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Abstract

The Supersingular Isogeny-based Diffie-Hellman key exchange protocol (SIDH)
was introduced by Jao an De Feo in 2011. SIDH operates on supersingular elliptic
curves defined over Fp2 , where p is a large prime number of the form p = 4eA3eB −1,
where eA, eB are positive integers such that 4eA ≈ 3eB . In this paper, a variant
of the SIDH protocol that we dubbed extended SIDH (eSIDH) is presented. The
eSIDH variant makes use of primes of the form, p = 4eA`eBB `eCC f − 1. Here `B , `C
are two small prime numbers; f is a cofactor; and eA, eB and eC are positive in-
tegers such that 4eA ≈ `eBB `eCC . We show that for many relevant instantiations of
the SIDH protocol, this new family of primes enjoys a faster field arithmetic than
the one associated to traditional SIDH primes. Furthermore, the proposed eSIDH
protocol preserves the length and format of SIDH private/public keys, and its richer
opportunities for parallelism yields a noticeable speedup factor when implemented
on multi-core platforms. Using a single-core SIDH p751 implementation as a base-
line, a parallel eSIDH p765 instantiation yields an acceleration factor of 1.05, 1.30
and 1.41, when implemented on k = {1, 2, 3}-core processors. In addition, eSIDH
p765 yields an acceleration factor of 1.050, 1.160 and 1.162. when both protocols are
implemented on k = {1, 2, 3}-core processors. To our knowledge this work reports
the first multi-core implementation of SIDH.

1 Introduction

In 2011, Jao and De Feo proposed the Supersingular Isogeny-based Diffie-Hellman key
exchange protocol (SIDH) [14] (see also [11]). Thanks to the high complexity of its
underlying hard problem, SIDH provides key sizes comparable to classical public-key
cryptosystems currently in use. Consequently, SIDH has been studied and implemented
in an impressive number of recent publications [8, 10, 17, 13, 21, 6]. Moreover, the
Supersingular Isogeny Key Encapsulation (SIKE) protocol [2], which can be seen as a
descendant of SIDH, is one of the candidate schemes still under consideration within the
second round of the NIST post-quantum cryptography standardization project [18].

The key exchange SIKE protocol operates on supersingular elliptic curves defined
over Fp2 , where p is a large prime number of the form p = 4eA3eB −1.1 During the SIDH

1The SIDH prime originally proposed in [11] has the very general form, p = `eAA `eBB f ± 1 with `A, `B
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Key Generation and Key Agrement phases, Alice and Bob must compute degree-4eA

and degree-3eB isogenies, respectively. Hence, by choosing the exponents eA and eB
such that 4eA ≈ 3eB , one can assure that Alice and Bob will invest about the same com-
putational expenses when executing SIDH. Moreover, this design choice also guarantees
a healthy security balance due to the fact that the security guarantees of SIDH lie in
the intractability of the Computational Supersingular Isogeny (CSSI) problem. Solving
CSSI implies computing Fp2-rational isogenies of degrees 4eA and 3eB between pairs of
supersingular elliptic curves defined over a quadratic extension field Fp2 . Following recent
analyses of the classical and quantum security of SIDH and SIKE [1, 9, 15], the authors
of [2] endorsed the primes SIKEp434, SIKEp503, SIKEp610 and SIKEp751 (named so
to indicate the bit-size of the underlying prime field characteristic) to meet the security
requirements of NIST’s categories 1, 2, 3 and 5, respectively.

In this paper, a variant of the SIDH protocol that allows us to accelerate Bob’s
computations on single and multi-core platforms without modifying the formats and
lengths of its private/public keys is presented. The SIDH variant proposed in this paper
is dubbed Extended-SIDH (eSIDH),2 because of the pair of primes assigned to Bob for
performing his isogeny computations. The eSIDH domain parameters are a supersingular
elliptic curve E/Fp2 , where p is a prime of the form,

p = 4eA`eBB `eCC f − 1. (1)

Here `B, `C are two small prime numbers;3 f is a cofactor that for efficiency reasons
is usually selected as a power of two. Finally, eA, eB and eC are positive integers such
that 4eA ≈ `eBB `eCC .

Just as it would happen in SIKE, in eSIDH Alice limits herself to compute degree-
4eA isogenies. This naturally implies that Alice can still take advantage of the cheap
cost associated to the fast degree-4 isogeny arithmetic. On the other hand, Bob is
now responsible of computing degree-`eBB `eCC isogenies. At first glance it would appear
that Bob’s task in eSIDH has just become more expensive than what used to be his
computational role on a traditional SIDH scheme. Nonetheless, we will show in this
paper that Bob’s eSIDH tasks offer several advantages such as a faster underlying field
arithmetic, and novel opportunities for exploiting the parallelism associated to his new
computational responsibilities.

Indeed, the rich abundance of the family of primes given in Eq. 1, produces for cer-
tain instantiations of eSIDH a faster field arithmetic by taking advantage of friendlier
Montgomery-friendly primes [3, 10]. Our experimental results show that the computa-
tional advantages of eSIDH more than well compensate the extra calculations demanded
by this variant. For example, using a single-core SIKE prime p751 implementation as a

small primes and f a cofactor. Later, for efficiency reasons the authors of [8] proposed to use SIDH
primes of the form, p = 2eA3eB − 1, which were endorsed in SIKE [2]. For the sake of simplicity in this
paper it is assumed that SIKE primes have the form, p = 4eA3eB − 1.

