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Abstract. At CRYPTO ’12, Landecker et al. introduced the cascaded
LRW?2 (or CLRW2) construction, and proved that it is a secure tweakable
block cipher up to roughly 22n/3 queries. Recently, Mennink presented a
distinguishing attack on CLRW?2 in 2n'/223%/4 queries. In the same paper,
he discussed some non-trivial bottlenecks in proving tight security bound,
i.e. security up to 23n/4 queries. Subsequently, he proved security up to
237/4 queries for a variant of CLRW?2 using 4-wise independent AXU
assumption and the restriction that each tweak value occurs at most
2"/* times. Moreover, his proof relies on a version of mirror theory which
is yet to be publicly verified. In this paper, we resolve the bottlenecks
in Mennink’s approach and prove that the original CLRW?2 is indeed a
secure tweakable block cipher up to roughly 23n/4 queries. To do so, we
develop two new tools: First, we give a probabilistic result that provides
improved bound on the joint probability of some special collision events;
Second, we present a variant of Patarin’s mirror theory in tweakable
permutation settings with a self-contained and concrete proof. Both these
results are of generic nature, and can be of independent interests. To
demonstrate the applicability of these tools, we also prove tight security
up to roughly 2°™/4 queries for a variant of DbHtS, called DbHtS-p, that
uses two independent universal hash functions.
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1 Introduction

TWEAKABLE BLOCK CIPHERS: A tweakable block cipher (or TBC for short) is a
cryptographic primitive that has an additional public indexing parameter called
tweak in addition to the usual secret key of a standard block cipher. This means
that a tweakable block cipher, E : K x T x M — M, is a family of permutations
on the plaintext/ciphertext space M indexed by two parameters: the secret key
k € K and the public tweak ¢t € T. Liskov, Rivest, and Wagner formalized the
concept of TBCs in their renowned work [1]. Tweakable block ciphers are more
versatile than a standard block cipher and find a broad range of applications,
most notably in authenticated encryption schemes, such as TAE [1], ©CB [2]
(TBC-based generalization of the OCB family [3,2,4]), PIV [5], COPA [6], SCT
[7] (used in Deoxys [8,7]), AEZ [9] etc.; and message authentication codes, such
as PMAC_TBC3K and PMAC_TBCIK [10], PMAC2x and PMACx [11], ZMAC [12],
NaT and HaT [13], ZMAC+ [14], DoveMAC [15] etc. Apart from this TBCs have
also been employed in encryption schemes [16,17,18,19,20,21].
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BIRTHDAY-BOUND SECURE TBCs: Although there are some TBC construc-
tions designed from scratch, notably Deoxys-BC [8] and Skinny [8,22], still the
wide availability of secure and well-analyzed block ciphers make them perfect
candidates for constructing TBCs. In [1], Liskov et al. proposed two construc-

tions for TBCs based on a secure block cipher. The second construction, called
LRW?2, is defined as follows:

LRW2((k, h), t,m) = E(k,m & h(t)) & h(t),

where E is a block cipher, k is the block cipher key, and h is an XOR universal
hash function. The LRW?2 construction is strongly related to the XEX construc-
tion by Rogaway [2], and its extensions by Chakraborty and Sarkar [23], Mine-
matsu [24], and Granger et al. [25]. All these schemes are inherently birthday
bound secure due to the internal hash XOR collisions, i.e. the adversary can
choose approx. 2"/2 queries in such a way that there will be two queries (t,m)
and (t',m’) with m & h(t) = m’ @ h(t’'). This leads to a simple distinguishing
event cdc =modm'.

BEYOND-THE-BIRTHDAY BOUND SECURE TBCs: In [26], Landecker et al. first
suggested the cascading of two independent LRW2 instances to get a beyond-
the-birthday bound (BBB) secure TBC, called CLRW2, i.e.

CLRW2((I€1, kg, hl, hg), t, m) = LRW2((1€2, hg), t, LRW2((/€1, hl), t, m))

They proved that CLRW?2 is a secure TBC up to approx. 22"/ queries. Later on
Procter [27] pointed out a flaw in the security proof of CLRW2. The proof was
subsequently fixed by both Landecker et al. and Procter to recover the claimed
security bounds. Lampe and Seurin [28] studied the ¢ > 2 independent cascades
of LRW?2, and proved that it is secure up to approx. 97i2 queries. They further
conjectured that the ¢ cascade is secure up to Q7T queries. Recently, Mennink
[29] showed a 2n1/223n/4_query attack on CLRW2. In the same paper he also
proved security up to 2°"/4 queries, albeit for a variant of CLRW2 with strong
assumptions on the hash functions and restrictions on tweak repetitions.

All of the above constructions are proved to be secure in standard model.
However, there are TBC constructions in public random permutation and ideal
cipher model as well. In [13], Cogliati, Lampe and Seurin introduced the tweak-
able Even-Mansour construction and its cascaded variant. They showed that the
two round construction is secure up to approx. 22"/3 queries. A simple corollary
of this result also gives security of CLRW?2 up to 22"/ queries. The bound is tight
in the ideal permutation model as one can simply fix the tweak and use the 227/3
queries attack on key alternating cipher by Bogdanov et al. [30]. Some notable
BBB secure TBC constructions in the ideal cipher model include, Mennink’s
F[1] and F[2] [31,32], Wang et al. 32 constructions [33], and their generalization,
called XHX, by Jha et al. [34]. All of these constructions are at most birthday
bound secure in the sum of key size and block size.! Recently, Lee and Lee [35]
proved that a two level cascade of XHX, called XHX2, achieves BBB security in
terms of the sum of key size and block size.

' F[1], F[2], and Wang et al. constructions assume key size to be same as block size.



1.1 Recent Developments in the Analysis of CLRW2

In [29], Mennink presented an improved security analysis of CLRW2. The major
contribution was an attack in approx. n'/223"/4 queries. The attack works by
finding 4 queries (t,m1,¢1), (t',ma, c2), (t,ms,cs3), and (¢',my4,cq) such that

A1tColl hl (t) Dmy = hl (t/) D mg A hQ(t/) Do = hg(t) @D c3
hl(t) Dmgy = hl(t/) Dmyg AN hg(t/) Dy = hg(t) Dcy.

This leads to a simple distinguishing attack since, in case of CLRW2,
miEmedmzPmyg=0=ci Bco®cs P cy,

happens with probability 1, given A1tColl holds. In contrast this happens with
probability close to 1/2™ for an ideal tweakable random permutation.

Following on the insights from the attack, Mennink [29] also gives a security
proof of the same order for a variant of CLRW2. Basically, the proof bounds
the probability that the above given four equations hold. Additionally, inspired
by [36], Patarin’s mirror theory [37,38,39] is used which requires a bound on
the probability of some more bad events. The major bottleneck in proving the
security beyond 22"/3 queries comes from two directions:

— First, there is no straightforward way of proving the upper bound of the prob-
ability of occurrence of A1tColl to gk, where ¢ is the number of queries.
This is due to two reasons: (1) the adversary has full control over the tweak
usages; and (2) the hash functions are just 2-wise independent XOR univer-
sal.

— Second, mirror theory was primarily developed to lower bound the number
of solutions to equations arising for some random system which is trying
to mimic a random function. This is not the case here, and as we will see
in later sections, the mirror theory bound is directly dependent on tweak
repetitions.

In order to bypass the two bottlenecks, following assumptions are made in [29]:

1. The hash functions are 4-wise independent AXU.

2. The maximum number of tweak repetitions is restricted to 27/4.

3. A limited variant of mirror theory result is true for ¢ < 237/4,

Among the three assumptions, the first two are at least plausible. But the last
assumption is questionable as barring certain restricted cases, the proof of mirror
theory has many gaps which are still open or unproven, as has been noted in
[40,41].

1.2 Contributions of this Work

In light of the above discussion, we revisit the proof strategy of [29] (see section
3), explicitly considering each of the issues. We show that all three assumptions
used in [29] are dispensable. In order to do so, we develop some new tools which
are described below:



1. The Alternating Events Lemma: We derive a generic tool (see section 4) to
bound the probability of events of the form A1tColl. In CLRW2 analysis only
a special case is required, where the randomness comes from two independent
universal hash functions.

2. Mirror Theory in Tweakable Permutation Setting: We adapt the mirror the-
ory line of argument (see section 5) to get suitable bounds in tweakable
permutation setting. This is a generalization of the existing mirror theory
result in function setting.

Using the above mentioned tools we prove that CLRW?2 is secure up to approx.
23n/4 queries (see section 6). Our result, in combination with the attack in [29]
(see supplementary material B), gives the tight (up to a logarithmic factor)
security of CLRW2.

As a side-result on the application of our tools, we also prove tight security
up to roughly 237/% queries for a variant of DbHtS [42], called DbHtS-p, that
uses two independent universal hash functions (see section 7).

Here, we explicitly remark that our bound on CLRW?2 is not derivable from
the recent result on XHX2 [35].

2 Preliminaries

NOTATIONAL SETUP: For n € N, [n] denotes the set {1,2,...,n}, {0,1}" de-
notes the set of bit strings of length n, and Perm(n) denotes the set of all per-
mutations over {0,1}". For n,x € N, BPerm(k,n) denotes the set of all families
of permutations 7, := w(k,-) € Perm(n), indexed by k € {0,1}". We sometimes
extend this notation, whereby BPerm(k,7,n) denotes the set of all families of
permutations 7 4, indexed by (k,t) € {0,1}* x {0,1}7. For n,r € N, such that
n > r, we define the falling factorial (n), :==n!/(n—r)l =n(n—-1)---(n—r+1).

For ¢ € N, 27 denotes the g-tuple (z1,2,...,24), and Z? denotes the set
{z; : i € [¢]}. By an abuse of notation we also use x? to denote the multiset
{z; : 1 € [q]} and u(z9,2") to denote the multiplicity of ' € 7. For a set Z C [q]
and a g-tuple x9, 27 denotes the tuple (z;)ier. For a pair of tuples x¢ and
y?, (z7,y?) denotes the 2-ary g-tuple ((z1,%1)---,(Zq,¥Yq)). An n-ary g-tuple
is defined analogously. For ¢ € N, for any set X, (X), denotes the set of all
g-tuples with distinct elements from X. For ¢ € N a 2-ary tuple (29, y?) is called
permutation compatible, denoted x? e y9, if z; = 2; <= y; = y;. Extending
notations, a 3-ary tuple (¢, 29, y?) is called tweakable permutation compatible,
denoted by (t9,z9) e~ (t9,y?), if (t;,2;) = (tj,2;) <= (ti,y;) = (t;,y;). For
any tuple ¢ € X9, and for any function f : X — Y, f(z?) denotes the tuple
(f(z1),..., f(zq)). We use short hand notation 3* to represent the phrase “there
exists distinct”.

We use the conventions: upper and lower case letters denote variables and
values, respectively, and Serif font letters are used to denote random variables,
unless stated otherwise. For a finite set X', X s X denotes the uniform and
random sampling of X from &X.



2.1 Some Useful Inequalities

Definition 2.1. For r > s, let a = (ai)ier) and b = (bj)je[s be two sequences
over N. We say that a compresses to b, if there exists a partition P of [r] such
that P contains exactly s cells, say P1,...,Ps, and Vi € [s], b; = Zje??i aj.

Proposition 1. Forr > s, let a = (a;);c,) and b = (bj) c[s) be sequences over
N, such that a compresses to b. Then for any n € N, such that 2™ > 2;1 a;,
we have [T;_,(2")a; > 1521 (2", -

In [34, Proof of Lemma 3], the authors refer to a variant of Proposition 1. We
remark that, this variant [34, Fact 1] is in fact false. However, [34, Proof of
Lemma 3] implicitly used Proposition 1, and hence stands correct.

Proposition 2. For r > 2, let ¢ = (¢i)icy) and d = (d;)ie)r) be two sequences
over N. Let a1, az,b1,by € N, such that ¢; < aj, ¢; +d; < a; +b; for all i € [r]
and j € [2], and >_._; d; = by + ba. Then, for any n € N, such that a; +b; < 2™
for j € [2], we have [[;_, (2" — ¢;)a, > (2™ — a1)p, (2" — a2)p, -

Proposition 2 is quite intuitive, in the sense, that the starting value in each of
the falling factorial term on the left is at least as much as the starting values on
the right, and the total number of terms are same on both the sides. The formal
proofs of Proposition 1 and 2 are given in supplementary material A.

2.2 (Tweakable) Block Ciphers and Random Permutations

A block cipher with key size x and block size n is a family of permutations
E € BPerm(k,n). For k € {0,1}*, we denote Ey(-) := E(k,-), and E; '(-) :=
E~1(k,-). A tweakable block cipher with key size k, tweak size 7 and block size n
is a family of permutations E € BPerm(k, 7, n). For k € {0,1}* and ¢ € {0,1}",
we denote Ey(t,-) := E(k,t,-), and E;'(t,-) := E~'(k,t,-). Throughout this
paper, we fix k,7,n € N as the key size, tweak size and block size, respectively,
of the given (tweakable) block cipher.

We say that MM is an (ideal) random permutation on block space {0,1}" to
indicate that M <sPerm(n). Similarly, we say that M is an (ideal) tweakable
random permutation on tweak space {0,1}” and block space {0,1}" to indicate
that M+ BPerm(7,n).

2.3 (T)SPRP Security Definitions

In this paper, we assume that the distinguisher is non-trivial, i.e. it never makes
a duplicate query, and it never makes a query for which the response is already
known due to some previous query. For instance, say an oracle gives bidirectional
access (permutation P with inverse). If the adversary has made a forward call
and gets response y = P(z). Then, making an inverse query y is redundant. Note
that, such redundancies are necessary in certain security games, most notably
in indifferentiability, where the adversary can use these redundancies to catch a



simulator. Let A(q,t) be the class of all non-trivial distinguishers limited to ¢
oracle queries, and ¢ computations.

