interactions:
((µ1, info, σ1), . . . , (µkinfo+1, info, σkinfo+1))←$ U∗H(.),〈S(sk),.〉∞(pk)
Return 1 iff
1. µi 6= µj ,∀i, j = 1, . . . , kinfo + 1 with i 6= j, and
2. PBSS.Vf(pk, µi, info, σi) = 1,∀i = 1, . . . , kinfo + 1.

Note that in the above experiment, the adversarial user outputs kinfo + 1
valid message-signature pairs that correspond to a single info, where 0 ≤ kinfo ≤
qsig denotes the number of successful, complete interactions that took place. To
further parameterize matters, we say that a PBSS is (t, qSig, qH , θ)–unforgeable
if there is no adversary U∗, running in time at most t, making at most qSig
signature queries and at most qH hash oracle queries, that wins at the above
experiment with probability at least θ.

Leakage-resilient cryptographic primitives are designed to remain secure even
if an arbitrary, but bounded portion of the secret key (and/or other internal state
information in general) of an honest party leaks to an adversary during compu-
tation. This augmentation of the notion of unforgeability helps safeguard against
various forms of side-channel attacks, such as: timing attacks [29,47], data re-
manence attacks, power-monitoring attacks [22], or implementations using poor
random number generation. Unfortunately, [29,47] provide clear evidence that
cache timing attacks in particular are a practical threat to post-quantum crypto-
graphic constructions. As a result, proving that a scheme is resistant against key
leakage is a very important property if we want to consider long-term security,
and constructions possessing it grant us a very high level of confidence when
deploying them in practice.

To model leakage resilience in the context of unforgeable PBSS, we refer to
[32], and grant the adversarial user access to a leakage oracle, Leak(.), in the
above unforgeability experiment (our scheme satisfies the properties required by
[32]). The adversary can adaptively query a series of functions fi, i ∈ {1, . . . , κ}
to this oracle, and receive fi(sk). We consider the signer’s secret state to consist
solely of his secret key and that his secret key does not change over time. We also
consider the same bounded leakage model as in [50]. More precisely, we impose

the constraint
∑n
i=1 |fi(sk)| < λ(|sk|), where λ = λ(.) is a function of the length

of the secret key, and dictates the amount of tolerable leakage. Of course, this
extension only makes sense as long as λ(|sk|) < min{|sk|, |σ|}, where |.| denotes
bit-length, and σ is a signature. The experiment modeling leakage resilience for
the unforgeability of partially blind signature schemes is defined below:

Definition 7. (Leakage Resilience of PBSS) An interactive partially blind
signature scheme PBSS = (KG , 〈S,U〉, Vf) is leakage-resilient with parameter
λ, if the following holds: For any efficient algorithm U∗, the probability that
experiment Expomf,λ−Leak

U∗,PBSS (n) evaluates to 1 is negligible (as a function of n),
where:
Experiment Expomf,λ−Leak

U∗,PBSS (n)
H ←$ H(1n)
(pk, sk)←$ PBSS.KG(1n)
For each info, let kinfo denote the number of successful, complete interactions:
((µ1, info, σ1), . . . , (µkinfo+1, info, σkinfo+1))←$ U∗H(.),〈S(sk),.〉∞,Leak(sk,.)(pk)
Let f1, . . . , fκ be the leakage queries of U∗, each with output length λi.
Return 1 iff
1. µi 6= µj ,∀i, j = 1, . . . , kinfo + 1 with i 6= j,
2. PBSS.Vf(pk, µi, info, σi) = 1,∀i = 1, . . . , kinfo + 1, and
3.
∑κ
i=1 λi ≤ λ(|sk|).

4 A PBSS from Ring-SIS

We now present our lattice-based PBSS. Its time and space complexity are quasi-
linear, Õ(n) in the security parameter, and its security will be proven in the
random oracle model under the worst-case assumption that Ring-SVP∞γ is hard
to solve in the ring R for γ = Õ(n4). Notice that it is possible for our scheme
to be instantiated with regular q-ary lattices and thus have its security based
on regular SIS and SVP instead. Here we describe only the more efficient ideal
lattice variant. Our scheme relies on carefully setting multiple interconnected
parameters which are detailed in Table 1 (sorted by order of appearance in our
construction). All sets are subsets ofR = Zq[x]/〈xn+1〉 and are defined by means
of a l∞−norm bound. The third column gives an indication of the asymptotic
magnitude of the corresponding parameter/set w.r.t. the main security parame-
ter n. The last column provides insight as to the role(s) that the corresponding
parameter/set has in the interactive protocol, shown in its entirety in Figure 1.
Some sets introduce a completeness defect which can be rectified by increasing
the value of parameter φ, which improves performance but requires a slightly
stronger hardness assumption (by some constant factor). As in [50], we do not
unwind the parameters ds and dε in favor of making the proofs of some lemmas
that involve them, easier to understand. In particular, for our scheme dε will be
the constant 1, but one can increase it in order to be able to sign hash values of
bit-length > n log(3).

Table 1. Scheme parameters for main security parameter n.

Parameter Value Asymptotics Purpose
n power of 2 - main security parameter
ds positive integer constant < q/(4n) O(1) secret key size, unforgeability
Ds {f ∈ R : ‖f‖∞ ≤ ds} O(1) secret key space
cm > 1/ log(2ds) Õ(1) witness indistinguishability, leakage resilience
m bcm log qc+ 1 Ω(log(n)) worst-case to average-case reduction
Dε {f ∈ R : ‖f‖∞ ≤ dε := 1} O(1) hash output size
φ positive integer constant ≥ 1 O(1) completeness, speed
Da {f ∈ R : ‖f‖∞ ≤ da := φndε} O(n) partial blindness
Da′ {f ∈ R : ‖f‖∞ ≤ da′ := φn(da + dε) + dε} O(n2) partial blindness
Gε {f ∈ R : ‖f‖∞ ≤ da′ − (da + dε)} O(n2) partial blindness
Dy {f ∈ R : ‖f‖∞ ≤ dy := φmn2dsdε} Õ(n2) witness indistinguishability
G∗ {f ∈ R : ‖f‖∞ ≤ dG∗ := dy − ndsdε} Õ(n2) witness indistinguishability, completeness defect
Dβ {f ∈ R : ‖f‖∞ ≤ dβ := φmndG∗} Õ(n3) partial blindness
G {f ∈ R : ‖f‖∞ ≤ dG := dβ − dG∗} Õ(n3) partial blindness, completeness defect
Gω {f ∈ R : ‖f‖∞ ≤ dω := da − dε} Õ(n) partial blindness, completeness defect
Gσ {f ∈ R : ‖f‖∞ ≤ dσ := dβ − dG∗} Õ(n3) partial blindness, completeness defect
Gδ {f ∈ R : ‖f‖∞ ≤ dδ := da′ − dε} O(n2) partial blindness, completeness defect
D {f ∈ R : ‖f‖∞ ≤ dD := dG∗ + dβ + ndsdω} Õ(n3) collisions under h
q ≥ 4dDmn

√
n log(n) Θ̃(n4

√
n) worst-case to average-case reduction

4.1 Our Construction

We go on to provide definitions for the triplet of algorithms (KG, Sign = 〈S,U〉,
Vf) comprising our partially blind signature scheme. Sample parameters are
given in Table 2.

– Key Generation. PBSS.KG(1n) chooses a secret key ŝ←$ D
m
s (see Table

1), and a homomorphic hash function h ←$ H(R,m). Next, it selects a
function com←$ C(1n) and a hash functionH ←$ H(1n)mapping {0, 1}∗ →
Dε ⊂ D, where C(1n) is a family of commitment schemes, mapping {0, 1}∗×
{0, 1}n → {0, 1}n. It also selects a public hash function F : {0, 1}∗ → R
that maps arbitrary strings to a random public key, whose secret key is not
known by anyone [4]. The algorithm computes the public key S← h(ŝ) and
gives the pair (ŝ,S) to the signer. For simplicity, we will treat h, com,H,F
and the rest of the parameters in Table 1 as globally known. Alternatively,
the signer can set the parameter values and include them in the public key.

– Signature Issuing Protocol. The signature issuing protocol is described
by the joint execution of algorithms S and U as depicted in Figure 1. The
signer’s private input is his secret key ŝ, whereas the user’s private input is
the message to-be-signed, µ. The common information info is assumed to be
negotiated outside the signature scheme and is thus treated as common input
to both parties. Eventually, the user obtains a signature (r, ẑ,ω, σ̂, δ) for
message µ and common information info. If the protocol needs to be restarted
during Step 2, the user only selects new a ←$ Da and a′ ←$ Da′ , and

repeats the operations that involve those, while keeping the same r ∈ {0, 1}n.
However, if the protocol is aborted during either Step 3 or Step 5, the user
must select a new r as well, to make the protocol executions independent of
one another. Finally, by means of Step 5 the signer can thwart a cheating
user who has obtained a valid signature but claims the contrary. In that case,
the signer simply terminates the protocol, leaving the user with what he has
obtained.

– Signature Verification. PBSS.Vf(S, µ, info, (r, ẑ, ω, σ̂, δ)) returns 1 as out-
put iff ẑ ∈ Gm, ω ∈ Gω, σ̂ ∈ Gmσ , δ ∈ Gδ and ω + δ (mod 2dε + 1) =
H(h(ẑ) + ωS, h(σ̂) + δF(info),F(info), com(µ, r)), and 0 otherwise.