2Pronounced it spelling out all the letters. An early version of this paper was presented in [4] and [19,
Chapter11]

3In the eSIDH instantiations described in this paper we always choose `B = 3, `C = 5.
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Figure 1: Overview of the SIDH protocol as proposed in [11]

baseline, a comparable eSIDH prime p765 instantiation yields an acceleration factor of
1.05, 1.30 and 1.41, when implemented on k = {1, 2, 3}-core processors.

As of today, relatively few works have attempted to exploit the rich opportunities
that SIDH main computations can offer for parallel computations. In this direction, we
are only aware of the works reported in [17, 13], where explicit efforts for parallelizing the
computations of the SIDH protocol were attempted and/or exploited. Using a similar
approach as the one followed in [17, 13], in this paper we report that with respect to a
sequential implementation, a two-core and a three-core parallel implementation of the
SIDH p751 instantiation yields a speedup factor of 1.118 and 1.216, respectively. To our
knowledge this work reports the first multi-core implementation of SIDH. In addition
when both protocols are implemented on k = {1, 2, 3}-core processors, eSIDH p765 yields
an acceleration factor of 1.050, 1.160 and 1.162 over SIDH.

The remainder of this paper is organized as follows. In §2 a summary of the SIDH
protocol and associated implementations aspects is presented. In §3 three different
approaches for implementing the eSIDH protocol are presented. In §4 several relevant
eSIDH implementations aspects on single-core and multi-core processors are discussed.
We draw our concluding remarks in §5.

2 Preliminaries

In this section, a brief summary of the SIDH protocol and its optimal strategies is given.
For more in-deep details see [11, 2].
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2.1 The SIDH protocol

The most popular key exchange SIDH protocol instantiation operates on supersingular
elliptic curves defined over Fp2 , where p is a large prime number of the form p = 4eA3eB−
1. The exponents eA and eB are typically chosen such that 4eA ≈ 3eB . Let us define
the constants rA = 4eA and rB = 3eB . The public parameters of SIDH are given by
a supersingular base curve E0, and the basis points PA, QA, PB, QB ∈ E0, such that
〈PA, QA〉 = E0[rA] and 〈PB, QB〉 = E0[rB]. An overview of the SIDH protocol as it was
proposed in [11] is depicted in Figure 1.

During the initial Key Generation phase, Alice chooses a random integer mA ∈
[1, rA − 1], which acts as her secret key. Thereafter, Alice computes a secret key RA =
PA + [mA]QA and a degree-4eA isogeny public curve EA such that φA : E0 → EA with
Ker(φA) = 〈RA〉. Likewise, Bob chooses a secret random integer mB ∈ [1, rB−1]. Then,
Bob computes a secret key RB = PB + [mB]QB and a degree-3eB isogeny public curve
EB such that φB : E0 → EB with Ker(φB) = 〈RB〉. These computations complete the
Key Generation phase.

During the SIDH second phase, known as the Key Agrement phase, Alice sends Bob
the tuple [EA, φA(PB), φA(QB)], whereas Bob sends Alice the tuple [EB, φB(PA), φB(QA)].4

Alice uses Bob’s information to recover the image of her secret key under Bob’s curve
EB, as φB(RA) = φB(PA) + [mA]φB(QA). Then Alice computes the curve EBA such
that there is a degree-4eA isogeny φBA : EB → EBA with Ker(φBA) = 〈φB(RA)〉. Sim-
ilarly, Bob’s recovers the image of his secret key under Alice’s curve EA by computing
φA(RB) = φA(PB) + [mB]φA(QB). Bob then computes the isogenous curve EAB such
that there is a degree-3eB isogeny φAB : EA → EAB with Ker(φAB) = 〈φA(RB)〉. This
ends the SIDH protocol. Alice and Bob can now create a shared secret by comput-
ing the j-invariant of their respective curves, using the fact that EBA ∼= EAB implies
j(EBA) = j(EAB).

Remark 1. The most prominent SIDH computational tasks include the computation
of large degree isogenies and the evaluation of elliptic curve points in those isogenies.
Another large operation of this scheme is the computation of four three-point scalar
multiplications. For a typical software or hardware implementation of SIDH, the isogeny
computations and associated point evaluations on one hand, along with the three-point
scalar multiplications on the other hand, may take 70-80% and 20-30% of the overall
protocol’s computational cost, respectively.

Remark 2. In order to compute the points RA, φB(RA) (resp. RB, φA(RB)), Alice (resp.
Bob) must perform two three-point scalar multiplication procedures using a right-to-left
Montgomery ladder algorithm [14, 10]. This kind of Montgomery ladder has a per-step
cost of one point addition (xADD) and one point doubling (xDBL), which are usually
performed in the projective space P1. Noticing that for current state-of-the-art SIDH
implementations the costs of xDBL and xADD are about the same, one can assume that

4State-of-the-art SIDH implementations use differential point arithmetic on Montgomery curves. Con-
sequently, Alice and Bob evaluate and transmit three points each, namely, x(PA), x(QA), x(PA − QA);
and x(PB), x(QB), and x(PB −QB), respectively [8].
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the per-step computational cost of the three-point Montgomery ladder is essentially that
of two xDBL operations. It follows that the cost of computing RA or φB(RA) (resp. RB
or φA(RB)) is of 4eA (resp. 2 log2(3)eB) xDBL operations.