(TWEAKABLE) STRONG PSEUDORANDOM PERMUTATION (SPRP): The SPRP
advantage of distinguisher & against E instantiated with a key K «s{0,1}" is
defined as

AdvE® (/) = Advpe s (o) = |Pr [wE% - 1} —Pr [,d”i - 1} ‘ Y
The SPRP security of E is defined as Adv¥®™P(q,t) := B )AdeEprp(u@f )-
c€A(q,t

Similarly, the TSPRP advantage of distinguisher &7 against F instantiated with
a key K <s{0,1}" is defined as

Adv%prp(%) — Adin;ﬁi () := ‘Pr {,g{EKi = 1} —Pr {@%ﬁi — 1] ‘ . (2)

The TSPRP seccurity of E is defined as AdvSP™P(¢,t) := max Adv<PP ().
E o/ €A(q,t) E

2.4 The Expectation Method

Let &/ be a computationally unbounded and deterministic distinguisher that
tries to distinguish between two oracles Oy and O; via black box interaction
with one of them. We denote the query-response tuple of &/’s interaction with
its oracle by a transcript w. This may also include any additional information
the oracle chooses to reveal to the distinguisher at the end of the query-response
phase of the game. We denote by ©; (res. ©p) the random transcript variable
when & interacts with Oy (res. Op). The probability of realizing a given tran-
script w in the security game with an oracle O is known as the interpolation
probability of w with respect to O. Since & is deterministic, this probability
depends only on the oracle O and the transcript w. A transcript w is said to be
attainable if Pr[©¢ = w] > 0. The expectation method (stated below) is quite
useful in obtaining improved bounds in many cases [43,44,45]. The H-coefficient
technique due to Patarin [46] is a simple corollary of this result where the €atio
is a constant function.

Lemma 2.1 (Expectation Method [43]). Let {2 be the set of all transcripts.
For some €pad > 0 and a non-negative function €atio : {2 — [0,00), suppose there
18 a set (2paq C §2 satisfying the following:
= Pr[©g € 2bad] < €bad;

Pr [91 = OJ]
Pr [0y = w]
Then for an distinguisher < trying to distinguish between O1 and Oy, we have
the following bound on its distinguishing advantage:

— For any w ¢ ad, w is attainable and > 1 — €natio(w).

Advo,.0,() < €bad + Ex [€ratio(©0)]-



2.5 Patarin’s Mirror Theory

In [37] Patarin defines Mirror theory as a technique to estimate the number of
solutions of linear systems of equalities and linear non equalities in finite groups.
In its most general case, the mirror theory proof is tractable up to the order of
221/3 security bound, but it readily becomes complex and extremely difficult to
verify, as one aims for the optimal bound [40,41]. We remark here that this in
no way suggests that the result is incorrect, and in future, we might even get
some independent verifications of the result.

We restrict ourselves to the binary field Fy with & as the group opera-
tion. We will use the Mennink and Neves interpretation [36] of mirror theory.
For ease of understanding and notational coherency, we sometimes use different
parametrization and naming conventions. Let ¢ > 1 and let £ be the system of
linear equations

{e1:VT@eVi=A, e:Ya@Vo=Xo, ..., e:Y,®V,= A}

where Y7 and V7 are unknowns, and A? € ({0,1}"™)9 are knowns. In addition
there are (in)equality restrictions on Y7 and V¢, which uniquely determine v
and V4. We assume that Y9 and Vq are indexed in an arbitrary order by the
index sets [gy] and [qy], where ¢y = |Y9] and gy = |V4|. This assumption
is without any loss of generality as this does not affect the system L. Given
such an ordering, we can view Y7 and V9 as ordered sets {Yy,..., Y/, } and
{V{,..., V], }, respectively. We define two surjective index mapplngs:

L Jlad = lay] oy 4 la = lav]
' i+ j if and only if Y; = Y. " |i~ k if and only if V; = V.

It is easy to verify that £ is uniquely determined by (py, @y, A?), and vice-
versa. Consider a labeled bipartite graph G(£) = ([gv], [qv], €) associated with
L, where €& = {(¢y (©),v (i), \;) : i € [q]}, A\i being the label of edge. Clearly,
each equation in £ corresponds to a unique labeled edge (assuming no duplicate
equations). We give three definitions with respect to the system £ using G(L).

Definition 2.2 (cycle-freeness). L is said to be cycle-free if and only if G(L)
s acyclic.

Definition 2.3 ({max-component). Two distinct equations (or unknowns) in
L are said to be in the same component if and only if the corresponding edges
(res. vertices) in G(L) are in the same component. The size of any component C
in L, denoted £(C), is the number of vertices in the corresponding component of
G(L), and the mazimum component size is denoted by Emax (L) (or simply Emax )-

Definition 2.4 (non-degeneracy). L is said to be non-degenerate if and only
if there does not exist a path of even length at least 2 in G(L) such that the labels
along the edges on this path sum up to zero.



Theorem 2.1 (Fundamental Theorem of Mirror Theory [37]). Let £ be
a system of equations over the unknowns (Y9, V%), that is (i) cycle-free, (ii) non-
degenerate, and (iii) €2, -max{qy,qy} < 2"/67. Then, the number of solutions
(Y153 Yqy s V1, -+, Vgy ) Of L, denoted hq, such that y; # y; and v; # v; for all
1 #£ j, satisfies

hq > (2 )(IY (2 )qv . (3)

Z ong

A proof of this theorem is given in [37]. As mentioned before, the proof is quite
involved with some claims remaining open or unproved. On the other hand, the
same paper contains results for various other cases. For instance, for £ = 2,
several sub-optimal bounds have been shown. By sub-optimal, we mean that a
factor of (1 — ¢€), for some e > 0, is multiplied to the right hand side of Eq. (3).
Inspired by this, we give the following terminology which will be useful in later
references to mirror theory.
For £ > 2, € > 0, we write (&, ¢)-restricted mirror theory theorem to

denote the mirror theory result in which the number of solutions, hg, of

(2")ay (")ay
2na :

a system of equations with &yax = &, satisfies hy > (1 —€)
Mirror theory has been primarily used for bounding the pseudorandomness of
sum of permutations [47,48,37,40] with respect to a random function. For in-
stance, suppose we sample elements in Y7 and V9 as outputs of two independent
random permutations [1; and s, respectively, over gy and gy distinct inputs,
respectively. Let pr; be the probability of realizing the system of equations L,
and pry be the probability of realizing the g-tuple A? through random function
outputs over ¢ distinct inputs. Then, it is easy to see that pry = hqy/(2")gy (2") gy
and pry = 1/2"%. Clearly, the above given lower bound on h, implies that
pry > (1 — €)prg. When combined with the H-coefficient technique, we get an
€ term in the distinguishing advantage bound for sum of random permutations.
Here € can be viewed as the degree of deviation from random function behavior.
This is precisely the reason that one finds terms of the form (2"),, (2"),, and
22 in mirror theory bounds. We refer the readers to [37,36] for a more detailed
exposition on the aim and motivations behind mirror theory.

In [29], (4,3q/2™)-restricted mirror theory theorem is used. In section 5, we
study the (&, ¢*/2%") case, for £ < 2"/2q and present a variant of mirror theory
suitable for tweakable permutation scenario.

3 Revisiting Mennink’s Improved Bound on CLRW2

We first describe the notion of ¢-wise independent XOR universal hash functions
as given in [29]. This notion will be used for the description of CLRW?2 (for £ = 2),
as well as Mennink’s improved bound on CLRW2 (for ¢ = 4).

Definition 3.1. For £ > 2, ¢ > 0, a family of functions H = {h : {0,1}" —
{0,1}"} is called an C-wise independent XOR universal hash up to the bound



€, denoted e-AXUy, if for any j € {2,...,0}, any t/ € ({0,1}7); and a 677! €
({0,1})7~1, we have

Pr [H <—$H : H(tl) D H(tg) = (51,...,H(t1) D H(t]) = jfl] S Gjil. (4)

For ¢ = 2, this is nothing but the notion of AXU hash functions, first introduced
by Krawczyk [49] and later by Rogaway [50]. In [29], the author suggested a
simple AXU, hash function family using finite field arithmetic for small domain
(7 = n). Basically, the hash function family is defined as follows

-1
h(zx) := @ hi © z°
i=1

for h = (hy,...,he_1), where ® denotes field multiplication operator with respect
to some irreducible polynomial over the binary field F5. For ¢ = 2, this yields the
popular polyhash function. In general, this function requires ¢ — 1 keys and £ — 1
field multiplications to achieve 27"-AXU,. Alternatively, secure block ciphers
can also be used to construct (2" —¢+1)~1-AXU, hash functions over sufficiently
large domains.

3.1 Description of the Cascaded LRW2 Construction

Let E € BPerm(k,n) be a block cipher. Let H be a hash function family from
{0,1}7 to {0,1}™. We define the tweakable block cipher LRW2[E, H], based on
the block cipher F and the hash function family H, by the following mapping:
V(k,h,t,m) € {0,1}" x H x {0,1}" x {0,1}™,

LRW2[E, H](k, h,t,m) := Ey(m @ h(t)) & h(t). (5)

For ¢ € N, the ¢-round cascaded LRW2 construction, denoted CLRW2[E, H, £], is
a cascade of ¢ independent LRW?2 instances, i.e. CLRW2[E,H, ¢] is a tweakable
block cipher, based on the block cipher E and the hash function family H, defined
as follows: V(k*, h*,t,m) € {0,1}"* x H* x {0,1}" x {0,1}",

[LRW2[E, H] (ks hist,m)  fori = 1,
i = LRW2[E, H](ki, hi, t,yi—1) otherwise.
CLRW2[E, H, £](k*, h t,m) := y,. (6)

The 2-round CLRW2, was first analyzed by Landecker et al. [26], whereas the £ >
2 case was studied by Lampe and Seurin [28]. Since we mainly focus on the ¢ = 2
case, we use the nomenclatures, CLRW2 and cascaded LRW2, interchangeably
with 2-round CLRW?2. Figure 3.1 gives a pictorial description of the cascaded
LRW2 construction. Throughout the rest of the paper, we use the notations
from Figure 3.1 in context of CLRW2.

In [26] the CLRW2 construction was shown to be a BBB secure (upto 22"/3
queries) TSPRP, provided the underlying block cipher is an SPRP, and the hash
function families are AXU.
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ha(t) hi(t) © ha(t) ha(t)

Fig. 3.1: The cascaded LRW2 construction.

3.2 Mennink’s Proof Approach

The proof in [29] applies H-coefficient technique coupled with mirror theory. The
main focus is to identify a suitable class of bad events on (2%, u?), where ¢ is the
number of queries, which makes mirror theory inapplicable. Crudely, the bad
events correspond to cases where for some query there is no randomness left (in
the sampling of y? and v?) in the ideal world. Given a good transcript, mirror
theory is applied to bound the number of solutions of the system of equation
{YioV, =\ :i € [q]}, where Y; and V; are unknowns satisfying 2 «~ Y7 and
Ve e« ul and A\ is fixed. The proof relies on three major assumptions:

Assumption 1. H is AXU, hash function family.
Assumption 2. For any t' € {0,1}7, py = p(t?, ') < v = 2"/4,

Assumption 3. (4, 32)-restricted mirror theory theorem is correct.

TRANSCRIPT GRAPH: A graphical view on z? and u? was used to characterize
all bad events. Basically, each transcript is mapped to a unique bipartite graph
on z7,u?, as defined in Definition 3.2.

Definition 3.2 (Transcript Graph). A transcript graph G = (X, U, E) asso-
ciated with (x,u9), denoted G(z9,u?), is defined as X := {(z;,0) : i € [¢]}; U :=
{(us,1) : i € [q]}; and &€ := {((x4,0), (us,1)) : i € [g]}. We also associate the
value A\; = hq(t;) ® ha(t;) with edge ((x;,0), (u;, 1)) € £.

Note that the graph may not be simple, i.e. it can contain parallel edges. For all
practical purposes we may drop the 0 and 1 for (z,0) € X and (u, 1) € U, as they
can be easily distinguished from the context and notations. Further, for some
i,j € [q], if z; = z; (or u; = w; ) , then they share the same vertex z; = z; = z; ;
(or u; = u; = u; ;). The event ; = x; and u; = u;, although extremely unlikely,
will lead to a parallel edge in G. Finally each edge (z;,u;) € £ corresponds to a
query index ¢ € [g], so we can equivalently view (and call) the edge (z;,u;) as
index 4. Figure 3.2 gives an example graph for G.

BAD TRANSCRIPTS: A transcript graph G(«?, u?) is called bad if:

1. it has a cycle of size = 2.

2. it has two adjacent edges 7 and j such that \; © \; = 0.

3. it has a component with number of edges > 4.
All subgraphs in Figure 3.2, except the first two from left, are considered bad in
[29]. Conditions 1 and 2 correspond to the cases which might lead to degeneracy
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us,6 U7,8 U0 Wi, 541 WUit2,..., Ug—2,g—1 Uq—3,q

Fig. 3.2: A possible transcript graph G(z%, u?) associated with (x4, u?). Vertices in x?
are colored blue and vertices in u? are colored red, for illustration only.

in the real world. Condition 3 may lead to a cycle of length > 4 edges. The
non-fulfillment of condition 1,2 and 3 satisfies the cycle-free and non-degeneracy
properties required in mirror theory. It also bounds &,,,x < 4. Condition 1 and 2
contribute small and insignificant terms and can be ignored from this discussion.
We focus on the major bottleneck, i.e. condition 3. The subgraphs corresponding
to condition 3 are given in Figure 3.3. Configuration (D), (E), and (F) are
symmetric to (A), (B), and (C). So we can study (A), (B), and (C), and the
other three can be similarly analyzed.

ANNN /N N NA

Fig. 3.3: Possible configuration of size = 4 edge subgraphs. Vertices in z? are colored
blue and vertices in u? are colored red, and vertex labels are omitted for brevity.

BOTTLENECK 1: BOUND ON THE PROBABILITY OF (A), (C), (D) anD (F) —
This can be divided into two parts:
(a) Configuration (A) arises for the event

3%4,4,k,1 such that z; = x; =z, = z4.

This event is upper bounded to g*€3 using assumption 1 on hash functions.
Similar argument holds for (D).
(b) Configuration (C) (similarly for F') arises for the event

3%, j, k, £ € [g] such that x; = z; = z A up = ug.

In this case we can apply assumption 1 (even AXUjs would suffice) to get an
upper bound of ¢*e?