4.2 Protocol Description

Our protocol is based on the 3-move witness-indistinguishable identification pro-
tocol of [38], in which the signer proves knowledge of a secret key ŝ ∈ Dm

s such
that h(ŝ) = S, where S is the corresponding public key. The signer also uses a
second public key Z (the "tag" public key), which is generated from the common
information info with the help of a hash function. These two keys are used in
conjunction by the signer to sign a message in such a way that the resulting
protocol is witness-indistinguishable. We construct our protocol by combining
[38] with the framework of [4].

Upon commencing, the signer selects random nonce vectors ŷ1 ∈ Dm
y and

ŷ2 ∈ Gm∗ and computes commitments Y1 = h(ŷ1) and Y = h(ŷ2) + γZ, where
Z = F(info), which he then sends to the user. As is the case with all constructions
that rely on the Fiat-Shamir heuristic [23], the user computes the challenge ε
as a function (involving H) of Y1,Y, the "tag" public key Z, and the message
to-be-signed, µ, and then “blinds” it by computing ε∗ = ε−a−a′ (mod 2dε+1),
before sending it to the signer. The signer computes e = ε∗ − γ (mod 2dε + 1),
and then the “blinded” signature ẑ∗ = ŷ1 − eŝ. Because h is a homomorphism,
the user can check that h(ẑ∗) = Se +Y1 using public knowledge only. Finally,
the user “unblinds” the signature by computing ẑ = ẑ∗ + β̂ and ω = e + a, as
well as σ̂ = ŷ2 + β̂

′ and δ = γ + a′, which correspond to common information
info. There are a few issues that need to be addressed at this point. First,
the protocol must be complete. Second, the messages transmitted by the user
must be distributed independently of the signed message µ, in order to achieve
partial blindness. Finally, to prove unforgeability, we need to make sure that the
messages transmitted by the signer do not leak information about his secret key
to the user. All issues are addressed via rejection sampling [37,38].

In Step 2, we need to make sure that the blinded challenge ε∗ that the user
computes, leaks no information about the message being signed, and that it is
uniformly distributed. This is necessary because ω+δ (mod 2dε+1) = ε (both ω
and δ will be part of the final signature) and thus ε∗ needs to hide ε. This is done
in two steps: computing the blinded challenge, and then “shrinking” it modulo
the range of coefficients in Dε. First, to hide ε we rejection-sample ε − a − a′
to make sure that it falls within Gε. For that purpose, a′ will need to be picked
from a relatively larger set than ε− a to “mask” the difference (and thus ε too).

Signer S(ŝ, info) User U(S, µ, info)

1 ŷ1 ←$ D
m
y

ŷ2 ←$ G
m
∗

γ ←$ Dε

Z← F(info)
Y1 ← h(ŷ1)

Y← h(ŷ2) + γZ Y1,Y 2 Z← F(info)
r ←$ {0, 1}n

C ← com(µ, r)

a←$ Da

a′ ←$ Da′

β̂ ←$ D
m
β

β̂′ ←$ D
m
β

ε← H(Y1 + Sa + h(β̂),

Y + Za′ + h(β̂′),Z, C)

If ε− a− a′ /∈ Gε then

Start over with fresh a, a
′

Else

3 e← ε∗ − γ (mod 2dε + 1) ε∗ ε∗ ← ε− a− a′ (mod 2dε + 1)

ẑ∗ ← ŷ1 − eŝ

If ẑ∗ /∈ Gm∗ then restart ẑ∗, ŷ2,γ 4 e← ε∗ − γ (mod 2dε + 1)

ẑ← ẑ∗ + β̂
ω ← e + a

σ̂ ← ŷ2 + β̂′

δ ← γ + a′

If (ẑ /∈ Gm ∨ ω /∈ Gω∨
σ̂ /∈ Gmσ ∨ δ /∈ Gδ∨
ω + δ (mod 2dε + 1) 6= H(h(ẑ) + ωS,

h(σ̂) + δZ,Z, C))

result← (C, a, a′, β̂, β̂′, ε)

5 If (result = ok) then stop result Else result← ok

Parse result← (C, a, a′, β̂, β̂′, ε)
If (ε∗ + a + a′(mod 2dε + 1) = ε∧

ε = H(Y1 + Sa + h(β̂),Y + Za′ + h(β̂′),

Z, C)∧
e + a + γ + a′(mod 2dε + 1)

= H(h(ẑ∗ + β̂) + (e + a)S,

h(ŷ2 + β̂′) + (γ + a′)Z,Z, C)∧

(ẑ∗ + β̂ /∈ Gm ∨ e + a /∈ Gω∨

ŷ2 + β̂′ /∈ Gmσ ∨ γ + a′ /∈ Gδ)) then

restart

Output V ← (ŷ1, ŷ2,Y1,Y, ε∗, ẑ∗,γ) Output (µ, info, (r, ẑ,ω, σ̂, δ))
or ⊥ if result 6= ok

Fig. 1. The five-step, four-move signature issuing protocol (steps shown in boxed num-
bers) for the proposed PBSS. All parameter and set definitions are given in Table 1.
For brevity, we omit any verifications performed by the two parties w.r.t. the domains
from which the protocol messages come from.

Otherwise, the user performs a “local restart” by picking fresh a and a′. The
completeness defect introduced here can effectively be lowered to 0 because the
user can repeat it locally. Second, provided that ε − a − a′ ∈ Gε, we have to
ensure that ε∗ := ε− a− a′ (mod 2dε +1) is also distributed uniformly over Dε

before sending it to the signer. We achieve this by imposing a restriction on the
"shape" of Gε. For our case of dε = 1, this can be achieved by requiring that the
range of coefficients in Gε is a multiple of 2dε+1 = 3. However, notice that if we
require that 2[da′−(da+dε)]+1 = 2(φ2n2−1)+1 ≡ 0 (mod 3), this is equivalent
to φ2 ≡ 2 (mod 3), which has no solutions. To fix this, we set the upper bound
for the coefficients in Da′ to be slightly higher, i.e., da′ := φn(da + 1) + 1 (or
da′ := φn(da+dε)+dε in general). By following the same rationale as above, for
the case of dε = 1, we obtain the congruence φ2 ≡ 1 (mod 3), which is satisfied
by all natural numbers that are not a multiple of 3. Thus, we need to select φ to
be non-congruent to 0 modulo 3, which is not a steep requirement at all, given
the natural density of such numbers. All of the parameter sets proposed in Table
2 satisfy this condition.

Upon receiving the “shrinked” blinded challenge ε∗, the signer computes e←
ε∗ − γ (mod 2dε + 1). Notice that this computation is done modulo 2dε + 1
in correspondence to the computation of ε∗ performed by the user during Step
2. Since both ε∗ and γ are uniform over Dε (which is isomorphic to Zn2dε+1),
e is also uniform over Dε. The rationale behind the reduction modulo 2dε + 1
is to make the masking of e possible during the next step of the protocol (it is
otherwise impossible to apply Lemmas 2 and 4). Next, we use rejection sampling
to hide eŝ (and thus ŝ) by adding to it a vector ŷ1 from a relatively larger set,
compared to ‖eŝ‖∞, and outputting the result only if it falls within Gm∗ . This
results in ẑ∗ = ŷ1− eŝ appearing to be uniform over Gm∗ , despite actually being
related to secret key ŝ. However, if ẑ∗ /∈ Gm∗ , the protocol must be restarted.
As we show in the next Section, the number of required trials can be greatly
reduced by increasing one of our scheme’s parameters.

Finally, rejection sampling is used again in Step 4 when the user attempts
to “unblind” the components of the final signature. More specifically, the user
masks e,γ, ẑ∗ and σ̂ with the help of a,a′, β̂ and β̂′, respectively (which were
prepared during Step 2). Unfortunately, rejection sampling needs to be applied
four times in total, which considerably decreases the user’s chance of obtaining
a signature without having to restart the protocol (see for example the first
column of Table 2). However, the completeness defect introduced during Step 4
can also be ameliorated by increasing one of the scheme’s parameters (namely, φ)
at the expense of a slightly stronger hardness assumption. In particular, if any of
ẑ∗+β, e+a, ŷ2+β̂

′ or γ+a′ does not fall within Gm, Gω, Gmσ or Gδ, respectively,
the user sends (C,a,a′, β̂, β̂′) to the signer, who then verifies whether the user
has indeed failed to obtain a valid signature, or not. The signer does so by
tracing the computations performed on the user’s side. We stress that without
this fifth final step, it is impossible for the signer to know whether the user
successfully produced a valid signature during Step 4, or not. Indeed, the signer
does not know if ẑ ∈ Gm ∧ ω ∈ Gω ∧ σ̂ ∈ Gmσ ∧ δ ∈ Gδ, because he has never

seen any of the masking terms β̂,a, β̂′,a′ that were used to compute ẑ,ω, σ̂,
and δ, respectively. However, as we will prove in Section 4.3, the signer cannot
be tricked into restarting the protocol by a malicious user, unless the latter is
able to find collisions for h in D × D. Additionally, for proving unforgeability
we will require that com is binding. Finally, to prevent the signer from learning
information about the signed message, µ, across restarts, we will require that
com is also hiding.

Table 2. Sample parameter instantiations for our PBSS. Parameters are set so that
the collision problem is hard to solve [38,53]. The parameters in the first column use the
mildest hardness assumption, the set of the second column aims to reduce the number
of required repetitions, and the third set aims to decrease the signature size, while
keeping the number of required repetitions small (other trade-offs are also possible).
For the second and third column, the optimisation goal is denoted in bold face. In all
cases, the Hermite factor is taken to be 1.007, and the estimated security level is 92 bits
[27,43]. To decrease the expected number of repetitions (e5/φ as we prove in Theorem
2), we need to increase the value of the parameter φ, thus sampling our masking vectors
throughout the protocol from larger sets. Finally, as we discuss in Section 4.2, φ must
not be a multiple of 3 (in case dε = 1).