2.2 Optimal strategies for SIDH

Let E be a supersingular elliptic curve defined over the quadratic extension field Fp2 .
Given a point R0 ∈ E, let S = 〈R0〉 be an order-`e subgroup of E[`e]. Then there
exists an isogeny φ : E → E′ (with both φ and E′ defined over Fp2) having kernel
S. The isogeny φ is unique up to isomorphism. Given E and S, an isogeny φ with
kernel S and the corresponding equation for E′, can be computed as a sequence of
degree-` isogenies using Vélu-like formulas and scalar multiplications by ` such as the
ones discussed in [7, 5]. The optimal computation of large smooth-degree isogenies was
presented and solved in [11].

In order to efficiently compute a degree-`e isogeny, it was shown in [11] that one can
apply balanced or optimal strategies for traversing a weighted directed graph, which is
represented in this paper as a right triangular lattice ∆e having e(e+1)

2 points distributed
in e columns and rows (See Figure 2a).5 A leaf is defined as the most bottom point in a
given column of the lattice. The vertexes of the graph represent elliptic curve points and
its vertical and horizontal edges have as associated weight p` and q`, defined as the cost
of performing one scalar multiplication by ` and one degree-` isogeny, respectively. At
the beginning of the isogeny computation, only the point R0 of order `e is known. The
goal of the isogeny construction/evaluation computation is to obtain one by one, all the
leaves in ∆e until the farthest right one, Re−1, has been calculated. Then, φ : E → E′

can be obtained by simply computing a degree-` isogeny with kernel Re−1.
Optimal strategies as defined in [11] exploit the fact that a triangle ∆e can be op-

timally and recursively decomposed into two sub-triangles ∆h and ∆e−h as shown in
Figure 2b. Let us denote as ∆h

e the design decision of splitting a triangle ∆e at row h.
Then, the sequential cost of walking through the triangle ∆e using the cut ∆h

e is given
as,

C(∆h
e ) = C(∆h) + C(∆e−h) + (e− h) · q` + h · p`.

We say that ∆ĥ
e is optimal if C(∆ĥ

e ) is minimal among all ∆h
e for h ∈ [1, e−1]. Applying

this strategy recursively leads to a procedure that computes a degree-`e isogeny at a cost
of approximately e

2 log2 e scalar multiplications by `, e2 log2 e degree-` isogeny evaluations,
and e constructions of degree-` isogenous curves.

Remark 3. Let us assume that a degree-`e isogeny φ : E → E′ has been constructed
using the procedure just described. Then given a point P ∈ E, its image φ(P ) ∈ E′ can
be found by performing the composition of e degree-` isogeny evaluations. As a way of
illustration, the computation of the image of the point RBC under Bob’s isogeny φB(·)
is depicted in Figure 3 as the top horizontal segment of the triangular lattice going from

5Note that we depart from the tradition that would represent the weighted directed graph ∆e as a
triangular equilateral lattice between the x-axis and the lines y =

√
3x and y = −

√
3(x− e− 1).(cf. [11])
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Figure 2: Subfigure 2a shows a triangular lattice used to compute a degree-`e isogeny
φ : E → E′. The kernel of φ is the subgroup 〈R0〉, where R0 ∈ E is an order-`e

elliptic curve point. Using an optimal SIDH strategy as in [11], a triangular lattice ∆e is
processed by splitting it into two sub-triangles as shown in Subfigure 2b. After applying
this splitting strategy recursively, the cost of computing φ drops to approximately e

2 log2 e
scalar multiplications by `, e

2 log2 e degree-` isogeny evaluations, and e constructions of
degree-` isogenous curves.

the vertex RBC to the vertex φB(RBC). The cost of this operation is of eB degree-`B
isogeny evaluations.

3 The extended SIDH (eSIDH) Protocol

The extended SIDH (eSIDH) Protocol operates on supersingular elliptic curves defined
over Fp2 , where p is a large prime number of the form p = 4eA`eBB `eCC − 1. The exponents
eA, eB and eC are chosen so that 4eA ≈ `eBB `eCB . The eSIDH protocol flow is quite similar
to the one of a traditional SIDH as described in §2.1. Alice must still compute degree-4eA

isogenies, but now Bob is responsible for computing degree-`eBB `eCC isogenies.

In this section, three different approaches for computing the eSIDH protocol are
presented. We start in §3.1 with the description of a simple naive eSIDH approach that
is relatively expensive and offers little opportunities for exploiting parallelism. In §3.2, an
eSIDH approach especially designed for exploiting parallelism opportunities is presented.
Then, §3.3 presents a more economical eSIDH variant for single-core implementations,
whose savings come from conveniently invoking the Chinese Remainder Theorem (CRT).

Table 1 shows the estimated scalar multiplication expenses incurred by SIDH and the
three eSIDH instantiations discussed in this section. All the costs are given in number
of xDBL operations.6 For single-core implementations, the CRT-based eSIDH protocol

6We do not account for isogeny computations, because the computational cost associated to this task
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Protocol Single Core processor Two-Core processor
required number of xDBL required number of xDBL

operations operations

SIDH [11] 16λ
4

16λ
4

Naive §3.1 16λ
4

16λ
4

Parallel §3.2 16λ
4

11λ
4

CRT-based §3.3 15λ
4

13λ
4

Table 1: Let λ = dlog2(p)e be the bit-length of the eSIDH prime p. This table reports
the approximate number of xDBL operations processed by the SIDH protocol of [11]
compared against the three eSIDH variants discussed in this section (for the experimental
clock cycle cost of xDBL see Table 3).

yields faster computational timings than the traditional SIDH protocol. In the case of
two-core implementations, the parallel eSIDH described in §3.2, is significantly faster
than the SIDH implementation of [2] and any other eSIDH instantiation discussed here.