BOTTLENECK 2: BOUND ON THE PROBABILITY OF (B) — Configuration (B)
arises for the event

3%, 4, k, 1 such that z; = z; Au; = up Az = 4.

This is probably the trickiest case, which requires assumption 2, i.e. restriction
on tweak repetition. Specifically, consider the case t; = t;, and t; = t,. This is

11



precisely the case exploited in Mennink’s attack on CLRW2 [29] (see supplemen-
tary material B). In this case for a fixed 14, j, k, ¢ the probability is bounded by
€2. There are at most ¢> choices for (i,7), at most (s, — 1) choices for k and
a single choice for ¢ given 4, j and k. Thus the probability is bounded by g¢%ve>
(using assumption 2). Similar argument holds for (E).

BOTTLENECK 3: MIRROR THEORY BOUND — The final hurdle is the use of
mirror theory in computation of real world interpolation probability, which re-
quires assumption 3. Yet another issue is the nature of the mirror theory bound.
A straightforward application of mirror theory bound leads to a term of the form

Ht/e?q (Qn)uu n
RSt |(1- 0(g/2")),
in the ratio of interpolation probabilities (as required for H-coefficient technique),
where >, ¢ e = q. The boxed expression (particularly, the numerator in the
expression) is of main interest. In the worst case, up = O(g), which gives a lower
bound of the form 1 — ¢?/2" for the boxed expression. But using assumption 2,
we get a lower bound of 1 — ¢v/2" as uy <.

Severity of the assumptions in [29]. Among the three assumptions, assump-
tion 1 and 2 are plausible in the sense that real life use-cases exist for assumption
2 and practical instantiations are possible for assumption 1. Another point of
note is the fact that v < 2*/4 is imposed due to bottleneck 3. Otherwise a better
bound of v < 2"/2 could have been used. While assumption 1 and 2 are plau-
sible to a large extent, assumption 3 is disputable. This is because no publicly
verifiable proof exists for the generalized mirror theory. In fact, the proof for
a special case of mirror theory also has some unproved gaps and mistakes. See
Remark 1 for one such issue.

Although the proof in [29] requires the above mentioned assumptions, the
proof approach seems quite simple and in some cases it highlights the bottle-
necks in getting tight security. In the remainder of this paper, we aim to resolve
all the bottlenecks discussed here, while relaxing all the assumptions made in
[29]. Specifically, bottleneck 2 is resolved using the tools from section 4, and
bottlenecks 1 and 3 are resolved using the tools from sections 4 and 5, and a
careful application of the expectation method in section 6.

4 Results on (Multi)Collisions in Universal Hash

Let X ={h | h: T — B} be a family of functions. A pair of distinct elements
(t,t') from T is said to be colliding for a function h € H, if h(t) = h(t'). A
family of functions H = {h | h : T — B} is called an e-universal hash if for all
t£t e T,

PriH«sH : H(t) =H(t)] <e. (7)



Throughout this section, we fix t7 = (¢1,...,t,) € (T)4. For a randomly chosen
hash function H <—s 7, the probability of having at least one colliding pair in 7
is at most (g) - €. This is straightforward from the union bound.

4.1 The Alternating Collisions and Events Lemmata

Suppose H is an e-universal hash and Hq, Hy <—s 7 are two independently drawn
universal hash functions. Then, by applying independence and union bound, we
have

Pr (30,5, k € [q], Hi(t;) = Hi(t;) A Ha(t;) = Ha(te)] < q(qg—1)(g—2) - €.

Now we go one step further. We would like to bound the probability of the
following event:

%, 4.k, L€ [q], Hi(ti) = Hu(t;) A Ha(t;) = Ha(tk) A Hi(ty) = Hi(t).
For any fixed distinct ¢, j, k and [, we cannot claim that the probability of the
event Hl(tl) = Hl(tj) A Hg(tj) = Hg(tk) A Hl(tk) = Hl(tl) is 63 as the first
and last event are no longer independent. Now, we show how we can get an

improved bound even in the dependent situation. In particular, we prove the
following lemma.

Lemma 4.1 (Alternating Collisions Lemma). Suppose Hy, Hg <—sH are two
independently drawn e universal hash functions and t? € (T)q. Then,

Pr[3%i,5,k,1 € [q],H1(t;) = Hi(t;) A Hi(ty) = Hi(t) A Ha(t;) = Ha(tg)] < g™,
Proof. For any h € ‘H, we define the following useful set:

I ={(i,4) : h(t;) = h(t;)}-
Let us denote the size of the above set by Ij. So, I}, is the number of colliding

pairs for the hash functions h. We also define a set H< = {h : I}, < ﬁ}

which collects all hash functions having a small number of colliding pairs. We
denote the complement set by H~. Now, by using double counting of the set

{(hJ)j) : h(tl) = h’(t])} we get

S <alg—1)-e-[H. (®)
h

Basically for every h, we have exactly Ij, choices of (i,j) and so the size of
the set {(h,4,7) : h(t;) = h(t;)} is exactly ), I,. On the other hand, for any
1 < i < j < g, there are at most € - |H| hash functions h, such that (¢;,¢;)
is a colliding pair for h. This follows from the definition of the universal hash
function. From Eq. (8) and the definition of H<, we have

LEI ST h <Y I < alg—1)-e-H]. 9)

\/E heH< h
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Let E denote the event that there exists distinct i, j, k,1 such that Hy(¢;) =
Hi(t;) A Hi(tk) = Hi(t)) A Ha(t;) = Ha(tx). Now, we proceed to bound the
probability of this event.

Pr[E]:ZPr[E/\leh]
h
= Pr[H; =h] x Pr[EAH; =h | Hy =&
h

ZPr [Hy = h] x min{1,I? - €}
h

IA=

Pr(Hi € Ha]+ Y Pr{Hi=h] I} e
hEHS
[H> | Iy - /e
= + .
] 2 ]

AN

hEHS

Ve [H> |
= X + 1,
H "\ Ve hezﬂl "

3
< q(qg—1)€"”.

First, we justify inequality 1. Given H; = h, the probability of the event E is
same as the probability of the following event:

El*(iaj)a (kal) S Ih; H2(tj) = H2(tk)'

There are at most [ % pairs of pairs and for each pair of pairs and the collision
probability of Ha(t;) = Ha(t) is at most e. So probability of the above event
can be at most min{l,? - ¢}. Now, we justify inequality 2 using two facts.
First, Hy «—sH, i.e. Pr[Hy = h] = |H|7! for all h € H. Second, for all h € H<,
I, <1/4/e. Inequality 3 follows from Eq. (9). O

Now, we generalize the above result for a more general setting. The proof of the
result is similar to the previous proof and hence we skip it (given in supplemen-
tary material C).

Lemma 4.2 (Alternating Events Lemma). Let X7 = (Xq,...,X,) be a ¢-
tuple of random variables. Suppose for alli < j € [q], E; ; are events associated
with X; and X;, possibly dependent. Each event holds with probability at most
€. Moreover, for any distinct i,j,k,l € [q], Fi jx,; are events associated with X;,
X;, X and X;, which holds with probability at most ¢'. Moreover, the collection
of events (F; j k.1)ij k1 15 independent with the collection of event (E; ;); ;. Then,

Pr [E*i,j, k,l € [q],Ei)j N Egg A Fi,j,k,l] < q2 C€- \/67

Note that, Lemma 4.1 is a direct corollary of the above Lemma (the event E; ;
denotes that (¢;,t;) is a colliding pair of H; and F; ;1 denotes that (¢;,) is a
colliding pair of Hs).
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4.2 Expected Multicollisions in Universal Hash

Suppose H is an e-universal hash, and H <+—s7H. Let X = H(¢?). We define an
equivalence relation ~ on [g] as: a ~ f§ if and only if X, = Xz (i.e. ~ is simply
the multicollision relation). Let Py, Ps, ..., P, denote those equivalence classes
of [q] corresponding to ~, such that v; = |P;| > 2 for all ¢ € [r]. In the following
lemma, we present a simple yet powerful result on multicollisions in universal
hash functions.

Lemma 4.3. Let C denote the number of colliding pairs in X?. Then, we have

Ex lz 1/12] < 2¢%.
i=1

Proof. For i € [r], each of the (”2) pairs in (P;)2 correspond to 1 colliding pair.

And, each colliding pair belongs to (P;)2 for some ¢ € [r], as equality implies
that the corresponding indices are related by ~. Thus, we have

iuﬁ = 2c+iyi < 4C.
=1 =1

The result follows from the fact that Ex [C] < (%)e. O

Lemma 4.3 results in a simple corollary given below, which was independently
proved in [51].

Corollary 4.1. Let vyax = max{y; : i € [r]}. Then, for some a > 2, we have

2¢%€
5

Pr [Vmax > a] <
a

Proof. We have,

2¢%¢

2 2 2

Pr [Vmax > a] = Pr [Z/max >a ] <Pr [C >a /4] < o

where the last inequality follows from Markov’s inequality. a

Dutta et al. [52] proved a weaker? variant of Corollary 4.1, using an elegant
combinatorial argumentation.

5 Mirror Theory in Tweakable Permutation Setting

As evident from bottleneck 3 of section 3.2, a straightforward application of
mirror theory bound would lead to a sub-optimal bound. In order to circumvent

2 The bound is %.
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this sub-optimality Mennink [29] used a restriction on tweak repetitions (as-
sumption 2 of section 3.2). Specifically, a bound of the form O(g/2°"/*) requires
p(t ') < on/4 for all t/ € ?‘1, where t9 denotes the g-tuple of tweaks used in the
q queries. In order to avoid this assumption, we need a different approach.

A closer inspection of the mirror theory proof reveals that we can actually
avoid the restrictions on tweak repetitions. In fact, rather surprisingly, we will
see that tweak repetitions are actually helpful in the sense that mirror theory
bound is good. In the remainder of this section, we develop a modified version
of mirror theory, apt for applications in tweakable permutation settings.

5.1 General Setup and Notations

ISOLATED AND STAR COMPONENTS: In an edge-labeled bipartite graph G =
(Y, V, &), an edge (y,v, ) is called isolated edge if both y and v have degree 1.
A component S of G is called star, if £(S) > 3 and there exists a unique vertex
v in § with degree £(S) — 1. We call v the center of S. Further, we call S a Y-
(res. V-x) component if its center lies in Y (res. V).

THE SYSTEM OF EQUATION: Following the notations and definitions from sec-
tion 2.5, consider a system of equation £

{61:Y1€BV1:)\1, GQZYQ@‘/QZ)\Q, ey eq:Y;]EBV:Z:)\q},

such that each component in G(L£) is either an isolated edge or a star. Let ¢,
c2, and c3 denote the number of components of isolated, Y-+, and V-x types,
respectively. Let q1, g2, and q3 denote the number of equations of isolated, V-,
and V-x types, respectively. Therefore, ¢; = ¢;.

Note that the equations in £ can be arranged in any arbitrary order without
affecting the number of solutions. For the sake of simplicity, we fix the ordering
in such a way that all isolated edges occur first, followed by the star components.

Now, our goal is to give a lower bound on the number of solutions of £, such
that the Y, values are pairwise distinct and V; values are pairwise distinct. More
formally, we aim to prove the following result.

Theorem 5.1. Let L be the system of linear equations as described above with
q < 2" and Emaxq < 2" 1. Then, the number of tuples (Y1, ..., Yqgy s V1, -+ Vgy )
that satisfy L, denoted hq, such that y; # y; and v; # vj, for all i # j, satisfies:

ot "
h,>1[1-— % _ % _ C§3 772 ﬁ % (2 )q1+02+Q3 (2 )q1+q2+c3
q = n n c1+1 n n )
23 922 — 1 22 H)\’eiq (2 )

n
p(AL,N)

where n; = & — 1 and &; denotes the size (number of vertices) of the j-th com-
ponent, for all j € [c1 + c2 + c3].

We note here that the bound in Theorem 5.1 is parametrized in ¢ and &. This is a
bit different from the traditional mirror theory bounds. Further, we note that the
bounds in Theorem 5.1, becomes 1 — O(q*/2%"), when the value of Y2+ n2
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is O(q?/2"™). When we apply this result to CLRW2 and DbHtS-p, we can show
that the expected value of the term is indeed O(¢?/2") (a good time to revisit
Lemma 4.3). Corollary 5.1, given below, is useful for random function setting.

Corollary 5.1. Let L be the system of linear equations as described above with
q < 2"72 and Emaxq < 271, Then, the number of tuples (Y1, ..., Ygy V1, -« - Vgy )
that satisfy L, denoted hy, such that y; # y; and v; # vj, for all i # j, satisfies:

+
h.> 1= % _ E _ C§3 2 ﬁ % (2n)q1+02+q3 (Qn)th-‘rqz-‘rm
9 — 923n 92n Ney+i 22n ong )

i=1

where n; = &; — 1 and §; denotes the size (number of vertices) of the j-th com-
ponent, for all j € [c1 + c2 + c3].

Note the difference between the expressions given in Theorem 5.1 and Corol-
lary 5.1. Looking back at the discussion given towards the end of section 2.5, one
can see the motivation behind the denominator given in Corollary 5.1. Since, we
aim to apply mirror theory in tweakable permutation setting the denominator
is changed accordingly in Theorem 5.1.

The proof of Theorem 5.1 uses an inductive approach similar to the one in
[37]. We postpone the complete proof to supplementary material D.

6 Tight Security Bound of CLRW2

Based on the tools we developed in section 4 and 5, we now show that the CLRW2
construction achieves security up to the query complexity approximately 237/4.
Given Mennink’s attack [29] (see supplementary material B) in roughly these
many queries we can conclude that the bound is tight.

Theorem 6.1. Let k,7,n € N and € > 0. Let E € BPerm(x,n), and let H be
an ({0,1}7,{0,1}",€)-AXU hash function family. Consider

CLRW2[E, H] : {0,1}*" x H? x {0,1}7 x {0,1}" — {0,1}".