Parameter Sample Instantiations
n (power of 2) 2048 2048 2048
q (prime ≈ n7) ≈ 277 ≈ 277 ≈ 277

φ 1 29 16
ds 1 1 21619
m 78 78 5

Repetitions 148 1.19 1.37
Secret key size 31.65 kB 31.65 kB 19.71 kB
Public key size 19.71 kB 19.71 kB 19.71 kB
Signature size 1868.8 kB 2260.6 kB 168.3 kB
Communication 3078.84 kB 3664.6 kB 320.72 kB

4.3 Analysis and Security

We now provide theorems and supporting lemmas showing that our proposed
scheme satisfies the basic security requirements of leakage-resilient partially blind
signature schemes, namely: completeness, partial blindness, unforgeability, and
leakage resilience. Once we have established the baseline security of our scheme,
we consider further extensions of the security model.

Completeness To prove the completeness of our proposed scheme, we require
the following lemma from [50]. Informally, it guarantees that the number of
restarts of our protocol is small, effectively constant.

Lemma 2. (Lemma 3.1 in [50, p. 28]) Let k = Ω(n),a, b ∈ Zk with arbi-
trary a ∈ {v ∈ Zk : ‖v‖∞ ≤ A} and random b ←$ {v ∈ Zk : ‖v‖∞ ≤ B}. If
B ≥ φkA for φ ∈ N+, then Probb[‖a+ b‖∞ ≤ B −A] > e−1/φ − o(1).

The next lemma is also required for our analysis, as it provides a bound (w.r.t.
the infinity norm) for the product of any pair of polynomials in R, when they
are reduced modulo xn + 1.

Lemma 3. (Lemma 3.2 in [50, p. 28]) Let a, b ∈ R be arbitrary polynomi-
als. Then ‖ab mod (xn + 1)‖∞ ≤ n‖a‖∞‖b‖∞.

Theorem 2. (Completeness) Let g(n) = ω(log5(n)). Our PBSS is complete
after at most g(n) (or, an expected number of e5/φ) repetitions.

Proof. First, note that if no restarts occur, the protocol produces a valid signa-
ture. That is, for all honestly generated key pairs (ŝ,S), all messages µ ∈ {0, 1}∗,
all common information info ∈ {0, 1}∗, and all signatures (r, ẑ,ω, σ̂, δ) we have:
ẑ ∈ Gm,ω ∈ Gω, σ̂ ∈ Gmσ , δ ∈ Gδ, and h(ẑ) + ωS = h(ẑ∗ + β̂) + (e + a)S =

h(ŷ1−eŝ+ β̂)+(e+a)S = Y1+aS+h(β̂). Additionally, we have: ω+δ = (e+
a)+(γ+a′) = (e+γ)+(a+a′). Therefore, by reducing modulo 2dε+1, we obtain:
ω+δ(mod 2dε+1) = (e+γ)+(a+a′)(mod 2dε+1) = ε∗+a+a′(mod 2dε+1) = ε.
Thus, we have shown that: ω+δ (mod 2dε+1) = H(h(ẑ)+ωS, h(σ̂)+δF(info),
F(info), com(µ, r)), and PBSS.Vf(S, µ, info, (r, ẑ,ω, σ̂, δ)) returns 1 as its out-
put.

Next, we consider all possible restart cases and address the introduced com-
pleteness defect in each one of them:
Restarts occurring at Step 2. Restarts during this step do not affect com-
pleteness at all, because the user just performs them locally. By applying Lemma
2, with k = n,A = da + dε and B = da′ = φn(da + dε) + dε to ensure that
ε−a−a′ ∈ Gε, we obtain an expected number of trials which is constant (e1/φ),
and which decreases as φ increases.
Restarts occurring at Step 3. In Step 3, the signer rejection-samples ẑ∗ =
ŷ1−eŝ to ensure that it lies inGm∗ . According to Lemma 3, ‖eŝ mod (xn+1)‖∞ ≤
ndsdε. Therefore, if we apply Lemma 2 with k = mn, A = ndsdε and B = dy,
we conclude that the probability of success is e−1/φ and the maximum number
of trials is ω(log(n)) during this step. Thus, after an expected number of e1/φ
trials, the protocol successfully proceeds to Step 4.
Restarts occurring after Step 4. During the “Unblind Phase” of Step 4, the
user requires that ẑ∗ + β̂ ∈ Gm, ŷ2 + β̂

′ ∈ Gmσ , e + a ∈ Gω, and γ + a′ ∈ Gδ.
Otherwise, he requests a protocol restart from the signer. By applying Lemma
2 with k = mn,A = dG∗ , B = dβ to ẑ∗ + β̂, we obtain a success probability
e−1/φ and a maximum number of trials of ω(log(n)). Similarly, for ŷ2 + β̂

′ with
k = mn,A = dG∗ , B = dβ = φmndG∗ , Lemma 2 yields a success probability
e−1/φ and a maximum number of trials of ω(log(n)). For e + a, Lemma 2 with
k = n,A = dε, and B = da = φndε yields a success probability of e−1/φ. Finally,
for γ+a′, if we apply Lemma 2 with k = n,A = da+dε, and B = φn(da+dε)+dε
yields a success probability of e−1/φ.

In total, after at most g(n) = ω(log5(n)), or an expected number of e5/φ restarts,
the protocol is indeed complete.

Remark 1. Note that all operations involved in our scheme (including restarts),
as well as sizes of private keys, public keys and signatures are of quasilinear
complexity.

Remark 2. Also note that the parameter φ controls the number of trials. Increas-
ing its value, decreases the expected number of protocol restarts, and vice-versa.

Partial Blindness The following lemma is essential for proving the partial
blindness of our scheme. It can be viewed as a Rejection Sampling Lemma similar
to that of [39]. Essentially, it states that all protocol messages are distributed
independently of the message µ, and thus leak no information.

Lemma 4. (Lemma 3.4 in [50, p. 29]) Let k ∈ N, a,a′, b ∈ Zk with arbi-
trary a,a′ ∈ {v ∈ Zk : ‖v‖∞ ≤ A}, and a random b ←$ {v ∈ Zk : ‖v‖∞ ≤ B}
for B > A. If b is such that max{‖a + b‖∞, ‖a′ + b‖∞} ≤ B − A, we define
the random variables c← a+ b and c′ ← a′ + b, otherwise, re-sample b. Then,
∆(c, c′) = 0.

In proving that our construction is partially blind, we follow an approach
similar to [50, p. 14] and show that all protocol messages exchanged between the
user and the signer, along with the final output, are distributed independently
from the signed message. For our analysis, we treat each of the exchanged mes-
sages and the output signature as random variables.

Theorem 3. (Partial Blindness) If com is θ(h)com - hiding, then our PBSS is
(∞, θ(h)com) - partially blind.

Proof. As per Exppartially blind
S∗,PBSS (n) (see Section 3), the malicious signer chooses

common information info, and two messages µ0, µ1, and then interacts with
two honest users, U(S, µb, info) and U(S, µ1−b, info), after a secret coin flip
b←$ {0, 1}.
Distribution of ε∗. Let ε∗b , ε

∗
1−b be the first protocol messages of users U(S, µ0,

info) and U(S, µ1, info), respectively. Both are of the form ε−a−a′ (mod 2dε+1),
with ε− a ∈ {f ∈ R : ‖f‖∞ ≤ da + dε} and a′ is distributed uniformly over Da′ .
First, notice that by Lemma 4 with k = n,A = da + dε and B = da′ , it follows
that ∆(εb − ab − a′b, ε1−b − a1−b − a′1−b) = 0. By applying Lemma 1 to random
variables εb − ab − a′b and ε1−b − a1−b − a′1−b, with f(X) = X (mod 2dε + 1),
we have ∆(ε∗b , ε

∗
1−b) = 0.

Distribution of ẑ. Let ẑ0, ẑ1 be part of the final output of U(S, µ0, info) and
U(S, µ1, info) respectively; Note that both are of the form ẑ∗ + β̂, for ẑ∗ ∈
Gm∗ and β̂ ←$ D

m
β . Additionally, both ẑ0 and ẑ1 lie in Gm because the users

perform rejection sampling (Step 4) on these random variables. Therefore, their
coefficients are bounded in absolute value by dβ − dG∗ . From Lemma 4 with
k = mn,A = dG∗ and B = dβ , we infer that ∆(ẑ0, ẑ1) = 0.