3.1 A naive approach for computing eSIDH

Mimicking his role in SIDH, in a naive eSIDH instantiation Bob can first choose a
basis for 〈PBC , QBC〉 = E[`eBB · `

eC
C ]. Thereafter, Bob computes his secret point as

RBC = PBC + [mBC ]QBC followed by the computation of a degree-`eBB `eCC isogeny using
an optimal strategy à la SIDH as shown in Figure 3.

Alice’s eSIDH computational expenses are exactly the same as in SIDH. In the case
of Bob, we stress that the computational expense of computing his eSIDH secret point
RBC as defined above, is about the same of computing Bob’s SIDH secret point RB as
given in §2.1.

Figure 3 depicts an optimal strategy procedure for computing Bob’s degree-`eBB `eCC .
The computational cost of this isogeny is of about eB

2 log2 eB,
eC
2 log2 eC scalar multipli-

cations by `B and `C , eB2 log2 eB degree-`B and eC
2 log2 eC degree-`C isogeny evaluations,

and eB and eC constructions of degree-`B and degree-`C isogenous curves, respectively.
This computational expense is nearly the same as the one required by Alice for comput-
ing a degree-4eA isogeny, using the optimal strategies described in §2.2 and Figure 2.

There seems to be no obvious way of parallelizing the main computation of this naive
eSIDH instantiation. In the following two subsections, two eSIDH instantiations more
amenable for parallelization are described.

3.2 A parallel approach for computing eSIDH

As mentioned before, eSIDH offers rich opportunities for exploiting its inherent paral-
lelism. In this subsection an eSIDH instantiation specifically designed for the concurrent
computation of this protocol’s scalar multiplication operations will be presented.

is about the same for all the three variants of eSIDH and the SIDH protocol.
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Figure 3: Overview of an strategy for computing a degree-`eBB `eCC isogeny. Each isogeny
φB and φC can be computed using a traditional SIDH strategy as in [11]. The kernel of
φB is the subgroup 〈[`eCC ]RBC〉, and the kernel of φC is the subgroup 〈φB(RBC)〉.

As before, let λ = dlog2(p)e be the bit-length of the eSIDH prime p = 4eA`eBB `eCC − 1.
For the sake of compactness let us define rB = `eBB and rB = `eCC . Rather than defining
Bob’s secret point RBC as in the previous subsection, Bob has now two secret points
that he can calculate by choosing two pairs of bases such that 〈PB, QB〉 = E[rB] and
〈PC , QC〉 = E[rC ]. Afterwards, Bob randomly chooses two integers mB ∈ [1, rB − 1] and
mC ∈ [1, rC − 1] to compute his secret points as,

RB = PB + [mB]QB; RC = PC + [mC ]QC . (2)

Now, by picking `B, `C , eB and eC such that log2(`B)rB ≈ log2(`C)rC , it follows that
the cost of computing RB is of about 2λ

4 xDBL operations (cf. remark 2), which is
nearly the same cost of computing RC , and about half of the cost of computing Alice’s
secret point RA. Furthermore, the calculations of Bob’s secret points RB and RC are
fully independent. Therefore, one can compute them in parallel on multi-core platforms.
Moreover, the isogeny φBC = φC ◦ φB can now be determined without performing the
multiplication by rC depicted in Figure 3. This computational saving comes from the
facts that gcd(rB, rC) = 1 and that RB, RC are points of order rB and rC , respectively.
Hence as shown in Figure 4, RB and φB(RC) can serve to generate the kernels of the
isogenies φB and φC , respectively. This observation yields a significant saving of about
λ
4 xDBL operations.

3.2.1 Reducing the public-key size of the parallel instantiation of eSIDH

Seemingly, an important drawback of using two secret points for Bob is that in the Key
Agrement phase, this design decision forces Bob to know the images of his public points
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φB(RC)

Computing an `eCC -isogeny φC

Computing an `eBB `eCC -isogeny φBC = φC ◦ φB

Figure 4: Overview of an strategy to compute an `eBB `eCC -isogeny, which exploits paral-
lelism by defining two secret points RB and RC for Bob. Each isogeny φB and φC can be
computed using a traditional SIDH strategy as in [11]. The kernel of φB is the subgroup
〈RB〉, and the kernel of φC is the subgroup 〈φB(RC)〉.

PB, QB, PC and QC , all of them evaluated under Alice’s degree-4eA isogeny φA. Sending
these four points implies an increment on the data to be transfered from Alice to Bob.
This in turn implies an increment on Alice’s computational load since now, she would
need to find the isogeny images of four points (instead of two as in the original SIDH).7

Alternatively, one can reduce the eSIDH public-key size at the same time that Alice’s
extra work is prevented. This can be done by defining two auxiliary public points that
while codifying Bob’s public points PB, QB, PC and QC , provide an efficient way to
recover them. Let us re-define Bob’s public points as S = PB + PC and T = QB +QC .
This implies that,

[rB]S = [rB]PC , [rC ]S = [rC ]PB, [rB]T = [rB]QC , and [rC ]T = [rC ]QB. (3)

Hence, given the points S, T, one can recover multiples of Bob’s original four public
points by performing four scalar multiplications. Notice that all four of these scalar
multiplications are fully independent. Nonetheless, we can do better as discussed below.