For ¢ <2"2 and t > 0, the TSPRP security of CLRW2|E, H] against A(q,t) is
given by
Advtgﬁg’wz[ﬂm (q,t) < 2AdVEP(q,t) + A,

where t' = c(t + qty), ty being the time complexity for computing the hash
function H, ¢ > 0 is a constant depending upon the computation model, and

9¢* 2 32q%¢ 13¢4
A< 22645 qzn n 2;1” n 23?1 4242 +

2q2

(10)
On putting € = 1/2", in Eq. (10) and further simplifying, we get
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Corollary 6.1. For e = %, we have

54q* 2¢> 4q¢°

tspr r
Adv iRm0 (@) < 2AdVEP (¢, 1) + gsn T a2 T 5o (11)
Specifically, the advantage bound is meaningful up to q ~ 2% 143 queries.

The proof of Theorem 6.1 employs the Expectation method coupled with an
adaptation of (2"/2q, ¢*/23")-restricted mirror theory [37] in tweakable permu-
tation settings. While our use of mirror theory is somewhat inspired by its recent
use in [29], in contrast to [29], we apply a modified version of mirror theory and
that too for a restricted subset of queries. The complete proof of Theorem 6.1 is
given in the remainder of this section.

6.1 Initial Step

Consider the instantiation CLRW2[Ek,, Ek,, H1, H2] of CLRW2[E, H], where Kj,
Kg, H17 H, are independent and (Kl7 K2) s ({0, I}K)Q, (Hl, HQ) —sH?2. As the
first step, we switch to the information-theoretic setting, i.e. we replace (Ex, , Ek,)
with (M, M) s Perm(n)2. For the sake of simplicity, we write the modified in-
stantiation CLRW2[IMy, My, Hy, Ha] as CLRW2, i.e. without any parametrization.
This switching is done via a standard hybrid argument that incurs a cost of
2AdvE™®(g,t') where t' = O(t + qt3;). Thus, we have

Adva‘_’%m[ﬂm (g,t) < 2AdvEP(q,t') + Advelmn,(9)- (12)
So, in Eq. (12), we have to give an upper bound on Advg iy, (q)- At this point,
we are in the information-theoretic setting. In other words, we consider com-
putationally unbounded distinguisher 7. Without loss of generality, we assume
that o7 is deterministic and non-trivial. Under this setup, we are now ready to
apply the expectation method.

6.2 Oracle Description

The two oracles of interest are: Oy, the real oracle, that implements CLRW2;
and, Op, the ideal oracle, that implements I < BPerm(7,n). We consider an
extended version of these oracles, the one in which they release some additional
information. We use notations analogously as given in Figure 3.1 to describe the
transcript generated by &7’s interaction with its oracle.

Description of the real oracle, O;: The real oracle O; faithfully runs
CLRW2. We denote the transcript random variable generated by 2/’s interaction
with O; by the usual notation ©1, which is a 10-ary g-tuple

(Tq7 Mq7 Cq7xq7Yq7Vq7 Uq7 Aq? H17 H2)7

defined as follows: The initial transcript consists of (T%,M?,CY), where for all
i € [q]:
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— T;: i-th tweak value, M;: i-th plaintext value, C;: i-th ciphertext value
where C? = CLRW2(T?, M?). At the end of the query-response phase O releases
some additional information (X9,Y9, V9 U9\ Hy, Hs), where for all i € [g]:

— (X;,Y;): i-th input-output pair for My,

— (Vi,U;): i-th input-output pair for Ma,

— \;: i-th internal masking, Hy, Ho: the hash keys.

Note that X9, U9, and A? are completely determined by the hash keys Hi, Hs,
and the initial transcript (T4, M4, C?). But, we include them anyhow to ease the
analysis.

Description of the ideal oracle, Op: The ideal oracle Oy has access to .
Since O; releases some additional information, Oy must generate these values as
well. The ideal transcript random variable @ is also a 10-ary g-tuple

(Tq7 Mq7 quxquqvqu Uqa Aqa H17 H2)7

defined below. Note that we use the same notation to represent the variables
of transcripts in the both world. However, the probability distributions of the
these would be determined from their definitions. The initial transcript consists
of (T?,M%,C?), where for all i € [g]:

— T;: i-th tweak value, M;: i-th plaintext value, C;: i-th ciphertext value,

where C? = ﬁ(Tq, M?). Once the query-response phase is over Oy first samples
(H1,Hz) <= H? and computes X9, U, A4, where for all i € [g]:
- Xz = Hl(Tz) @ MZ', Ul = HQ(Tz) EB Ci7 )\i = H]_(Tl) EB HQ(Tl)
This means that X9, U4, and \? are defined honestly. Given the partial transcript
0= (T?,M7,C9, X%, U9, A7, Hy,Hy) we wish to characterize the hash key H :=
(H1,H2) as good or bad. We write Hpaq for the set of bad hash keys, and Hgood =
H2 \ Hpag- We say that a hash key H € Hpag (or H is bad) if and only if one of
the following predicates is true:

1. Hy: 3%, j € [g] such that X; = X; AU; = U;.

Ho: 3%4,7 € [g] such that X; =X; AN = A

Hs: 3%i,7 € [q] such that U; = U; A X = A,

Hy: 3%, 4,k, ¢ € [¢] such that X; = X; AU; = Ui A Xp = X,
Hs: 3%,7,k, ¢ € [q] such that U; = U; AX; =X AU = Uy
He: dk > 2" /2q, 31,142, ..., ik € [g] such that X;, =--- = X;,.
Hy: 3k > 2" /2q, 31,42, ..., ik € [g] such that U;, =--- =U;,.

NS o W

CASE 1. H 1s BAD: If the hash key H is bad, then Y? and V4 values are sampled
degenerately as Y; = V; = 0 for all i € [g]. It means that we sample without
maintaining any specific conditions, which may lead to inconsistencies.

CASE 2. H 1s cooDp: To characterize the transcript corresponding to a good
hash key it will be useful to study a graph, similar to the one in section 3,
associated with (X7, U?). Specifically, we consider the random transcript graph
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G(X?,U1?) arising due to H € Hgood. Lemma 6.1 and Figure 6.1 characterizes the
different types of possible components in G(X?,U?). Note that, type-2, type-3,
type-4, and type-5 graphs are the same as configuration (A), (D), (C), and (F)
of Figure 3.3, for > 4 edges. These graphs are considered as bad in [29], whereas
we allow such components.

| /NN NV

type-1 type-2 type-3 type-4 type-5

Fig. 6.1: Enumerating all possible types of components of a transcript graph corre-
sponding to a good hash key: type-1 is the only possible component of size = 1 edge;
type-2 and type-3 are X-x and U-x components, respectively; type-4 and type-5 are
the only possible components that are not isolated or star (can have degree 2 vertices
in both X and U).

Lemma 6.1. The transcript graph G corresponding to (X?,U?) generated by a
good hash key H has the following properties:

1. G is simple, acyclic and has no isolated vertices.

2. G has no two adjacent edges i and j such that A\; ® \; = 0.

3. G has no component of size > 2" /2q edges.

4. G has no component such that it has 2 distinct degree 2 vertices in X or U.
In fact the all possible types of components of G are enumerated in Figure 0.1.

The proof of Lemma 6.1 is elementary and given in supplementary material E
for the sake of completeness.

In what follows, we describe the sampling of Y and V¢ when H € Hgo0d.
We collect the indices i € [q] corresponding to the edges in all type-1, type-2,
type-3, type-4, and type-5 components, in the index sets 71, Zs, 73, Z4, and Zs,
respectively. Clearly, the five sets are disjoint, and [¢] = Z; UZy UZ5 UZy U Ts.
Let Z =7, UZ, LU Z3. Consider the system of equation

L={Y;iaVi=\ : icT}

where Y; =Y (res. V; = V;) if and only if X; = X; (res. U; = U;) for all ¢, j € [q].
The solution set of L is precisely the set

S={(yF v7)  yF e XEAVT e UE AT @07 = M)

Given these definitions, the ideal oracle Oy samples (Y9,V?) as follows:
— (YZ,VT) <S8, i.e. Oy uniformly samples one valid assignment from the set
of all valid assignments.

— Let G\ Z denote the subgraph of G after the removal of edges and vertices
corresponding to ¢ € Z. For each component C of G \ Z:
e Suppose (X;,U;) € C corresponds to the edge in C, where both X; and
U; have degree > 2. Then, Y; <5 {0,1}" and V; =Y, @ ;.
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e For each edge (X;/,Uy) # (X;,U;) € C, either Xy = X; or Uy = U,.
Suppose, X;; = X;. Then, Yy =Y, and Vs = Yy & A\y. Now, suppose
Uy = U;. Then, Vy =V, and Yy =V © Ay
At this point, ©¢ = (T, M?,C?, X%, Y2, VI U? A2 Hy, Hy) is completely defined.
In this way we maintain both the consistency of equations of the form Y;®V; = );
(as in the case of real world), and the permutation consistency within each
component, when H € Hgo0q4. However, there might be collisions among Y or V
values from different components.

6.3 Definition and Analysis of Bad Transcripts

Given the description of the transcript random variable corresponding to the
ideal oracle we can define the set of transcripts {2 as the set of all tuples
w = (t9,m%, c?, z9, y?, v, u?, A\, hy, hy), where t7 € ({0,1}7)% m9,c?,y%, 09 €
({0,1}™)9; (hy, he) € H?; 29 = hy (1) Dm9; u? = ha(t?)®ct; A\ = hy (t9) D ha(t9);
and (t7,m9) e~ (19, c?).
Our bad transcript definition is inspired by two requirements:
1. Eliminate all 7, u?, and A? tuples such that both y? and v are trivially
restricted by way of linear dependence. For example, consider the condition
Hy. This leads to y; = y;, which would imply v; = y; ® A\ = y; © Aj = v;.
Assuming 7 > j, v; is trivially restricted (= v;) by way of linear dependence.
This may lead to u? «% v? as u; may not be equal to u;.
2. Eliminate all 2%, u?, y?, v9 tuples such that x? «f» y? or u? «t» v,
Among the two, requirement 2 is trivial as 7 «~ y? and u? «~ v? is always true
for real world transcript. Requirement 1 is more of a technical one that helps in
the ideal world sampling of y¢ and v9.

BAD TRANSCRIPT DEFINITION: We first define certain transcripts as bad de-
pending upon the characterization of hash keys. Inspired by the ideal world
description, we say that a hash key (hi,h2) € Hpag (or (h1,hz) is bad) if and
only if the following predicate is true:

Hy VHy VH;VHyVHs VHg VHy.

We say that w is hash induced bad transcript, if (h1,h2) € Hpad. We write this
event as BAD-HASH, and by a slight abuse of notations,® we have

7
BAD-HASH = _J H;. (13)

=1

This takes care of the first requirement. For the second one we have to enumerate
all the conditions which might lead to z? «£+ y? or u? «/ v?. Since we sample
degenerately when the hash key is bad, the transcript is trivially inconsistent
in this case. For good hash keys, if ; = ; (or u; = u;) then we always have

3 We use the notation H; to denote the event that the predicate H; is true.
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y; = y; (res. v; = v;); hence the inconsistency won’t arise. So, given that the
hash key is good, we say that w is sampling induced bad transcript, if one of the
following conditions is true:
for some « € [5] and 8 € {a,...,5}, we have

— Ycollyg : i€ Z1y,j € Ig, such that z; # x; Ay; = y;, and

— Vcollyg: 3i€Z,,j € Ig, such that u; # uj; A vy = v;,
where Z; is defined as before in section 6.2. By varying « and 3 over all possible
values, we get all 30 conditions which might lead to 29 «£ y9 or u? «£» v4. Here
we remark that some of these 30 conditions are never satisfied due to the sam-
pling mechanism prescribed in section 6.2. These are Ycollp, Ycollys, Ycollsg,
Ycollss, Ycollos, Ycollss, Vecollyq, Vcollis, Vcollys, Vcollss, Vcollos, and
Vcollss. We listed them here only for the sake of completeness. We write the
combined event that one of the 30 conditions hold as BAD-SAMP. Again by an
abuse of notations, we have

BAD-SAMP = U (Ycollas UVcollap). (14)
a€[5],B€{e,...,5}

Finally, a transcript w is called bad, i.e. w € (2paq, if it is either a hash or a
sampling induced bad transcript. All other transcripts are called good. It is easy
to see that all good transcripts are attainable (as required in the H-coefficient
technique or the expectation method).

BAD TRANSCRIPT ANALYSIS: We analyze the probability of realizing a bad
transcript in the ideal world. By definition, this is possible if and only if one of
BAD-HASH or BAD-SAMP occurs. So, we have

€bad = P1[©0 € §25a4] = Pr [BAD-HASH U BAD-SAMP]
0

< Pr [BAD-HASH] + Pr [BAD-SAMP] . (15)
@0 @0

€hash €samp

Lemma 6.2 upper bounds epssh t0 2¢%€? 4+ 2¢%€!® + 16¢*€272" and Lemma 6.3
upper bounds €gamp to 9¢*€?27". Substituting these values in Eq. (15), we get

16g*c  9¢*e?

ehod < 20262 + 2¢210 + T =

(16)

16¢*
Lemma 6.2. enaen < 2¢%€? + 2¢%€'° + 22qn€'

Proof. Using Eq. (13) and (15), we have

7
€hash = Pr [Hl UHs UH3 UH4 UHs UHg UH7] < ZPI” [Hl]
i=1

H; is true if for some distinct 4, j both X; = X;, and U; = U;. Now T; =T; =
M; # M;. Hence X; # X; and H; is not true. So suppose T; # T;. Then for a
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fixed 4, j we get an upper bound of €2 as H is e-AXU, and we have at most (g)
pairs of 4, j. Thus, Pr [H;] < (g) €2. Following a similar line of argument one can

bound Pr [Hy] < (2)€* and Pr [Hz] < (9)€?.