Distribution of ω. Let ω0,ω1 be part of the final output of U(S, µ0, info)
and U(S, µ1, info) respectively. Both are of the form e + a, for e ∈ Dε and
a ←$ Da. Additionally, both ω0 and ω1 lie in Gω because the users perform
rejection sampling (during Step 4) on these random variables. Therefore, their
coefficients are bounded in absolute value by da−dε. By applying Lemma 4 with
k = n,A = dε and B = da = φndε, we infer that ∆(ω0,ω1) = 0.
Distribution of σ̂. Let σ̂0, σ̂1 be part of the final output of U(S, µ0, info)
and U(S, µ1, info) respectively. Both are of the form ŷ2 + β̂

′, for ŷ2 ∈ Gm∗ and
β̂′ ←$ D

m
β . Additionally, both σ̂0 and σ̂1 lie in Gmσ because the users perform

rejection sampling (during Step 4) on these random variables. Therefore, their
coefficients are bounded in absolute value by dβ − dG∗ . By applying Lemma 4
with k = mn,A = dG∗ and B = dβ , we infer that ∆(σ̂0, σ̂1) = 0.
Distribution of δ. Let δ0, δ1 be part of the final output of U(S, µ0, info) and
U(S, µ1, info) respectively. Both are of the form γ + a′, for γ ∈ Dε and a′ ←$

Da′ . Additionally, both δ0 and δ1 lie in Gδ because the users perform rejection
sampling (Step 4) on these random variables. Therefore, their coefficients are
bounded in absolute value by da′ − dε. From Lemma 4 with k = n,A = dε and
B = da′ = φn(da + dε) + dε > dε, we infer that ∆(δ0, δ1) = 0.
Distribution of Y1,Y, ŷ2,γ and r. These random variables are all either
sampled uniformly at random from some domain, or distributed independently
from the signed message µ. We note that e (which can be computed from ε∗ and
γ) is also uniform over Dε, since its computation is done within Dε.
Restarts. Restarts are distinguished into two types: those that occur during
Step 2 and can be handled locally by the user, and those that occur after Step
4 and cause the protocol to start over. Notice that we do not need to deal with
restarts occurring in Step 3, because they do not affect partial blindness as per
experiment Exppartially blind

S∗,PBSS (n).

– Restarts during Step 2: Because com is statistically hiding and the user se-
lects a new set of r,a,a′, β̂, β̂′ every time he performs a restart during Step
2 of the signature issuing protocol, each protocol execution is statistically in-
dependent from any preceding execution. Therefore our scheme is (∞, θ(h)com)

- partially blind, since com is statistically θ(h)com - hiding.
– Restarts caused after Step 4: The user submits (C,a, a′, β̂, β̂′, ε) to the

signer. The signer is then able to trace the computations performed on the
user’s side and determines whether a restart is truly necessary. Note that the
signer works with the commitment, C, instead of the original message, µ.
Again, due to com’s statistical hiding property, µ remains statistically hidden
from the signer, since he does not possess the corresponding decommitment
parameter r which would allow him recovery of µ. Thus, our scheme achieves
statistical instead of perfect partial blindness.

Remark 3. Based on the previous discussion, if com is perfectly hiding (i.e.,
θcom = 0), then PBSS is partially blind in a perfect sense, whereas if com is
statistically hiding, PBSS is partially blind in a statistical sense. In either case,

a malicious signer only gains a negligible amount of information from protocol
restarts, at best.

Unforgeability The generalized Forking Lemma from [9] is a probabilistic re-
sult that lies at the core of proving the unforgeability of our scheme, and we
include it in the Appendix. Additionally, to simulate the signing oracle in the
unforgeability experiment of Section 3, we will also need two supporting lem-
mas. The first states that for each public key S in our protocol, there exist (with
overwhelming probability) at least two distinct corresponding secret keys ŝ, ŝ′.

Lemma 5. (Lemma 3.6 in [50, p. 29]) Let h ∈ H(R,m). For every secret
key ŝ←$ D

m
s , there exists (with overwhelming probability) a second ŝ′ ∈ Dm

s \{ŝ}
with h(ŝ) = h(ŝ′).

The next lemma is based on Lemma 3.7 from [50], suitably adapted for
our construction (its proof can be found in the Appendix). Informally, it states
that if we interpret the components of a (malicious) user’s view as random
variables, then the user is unable to tell which of (at least) two possible keys
ŝ, ŝ′ ∈ h−1(S)∩Dm

s was used during the signature issuing protocol, except with
negligible advantage.

Lemma 6. Let h ∈ H(R,m) and S ∈ R. For any message µ and any two
distinct secret keys ŝ, ŝ′ ∈ Dm

s with h(ŝ) = h(ŝ′), the resulting protocol views
(Y1,Y, ε∗, ẑ∗, ŷ2,γ) and (Y′1,Y

′, ε∗
′
, ẑ∗

′
, ŷ′2,γ′) are witness-indistinguishable.

We now prove that our construction is unforgeable, provided that the commit-
ment scheme is binding, and the collision problem Col(H(R,m,D)) being hard.

Theorem 4. (Unforgeability) Let Sig denote the signature issuing oracle and
H the hashing oracle. Let TSig and TH denote the cost functions for simu-
lating the oracles Sig and H respectively, and let 0 ≤ c < 1 be the probabil-
ity of restarting the protocol. Our PBSS is (t, qsig, qH , θ)-unforgeable if com is
(t′, θ/2)-binding, and Col(H(R,m,D)) is (t′, θoverall/2)-hard, where t′ = t +
q
qsig
H (qsigTsig + qHTH) and θoverall is noticeable if θ is noticeable.

Proof. Let A be an efficient forger who successfully breaks unforgeability within
time t and with noticeable probability, θ. By exploiting A’s capability of forging
signatures in a black-box manner, we will construct a simulator B, such that B
either breaks the binding property of com, or solves the collision problem.
Setup. Simulator B flips a coin b ←$ {0, 1}. If b = 0, B selects h ←$ H(R,m).
Otherwise, it is given the description of h as input. B initializes a list LH ← ∅ of
query-hash pairs of the form (R×R×R×{0, 1}∗, Dε), a list LF ← ∅ for queries
to F which are of the form ({0, 1}∗,R) , and a list LSig ← ∅ of message-signature
pairs of the form ({0, 1}∗×{0, 1}∗, Gm×Gω×Gmσ ×Gδ). It then picks ŝ←$ D

m
s

and computes S ← h(ŝ). Moreover, B randomly pre-selects random oracle an-
swers h1, . . . ,hqH ←$ Dε, a random tape ρ, and runs A(S;h1, . . . ,hqH ; ρ) in a
black-box way.

RO Queries. On input (u,v,Z, C), B determines if (u,v,Z, C) has previously
been queried to H by checking whether (u,v,Z, C) ∈ LH . If the answer is affir-
mative, B returns the same output ε as before, to remain consistent. Otherwise,
B returns the first unused hi and stores ((u,v,Z, C),hi) in LH .
PBS Queries. B acts as the signer according to the protocol in Figure 1 and
fills in LSig after A produces his output.
Forgery. Since adversaryA is efficient, he eventually stops, outputting: (µ1, info,
(r1, ẑ1,ω1, σ̂1, δ1)), . . . , (µ, info, (r, ẑ,ω, σ̂, δ)), where = kinfo+1 for pair-
wise distinct messages. If b = 0, the reduction tries to find two pairs (µ∗1, info, (r∗1 ,
ẑ∗,ω∗, σ̂∗, δ∗)) and (µ∗2, info, (r∗2 , ẑ

∗,ω∗., σ̂∗, δ∗)) with µ∗1 6= µ∗2, and returns
(µ∗1, r

∗
1), (µ

∗
2, r
∗
2) to break com’s binding property. If no such pair is found, it sim-

ply aborts. If b = 1, the simulator locates a message-signature pair ((µ†, info), (r†,
ẑ†,ω†, σ̂†, δ†)), where (µ†, info) has never been queried to the signing oracle. The
algorithm computes u† = h(ẑ†) +Sω† and v† = h(σ̂†) +F(info)δ† and rewinds
the adversary to the point where (u†,v†,F(info), com(µ†, r†)) was queried to
the hashing oracle H. Let 1 ≤ I ≤ qH be the index of that query. B then re-runs
A(S;h1, . . . ,hI−1, h′I , . . . ,h

′
qH ; ρ) with new random responses to queries with

index ≥ I, but using the same random tape ρ. Eventually, A will output a new
forgery ((µ‡, info), (r‡, ẑ‡,ω‡, σ̂‡, δ‡)) using the same random oracle query as
in the first run (after polynomially bounded time because A is efficient and all
of his queries are handled efficiently). B then returns (ẑ† + ŝω†, ẑ‡ + ŝω‡), if
ω† 6= ω‡, as a solution to the Collision Problem and aborts otherwise (an event
that as we will explain, occurs with negligible probability).
Analysis. A’s environment is perfectly simulated and restarts occur with the
same probability as in the original protocol. Therefore, A has no advantage
whatsoever in distinguishing the simulation.

For b = 0, B (t′ , θ/2)-breaks com’s binding property, if A successfully attacks
com’s binding property to break unforgeability.

For b = 1, we assume that A breaks unforgeability without attacking com.
Since at least one of the produced signatures was not obtained via an inter-
action, the probability that B correctly guesses its index is at least 1

kinfo+1 .
Next, notice that A can successfully predict the output of the random ora-
cle H with probability 1/|Dε|. By applying the general Forking Lemma of [9],
we can determine that after rewinding, A is again successful in producing a
forgery, using the same random oracle query as in the first run with probability
θfrk ≥ (1 − c)(θ − 1

|Dε|)(
θ−1/|Dε|

qH
− 1
|Dε|), where the additional (1 − c) factor

accounts for a potential restart during the second run. Therefore, with proba-
bility at least θfrk, the following relation holds: h(ẑ†) + Sω† = h(ẑ‡) + Sω‡.
This can equivalently be written as: h(ẑ† − ẑ‡ + ŝ(ω† − ω‡)) = 0. We ob-
serve that with overwhelming probability, ω† 6= ω‡. Indeed: ω† = ((ε∗† −
γ†) mod(2dε+1))+ a† = ((ε†− a†− a′†−γ†) mod(2dε+1))+ a†. Similarly, we
have: ω‡ = e‡+a‡ = ((ε‡−a‡−a′‡−γ‡) mod(2dε+1))+a‡. By subtracting, we
get: ω†−ω‡ = ((ε†−a†−a′†−γ†− ε‡+a‡+a

′‡+γ‡) mod (2dε+1))+a†−a‡.
If ω† − ω‡ = 0, then ε‡ − γ‡ (mod 2dε + 1) is determined by polynomials se-
lected by A and polynomials determined by B before rewinding. However, both

ε‡ and γ‡ are randomly selected by B after rewinding. Therefore, the probability
that ω† = ω‡ is 1

|Dε| =
1

(2dε+1)n which is negligible in n. Thus, ω† 6= ω‡ with
overwhelming probability 1− 1/|Dε|.