Remark 4. From the multiples [rC ]PB and [rC ]QB, one can recover the points PB, QB,
by multiplying them by the scalars r−1

C mod rB and r−1
B mod rC , respectively. However,

it is easier to directly use [rC ]PB and [rC ]QB to generate the point R′B = [rC ]PB +
[mB]([rC ]QB). Provided that gcd(rC , rB) = 1, it follows that R′B = [rC ]RB. Thus,
〈R′B〉 = 〈RB〉, which implies that the degree-rC isogenies with kernels 〈R′B〉 and 〈RB〉,

7In practice one uses differential point arithmetic on Montgomery curves. Hence, Alice would need
to evaluate and transmit six points, namely, x(PB), x(QB), x(PB−QB), x(PC), x(QC), and x(PB−QB).
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Figure 5: Overview of an eSIDH parallel instantiation with Bob’s secret points computed
in parallel. In the Key Generation phase Ker(φB) = 〈RB〉 and Ker(φC) = 〈φB(RC)〉. In
the Key Agrement phase Ker(φ′B) = 〈R′B〉 and Ker(φ′C) = 〈φ′B(R′C)〉

are one and the same. Similarly, the point R′C = [rB]PC + [mC ]([rB]QC), is sufficient to
generate the degree-rB isogeny with kernel 〈RC〉.

The observation stated in Remark 4 along with the relations given in Eq. (3) sug-
gest an approach where Bob can efficiently recover the points R′B, R

′
C , by the direct

computation of,

R′B = [rC ](S + [mB]T ) and R′C = [rB](S + [mC ]T ). (4)

Remark 5. Eq. (4) is useful during the eSIDH Key Agrement phase. For the eSIDH
Key Generation phase, it results more efficient to compute the points RB and RC as
discussed at the beginning of Subsection 3.2.

Figure 5 shows a general overview of the eSIDH parallel instantiation described in
this subsection. Assuming that a multi-core platform is available for the execution of
this eSIDH instantiation, most Bob’s scalar multiplications can be computed in parallel.

Remark 6. eSIDH security: Recall that gcd(rB, rC) = 1 and rA ≈ log2(`B)rB ·
log2(`C)rC . Given the points S and T, computing a degree-rBrC isogeny between E0

and EBC should have the same computational complexity as the problem of, given the
points PA and QA, finding a degree-rA isogeny between E0 and EA. Furthermore, pro-
vided that 4eA ≈ `eBB · `

eC
C , the heuristic polynomial time key recovery attacks presented

in [20] do not appear to apply against eSIDH.
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3.2.2 Computational cost of the eSIDH parallel instantiation

As in Table 1, the eSIDH required number of xDBL operations will be used as cost
metric. We further assume that log2(`B)rB ≈ log2(`C)rC ≈ rA

2 ≈
λ
4 .

Note that the private/public key sizes of eSIDH are the same as the traditional SIDH
protocol of [11]. Moreover, Alice’s isogeny computations are exactly the same for both
protocols. Nevertheless, Bob can compute his two degree-`eBB `eCC isogenies using the
computational trick shown in Figure 4. This approach yields a saving of about 2λ

4 xDBL
operations compared against the performance cost required by the SIDH strategy shown
in Figure 2, without incurring in any extra computational overhead.

The scalar multiplications computational expenses of the parallel eSIDH variant are
dispensed as discussed next. Let us consider the eSIDH instantiation depicted in Fig-
ure 5. Then, as in the traditional SIDH, Alice must perform two 2λ

4 -bit scalar multi-

plications that involve the computation of about 8λ
4 xDBL operations (cf. Remark 2).

Moreover, during the Key Generation phase, Bob computes the points RB and RC , by
performing 4λ

4 and 2λ
4 xDBL operations for a single-core and two-core implementation,

respectively. During the Key Agrement phase, Bob computes the points R′B, R
′
C , by

performing 6λ
4 and 3λ

4 xDBL operations for a single-core and two-core implementation,
respectively.

Thus, the eSIDH combined scalar multiplication effort of Alice and Bob for a a
single-core and two-core implementation is of 16λ

4 and 11λ
4 , respectively (see Table 1).

3.3 A CRT-based approach for computing eSIDH

Another instantiation of eSIDH can be constructed by taking advantage of the Chinese
Remainder Theorem (CRT). As in §3.2, let λ = dlog2(p)e be the bit-length of the eSIDH
prime p = 4eA`eBB `eCC −1. For the sake of compactness let us define rB = `eBB and rB = `eCC .
A CRT-based approach for eSIDH can be computed as explained in the remainder of
this subsection.

First choose a pair of random integers under the following restrictions. Pick randomly
mB ∈ [1, rB] and mC ∈ [1, rC ] such that, gcd(mB, rC) = gcd(mC , rB) = 1. Then
compute the following integers,

m̂B = m−1
B mod rC ; m̂C = m−1

C mod rB; (5)

m̄B = mB · m̂B mod rB; m̄C = mC · m̂C mod rC ;

mBC = mB · m̂B ·mC · m̂C mod (rB · rC).

From Eq. (5) it follows that mBC ≡ m̄B mod rB and mBC ≡ m̄C mod rC .
For the execution of the eSIDH Key Generation phase the following two points are

computed, RB = PB + [m̄B]QB and RC = PC + [m̄C ]QC . Thereafter, one can compute
φBC as shown in Figure 4, such that the kernel of φB is generated by RB and the kernel
of φC is generated by φB(RC). Since |mB| ≈ |mC | ≈ |mA|

2 = λ
4 ,

8 the combined cost of
computing RB and RC is about the same as the cost of computing RA. As a side effect,

8The operator | · | evaluates the bit-length of its operand.
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note that these computations imply a saving of rC ≈ λ
4 xDBL operations corresponding

to the left most vertical edge between the points RC and RB shown in Figure 4.
For the computation of the eSIDH Key Agrement phase as in §3.2.1, let us define the

auxiliary public points S = PB +PC and T = QB +QC . It turns out that the generators
of the subgroups 〈RB〉 and 〈RC〉 can be recovered by invoking the CRT and Remark 4
applied on the integers given in Eq. (5).