In the remaining, we bound the probability of Hy and Hg, while the probability
of H5 and H; can be bounded analogously. For any function f : {0,1}" € {0, 1}",
let f/: {0,1}" x {0,1}™ — {0,1}"™ be defined as f'(t,m) = f(t) ® m. So X; =
H1(T:, M;), and U; = Hy(T;, C;), for all ¢ € [g]. It is easy to see that Hj is e-
universal if H, is e-AXU for b € [2]. Using the renewed description, Hy is true if
for some distinct 4, j, k, £,

H1 (T, M) = Hy(T5, M;) AHS (T, Cj) = Hy(Tw, Ci) AH(Tr, M) = Hi(Te, My).
Since (t;,m;) # (tj,m;) and (t;,¢;) # (t;,¢;) for distinct ¢ and j, we can apply

the alternating collisions lemma of Lemma 4.1 to get Pr [Hy] < ¢%e!®.
For Hg, we have

Xi, = Xiy =+ = Xi, |

where k > 2" /2q. Since, (t;;,m;;) # (ti,, ms,) for all j # [, we can apply Corol-

lary 4.1 with a = 2™/2q to get Pr [Hg] < 82%16. O
9g*e?

Lemma 6.3. €5mp < (;n .

Proof. Using Eq. (14) and (15), we have

€samp = Pr U (YCOlla@ U VCOllaﬂ)
agls],pe{a,...,5}

< Z Z (Pr [Ycollyg] + Pr [Vcollag]) .
a€l5] Be{a,...,5}

We bound the probabilities of the events on the right hand side in groups as
given below:
1. Bounding 3, c(3) gefa,...,33 T [Ycollag] + Pr [Vcollag]: Recall that the sam-

pling of Y and V values is always done consistently for indices belonging to
7= Il |_|Ig |_|Ig. HQHCB7

> Pr[Ycoll,s] + Pr[Vcollag) = 0, (17)
a€l3],pe{a,...,3}

2. Bounding }° (5 geqa,53 P [Yeollap] + Pr[Vcollag): Let’s consider the event

Ycollyy, which translates to there exist indices ¢ € Z; and j € Z; such that
Xi # X; AY; =Y;. Since j € Zy, there must exist k, ¢ € Zs \ {j}, such that one
of the following happens

ijxk/\UkZUg
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UjZUk/\XkZXg
ijxk/\UjZUg.

We analyze the first case, while the other two cases can be similarly bounded.
To bound the probability of Ycolly4, we can thus look at the joint event

E: 3i€Ty,3 k(€ Iy such that Y; = Y; AX; =X AUy = Uy

Note that the event Y; =Y is independent of X; = X3 AU, = Uy, as both Y;
and Y; are sampled independent of the hash key. Thus, we get

Pr[E] = Pr[3i € Ty, 3j, k, £ € Ty, such that Y; = Y; AX; = Xi A Uy, = U]

<> Y PrYi =Y x PrX; = Xp AU, = Uy
i€T j<k<lELy

2

q\ €

< -
q(3>2n’

where the last inequality follows from the uniform randomness of Y; and the
AXU property of H; and Hs. The probability of the other two cases are similarly

bounded to q(g) 26—2, whence we get

q\ €

Pr[Ycollyy| <3 —.

[ 14] < 3¢ (3> on

We can bound the probabilities of Ycollay, Ycollsy, Ycollys, Vcollyys, and

Vcollys, for « € [3], in a similar manner as in the case of Ycollyy. So, we skip

the argumentation for these cases, and summarize the probability for this group
as

6(]462

> Pr[Ycollag] + PrlVcollas] < o

a€(3],8e{4,5}

(18)

3. Bounding } e (45} gefa,5p PT [Yeollap] + Pr[Veollag): Consider the event

Ycolly,, which translates to there exists distinct indices 7,5 € Z, such that
Xi #X; ANY; =Y;. Here as 1,j € Zy, there must exist k,¢ € Z, \ {j} such that
one of the following happens

Xj:Xk/\Uk:Ug
Uj =Up AXp =X
Xj:xk/\Uj:Ug.

The analysis of these cases is similar to 2 above. So, we skip it and provide the
final bound

7\ €
Pr|Ycolly| <3 —.
r[Ycolly] < q(3> o
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The probabilities of all the remaining events in this group can be bounded in a

similar fashion.

3(]462
2

> Pr[Ycollas] + Pr[Veoll,s] <
ae{4,5},8€e{a,5}

(19)

The result follows by combining Eq. (17-19), followed by some algebraic simpli-
fications. O

6.4 Good Transcript Analysis

From section 6.2, we know the types of components present in the transcript
graph corresponding to a good transcript w are exactly as in Figure 6.1. Let
w = (t9,m?,cl 29, y9,v?,ul, A9, hq, ha) be the good transcript at hand. From
the bad transcript description of section 6.3, we know that for a good transcript
(t7,m?) e (19,¢9), 27 o y9, 09 o ud) and y? G ovd = N4,

We add some new parameters with respect to w to aid our analysis of good
transcripts. For ¢ € [5], let ¢;(w) and ¢;(w) denote the number of components
and number of indices (corresponding to the edges), respectively of type-i in
w. Note that ¢1(w) = ¢1(w), ¢;i(w) > 2¢;(w) for i € {2,3}, and ¢;(w) > 3¢;(w)
for i € {4,5}. Obviously, for a good transcript ¢ = Z?:l ¢i(w). For all these
parameters, we will drop the w parametrization whenever it is understood from
the context.

INTERPOLATION PROBABILITY FOR THE REAL ORACLE: In the real oracle,
(Hi, Ha) <—sH2, My is called exactly g1 + ¢z + g3 + 2¢4 + g5 — c5 times and My is
called exactly g1 + g2 + ¢3 + g4 — ¢4 + 2¢5 times. Thus, we have
1 1 1

X . (20)

Pr[®; =w] = X
|H|2 (2n)q1+62+q3+264+q5—05 (Qn)ql +aq2+c3+qa—cat2es

INTERPOLATION PROBABILITY FOR THE IDEAL ORACLE: In the ideal oracle,
the sampling is done in parts:
/ /

I M sampling: Let (¢7,t5,--- ,t.) denote the tuple of distinct tweaks in t?, and
for all i € [r], let a; = pu(t9,t;), i.e. r < g and > ._, a; = q. Then, we have

Pr [ﬁ(tq,mq) = cq} < m

Il. Hash key sampling: The hash keys are sampled uniformly from #?2, i.e.
Pr [(Hh Hg) = (hl, hg)] = ﬁ

. Internal variables sampling: The internal variables Y? and V¢ are sampled
in two stages.

(A). type-1, type-2 and type-3 sampling: Recall the sets 77, Zo, and Zs, from
section 6.3. Consider the system of equation
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Let (A}, Ay, -+, \,) denote the tuple of distinct elements in AT, and for
all i € [s], let b; = (AL, \]). From Figure 6.1 we know that £ is cycle-
free and non-degenerate. Further, &,.x(£) < 2" /2¢, since the transcript
is good. So, we can apply Theorem 5.1 to get a lower bound on the the
number of valid solutions, |S| for £. Using the fact that (YZ,V7T) ¢S,
and Theorem 5.1, we have

FTOYE VT = (o o7 151 (2",
p [(Y 7V )_ (y ’ )] = C(w)(2n)lﬂ+cz+qg(2n)<h+qz+037

where

(B). type-4, and type-5 sampling: For the remaining indices, one value is sam-
pled uniformly for each of the components, i.e. we have

1
[AN\Z ylaN\T) — (JlaNT JlaNT)| — _ ~
pr[ (Y7 VINT) = (400, ol )}_(2”)64“5'
By combining I, I, Ill,; and rearranging the terms, we have
1 1 T, (2™,
— < 1=1 i
Pri®0 =4S i X ) L e 20 @@y Y

where p; = q1 + c2 + g3, and p2 = q1 + q2 + c3.

6.5 Ratio of Interpolation Probabilities
On dividing Eq. (20) by Eq. (21), and simplifying the expression, we get

Pr [0, = w]

H::l(Qn)ai
m > ((w) -

Hj=1(2n)b1‘, (271, —P1— c4)C4+q5_(;5 (2n — P2 — 65)(]4—(:44—05
> C(w) - [ (2")a, IT—i (2" — di)a,—as
B HZ:l(Qn)b1 (2n —DP1— c4)C4+Q5_C5 (2’”, — P2 — 05)q4—64+(;5

(2n —DP1— C4)C4+615—05 (271 — D2 — C5)Q4—C4+Cs

S ((w). (22)

At inequality 1, we rewrite the numerator such that d; = p(t,t;) for i € [r].
Further, r > s, as number of distinct internal masking values is at most the
number of distinct tweaks, and iz compresses to AZ. So using Proposition 1, we
can justify inequality 2. At inequality 2, for ¢ € {2,3,4,5}, ¢;(w) > 0 if and only
if r > 2. Also, d; < ¢ 4 ca+ ¢35 <p1+cq and d; < py + ¢5 for i € [r]. Similarly,
a; <cr+ceatez+2ca+2c5 < pr+2c4+g5—cs, and a; < pa+qa—ca+2c5. Also,

26



22:1 a; —d; = q4 + q5. Thus, A satisfies the conditions given in Proposition 2,
and hence A > 1. This justifies inequality 3.
We define €tio : §2 — [0, 00) by the mapping

Eratio(w) =1- C(OJ)

Clearly €atio is non-negative and the ratio of real to ideal interpolation proba-
bilities is at least 1 — €atio(w) (using Eq. (22)). Thus, we can use Lemma 2.1 to
get

ca2+c3

E 2
77c1 —+17
=1

Let ~; (res. ~3) be an equivalence relation over [q], such that a ~1 8 (res.
a ~y f3) if and only if X, = Xz (res. Uy = Ug). Now, each 7; random variable
denotes the cardinality of some non-singleton equivalence class of [g] with respect
to either ~1 or ~g. Let Pi ..., P} and PZ,...,P2 denote the non-singleton
equivalence classes of [g] with respect to ~; and ~q, respectively. Further, for
i €[r] and j € [s], let v; = |P}| and v/} = |P?|. Then, we have

ca+c3 r S
2 2 2
Ex [ E ncﬁ_i] < Ex E v;®| 4+ Ex v, ]
i=1 j=1 k=1

< 4(]26. (24)

2¢>  13¢*  4q?

+ Zan T g2 EX

AdvTRna(a) <

< 2% + €bad- (23)

where the first inequality follows from the fact that H; and Hs are independently
sampled, and the second inequality follows from Lemma 4.3 and the fact that
Hi, Hy <. Theorem 6.1 follows from Eq. (12), (16), (23)-(24). O

7 Further Discussion

In this paper, our chief contribution is a tight (up to a logarithmic factor) security
bound for the cascaded LRW2 tweakable block cipher. We developed two new
tools: first, we provide a probabilistic result, called alternating collisions (events)
lemma, that gives improved bounds for some special collision events, that are
encountered frequently in BBB security analysis. Second, we adapt a restricted
variant of mirror theory in tweakable permutations setting.

7.1 Applications of Alternating Events Lemma and Mirror Theory

The combination of alternating events lemma and mirror theory seem to have
some nice applications. Here, we give some applications based on the Double-
block Hash-then-Sum (or DbHtS) paradigm by Datta et al. [42]. The DbHtS
paradigm is a variable input length pseudorandom function or PRF construction,
based on a block cipher E and a hash function #, which is defined as:

V(k, hym) € {0,112 x M x {0, 1},

DbHtS[E, H](k?, h,m) = X\ = Ej, (z) & Ey, (u),

27



where {0, 1}* denotes the set of all bit strings, and (x,u) = h(m).

PRF SECURITY: Let F be a keyed function family from {0,1}* to {0,1}"
indexed by the key space {0,1}"*. We define the PRF-advantage of an adversary
o/ against F' as,

Advi (/) = |Pr[o7" =1] —Pr[o" =1]|,

where K <5 {0,1}", and I is a uniform random function chosen from the set of all
functions from {0, 1}* to {0,1}". The PRF security of F against any adversary
class A(g,t) is defined analogously to SPRP and TSPRP security given in section
2.3.

Application 1: DbHtS-p— As a first application, we relax the DbHtS construc-
tion to DbHtS-p, where the hash function h is made up of independent universal
hash functions hy and hg, such that h(m) = (hy(m), ha(m)). This construction
was also analyzed in [51], though they showed security up to ¢ < 22"/3.

We show that DbHtS-p achieves higher security (i.e. security up to ¢ < 231/ 4.
Further, the attack by Leurent et al. [53] in roughly 23/4 queries, seems to apply
to DbHtS-p for algebraic hash functions. Thus, our bound is tight.

Theorem 7.1. For ¢ < 272 and t > 0, the PRF security of DbHtS-p[E, H]
against A(q,t) is given by

AVl s o g (0:1) < 2AdVEP (g, 1) + 4,

where t' = c(t + qty), ty being the time complexity for computing the hash
function H, ¢ > 0 is a constant depending upon the computation model, and
9¢%e?  32¢%  13¢* q%e
2 1.5 2 2
Note that the PRP security game is similar to SPRP, except that the adversary
is not given inverse access to the oracle. The proof of Theorem 7.1 is given in
supplementary material F.

2q2

(25)

Application 2: DbHtS-f— The DbHtS-f is another relaxation of DbHtS, where
the hash function h is made up of independent universal hash functions h;
and hg, and the finalization is done via keyed functions Fj, and Fj,, ie.,
DbHtS-f(m) = A = Fy, (z) @ Fk,(u), where = hy(m) and u = ha(m). We
show that DbHtS-f is secure up to ¢ < 23/4.

Theorem 7.2. For ¢ < 2"72 and t > 0, the PRF security of DbHtS-f[F, H]
against A(q,t) is given by
rf rf
AdvaHtS»f[F,’H] (q,t) <2Adv% (¢,t') + 2¢%e'5 + ¢2¢2, (26)
where t' = c(t + qty), ty being the time complexity for computing the hash
function H, and ¢ > 0 is a constant depending upon the computation model.
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Proof. This can be argued using the previous line of research on sum of PRFs,
starting from the work by Aiello and Venkatesan [54], followed by the works
by Patarin et al.[55,56]. Basically, one can show that the sum of PRFs is a
perfectly secure PRF if there is no “alternating cycles” in the inputs (see [54,55]
for details). We can use the alternating collisions lemma to bound the probability
of getting such alternating cycles. ad

Modified Benes [54,55,56]: mBenes-f of [54] is a 2n-bit to 2n-bit PRF con-
struction, which is defined as mBenes-f(a,b) := (e, f), where

ci=Fy(a)®b, di=F,0b)®a, e:=Fy(c)®Fy,(d), [f:=Fp(c)® Fr(d),

where Fy, are independently sampled PRFs. In [54], the authors conjectured
that mBenes-f is secure up to ¢ < 2". In [55,56], the authors have given a very
high level sketch for proof of security up to ¢ < 2"7¢ for all € > 0. Let us
define the mappings (a,b) — ¢ and (a,b) — d as functions hy and hs. Then, it is
easy to see that hy and hy are 27" universal hash functions. Hence, as a direct
consequence of Theorem 7.2 above, one can argue that mBenes-f is secure up
to ¢ < 2°"/%. Suppose mBenes-p denotes the natural variant of mBenes-f, when
Fy,,’s are independently sampled PRPs. In the same vein as mBenes-f, mBenes-p
can be shown to be secure up to ¢ < 23"/ as a direct consequence of Theorem
7.1 above.