Next, if ω† 6= ω‡ then with a probability of at least 1/4, we have ẑ† − ẑ‡ +
ŝ(ω† − ω‡) 6= 0. Indeed, by Lemma 5, there exists another ŝ′ 6= ŝ (with over-
whelming probability). Furthermore, because of Lemma 6, the signing protocol
is witness-indistinguishable and therefore there is a probability of at least 1/2
that the signer’s output corresponds to ŝ′. Because the signer possesses the se-
cret key while the user does not, and because of Lemma 6, all protocol messages
are distributed independently of the secret key, even if ẑ†− ẑ‡+ ŝ′(ω†−ω‡) = 0,
B has at least 1/2 chance of claiming that ẑ† − ẑ‡ + ŝ(ω† − ω‡) 6= 0. Since
ẑ† − ẑ‡ + ŝ(ω† − ω‡) 6= 0, we deduce that ẑ† + ŝω† 6= ẑ‡ + ŝω‡. Furthermore,
since ‖ẑ†+ŝω†‖∞, ‖ẑ‡+ŝω‡‖∞ ≤ dG+ndsdω < dD, we obtain (ẑ†+ŝω†, ẑ‡+ŝω‡)
as a collision in D ×D, with probability: θcol ≥ 1

4(kinfo+1) (1 −
1
|Dε|)θfrk, which

is noticeable due to θ.
Restarts. Finally, we argue that the only way for a user to obtain a valid
signature from an aborted interaction, is if he can solve the collision problem for
h in D. Indeed, for an abort to occur in Step 5, the user needs to “convince” the
honest signer by sending him result = (C,a,a′, β̂, β̂′, ε), which together with
his view of the interaction (Y1,Y, ε∗, ẑ∗, ŷ2,γ, e), satisfy the abort criteria:

ε∗ + a+ a′ (mod 2dε + 1) = ε (1)

H(Y1 + Sa+ h(β̂),Y+ Za′ + h(β̂′),Z, C) = ε (2)

e+ a+ γ + a′ (mod 2dε + 1) = H(h(ẑ∗ + β̂) + S(e+ a),

h(ŷ2 + β̂
′) + Z(γ + a′),Z, C)

(3)

ẑ∗ + β̂ /∈ Gm ∨ e+ a /∈ Gω ∨ ŷ2 + β̂
′ /∈ Gmσ ∨ γ + a′ /∈ Gδ (4)

Suppose that the malicious user successfully obtains a forged signature (r0, ẑ0,
ω0, σ̂0, δ0) from an aborted interaction. Thus, we may assume that (r0, ẑ0,ω0,
σ̂0, δ0) satisfies all of the verification criteria from Section 4.1. First, observe
that the adversarial user may succeed by hiding ε′ 6= ε in the computation of ε∗.
However, to achieve this he would need to predict the output ofH, which happens
with a negligible probability of 1

|Dε| . Thus, we have ε = ε
′ with an overwhelming

probability of 1− 1
|Dε| . Because ε = ω0+δ0 (mod 2dε+1) = ω+δ (mod 2dε+1),

it follows from (3) that h(ẑ∗ + β̂) + S(e + a) = h(ẑ0 + ω0ŝ). Equivalently, this
can be written as:

h(ẑ∗ + β̂ + ŝ(e+ a)) = h(ẑ0 + ω0ŝ). (5)

Next, notice that with an overwhelming probability of at least 1 − 1
|Dε| , we

have ω0 = e+a (unless e+a /∈ Gω, in which case we have a contradiction because
we know that ω0 ∈ Gω). Indeed, the only way for the malicious user to obtain a
ω0 6= e+ a, is if during Step 2 he used an a0 = ω0 − ω + a, which implies that

he would have to successfully guess ω, which he can do only with a negligible
probability of 1

|Gω| ≤
1
|Dε| = 1

(2dε+1)n . From Bayes’ rule, we can determine

that the probability that e + a ∈ Gω, given that (4) holds is e−1/φ−e−4/φ

1−e−4/φ , a
constant. Similarly, with an overwhelming probability of at least 1 − 1

|Dε| , we
have δ0 = γ + a′ (unless γ + a′ /∈ Gδ, in which case we have a contradiction
because δ0 ∈ Gδ). Finally, with an overwhelming probability of at least 1− 1

|Dε| ,

we have σ̂0 = ŷ2+β̂
′ (unless ŷ2+β̂

′ /∈ Gmσ , in which case we have a contradiction
because we know that σ̂0 ∈ Gmσ). Thus, the only possible case for condition (4)
to hold, is if ẑ∗ + β̂ /∈ Gm. Observe that in that case, the arguments of h in
(5) cannot be equal because then ẑ∗ + β̂ = ẑ0, which contradicts the hypothesis
that ẑ0 ∈ Gm. Therefore, we have ẑ∗ + β̂ 6= ẑ0, and since ‖ẑ0 + ω0ŝ‖∞ < dD
and ‖ẑ∗ + β̂ + ŝ(e + a)‖∞ ≤ dG∗ + dβ + ndsdω = dD, we have a collision
in D. Thus, by applying the law of total probability, we can deduce that the
overall probability of obtaining valid signatures out of aborted interactions is:
θabort ≥ (1 − 1

|Dε|)
4(e
−1/φ−e−4/φ

1−e−4/φ)3θ, which is noticeable if θ is noticeable. In
conclusion, if b = 1, A’s overall success probability is θoverall ≥ min(θcol, θabort),
which is noticeable if θ is noticeable.

By combining Theorem 4 with Theorem 1, we obtain the following:

Corollary 1. The proposed PBSS is unforgeable if solving Ring-SVP∞γ is hard
in the worst case, for approximation factors γ ≥ 16dDmn log

2(n) = Õ(n4), in
ideal lattices of R.

Remark 4. As a consequence of Theorem 4, if we require that qsig = o(n), our
construction benefits from the subexponential hardness of ideal lattice problems.

Remark 5. Because e is reduced modulo 2dε + 1 in Step 3 of our signing proto-
col, we have a milder worst-case hardness assumption of Õ(n4), compared with
the BSS from [50], which is based on the worst-case hardness of Ring-SVP for
approximation factors in Õ(n5). We believe that this “trick” could also be used
on [50] to improve the hardness assumption therein.

Remark 6. Notice that our proof also covers the case in which the forger U∗
attempts to forge the common part information info (i.e., kinfo = 0). Alterna-
tively, one could cover this case by resorting to the modular technique of “ID-
reduction” [44], and by exploiting the witness-indistinguishability of our scheme.

Leakage Resilience In proving leakage-resilience for our scheme, we rely on the
core observation of [32], which states that any collision-resistant hash function
(our underlying hash-function is proven collision-resistant in [41]) is a leakage-
resilient one-way hash function when certain conditions are imposed on the leak-
age oracle (these conditions are necessary because the recent work of [34] shows
that for some leakage scenarios, leakage-resilience is impossible to achieve). This

observation is also used by other works to construct leakage-resilient primitives
[32,50].

In the next theorem, we establish leakage resilience for our construction. In
proving leakage resilience, we will show that the secret key’s conditional min-
entropy: H∞(sk|Leak(sk)) = minsk′{− log(Prob[sk = sk′|Leak(sk)])} is large
enough for the scheme to be secure. The proof closely follows the corresponding
proof of [50], with the additional observation that Z = F(info) is not related to
the signer’s secret key, and thus does not leak information about ŝ (the proof is
included in the Appendix).

Theorem 5. (Leakage Resilience) Let cm = ω(1) and let L := log(|Ds|m) =
mn log(2ds+1) denote the length of the signer’s secret key in the proposed PBSS.
Given S = h(ŝ) and a total secret-key leakage f(ŝ) of λ = δL = (1− o(1))L bits,
the conditional min-entropy H∞ of ŝ, is positive with overwhelming probability.

Remark 7. From Theorem 6, we see that if we additionally require that cm =
ω(1) (e.g., by choosing cm = log(n)) for m := bcm log(q)c + 1, then our PBSS
retains its quasi-optimal performance and is also leakage-resilient.

5 Extensions

In this Section, we discuss several extensions of the classic security model of
PBSS that are applicable to our construction. We consider honest-user unforge-
ability, selective-failure blindness, and dishonest-key blindness. To the best of
our knowledge, none of these properties have previously been examined in the
context of PBSS.

5.1 Honest-user Unforgeability

In [54], the authors propose a strengthened notion of one-more unforgeability for
blind signatures, called unforgeability in the presence of honest users (or honest-
user unforgeability, for short). The idea is that an adversary could exploit the
presence of an honest user, and use him as an intermediary to indirectly obtain
signatures from the signer (it is not difficult to see that the absence of such
honest users leads to the classic notion of unforgeability of BSS [31,49]. However,
unforgeability is shown to be weaker than honest-user unforgeability [54]). That
way, the adversary may be able to produce more signatures than the number
of times he directly interacted with the signer. These kinds of attacks are not
captured by the notion of unforgeability for regular blind signatures.