Proposition 1. Let PB, QB, PC , QC , m̄B, m̄C , mBC , RB as RC be defined as before,
and fix S = PB + PC and T = QB + QC . Then [rC ]RB = [rC ](S + [mBC ]T ) and
[rB]RC = [rB](S + [mBC ]T ).

Proof. By straightforward substitution we get,

[rC ](S + [mBC ]T ) =[rC ](PB + PC + [mBC ]QB + [mBC ]QC))

=[rC ](PB + [mBC ]QB)

=[rC ](PB + [mBC mod rB]QB)

=[rC ](PB + [m̄B]QB)

=[rC ]RB.

Using an analogous procedure one can show that [rB]RC = [rB](S + [mBC ]T ).

Using Proposition 1, one can recover the generator R′B of the subgroup Ker(φ′B) and
φ′B(R′C), the generator of the subgroup Ker(φ′C). To this end, one can compute,

R′B = [rC ](φA(S) + [mBC ]φA(T )) = φA([rC ]RB);

R′C = [rB](φA(S) + [mBC ]φ(T )) = φA([rB]RC).

Nevertheless, these computations have a steep cost of 10λ
4 xDBL operations. Fortu-

nately, there is an efficient way to reduce this expense.

Proposition 2. Fix R′B = [rC ](φA(S) + [mBC ]φA(T )) = [rC ]R′. The point φ′B(R′) has
order rC and φ′B(R′) = φ′B((φA(RC)).

Proof. By virtue of Proposition 1, the order-rB point RB generates the kernel of the
degree-rB isogeny φ′B, that is, Ker(φ′B) = 〈R′B〉. By straightforward substitution we get,

R′ =φA(S + [mBC ]T )

=φA(PB + [mBC ]QB + PC + [mBC ]QC)

=φA(RB +RC).

It follows that

φ′B(R′) = φ′B((φA(RB +RC)) = φ′B((φA(RB) + φA(RC)) = φ′B((φA(RC)),

which yields an order-rC point.

12
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Figure 6: Overview of the CRT-based eSIDH instantiation. In the Key Generation phase
Ker(φB) = 〈RB〉 and Ker(φC) = 〈φB(RC)〉. In the Key Agrement phase Ker(φ′B) = 〈R′B〉
and Ker(φ′C) = 〈φ′B(R′)〉

Note that the points R′B and φ′B(R′) can serve as the kernel generators of Bob’s key-
agreement phase isogenies φ′B and φ′C , respectively. Moreover, the cost of computing
those two points is of about 5λ

4 xDBL operations. There seems to be no obvious way
to parallelize these two calculations. Figure 6 depicts how this CRT-based variant of
eSIDH can be computed.

3.3.1 Computational cost of the CRT-based eSIDH instantiation

As in §3.2.2, the eSIDH required number of xDBL operations will be used as cost metric,
and we will assume that log2(`B)rB ≈ log2(`C)rC ≈ rA

2 ≈
λ
4 . Also, as argued in §3.2.2,

the private/public key sizes of eSIDH and Alice’s isogeny computations are exactly the
same as in SIDH. Bob can compute his two degree-`eBB `eCC isogenies using the computa-
tional trick shown in Figure 4, obtaining a saving of about 2λ

4 xDBL operations compared
against SIDH.

The scalar multiplications computational expenses of the CRT-based eSIDH variant
are dispensed as discussed next. Let us consider the eSIDH instantiation depicted in
Figure 5. Then, as in the traditional SIDH, Alice must perform two 2λ

4 -bit scalar mul-

tiplications that involve the computation of about 8λ
4 xDBL operations (cf. Remark 2).

During the Key Generation phase, Bob computes the points RB, RC , by performing
4λ
4 and 2λ

4 xDBL operations for a single-core and two-core implementation, respectively.

During the Key Agrement phase, Bob computes the points R′, R′B, by performing 5λ
4

xDBL operations for either a single-core or a two-core implementation.
Thus, the eSIDH combined scalar multiplication effort of Alice and Bob for a single-

core and a two-core implementation is of 15λ
4 and 13λ

4 , respectively (see Table 1).
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eSIDH primes proposed here N γ SIKE primes as in [2] N γ
p443 = 2222373545 − 1 7 3 p434 = 22163137 − 1 7 3
p508 = 2258374557 − 1 8 4 p503 = 22503159 − 1 8 3
p628 = 2320394567 − 1 10 5 p610 = 23053192 − 1 10 4
p765 = 23913119581 − 1 12 6 p751 = 23723239 − 1 12 5

Table 2: Our selection of eSIDH primes matching the four security levels offered by the
SIKE primes included in [2], where N = ddlog2(p)e/64e, and γ is the largest integer for
that N such that p ≡ −1 mod 2γ·64 holds.

4 Parameter selection and implementation aspects

4.1 The hunting for efficient eSIDH Primes

Let N = ddlog2(p)e/we be the minimum number of 64-bit words needed to represent
an eSIDH prime p. In this paper it is assumed w = 64. We say that a modulus p is γ-
Montgomery-friendly if p ≡ ±1 mod 2γ·w for a positive integer γ [12, 16]. This property
implies that −p−1 ≡ ∓1 mod 2γ·w, which is conveniently exploited to produce savings
in the Montgomery’s REDC reduction algorithm [3].