7.2 Open Problems

We remark here that, the alternating events lemma is not applicable when the
hash functions are dependent. Thus, we cannot apply it to other DbHtS instan-
tiations, such as PMAC+ [57] and LightMAC+ [58], in a straightforward manner.
It would be an interesting future work to somehow bypass the independence re-
quirement of the alternating events lemma. Yet another future work could be to
look for the repercussions of this result on the security of XHX2 [35] in both the
ideal cipher and the standard model. Note that XHX2 in the standard model is
same as 2-round cascade of XTX [59]. It seems that the bounds can be improved
up to %—th of sum of block size and key size (or tweak size in the standard model).
Our result does not seem to generalize to the cascaded LRW2 for ¢ > 2, and it

would be interesting to see some improved analysis on the generalized ¢-round
cascaded LRW?2 for ¢ > 2.

Update on the Security of PMAC+ and LightMAC+: In an independent
and concurrent work [60] Kim et al. derived tight security bounds for several
DbHtS-based MACs, which includes PMAC+ and LightMAC+. As a result, the
exact security of these constructions is no longer an open problem. In order to
derive tight security bounds, Kim et al. proposed an extension of mirror theory
which is similar to Corollary 5.1 of this paper.

29



Acknowledgements

We thank the anonymous reviewers of EUROCRYPT 2019, CRYPTO 2019 and
the Journal of Cryptology for their comments and suggestions. We also thank
Bart Mennink for his comments and suggestions on an earlier version of this

paper.

References

10.

11.

12.

13.

14.

15.

. Liskov, M., Rivest, R.L., Wagner, D.A.: Tweakable block ciphers. J. Crypto. 24(3)

(2011) 588-613

. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to

modes OCB and PMAC. In: Advances in Cryptology - ASTACRYPT ’04, Proceed-
ings. (2004) 16-31

Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: ACM Conference on Computer
and Communications Security - ACM-CCS ’01, Proceedings. (2001) 196-205
Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Fast Software Encryption - FSE ’11, Revised Selected Papers. (2011)
306-327

Shrimpton, T., Terashima, R.S.: A modular framework for building variable-input-
length tweakable ciphers. In: Advances in Cryptology - ASTACRYPT ’13, Proceed-
ings, Part I. (2013) 405-423

Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda,
K.: Parallelizable and authenticated online ciphers. In: Advances in Cryptology -
ASTACRYPT ’13, Proceedings, Part 1. (2013) 424-443

Peyrin, T., Seurin, Y.: Counter-in-tweak: Authenticated encryption modes for
tweakable block ciphers. In: Advances in Cryptology - CRYPTO ’16, Proceedings,
Part 1. (2016) 33-63

Jean, J., Nikolic, I., Peyrin, T.: Tweaks and keys for block ciphers: The TWEAKEY
framework. In: Advances in Cryptology - ASTACRYPT ’14, Proceedings, Part II.
(2014) 274-288

Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ
and the problem that it solves. In: Advances in Cryptology - EUROCRYPT ’15,
Proceedings, Part 1. (2015) 15-44

Naito, Y.: Full prf-secure message authentication code based on tweakable block
cipher. In: Provable Security - ProvSec ’15, Proceedings. (2015) 167-182

List, E., Nandi, M.: Revisiting full-prf-secure PMAC and using it for beyond-
birthday authenticated encryption. In: Topics in Cryptology - CT-RSA ’17, Pro-
ceedings. (2017) 258-274

Iwata, T., Minematsu, K., Peyrin, T., Seurin, Y.: ZMAC: A fast tweakable block
cipher mode for highly secure message authentication. In: Advances in Cryptology
- CRYPTO 17, Proceedings, Part III. (2017) 34-65

Cogliati, B., Lampe, R., Seurin, Y.: Tweaking even-mansour ciphers. In: Advances
in Cryptology - CRYPTO ’15, Proceedings, Part I. (2015) 189-208

List, E., Nandi, M.: ZMAC+ - an efficient variable-output-length variant of ZMAC.
TACR Trans. Symmetric Cryptol. 2017(4) (2017) 306-325

Grochow, T., List, E., Nandi, M.: Dovemac: A tbc-based PRF with smaller state,
full security, and high rate. IACR Trans. Symmetric Cryptol. 2019(3) (2019) 43-80

30



16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Minematsu, K.: Beyond-birthday-bound security based on tweakable block cipher.
In: Fast Software Encryption - FSE ’09, Revised Selected Papers. (2009) 308-326
Rogaway, P., Zhang, H.: Online ciphers from tweakable blockciphers. In: Topics in
Cryptology - CT-RSA ’11, Proceedings. (2011) 237—249

Forler, C., List, E., Lucks, S., Wenzel, J.: Poex: A beyond-birthday-bound-secure
on-line cipher. Cryptography and Communications 10(1) (2018) 177-193

Jha, A., Nandi, M.: On rate-1 and beyond-the-birthday bound secure online ciphers
using tweakable block ciphers. Cryptography and Communications 10(5) (2018)
731-753

Dutta, A., Nandi, M.: Tweakable HCTR: A BBB secure tweakable enciphering
scheme. In: Progress in Cryptology - INDOCRYPT ’18, Proceedings. (2018) 47-69
Bhaumik, R., List, E., Nandi, M.: ZCZ - achieving n-bit SPRP security with a
minimal number of tweakable-block-cipher calls. In: Advances in Cryptology -
ASTACRYPT ’18, Proceedings, Part 1. (2018) 336-366

Beierle, C., Jean, J., Kolbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. In: Advances in Cryptology - CRYPTO ’16, Proceedings, Part
II. (2016) 123-153

Chakraborty, D., Sarkar, P.: A general construction of tweakable block ciphers
and different modes of operations. IEEE Trans. Information Theory 54(5) (2008)
1991-2006

Minematsu, K.: Improved security analysis of XEX and LRW modes. In: Selected
Areas in Cryptography - SAC ’06, Revised Selected Papers. (2006) 96-113
Granger, R., Jovanovic, P., Mennink, B., Neves, S.: Improved masking for tweak-
able blockciphers with applications to authenticated encryption. In: Advances in
Cryptology - EUROCRYPT ’16, Proceedings, Part 1. (2016) 263-293

Landecker, W., Shrimpton, T., Terashima, R.S.: Tweakable blockciphers with
beyond birthday-bound security. In: Advances in Cryptology - CRYPTO ’12,
Proceedings. (2012) 14-30

Procter, G.: A note on the CLRW2 tweakable block cipher construction. TACR
Cryptology ePrint Archive 2014 (2014) 111

Lampe, R., Seurin, Y.: Tweakable blockciphers with asymptotically optimal se-
curity. In: Fast Software Encryption - FSE ’13, Revised Selected Papers. (2013)
133-151

Mennink, B.: Towards tight security of cascaded LRW2. In: Theory of Cryptogra-
phy - TCC ’18, Proceedings, Part II. (2018) 192222

Bogdanov, A., Knudsen, L.R., Leander, G., Standaert, F., Steinberger, J.P., Tis-
chhauser, E.: Key-alternating ciphers in a provable setting: Encryption using a
small number of public permutations - (extended abstract). In: Advances in Cryp-
tology - EUROCRYPT ’12, Proceedings. (2012) 45-62

Mennink, B.: Optimally secure tweakable blockciphers. In: Fast Software Encryp-
tion - FSE ’15, Revised Selected Papers. (2015) 428-448

Mennink, B.: Optimally secure tweakable blockciphers. TACR Cryptology ePrint
Archive 2015 (2015) 363

Wang, L., Guo, J., Zhang, G., Zhao, J., Gu, D.: How to build fully secure tweak-
able blockciphers from classical blockciphers. In: Advances in Cryptology - ASI-
ACRYPT ’16, Proceedings, Part 1. (2016) 455-483

Jha, A., List, E., Minematsu, K., Mishra, S., Nandi, M.: XHX - A framework for
optimally secure tweakable block ciphers from classical block ciphers and universal
hashing. In: Progress in Cryptology - LATINCRYPT ’17, Revised Selected Papers.
(2017) 207227

31



35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Lee, B., Lee, J.: Tweakable block ciphers secure beyond the birthday bound in the
ideal cipher model. In: Advances in Cryptology - ASIACRYPT ’18, Proceedings,
Part I. (2018) 305-335

Mennink, B., Neves, S.: Encrypted davies-meyer and its dual: Towards optimal
security using mirror theory. In: Advances in Cryptology - CRYPTO ’17, Proceed-
ings, Part III. (2017) 556-583

Patarin, J.: Introduction to mirror theory: Analysis of systems of linear equalities
and linear non equalities for cryptography. IACR Cryptology ePrint Archive 2010
(2010) 287

Patarin, J.: Mirror theory and cryptography. Appl. Algebra Eng. Commun. Com-
put. 28(4) (2017) 321-338

Nachef, V., Patarin, J., Volte, E.: Feistel Ciphers - Security Proofs and Cryptanal-
ysis. Springer (2017)

Dai, W., Hoang, V.T., Tessaro, S.: Information-theoretic indistinguishability via
the chi-squared method. In: Advances in Cryptology - CRYPTO ’17, Proceedings,
Part III. (2017) 497-523

Datta, N., Dutta, A., Nandi, M., Yasuda, K.: Encrypt or decrypt? to make a
single-key beyond birthday secure nonce-based MAC. In: Advances in Cryptology
- CRYPTO 18, Proceedings, Part I. (2018) 631-661

Datta, N., Dutta, A., Nandi, M., Paul, G.: Double-block hash-then-sum: A
paradigm for constructing bbb secure prf. ITACR Trans. Symmetric Cryptol.
2018(3) (2018) 36-92

Hoang, V.T., Tessaro, S.: Key-alternating ciphers and key-length extension: Ex-
act bounds and multi-user security. In: Advances in Cryptology - CRYPTO ’16,
Proceedings, Part I. (2016) 3-32

Hoang, V.T., Tessaro, S.: The multi-user security of double encryption. In: Ad-
vances in Cryptology - EUROCRYPT ’17, Proceedings, Part II. (2017) 381411
Guo, C., Wang, L.: Revisiting key-alternating feistel ciphers for shorter keys and
multi-user security. In: Advances in Cryptology - ASTACRYPT ’18, Proceedings,
Part 1. (2018) 213-243

Patarin, J.: Etude des Générateurs de Permutations Pseudo-aléatoires Basés sur
le Schéma du DES. PhD thesis, Université de Paris (1991)

Hall, C., Wagner, D.A., Kelsey, J., Schneier, B.: Building prfs from prps. In:
Advances in Cryptology - CRYPTO ’98, Proceedings. (1998) 370-389

Bellare, M., Impagliazzo, R.: A tool for obtaining tighter security analyses of
pseudorandom function based constructions, with applications to PRP to PRF
conversion. IACR Cryptology ePrint Archive 1999 (1999) 24

Krawczyk, H.: Lfsr-based hashing and authentication. In: Advances in Cryptology
- CRYPTO ’94, Proceedings. (1994) 129-139

Rogaway, P.: Bucket hashing and its application to fast message authentication.
J. Cryptol. 12(2) (1999) 91-115

Moch, A., List, E.: Parallelizable macs based on the sum of prps with security
beyond the birthday bound. In: Applied Cryptography and Network Security -
ACNS ’19, Proceedings. (2019) 131-151

Dutta, A., Nandi, M., Talnikar, S.: Beyond birthday bound secure MAC in faulty
nonce model. In: Advances in Cryptology - EUROCRYPT ’19, Proceedings, Part
1. (2019) 437-466

Leurent, G., Nandi, M., Sibleyras, F.: Generic attacks against beyond-birthday-
bound macs. In: Advances in Cryptology - CRYPTO ’18, Proceedings, Part I.
(2018) 306-336

32



54. Aiello, W., Venkatesan, R.: Foiling birthday attacks in length-doubling transfor-
mations - benes: A non-reversible alternative to feistel. In: Advances in Cryptology
- EUROCRYPT ’96, Proceedings. (1996) 307-320

55. Patarin, J., Montreuil, A.: Benes and butterfly schemes revisited. In: Information
Security and Cryptology - ICISC ’05, Revised Selected Papers. (2005) 92-116

56. Patarin, J.: A proof of security in o(2™) for the benes scheme. In: Progress in
Cryptology - AFRICACRYPT ’08, Proceedings. (2008) 209-220

57. Yasuda, K.: A new variant of PMAC: beyond the birthday bound. In: Advances
in Cryptology - CRYPTO ’11, Proceedings. (2011) 596-609

58. Naito, Y.: Blockcipher-based macs: Beyond the birthday bound without message
length. In: Advances in Cryptology - ASIACRYPT ’17, Proceedings, Part III.
(2017) 446470

59. Minematsu, K., Iwata, T.: Tweak-length extension for tweakable blockciphers. In:
Cryptography and Coding - IMACC ’15, Proceedings. (2015) 77-93

60. Kim, S., Lee, B., Lee, J.: Tight security bounds for double-block hash-then-sum
macs. In: Advances in Cryptology - EUROCRYPT ’20, Proceedings, Part I. (2020)
435-465

Supplementary Material

A Proofs of Proposition 1 and 2

A.1 Proof of Proposition 1

Suppose a compresses to b due to a partition P. Then, we call P the compressing
partition of a and b. For s > 1, let p(s) denote the claimed statement. We prove
the result by induction on s. We first handle the base case, s = 1. In this case, we
have by = >_; a;. Thus, a; < by for all i € [r]. Now, a term by term comparison
gives
T
[12"a = @,

=1

which shows that the base case p(1) is true. Suppose p(s) is true for all s = n,
for some n > 1. We now show that p(n + 1) is true.