Honest-user unforgeability however is given with regular blind signature
schemes in mind. Here, we adapt it for partially blind signature schemes, thus
obtaining an even stronger notion of unforgeability for PBSS. We also show
that the transformation given in [54] is still relevant when it comes to PBSS,
a result which we believe may be of interest in its own right. Before giving
the new definition, we must fix some notation. Let P(sk, pk, ., .) be an oracle

that on input µ (a message) and common information info, executes the signa-
ture issuing protocol 〈S,U〉, thus obtaining a signature σ. Let trans denote the
transcript comprised of all messages exchanged between the parties in such an
interaction. When the protocol terminates, P returns (σ, trans). The execution
of 〈S(sk, info),U(pk, µ, info)〉 by P is considered to be atomic, i.e., during a call
to P, no other interactions occur. If the interaction aborts, P returns (⊥, trans),
where trans is the transcript up to that point of execution.

Definition 8. (Honest-user unforgeability of Partially Blind Signature
Schemes) An interactive partially blind signature scheme PBSS = (KG, 〈S,U〉,
Vf) is honest-user unforgeable if Vf is deterministic, and for any efficient algo-
rithm U∗, the probability that experiment Exphu-omf

U∗,PBSS(n) evaluates to 1 is negli-
gible (as a function of n), where:
Experiment Exphu-omf

U∗,PBSS(n)
(pk, sk)←$ PBSS.KG(1n)
For each info, let kinfo denote the number of successful, complete, direct in-

teractions with the signer S:
((µ∗1, info, σ∗1), . . . , (µ∗kinfo+1, info, σ

∗
kinfo+1))←$ U∗〈S(sk),.〉

∞,P(sk,pk,.,.)(pk)
and let µ1, . . . , µninfo be the messages pertaining to info that were queried to

P(sk, pk, ., .).
Return 1 iff
1. µ∗i 6= µj ,∀i = 1, . . . , kinfo, and ∀j = 1, . . . , ninfo,
2. µ∗i 6= µ∗j ,∀i, j = 1, . . . , kinfo + 1 with i 6= j, and
3. PBS.Vf(pk, µ∗i , info, σ∗i) = 1,∀i = 1, . . . , kinfo + 1.

Note that when counting the interactions in which S returns “ok”, we do not
count the interactions simulated by P.

We now present a way to turn any unforgeable PBSS into an honest-user
unforgeable PBSS, that is analogous to the one from [54] (for brevity, we include
the proof in the Supplementary Material). This transformation comes at the
expense of a negligible overhead compared to the original PBSS.

Construction 1 Let PBSS′ = (KG′, 〈S ′,U ′〉,Vf′) be an interactive partially
blind signature scheme. We define a new partially blind signature scheme PBSS =
(KG, 〈S,U〉,Vf) through the following algorithms:

– Key Generation. Algorithm KG(1n) runs (sk′, pk′) ← KG′(1n) and re-
turns the key pair.

– Signature Issuing Protocol. Signer S is identical to the original signer S ′.
User U(pk, µ, info) chooses r ←$ {0, 1}n, sets µ′ ← µ‖r, and then invokes
the original user U ′(pk, µ′, info), who then interacts with S ′(sk, info). When
U ′ outputs a signature σ, U computes σ′ ← (σ, r) and returns σ′.

– Signature Verification. Algorithm Vf(pk, µ, info, σ′) parses σ′ as (σ, r)
and returns the result of Vf′(pk, µ‖r, info, σ).

Theorem 6. If complete, partially blind, and unforgeable PBSS exist, then there
exist PBSS which are complete, partially blind, unforgeable, and also honest-user
unforgeable.

Remark 8. Our scheme can easily be modified to use this transformation by
having the user commit to µ‖r′ for some r′ ←$ {0, 1}n instead of µ during Step
2. If any restarts occur during Step 2, r′ needs to be resampled as well. Finally,
r′ will be included in the final signature and the verification condition becomes:
ω + δ (mod 2dε + 1) = H(h(ẑ) + ωS, h(σ̂) + δF(info),F(info), com(µ‖r′, r)).

5.2 Dishonest-key Blindness

In the definition of (partial) blindness, we implicitly assumed that the signer
generates his secret and public keys through the scheme’s key generation algo-
rithm. Abdalla et al. [1], proposed an augmented notion of blindness that allows
the signer to select pk on his own. This notion can also be transferred to par-
tially blind signature schemes. Our scheme’s partial blindness proof does not rely
on any specific properties of the public key and thus satisfies this strengthened
notion of partial-blindness as well.

5.3 Selective-failure Blindness

The notion of blindness does not cover cases in which the protocol has to be
aborted prematurely. However, we would like to ensure that blindness also holds
in cases where the signer is able to cause one of the protocol executions to abort
by choosing one of the messages µ0 or µ1 from some secret distribution. For that
purpose, [13] introduced the stronger notion of selective-failure blindness, and
[24] later expanded upon that work by providing a generic transformation for
turning any BSS into a selective-failure blind signature scheme, at the expense
of only a negligible computational overhead. This notion can easily be adapted
for PBSS because info is a common input to both user instances in the partial
blindness experiment. Our scheme is selective-failure blind because it makes use
of the transformation of [24]. Indeed, the signer’s view is limited to commitments
on the messages he signs, and uncovering them would require him to break com’s
hiding property.

6 Conclusions

In this work, we presented the first leakage-resilient, lattice-based PBSS in the
literature. Our construction has the same 4-move structure and uses a com-
mitment scheme like the scheme from [50]. Its performance is quasi-optimal
and its security is proven in the ROM under milder worst-case ideal lattice as-
sumptions compared to [50]. Besides being quantum-resistant, our construction
is also honest-user unforgeable, selective-failure blind, dishonest-key blind, and
can withstand sub-exponential-time attacks, and limited side-channel attacks
against the signer’s secret key thanks to its leakage resilience.

Acknowledgements

We thank the anonymous reviewers for their helpful comments in improving
this work. Foteini Baldimtsi has received funding from NSF with award number
1717067.

References

1. Abdalla, M., Namprempre, C., Neven, G.: On the (im)possibility of blind mes-
sage authentication codes. In: Pointcheval, D. (ed.) Proc. of the 2006 The Cryp-
tographers’ Track at the RSA Conference on Topics in Cryptology. pp. 262–279.
Springer-Verlag, Berlin, Heidelberg (2006)

2. Abe, M.: A secure three-move blind signature scheme for polynomially many signa-
tures. In: Proc. of the Int. Conf. on the Theory and Application of Cryptographic
Techniques: Advances in Cryptology. pp. 136–151. EUROCRYPT ’01, Springer-
Verlag, London, UK, UK (2001)

3. Abe, M., Fujisaki, E.: How to date blind signatures. In: Kim, K., Matsumoto,
T. (eds.) Proc. of the Int. Conf. on the Theory and Applications of Cryptology
and Information Security: Advances in Cryptology - ASIACRYPT. pp. 244–251.
Springer-Verlag, Berlin, Heidelberg (1996)

4. Abe, M., Okamoto, T.: Provably secure partially blind signatures. In: Bellare,
M. (ed.) Proc. of the 20th Annual Int. Cryptology Conference on Advances in
Cryptology. pp. 271–286. Springer-Verlag, London, UK, UK (2000)

5. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
Proc. of the 28th Annual ACM Symposium on Theory of Computing. pp. 99–108.
STOC ’96, ACM, New York, NY, USA (1996)

6. Alkim, E., Bindel, N., Buchmann, J.A., Dagdelen, Ö.: Tesla: Tightly-secure efficient
signatures from standard lattices. Cryptology ePrint Archive, Report 2015/755
(2015), https://eprint.iacr.org/2015/755

7. Arbitman, Y., Dogon, G., Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen,
A.: Swifftx: A proposal for the sha-3 standard (11 2008), available from: https:
//www.eecs.harvard.edu/~alon/PAPERS/lattices/swifftx.pdf

8. Baldimtsi, F., Lysyanskaya, A.: On the security of one-witness blind signature
schemes. In: Sako, K., Sarkar, P. (eds.) Advances in Cryptology — ASIACRYPT
2013. pp. 82–99. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

9. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: Proc. of the 13th ACM Conf. on Computer and Communications
Security. pp. 390–399. CCS ’06, ACM, New York, NY, USA (2006)

10. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Proc. of the 1st ACM Conf. on Computer and Communica-
tions Security. pp. 62–73. CCS ’93, ACM, New York, NY, USA (1993)

11. Bresson, E., Monnerat, J., Vergnaud, D.: Separation results on the “one-more”
computational problems. In: Malkin, T. (ed.) Topics in Cryptology – CT-RSA
2008. pp. 71–87. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

12. Brown, D.R.L.: Irreducibility to the one-more evaluation problems: More may be
less. Cryptology ePrint Archive, Report 2007/435 (2007), https://eprint.iacr.
org/2007/435

13. Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. In:
Naor, M. (ed.) Proc. of the 26th Annual Int. Conf. on Advances in Cryptology. pp.
573–590. Springer-Verlag, Berlin, Heidelberg (2007)

https://eprint.iacr.org/2015/755
https://www.eecs.harvard.edu/~alon/PAPERS/lattices/swifftx.pdf
https://www.eecs.harvard.edu/~alon/PAPERS/lattices/swifftx.pdf
https://eprint.iacr.org/2007/435
https://eprint.iacr.org/2007/435

14. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) Advances in Cryptology. pp. 199–203. Springer US,
Boston, MA (1983)

15. Cheon, J.H., Jeong, J., Shin, J.S.: Cryptoanalysis on á round-optimal lattice-based
blind signature scheme for cloud serviceś. Fut. Gener. Comp. Systems 95, 100 –
103 (2019)