SIKE uses primes of the form p := 4eA3eB−1. There are at least two computer arith-
metic reasons for this choice. One of them, is that this family of primes are Montgomery-
friendly, which implies that they admit fast Montgomery Reduction [10, 3]. The sec-
ond advantage is that there exist highly efficient formulas for computing degree-3 and
degree-4 isogenies [7, 5]. The eSIDH primes proposed in this paper are of the form
p := 4eA`eBB `eCC f −1, which are much more flexible and abundant than the SIKE primes.
Then, given some fixed values for N and the primes `B and `C , one searches for N

2 -
Montgomery-friendly primes (if they exist) by varying eB, eC and f. These friendlier
Montgomery-friendly primes achieve a faster Montgomery reduction (see [10, Algo-
rithm 6]) than the ones that could possibly be obtained from comparable SIKE primes.

Another important design aspect to be considered is that on Bob’s side, there exists
a trade-off between the size of the base-primes `B and `C and their corresponding ex-
ponents eB and eC , respectively. The base-primes define the size of the step, whereas
their exponents determine how many steps one must perform for isogeny evaluations
and constructions. Depending on the exact choice of these parameters, one can make a
few big steps or many small steps. Furthermore as discussed in §3.2, in order to take
full advantage of parallel computing and also for security reasons (cf. Remark 6), it is
important to choose log2(`B)rB ≈ log2(`C)rC .

For all the eSIDH instances considered in this paper, we use primes of the form
p = 4eA`eBB `eCC f − 1, such that 2eA ≈ log2(`eBB `eCC ), and where eA is chosen so that the
security level offered by the SIKE primes as specified in [2] is matched (see also [1]). The
cofactor f = 2kc is carefully selected so that p qualifies as an N

2 -Montgomery-friendly
prime (if at all possible). Table 2 shows our selection of four eSIDH primes matching the
four security levels specified in [2]. When searching for eSIDH primes with comparable
security as the one offered by the p434 SIDH prime, the best choice that we were able to
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Operation P434 P443 P751 P765

Reduction Fp 78 78 154 137
Mult Fp2 466 467 1,029 977
Sqr Fp2 349 349 780 716
Inv Fp2 77,764 80,253 317,655 251,366
Doubling 2,961 2,920 6,186 5,845
4-IsoGen 1,793 1,758 3,691 3,442
4-IsoEval 3,955 3,921 8,407 7,972
Tripling 5,595 5,487 11,999 11,292
3-IsoGen 2,850 2,836 5,720 5,418
3-IsoEval 2,717 2,717 5,944 5,612
Quintupling - 7,995 - 16,285
5-IsoGen - 7,951 - 16,179
5-IsoEval - 4,703 - 9,682

Table 3: Timing performance of selected quadratic field arithmetic operations and
isogeny evaluations and constructions. Timings are reported in clock cycles measured
on a Skylake processor at 4.0GHz.

find is p443 as specified in Table 2. Both of them, p434 and p443, fit in seven 64-bit words
and they are 3-Montgomery-friendly primes. This implies that the field arithmetic costs
associated to p434 and p443 are fairly similar (cf. Table 3). Luckily, for the other three
security levels we managed to find eSIDH N

2 -Montgomery-friendly primes sharing the
same security level as their SIKE prime counterparts.

4.2 Results and discussion

In this subsection, a full implementation of the eSIDH protocol proposed in this work
is presented. We mainly focus ourselves on the eSIDH parallel instantiation discussed
in §3.2, and we use the SIDH implementation of [2] as a baseline to compare the ac-
celeration factor achieved by the eSIDH scheme. Building on the techniques proposed
in [13], we also report a multi-core implementation of the SIDH protocol. To the best of
our knowledge this is the first reported software implementation of SIDH.9 Our two case
studies targeted p434 and p751, the smallest and largest SIKE primes that are included
in the SIKE specification [2].

All the timings were measured using an Intel core i7-6700K processor with micro-
architecture Skylake at 4.0 GHz. Using the Clang-3.9 compiler and the flags -Ofast

-fwrapv -fomit-frame-pointer -march=native -madx -mbmi2.

4.2.1 Quadratic field arithmetic and isogeny computations

Table 3 presents a comparison of the field arithmetic costs associated to the SIKE primes
p434 and p751 against the ones exhibit by the eSIDH primes p443 and p765, respectively.

9A reconfigurable hardware parallel version of SIDH was previously reported in [17].
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p434 p443

Phase
Cores number Cores number

1 2 3 1 2 3
Alice Key Generation 5.93 5.62 5.36 5.91 5.60 5.36
Bob Key Generation 6.54 6.20 5.88 6.53 5.03 4.54
Alice Key Agrement 4.80 4.49 4.22 4.78 4.48 4.22
Bob Key Agrement 5.50 5.14 4.82 6.23 4.88 4.55

Total 22.77 21.45 20.28 23.45 19.99 18.67

Table 4: Performance comparison of the SIKE prime p434 against the eSIDH prime p443.
All timings are reported in 106 clock cycles measured on an Intel Skylake proccessor at
4.0 GHz.

Note that our eSIDH prime p765 field arithmetic gets noticeable timing speedups com-
pared against the SIKE p751 field arithmetic. This acceleration is justified from the
fact that since p765 is a friendlier Montgomery-friendly prime, it has a faster modular
reduction than p751.