Let a = (a;)ie) and b = (b;)je[s+1) be two sequences over N, such that
r > s+1 and a compresses to b. Suppose P is a compressing partition of a and b.
Consider the sequences a’ = (a;)iep,,, and b’ = (bsy1). We have [P, 1| > 1, and
bsy1 = Zz‘eP5+1 a;, which means a’ compresses to 0. Further, 2" > Y. ., a;.
Thus, we can apply p(1) result on a’ and V' to get

s+1

H (2n)ai > (2n)bs+1' (27)

1€Ps 41
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For the remaining, let a” = (a;)iepp\p,,, and V" = (b;);je[s)- Again, we have
7 = |Psy1| = s, and b; = Y7, p a; for all i € [s]. Thus, we can apply the
induction hypothesis for p(s) on @’ and 0" to get

IT @z T, (28)

€[\ Ps+1 JEls]

The combination of Eq. (27) and (28) shows that p(s 4+ 1) is true. The result
follows by induction. O

A.2 Proof of Proposition 2

For r > 2, let p(r) denote the claimed statement. We prove the result by induc-
tion on r. For now, assume p(2) to be true, as we handle this case later. Suppose
the proposition statement, denoted p(r), is true for all r > 2. We show that the
statement p(r + 1) is true. Fix some arbitrary n € N.

Let a1,a2,b1,b9,¢1,...,¢r41,d1,...,dr41 € N, such that ¢; < a; and ¢;+d; <
a; +b; <27 for alli € [r+ 1] and j € [2]. Let i’ be the smallest index in
[r+1], such that d;; = min{ds,...,d,11} (such an element exist by well ordering

principle). Without loss of generality, we assume that b; > bs. We compare the
terms, (2" — ¢y —j+1) and (2" —ay — j + 1), for all j € [d;/]. Since ¢y < ay,
we must have (2" — ¢y —j+1) > (2" — a1 — j + 1), for all j € [di/]. Now, we
must have d;» < by, otherwise d;; > b; > by which leads to Zie[r] d; > by + bo.
Suppose dis < by, then using (2" —¢;y —j+1)/(2" —a; —j+1) > 1, we remove
all the (2" — ¢y —j+ 1), (2" —a; — j + 1) terms for all j € [d;/]. This reduces
the claimed statement to p(r), which is true by hypothesis. If d;; = by, then we
are left with [T;c(. 1)\ iy (2" —¢i) -+ (2" —¢; — di + 1) on the left, where r > 2,
and (2" —ag) - -+ (2" —ag — ba + 1) on the right. Using a similar line of argument
as above we can again reduce the claimed statement to p(r), which is true by
hypothesis. So p(r 4+ 1) is true.

Now the base case p(2) can be handled in a similar manner. In this case we
assume without loss of generality that d; < dy and b; > by, where di + do =
b1 + ba. Since ¢; < aj, we must have (2" —¢; —j+1) > (2" —a; — j + 1), for
all j € [d1]. Now, we must have d; < by, otherwise d; > by > by which leads to
di +dy > by + by. If dy = by, then after removing all the terms corresponding
to (c1,d1) and (ag,br), we have (2" — ¢g) -+ (2™ — ¢ — da + 1) on the left and
(2" —ag) -+ (2™ — ag — b + 1), where c2 < ag and ¢z + by < ag + be, whence
(2"—62)-“(2"—62 —d2+1) Z (2”—(12)“-(2”—(12 —b2+1). If d1 < bl,
then we compare terms from (2" — ¢g)--- (2" — cg — dg + 1) with (2" — a3 —
dl)--~(2”—a1—b1—|—1)(2"—a2)~--(2”—a2—b2+1). First (2”—02—d2+j) >
(2" —ag—bo+j) for j € [ba], as ca+da < ag+by. We remove all these terms to get
(2" —cg) -+ - (2" —ca—da+ba+1) on the left and (2" —a; —d;y) -+ - (2" —a; —b1+1)
on the right, where the number of terms do — bs = b; — dy. Since ¢ < aq,
(2" —eca—j+1)> (2" —ay —dy —j+1) for all j € [by — dy]. This shows that
p(2) is true. O
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B Mennink’s Attack on CLRW2

In [29] Mennink gave an O(n'/223"/4) query attack on CLRW2. The attack is
generic in nature as it does not exploit the weaknesses in the underlying block
cipher. Rather it assumes that the block cipher instances are independent ran-
dom permutations. Also the attack works for any hash function, including AXU.
We briefly describe the attack and refer the readers to [29] for a more concrete
and formal description, analysis and experimental verification of the attack.

ATTACK DESCRIPTION: Suppose in the transcript generated by a distinguisher,
there exist four queries (t,my,c1), (t,ma,ca), (t,ms,cs), and (', my,cq), such
that the following equations hold:

mi1 © ]’Ll(t) =mo D hl(t/)
co D hg(t/) =c3®D hg(t) (29)
ms D hl(t) =my D hl(t/)

Using notations analogous to Figure 3.1, we equivalently have, x1 = x3; us = us;
and x3 = 4. Since z* « y* and v* «~ u*, looking at the equations generated
by the corresponding y and v values, we have v1 = y; & A(t) = y2 ® A(t) =
va BA) B A() = v3 D) B A{) = y3 D A(t') = vg. This immediately gives
Uy = Uy, 1.€.

cy D hg(t/) =c1 D hg(t). (30)

In other words, Eq. (30) is implied by the existence of Eq. (29), and by combining
all four equations, we have

mi; @ mg =ms P my = q,

c1®eyg =co®es=p,

where oo = hy(t) ® h1(¥') and 8 = ha(t) @ ha(t'). While the distinguisher does
not know « and (3, it can exploit the relations:

m1 @ mo = ms3 @D My, (31)
c1 D eg = co P cs. (32)

If for some value a we have about 2™ quadruples satisfying
mi1 ®me =m3dmy =a, (33)

then, for CLRW2, the expected number of solutions for Eq. (31)-(32) is approxi-
mately 2 for a = a. On the other hand, for ﬁ, the expected number of solutions
is always close to 1 for any a € {0,1}". In [29], it has been shown that ap-
proximately 2n'/223"/4 queries are sufficient for the distinguisher to ensure that
Eq. (33) has about 2™ solutions. Given these many queries the distinguisher can
attack by observing the number of solutions for Eq. (31)-(32) for each value of
a.
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C Proof of Lemma 4.2

Proof. We follow a similar proof approach as considered in Lemma 4.1. We
define a binary random vector | = (l;; : @ # j) where |; ; takes value 1 if E; ;
holds, otherwise zero. The sample space of the random vector is {2, the set of all
binary vectors indexed by all pairs (4, 7). For any vector w € {2, we write #w to
represent the number of 1’s that appear in w. Let 2< = {w : #w < %} and
its complement set by 2-.

We define a random variable N =37, ; ;, the number of E-events hold. As
E; ; holds with probability at most e,

q(q — 1)e > Ex[N]

:Z#w-Pr[lzw]
> > #w-Prll=uwl+ “\2%]. (34)

Let EEF denote the event that there exists distinct 4, j, k,l such that E; ; A Ex; A
Fi k1. Now we proceed for bounding the probability of the event.

Pr [EEF] = ZPr [EEF A | = w)]
—ZPr w] X PrEEFAl=w | | = w]
§ZP1" | = w] x min{1, (#w)? - €'}

=Prlle 2.1+ Y Prii=uw] (#w)’

<Prlle )t Y Prli=ul VA
weN<
(> #w~Pr[|:w]+Pr['\29>})

’LUGQS

S(Z(q—l)e\@.

The first inequality follows exactly by the same reason argued in the proof of
Lemma 4.1. The last inequality follows from Eq. (34). This completes the proof.
O

D Proof of Mirror Theory in Tweakable Settings

The induction is defined on the number of components. Apropos to this, we
consider some new parameters. For i € [¢; + ¢a + ¢3]:
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— X, denotes the number of Y-vertices in the previous i — 1 components.

— U; denotes the number of V-vertices in the previous ¢ — 1 components.

— &; denotes the size (number of vertices) of the i-th component. We actually
use 7; := & — 1 (number of edges in the i-th component).

. 1 —1 .

— for j e n]and r =37 me + 7,

o\ =\ (X value corresponding to the j-th equation of i-th component).
o 0% = p(A""1, A%, where 6] = 0 by convention.

— b; denotes the number of solutions for the sub-system consisting of the first
i components of £, denoted L|;. Note that h; = b; for i € [c1], and h, =
bcl +ca2tes- )

3
- H; .= Hje[m]@n)u()\‘i/\}) -bi, where s =3, | .
(2")x,+1(2")y, 41  i-th component is isolated,
— Ji =4 (2")x,+1(2")vu,4x i-th component is a Y-*,
(2")x;4m: (2")v, 41 4-th component is a V-« .

PROOF SKETCH: Inspired by Patarin’s mirror theory argument [37,39], we will
study the relation between H; and J; for all ¢ € [¢; + c2 + ¢3]. Our goal is to
bound b, 4cytey in terms of He, 4 coqes a0d Joy 4eptey- We show that He ye,qes >

(1 — €)Je, +eytess Where € = O (q2/22” + Zfﬁ{cz‘ ngl+iq2/22">, which immedi-
ately gives the bound for b, 4+¢,+c,. This is precisely the motivation behind the
definition of H and J.

The proof is given in two steps. First, in section D.1, we bound the number
of solutions for the sub-system of equations corresponding to isolated edges, i.e.
the first ¢; components. The idea is to apply induction on H;/J; for i € [c1].

Given the number of solutions for the first ¢; components, we then bound the
number of solutions for the remaining cs + ¢3 components (corresponding to star
components) in section D.2, which essentially gives a bound for the complete
system L. Again, H; /J; is analyzed for i/ = ¢; + 4 and i € [cg + c3]. However,
we keep the expression in terms of ¢ and 7 intact.

D.1 Bound for Sub-system Corresponding to Isolated Edges

As noted before, we want to bound b; by induction on i, i.e. we want to evaluate
hit1 from h;. Since isolated components have only one edge, we simply write \;
and §; instead of A} and . We first give two supplementary results in Lemma
D.1 and D.2, which will be used later on to prove the main result.

Lemma D.1. Fori € [¢q],
bir1 =0 (2" =2 +8i01)+ > il E Aiga),
(4,k)eEM

where

M={(G,k) : j.k € [i],j # k. Xit1 # Aj, i1 # Ay
and bj(j, k, Niy1) denotes the number of solutions of Ly, (j,k, Xi11) := L; U{Y; @
Vie = Aiq1}, for some j, k € [i].
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Proof. Let S; denote the solution space of L;, i.e. h; = |S;|. For a fix (yi, ') € S,
we want to compute the number of (y;11,v;11) pairs such that (y'*1,v**1) €
Sit+1. Now, some pair (x,z & A\i41) is valid if ¢ # y; and o & Aiy1 # v, for
J.k € [i]. This means that ¢ Y UV, where Y = {y; : j € [i]} and V =
{v; ® Xit1 : j € [i]}. As all y; values are pairwise distinct and v; values are
pairwise distinct, we must have |Y| = |V| = i. Thus, we have

b= >, (2"—|YuV)

(yiwh)ES;
= Y @ =-YI-MV+yny)
(yi,vh)eS;
=bhi-2"-2)+ > |[ynV

(y',v)ES;

=h- (2" =20+ > ) 60k

(y*,v)€ES; j,keli]

bi- (2" —20)+ D bi(j, kA1)

L

J,keld]
Zh; (2" = 20) + by G + > 0k i)
(4,k)eM
=b;- (2" =2+ i)+ Y Bk Ai), (35)
(k) EM

where ¢(j, k) is the indicator variable that takes the value of 1 when y; & v, =
Ai+1, and 0 otherwise. The equality 1 follows from the definition of b5 (j, k, Ai+1),
and the equality 2 follows from the fact that exactly d;+1 (j, k) pairs exist such
that k = 7, Aix1 = Aj, and y; ® v; = Aiy1. For these the number of solutions is
exactly the same as h; (since Y; @ Vi = Aiy1 is already in £};). The remaining
valid (j, k) pairs, must have A\j, A\ # Aiy1, else they contradict £. The set of
these remaining (j, k) pairs is the set M. O

The following corollary of Lemma D.1 will be quite useful. The proof is imme-
diate from the proof of Lemma D.1.

Corollary D.1. Fori > 1, let Zi+1 be a system of i + 1 equations such that
gmax(2i+1) = 2. Then, for any sub-system EZ consisting of i equations from
Ei+1; we have

(2" = 2i)b; < hig1 < (2" —i)by,

where HL and Hi+1 denote the number of solutions of EAZ and /314_1, respectively.