16. Chow, S.S.M., Hui, L.C.K., Yiu, S.M., Chow, K.P.: Two improved partially blind
signature schemes from bilinear pairings. In: Boyd, C., González Nieto, J.M. (eds.)
Proc. of the 10th Australasian Conf. on Information Security and Privacy. pp.
316–328. Springer-Verlag, Berlin, Heidelberg (2005)

17. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
Third Edition. The MIT Press, 3rd edn. (2009)

18. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) Proc. of the 14th
Annual Int. Cryptology Conf. on Advances in Cryptology. pp. 174–187. Springer-
Verlag, Berlin, Heidelberg (1994)

19. Damgård, I.: Commitment schemes and zero-knowledge protocols. In: Damgård,
I.B. (ed.) Lectures on Data Security, Modern Cryptology in Theory and Practice,
Summer School, Aarhus, Denmark, July 1998, pp. 63–86. SSpringer-Verlag, Berlin,
Heidelberg (1999)

20. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) Advances in Cryptology –
CRYPTO 2013. pp. 40–56. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

21. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé,
D.: Crystals-dilithium: A lattice-based digital signature scheme. IACR TCHES
2018(1), 238–268 (2018)

22. Espitau, T., Fouque, P.A., Gérard, B., Tibouchi, M.: Side-channel attacks on bliss
lattice-based signatures: Exploiting branch tracing against strongswan and elec-
tromagnetic emanations in microcontrollers. In: Proc. of the 2017 ACM SIGSAC
Conf. on Computer and Communications Security. pp. 1857–1874. CCS ’17, ACM,
New York, NY, USA (2017)

23. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Proc. on Advances in cryptology — CRYPTO ’86. pp.
186–194. Springer-Verlag, London, UK, UK (1987)

24. Fischlin, M., Schröder, D.: Security of blind signatures under aborts. In: Jarecki, S.,
Tsudik, G. (eds.) Proc. of the 12th Int. Conf. on Practice and Theory in Public Key
Cryptography: PKC ’09. pp. 297–316. Springer-Verlag, Berlin, Heidelberg (2009)

25. Fischlin, M., Schröder, D.: On the impossibility of three-move blind signature
schemes. In: Proc. of the 29th Annual Int. Conf. on Theory and Applications
of Cryptographic Techniques. pp. 197–215. EUROCRYPT’10, Springer-Verlag,
Berlin, Heidelberg (2010)

26. Fuchsbauer, G., Vergnaud, D.: Fair blind signatures without random oracles. In:
Bernstein, D.J., Lange, T. (eds.) Proc. of the 3rd Int. Conf. on Cryptology in
Africa. pp. 16–33. Springer-Verlag, Berlin, Heidelberg (2010)

27. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) Proc. of
the Theory and Applications of Cryptographic Techniques 27th Annual Int. Conf.
on Advances in Cryptology. pp. 31–51. Springer-Verlag, Berlin, Heidelberg (2008)

28. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proc. of the 40th Annual ACM Symposium on
Theory of Computing. pp. 197–206. STOC ’08, ACM, New York, NY, USA (2008)

29. Groot Bruinderink, L., Hülsing, A., Lange, T., Yarom, Y.: Flush, gauss, and reload
– a cache attack on the bliss lattice-based signature scheme. In: Gierlichs, B.,
Poschmann, A.Y. (eds.) IACR-CHES. pp. 323–345. Springer-Verlag, Berlin, Hei-
delberg (2016)

30. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptog-
raphy: A signature scheme for embedded systems. In: Cryptographic Hardware and
Embedded Systems – CHES 2012. pp. 530–547. Springer-Verlag, Berlin, Heidelberg
(2012)

31. Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures. In: Kaliski,
B.S. (ed.) Advances in Cryptology — CRYPTO ’97. pp. 150–164. Springer Berlin
Heidelberg, Berlin, Heidelberg (1997)

32. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) Advances in Cryptology —- ASIACRYPT 2009. pp. 703–720.
Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

33. Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of fiat-shamir sig-
natures in the quantum random-oracle model. In: Nielsen, J.B., Rijmen, V. (eds.)
Advances in Cryptology —- EUROCRYPT 2018. pp. 552–586. Springer Interna-
tional Publishing, Cham (2018)

34. Komargodski, I.: Leakage resilient one-way functions: The auxiliary-input setting.
In: Proc., Part I, of the 14th Int. Conf. on Theory of Cryptography - Volume 9985.
pp. 139–158. Springer-Verlag New York, Inc., New York, NY, USA (2016)

35. Li, F., Zhang, M., Takagi, T.: Identity-based partially blind signature in the stan-
dard model for electronic cash. Mathematical and Computer Modelling 58(1), 196
– 203 (2013), financial IT & Security and 2010 International Symposium on Com-
putational Electronics

36. Lindell, Y.: Bounded-concurrent secure two-party computation without setup as-
sumptions. In: Proc. of the 35th Annual ACM Symposium on Theory of Comput-
ing. pp. 683–692. STOC ’03, ACM, New York, NY, USA (2003)

37. Lyubashevsky, V.: Lattice-based identification schemes secure under active attacks.
In: Proc. of the Practice and Theory in Public Key Cryptography, 11th Int. Conf.
on Public Key Cryptography. pp. 162–179. PKC’08, Springer-Verlag, Berlin, Hei-
delberg (2008)

38. Lyubashevsky, V.: Fiat-shamir with aborts: Applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) Proc. of the 15th Int. Conf. on the Theory
and Application of Cryptology and Information Security: Advances in Cryptology.
pp. 598–616. Springer-Verlag, Berlin, Heidelberg (2009)

39. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Jo-
hansson, T. (eds.) Proc. of the 31st Annual Int. Conf. on Theory and Applica-
tions of Cryptographic Techniques. pp. 738–755. Springer-Verlag, Berlin, Heidel-
berg (2012)

40. Lyubashevsky, V.: Digital signatures based on the hardness of ideal lattice problems
in all rings. In: Proc., Part II, of the 22nd Int. Conf. on Advances in Cryptology —
ASIACRYPT 2016 - Volume 10032. pp. 196–214. Springer-Verlag New York, Inc.,
New York, NY, USA (2016)

41. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision
resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) Proc. of the
33rd Int. Conf. on Automata, Languages and Programming - Volume Part II. pp.
144–155. Springer-Verlag, Berlin, Heidelberg (2006)

42. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian
measures. SIAM J. Comput. 37(1), 267–302 (Apr 2007)

43. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buch-
mann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer
Berlin Heidelberg, Berlin, Heidelberg (2009)

44. Ohta, K., Okamoto, T.: On concrete security treatment of signatures derived from
identification. In: Krawczyk, H. (ed.) Advances in Cryptology — CRYPTO ’98.
pp. 354–369. Springer Berlin Heidelberg, Berlin, Heidelberg (1998)

45. Okamoto, T.: Efficient blind and partially blind signatures without random oracles.
In: Halevi, S., Rabin, T. (eds.) Proc. of the 3rd Conf. on Theory of Cryptography.
pp. 80–99. Springer-Verlag, Berlin, Heidelberg (2006)

46. Peikert, C.: A decade of lattice cryptography. Found. Trends Theor. Comput. Sci.
10(4), 283–424 (Mar 2016)

47. Pessl, P., Bruinderink, L.G., Yarom, Y.: To bliss-b or not to be: Attacking
strongswan’s implementation of post-quantum signatures. In: Proc. of the 2017
ACM SIGSAC Conf. on Computer and Communications Security. pp. 1843–1855.
CCS ’17, ACM, New York, NY, USA (2017)

48. Petrov, V.: Sums of Independent Random Variables. Springer-Verlag Berlin Hei-
delberg, 1st edn. (1975)

49. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. Journal of Cryptology 13(3), 361–396 (Jun 2000)

50. Rückert, M.: Lattice-based blind signatures. In: Abe, M. (ed.) Advances in Cryp-
tology — ASIACRYPT 2010. pp. 413–430. Springer Berlin Heidelberg, Berlin,
Heidelberg (2010)

51. Rückert, M.: Lattice-based Signature Schemes with Additional Features. Ph.D.
thesis, Technische Universität, Darmstadt (January 2011), http://tuprints.ulb.
tu-darmstadt.de/2393/

52. Rückert, M., Schröder, D.: Fair partially blind signatures. In: Bernstein, D.J.,
Lange, T. (eds.) Proc. of the 3rd Int. Conf. on Cryptology in Africa. pp. 34–51.
Springer-Verlag, Berlin, Heidelberg (2010)

53. Rückert, M., Schneider, M.: Estimating the security of lattice-based cryptosystems.
Cryptology ePrint Archive, Report 2010/137 (2010), eprint.iacr.org/2010/137

54. Schröder, D., Unruh, D.: Security of blind signatures revisited. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) Public Key Cryptography – PKC 2012. pp. 662–
679. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

55. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (Oct 1997)

56. Stadler, M., Piveteau, J.M., Camenisch, J.: Fair blind signatures. In: Guillou, L.C.,
Quisquater, J.J. (eds.) Advances in Cryptology — EUROCRYPT ’95. pp. 209–219.
Springer Berlin Heidelberg, Berlin, Heidelberg (1995)

57. Tian, H., Zhang, F., Wei, B.: A lattice-based partially blind signature. Sec. and
Commun. Netw. 9(12), 1820–1828 (Aug 2016)

58. Von Solms, S., Naccache, D.: On blind signatures and perfect crimes. Comput.
Secur. 11(6), 581–583 (Oct 1992)

59. Zhu, H., Tan, Y.a., Zhang, X., Zhu, L., Zhang, C., Zheng, J.: A round-optimal
lattice-based blind signature scheme for cloud services. Future Gener. Comput.
Syst. 73(C), 106–114 (Aug 2017)

http://tuprints.ulb.tu-darmstadt.de/2393/
http://tuprints.ulb.tu-darmstadt.de/2393/
eprint.iacr.org/2010/137

Appendix

The Forking Lemma

The generalized Forking Lemma from [9] is a probabilistic tool for proving se-
curity of cryptographic constructions in the ROM. Informally, it states that if
an algorithm A outputs a pair of values (I, σ) with I > 0 with noticeable prob-
ability acc, then the forking algorithm FA defined below will with noticeable
probability return (1, σ, σ

′
) based on two executions of A, sharing an identical

prefix up to the I-th query to H. In other words, the probability of getting two
related runs with the same value of I, and a common prefix of length I − 1 is
not too small.