Lemma D.2. For all (j, k) € M, and for oll 8 € {0,1}",

. b 2(i — 2)
b:(G. k. B) 2 5oy (1 - 2”2(12)) '
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Proof. We are interested in b’ (7, k, 3), which is the number of solutions of qi(j, k,B),
J, k € M. The sub-system containing j and k equations is of the form

YioVi=X, Y;eVi=08, Yo Vi=>X,

where once we fix Y; = y;, all other unknowns are completely determined by
linearity. Thus, b%(j, k, B) is at most h;_1, where b;_; is the number of solutions
of L = Eii(j, k,B)\{Y; ® Vi = B,Yr ® Vi = Ax}, the system obtained by
removing the equations Y; ® V, = 8 and Y3, @ Vi, = A from Eii(j, k,B). Now a
solution among the Ei_l solutions of E|i71 is not valid to be counted in b} (34, k, 3),
if there exists ¢ € [i] \ {k}, such that y; ®v, = B or y; ® v, = B S A\ @ Ae. The
first case leads to Vi = V;, and the second case leads to Y = Y}, where k # ¢
is obvious. Let Eii_l(j, 0,B) == Li—1 U{Y; ® V;, = B} and hj_,(j,¢, () be the

number of solutions Ef i1, £, B). Therefore, the two cases correspond to the

terms E;_1(j7f»ﬁ) and H§_1(j» U, 8@ A @D Aer), whence we have

b,k B) = hici— D> B GLB) - D B G BN M)
Celi\{J,k} eli\{j.k}

Let Liiae = L, G LA\N{Y; & Ve = B,Yr @V = A} and Ly p =
L GO BBN@A)\Y; B Ve = BB A\ Ao, Yo & Vi = Ao} Let h_o,¢ and
hi—2,¢ be the number of solutions for £;_5, and L|;_5 . Using similar line of
argument as above we bound h;_;(j,¢,8) < h—2 ¢ and b}_ (4, ¢, B A\ D Apr) <

Hi,uu Finally, we have

b (G, k. B) > i1 — > b2 — > =y

Leli]\{j,k} eli\{s,k}
hic1 — (i —2)hi—2e — (1 — 2)hi—o ¢

>
éaz’—l <1 B m>

: b (1_ 2(i —2) >
T2 —g4+1 m—2(i—2) )7

where inequalities 1 and 2 follow from Corollary D.1. Note that, we switch from
hi—2,¢ and bh;_2 ¢ to h;—1 by reintroducing the equation Y; ® Vy = A\, and Yy @
Vi = Ay, respectively, and from Hi,l to h; by reintroducing the equation Yj @
Vi = Ak. The readers may use Figure D.1 to get a pictorial view of the switchings
between different systems of equations. ad
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C’Ti(jak7ﬁ) Z|7‘,—1 Zii_l(jalaﬁ) Efi_l(j,ll,ﬁl) Z\i—2,£ ['|i—1 L"|i

Y1 Y1 Y, Y1 Y1 Y1 Y1
I>\1 I)\l I)q I)\l I)\l I/\1 I)‘l
Vi Vi Vi Vi Vi 1% Vi
Y; Y; Y;
I Aj I Aj I Aj
Vj \Z Vi
: : Yi
: : I e
X Y, Vi
: IA'Z
: Ve
Y; Vi i i Vi Yi
B B
Vi Vi

Fig. D.1: The switchings used in the proof of Lemma D.2. From left to right: Efi (4, k, B)
is the system £, U{Y; & Vi = B}; Z‘i,l is obtained by removing the equations involving
Vi from Efi(j,k,ﬂ); ‘CTi—l(L ¢, B) is the system L;_1 U{Y; & V; = B}; Lii—l(.j7 . B
is the system L£j;_1 U{Y; @ Vv = B'}, where 8’ = B3® Ap @ A¢r; L2, is obtained
by removing the equations involving V; from Efifl(j, ¢,3). Note that, there should
have been two ZM,Q switchings, one each for 511‘71(]" £, 8) and E"Fl(j, ¢, B"). We have
drawn just once for economical reasons. Similar clarification applies to switchings from
Li;—2 to L;_1 (we only show for £).

Remark 1. In [37, Theorem 11] a result similar to Lemma D.2 has been proved
for random function scenario. While the proof of that theorem is correct, there
is a notational issue which is worth pointing out. The §’ notation is used in
an unparametrized fashion, with an explicit hint in [37, Theorem 8] that this is
done for simplification. But this simplification leads to a rather peculiar technical
issue in [37, Theorem 11], where both lower and upper bounds are required on b’
values, requiring different switchings. Without the parametrization it is difficult
to understand (and verify) the switchings.

Remark 2. The proof of Lemma D.2 should also give an idea of the proof com-
plexity. Since we only want € = O(q*/23"), we needed a somewhat crude estimate
of b’ values. In actual mirror theory as we move towards e = O(q/2"), we have
to make a good estimate of §’ values, which does not seem easy.
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Now, we state the main result of this section.

Lemma D.3. For ¢; < 2" 2, we have

Hy (1_ 13¢1 2q%).
J(h

23n 22n

Proof. We prove by induction on ¢ € [g1], the number of components. First,
H, = 2°® = J;. So the statement is true for i = 1. By definition, the ratio

% = (2" — §;41) - h;}tl, and J; 11 = (2" —i)2J;. So we have

Hi1 (2" — 5i+1)h?;1 E (36)
Jiv1 (=92 J
From Lemma D.1 and D.2, we have

. |IM| 2(i — 2)
iv1 > hi | (2" —2i+6; s\ 15— |-
b+1_h<( 1+ +1)+2n_2+1 2”—2(2—2) (37)
Recall that M = {(j, k) : j,k € [i],j # k, \j, \e # Nit1}. As there are 0;41
i’ € [i] such that A\;11 = Ay, we must have |[M| > (i — §;31)(i — §;11 — 1). On
substituting this value for |[M| in Eq. (37), and using the resulting lower bound
for h;11 in Eq. (36), we get

n . i—0; i—0;41—1 i—
Hipr (2" = biv1) ((2" — 20+ Gyyy) + U2l =L (1 - 2"2—(2@27)2))) H;
Jiv1 (2m —1)? Ji

Let the boxed expression be A. We first simplify this term.

(2" —dit1) ((2 —2i40i41) + % (1 - %))

A>
- I
; " =0 1—0; 1—0i41— i

1 (2" = 0040)(2" = 20 4 biga) + R T -
- CIEnE

; 1—0; 25, i—0J; i i3
ilf (2_5i+1)+( 5513 Sit1 _ 5;)5“ +13j27
S @ =P
3 1343 2
215

At inequality 1, we use i < g1 < 2772, (i—2), (i—d;i11) < 4, and (2" —8;41), (2" —
i+ 1) < 2"; inequality 2 is just a simplification; and at inequality 3, we use

b

(i — i11),0i01 <iand (2" — )% < 2"~ Now, we have

Hiyq - (1 B 133 24 ) y H;

oo g ) X

Jit1
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1 133 2 \°

=5 ~ o
1314 2:2

L= o — 3 )

Inequality 1 follows from recursive application of the induction hypothesis. The
result follows by induction. ad

v

D.2 Bound for Sub-system Corresponding to Star Components

At this point, we have the bound for the sub-system corresponding to the ¢;
isolated edges, and we want to extend it to get the bound on by, 4cypqcy- For
simplicity we let i’ = q; + i = ¢y +i. Thus, ¢; + ¢o + ¢3 = (¢c2 + ¢3)’. We follow
exactly the same approach as before in case of isolated edges.

For ¢/ — 1 > 0, we analyze the ratio Ijj"/’ . Note that J;; depends on the type
of #-th component (Y-x or V-*). Howevér, it can be easily seen that the two
expressions are symmetric. Without loss of generality, we assume that the i’-th

component is V-x. Then, we have

it ) iy _Dar
Hi’ j:1(2n - 6; )h./_ % Hi’fl

i/ —1

Ji | (20— X)) = Uiy, | Ji1

Let the boxed expression be A. We first simplify this term. In Lemma D.5, we
show that

hi’ i/ ,
> 2" =Xy — Uy + ) 05
hi—1 ; J

Thus, we have

47 (2n _ 5;')(2774 _ Xi’ — ni’Ui/ -+ ZZil 5]2’)

A> ==
(27 — Xy ) (2" = Uy )y,
c
B ;7 i/
(2" = X)) (2" = Ui )y, — [ @ = 00)(@" = Xoo = Us + > 6%)
j=1 k=1

>1-

(2" = Xir) (2" = Ui)n,,
(38)

We need both lower and upper bounds on B. Using the facts that X;/, Uy +ny <
¢, and Epaxg < 2", we get B > 2" +1D)=1 Now, we derive an upper bound
on B.

B=2"-X;)2" = Uy)y,

i

< (2” — Xi/)(Qn — Ui/)ml
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< (2" — X)) (2"% — ppUp2n e =1 4 2772 2"("1"—2))
< e+ _ Uy ome 42 U22n e =Y X, 0me 4o X Uy 27 1),

(39)
We also need a lower bound on C.
i/ . i .
c=T1] (2” —5;.) (2" — Xy — iUy +Zéi>
j=1 k=1
M3/ ) U )
o L [CE S o)
j=1 k=1
2
M3/ .
> om0 ) X 9mm — oy, Uy 2 — Z(S; 2ntnr =), (40)
j=1
On substituting the bounds of B and C in Eq. (38), we get
I\ 2
HRUR2M ) gy XUy 2D 4 (202, 61 ) gnlone D
>
- on(ny+1)—1
é ni%q22n(m/*1) + m,q22n(m/*1) + g22n(ni —1)
- on(n; +1)—1
2 dn3q?

At inequality 1, we use the fact that X;/,Y; < ¢ and ;7:’1 (5;-/ < q (/\? can
occur at most once in any component). At inequality 2, we use the fact that
7}1-2/ > 1y + 1 as ny > 2. Therefore, we have

! 2/ 2 !
Hz 2 1 . 4771 q % Hz —1 )
T 22n T

In combination with Lemma D.3, this immediately gives the bound on %
clrTe2Te3

in Lemma D.4.

Lemma D.4. For ¢ <2" 2 and &max < 2"/2q, we have

+
Heiveptes > (1= i‘fl — % _ cis n2 .. E
Jc1+cz+03 B 23n 22n i—1 crti 2277’ '

Theorem 5.1 follows from the definition of H, J and Lemma D.4.

it
Lemma D-5. bi’ 2 2n — Xi’ — ni’Ui’ + Z 6;/ . hilil,
j=1
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Proof. Let Sy 1 denote the solution space of £ _;. Let 7 = Z;:ll n;. For a fixed
(y",v") € Spr—1, we want to compute the number of solutions for £;/. Since, this
is a Y-x component, it is sufficient to choose an assignment for Y;, (center of the
i’-th component) value and Vi =Yy ®\;. Now, an assignment z is invalid if
€YUV, where Y = {y; :j € [r]} and V = {0; ® N : j € [r],k € [n+]}. Clearly,
|Y| = X, and |V| < Uy, Further, exactly ;7‘:'1 5;1 previous equations share
A value with some equation in the i’-th component, whence |Y NV| > ;7:’1 6?.
Thus, we have

b= Y. (2"—|yuV

(y"vr)ESy
= Y @ ==+ ynv)
(ym,om)eS;,
it
> Z 2" = Xy — U + Z 5;"
(ym,wr)ES,; Jj=1

i
= 2" =Xy — Ui + Y 05 | ~bi1.
j=1

E Proof of Lemma 6.1

Property 1 holds by definition and the non-existence of bad hash key condition
1. Property 2 holds due to the non-existence of bad hash key conditions 2 and
3. Property 3 holds due to the non-existence of bad hash key conditions 4, 5, 6,
and 7. Property 4 holds due to non-existence of bad hash key conditions 4 and
5. It is easy to verify that given Property 1, 2, 3, and 4, Figure 6.1 enumerates
all possible types of components of G. a

F Proof of Security of DbHtS-p

The analysis of DbHtS-p would be similar to the analysis of CLRW?2 presented in
this paper. The variables arising in DbHtS-p computation is analogously notated
as in CLRW2 (see Figure F.1). Specifically, we have the following connection
between the notations for DbHtS-p and CLRW2:
— 27 and u? in DbHtS-p corresponds to 2 and u? in CLRW2. Here, 29 = hy(m?)
and u? = ha(m?).
— y? and v? in DbHtS-p corresponds to y¢ and v¢ in CLRW?2.
— Similar to CLRW2, in DbHtS-p 27 «~ y? and u? «~ v?. Note that, in
DbHtS-p v? = Ey,(u?), whereas in CLRW2 u? = Ej,(v?). However, this
does not affect the permutation compatibility property.
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ha(m) ha(m)
By, B,
>T <
A

Fig. F.1: The DbHtS-p construction.

— A7 in DbHtS-p corresponds to A? in CLRW2. Therefore, v? @ y9 = \9.

INITIAL SETUP: The first step of replacing the block cipher instantiations
with independent uniform random permutations 1y and [y incurs a cost of
2Adv%P(q,t'). For the sake of simplicity, we call the resulting construction
DbHtS-p.

ORACLE DESCRIPTION AND SAMPLING MECHANISM: The real and ideal oracles
can be described in a similar manner as in case of CLRW2, except a small change.
For all ¢ € [q], \; s {0,1}" in the ideal world, and A; = DbHtS-p(m;) in the
real world.

DEFINITION OF BAD TRANSCRIPT AND ITS ANALYSIS: We again use the same
set of bad transcripts and bound the probability of realizing a bad transcript,
denoted €paq, as

q’e

on

16g%e  9qg*e?
bas S 7€ + T +2¢% 0+ LS+ T (42)

Here the only notable difference is the bound on Pr [Hp] and Pr [Hs]. Since, now
the A values are uniform at random, Pr [Hy] < (?)e27" and Pr [Hs] < (9)e27". All
other bad events are bounded identically to the bad events in case of CLRW2.

GO0OD TRANSCRIPT ANALYSIS: For a fixed good transcript w, in the real world
the interpolation probability is bounded as in case of CLRW?2, i.e.

1 1 1

Pr[0; =w] = X x (43)
|,H|2 (Qn)Q1+02+Q3+264+Q5—C5 (27L)Q1+Q2+CS+Q4—C4+205
In the ideal world, using Corollary 5.1 we get
1 1 2"(Q1+Q2+QS)
Pr[©g=w|] < (44)

HE * C(w) © 209(2m),, (27),, @) s

where p1 = q1 + 2 + g3, P2 = @1 + ¢2 + ¢3, and

13¢7 22 [, ) 4¢?
C(w)<123n T T Z’?cm‘ 2 |



On dividing Eq. (43) by (44) and doing some simplification, we get

Pr [@1 = OJ}
Pr [0y = w] Z ¢(w).

Using Lemma 2.1, we get

2> 13¢  4q®_ |
f q q q
AdViiuis 5(9) < Jon + Gan T an EX D Migi| + ead
i=1
2¢°>  13¢*  16¢%€
< 22n T oan T Toen + €bad- (45)
The result follows from Eq. (42) and (45). O

Note that, the application of alternating events/collisions lemma (or a similar
result) seems indispensable, even if one assumes that the fundamental theorem
of mirror theory holds.
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