Lemma 7. (Lemma 1 in [9]) Fix an integer q ≥ 1 and a set H of size h ≥ 2.
Let A be a randomized algorithm that on input x, h1, . . . , hq returns a pair, the
first element of which is an integer in the range 0, . . . , q and the second element of
which we refer to as a side output. Let IG be a randomized algorithm that we call
the input generator. The accepting probability of A, denoted acc, is defined as the
probability that J ≥ 1 in the experiment x ←$ IG;h1, . . . , hq ←$ H; (J, σ) ←$

A (x;h1, . . . , hq). The forking algorithm FA associated to A is the randomized
algorithm that takes input x and proceeds as follows:
Algorithm FA(x)

Pick coins ρ for A at random
h1, . . . , hq ←$ H
(I, σ)← A(x;h1, . . . , hq; ρ)
If I = 0 then return (0, ε, ε)
h
′

I , . . . , h
′

q ←$ H

(I
′
, σ
′
)← A(x;h1, . . . , hI−1, h

′

I , . . . , h
′

q; ρ)

If I = I
′
and hI 6= h

′

I , then return (1, σ, σ
′
)

Else return (0, ε, ε).
Let frk = Prob[b = 1 : x←$ IG; (b, σ, σ

′
)← FA(x)].

Then frk ≥ acc(accq −
1
h).

Proofs of results from Sections 4 and 5

Proof of Lemma 6

Initially, observe that Y1 and Y′1 do not depend on the choice of secret key.
The same holds for Y and Y′. Furthermore, ε∗ and ε∗

′
are independent of

any particular ŷ1 ∈ h−1(Y1) ∩ Dm
y because Y1 statistically hides ŷ1 through

h. Moreover, ŷ2 and ŷ′2, as well as γ and γ′ are all sampled independently of
the secret key. Finally, we have to show that ẑ∗ and ẑ∗

′
are also distributed

independently of the secret key. For that, let e be any factor used by the signer
during Step 3 of our protocol, to compute ẑ∗, i.e.: ẑ∗ = ŷ1 − eŝ ∈ Gm∗ . Next, we
set ŷ′1 ← ŷ1− ŝe+ ŝ′e, which implies that ẑ∗ = ŷ′1− ŝ

′e. We then easily see that
ŷ′1 ∈ h−1(Y1) ∩Dm

y . Indeed, ŷ′1 ∈ h−1(Y1) because h(ŷ′1) = h(ŷ1 − ŝe+ ŝ′e) =

Y1 − eS + eS = Y1. Additionally, ŷ1 ∈ Dm
y since: ‖ŷ′1‖∞ = ‖ẑ∗ + ŝ′e‖∞ ≤

‖ẑ∗‖∞ + ‖ŝ′e‖∞ ≤ dy − ndsdε + ndsdε = dy, where the last inequality follows
from Lemma 3. In conclusion, no malicious user can distinguish whether the
honest signer is using secret key ŝ with a masking term ŷ1 or ŝ′ with a masking
term ŷ′1, both of which yield the same output.

Proof of Theorem 5

We follow the same conservative approach as in [50] and treat the public key
S as additional leakage. Notice that Z = F(info) is not related to the signer’s
secret key, and thus we do not treat it as a source of additional leakage for ŝ.
Define the function g(ŝ) := f(ŝ)‖S with a total tolerated leakage of at most
λ′ = λ+n log(q) bits. Next, apply Lemma 1 from [32] to g, λ′, and H ′ = 1, with
ŝ being the random variable. Because H = L = mn log(2ds + 1), we have:

Prob[g(ŝ) ∈ Y] ≥ 1− 2λ
′−H+H′ = 1− 2λ+n log(q)−L+1, (6)

which we want to be ≥ 1− 2−p(n). For any function p(n) such that ω(log(n)) ≤
p(n) ≤ O(n log(n)), we bound the relative leakage from above by δ ≤ 1 −
p(n)+n log(q)+1

L = 1− Θ(n log(n))
cmΘ(n log(n)) = 1− 1

ω(1) = 1− 1
o(1) . As a result, (6) becomes:

Prob[g(ŝ) ∈ Y] ≥ 1−2(1−
p(n)+n log(q)+1

L)L+n log(q)−L+1 = 1−2p(n). Thus, δL = (1−
o(1))L leakage bits yield a non-zero conditional min-entropy with overwhelming
probability 1− 2−p(n) ≥ 1− 2−ω(log(n)).

Proof of Theorem 6

It is trivial to see that if PBSS′ is complete and partially blind, then so is
PBSS. Thus, we only need to show that PBSS is honest-user unforgeable, if
PBSS′ is unforgeable. We will prove this by contradiction. Assume that PBSS′

is unforgeable but PBSS is not honest-user unforgeable. Thus, as per Definition
8, there exists an efficient adversary U∗ that wins at experiment Exphu-omf

U∗,PBSS(n)
with noticeable probability. We will construct an attacker B that breaks the
unforgeability of PBSS′:
Setup. Algorithm B receives a public key pk as input and runs U∗ in a black-box
manner, simulating the oracles as follows:
Direct Signing Queries. If U∗ directly invokes the signing oracle S ′, B simply
relays all messages exchan-ged between the malicious user and the signer.
Indirect Signing Queries. If U∗ indirectly invokes S ′ through oracle P on
message, µ ∈ {0, 1}∗, and common information info ∈ {0, 1}∗, then B chooses a
random r ←$ {0, 1}n, sets µ′ ← µ‖r, and engages in an interactive PBSS with
the signer S ′, by assuming the role of the honest user U ′. When the protocol
terminates, B obtains a signature σ on message µ′, and common information
info. He sets σ′ ← (σ, r), stores the tuple (µ′, info, σ′) in a list L, and outputs
σ′, along with the corresponding transcript trans to the adversary U∗.
Forgery. Since U∗ is efficient, he eventually stops and outputs a single info, and
a sequence of message-signature pairs: (µ∗1, σ∗1), . . . , (µ∗kinfo+1, σ

∗
kinfo+1). In turn,

B retrieves all message-signature pairs (µ′1, σ′1), . . ., (µ′ninfo
, σ′ninfo

) pertaining to
that particular info from L (and discards the rest). He then parses σ∗i as (σ̃i, r∗i),
sets µ̃i ← µ∗i ‖r∗i ,∀i = 1, . . . , kinfo + 1, and outputs (µ′1, σ

′
1), . . . , (µ′ninfo

, σ′ninfo
),

and (µ̃1, σ̃1) , . . . , (µ̃kinfo+1, σ̃kinfo+1).
Analysis. Because U∗ runs in polynomial-time and all queries are handled effi-
ciently, B runs in polynomial-time as well. Since U∗ succeeds in Exphu-omf

U∗,PBSS(n),
he outputs a single info and kinfo + 1 valid message-signature pairs. B sim-
ulated the honest-user algorithm U ′ to compute the message-signature pairs:
(µ′1, σ

′
1), . . ., (µ′ninfo

, σ′ninfo
), thus all these pairs are valid with overwhelming prob-

ability (due to completeness).
Observe that all messages are pairwise distinct. Indeed, consider the mes-

sages (µ′1, . . ., µ′ninfo
) and (µ̃1, . . ., µ̃kinfo+1), pertaining to common information

info. The-se are of the form µ′i = µi‖ri,∀i = 1, . . . , ninfo and µ̃j = µ∗j‖r∗j ,∀j =
1, . . . , kinfo + 1, respectively. Because the ri are chosen uniformly at random
from {0, 1}n, it follows that (µ′1, . . . , µ

′
ninfo

) are pairwise distinct with over-
whelming probability. Similarly, because U∗ wins in Exphu-omf

U∗,PBSS(n), messages
(µ∗1, . . . , µ

∗
kinfo+1) are pairwise distinct and thus, (µ̃1, . . . , µ̃kinfo+1) are also dis-

tinct. Moreover, by definition we have {µ1, . . . , µninfo} ∩ {µ∗1, . . . , µ∗kinfo+1} = ∅,
and thus, µ′i 6= µ̃j ,∀i, j.

Next, we show that B could produce one more message-signature pair than
the number of successful, complete protocol interactions with S ′. Because U∗
wins in experiment Exphu-omf

U∗,PBSS(n), it follows that in at most kinfo of the pro-
tocol executions that B relayed between U∗ and S ′, the signer returned “ok”.
Furthermore, B executed a total of ninfo honest-user instances to simulate oracle
P. Since U∗ successfully outputs kinfo + 1 message-signature pairs for pairwise
distinct messages µi, it follows that B has asked a total of at most kinfo + ninfo
queries in which S ′ returned “ok”. However, B returned a total of ninfo+kinfo+1
message-signature pairs for info, which contradicts our assumption that PBSS
is unforgeable.

	Leakage-Resilient Lattice-Based Partially Blind Signatures