4.2.2 Parallelizing the SIDH protocol

Using a similar approach as the one followed in [17, 13], in this work we parallelize
the SIDH implementation of [2] as follows. Alice and Bob isogeny evaluations and
constructions were computed using the optimal strategy of [11]. Optimal strategies
typically produce an average of four points per curve whose isogeny images can be
processed concurrently [17]. Hence, our two- and three-core implementations actively
strove for concurrently performing as many isogeny evaluations as possible.10

Table 4 shows that with respect to a sequential implementation, a two-core and
a three-core parallel implementation of the SIDH p434 instantiation yields a speedup
factor of 1.062 and 1.123, respectively. Likewise, Table 5 reports that with respect to a
sequential implementation, a two-core and a three-core parallel implementation of the
SIDH p751 instantiation yields a speedup factor of 1.118 and 1.216, respectively.

4.2.3 Performance evaluation of the eSIDH parallel instantiation

Table 4 reports the performance timing achieved by the eSIDH p443 parallel instantiation.
Using a single-core SIDH p434 implementation as a baseline, it can be seen from Table 4
that a parallel eSIDH p443 implementation yields an acceleration factor of 0.97, 1.22 and
1.41, when executed on k = {1, 2, 3}-core processors.

On the other hand, eSIDH p443 yields an acceleration factor of 0.971, 1.073 and
1.086, when both protocols are implemented on k = {1, 2, 3}-core processors. Hence
for a single-core implementation, eSIDH p443 is slower than its SIDH p434 counterpart.
For two-core and three-core implementations, our eSIDH variant produces a modest but
noticeable speedup of about 7% and 9%, respectively.

10Parallel canonical strategies for SIDH are studied and proposed in [13].
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p751 p765

Phase
Cores number Cores number

1 2 3 1 2 3
Alice Key Generation 23.59 21.74 19.88 22.27 20.19 18.89
Bob Key Generation 26.74 23.71 22.24 24.34 17.76 15.79
Alice Key Agrement 19.37 17.49 15.64 18.21 16.12 14.83
Bob Key Agrement 22.76 19.74 18.25 23.24 17.16 15.94

Total 92.46 82.67 76.01 88.05 71.23 65.42

Table 5: Performance comparison of the SIKE prime p751 against the eSIDH prime p765.
All timings are reported in 106 clock cycles measured on an Intel Skylake proccessor at
4.0 GHz.

Table 5 reports the performance timing achieved by the eSIDH p765 parallel instan-
tiation. Using a single-core SIDH p751 implementation as a baseline, it can be seen that
a parallel implementation of eSIDH p765 yields an acceleration factor of 1.05, 1.30 and
1.41, when executed on k = {1, 2, 3}-core processors. Furthermore, eSIDH p765 yields
an acceleration factor of 1.050, 1.160 and 1.162. when both protocols are implemented
on k = {1, 2, 3}-core processors. We stress that even for a single-core implementation of
this case study, our eSIDH variant produces a modest but noticeable speedup of about
5%.

As a general summary we note that for single-core implementations, Bob’s 3e35e5

isogeny computation has no overhead impact on the Key Generation phase. However,
the public key recovery mechanism (cf. §3.2.1) proves to be relatively expensive on the
Key Agrement phase. On the other hand, for two- and three-core implementations, our
eSIDH instantiation clearly outperforms SIDH on all Bob’s computations. In Table 5,
the comparison of SIDH p751 against eSIDH p765 reveals the superiority of the latter
over the former in all the phases of the protocol, even for a sequential implementation.
The one exception being Bob’s Key Agrement phase. For the two- and three- core
implementations, Bob’s Key Agrement for eSIDH p765 is even faster than Alice’s Key
Agrement for SIDH p751.

4.2.4 Performance evaluation of the CRT-based eSIDH instantiation

A shown in Table 1, the CRT-based eSIDH instantiation presented in §3.3 offers less
parallelism opportunities than the ones enjoyed by the eSIDH parallel instantiation dis-
cussed in 3.2. However, according to the estimates given in Table 1, the CRT-based
eSIDH instantiation is a promising economical scheme for a sequential single-core pro-
cessor. As before, let λ = dlog2(p)e. Referring to Table 1, the computational cost of the
CRT-based eSIDH instantiation saves ≈ λ

4 xDBL operations.

Case study p443

Based on the timing computational costs reported in Table 3, the expected computa-
tional saving for a single-core implementation of SIDH p434 with respect to eSIDH p443
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is given as,

eC ·Quintupling = 45 · 7995

= 359, 775 clock cycles.

This implies that compared against a single-core SIDH p434 implementation, a single-core
CRT-based eSIDH p443 implementation is expected to produce a 1.02 speedup factor.
Case study p765

Based on the prime specifications given in 2 and the timing computational costs reported
in Table 3, the expected computational saving for a single-core implementation of eSIDH
p765 with respect to SIDH p751 is given as,

eC ·Quintupling = 81 · 16285

= 1, 319, 085 clock cycles.

This saving combined with the experimental results reported in Table 5 implies that com-
pared against a single-core SIDH p751 implementation, a single-core CRT-based eSIDH
p765 implementation is expected to produce a 1.07 speedup factor.

5 Conclusions

In this paper the extended SIDH scheme, a variant of the SIDH protocol in [11], was
presented. Our experimental results show that an eSIDH parallel implementation is
faster than a corresponding parallel version of SIDH. Moreover for certain security levels,
a CRT-based eSIDH single-core implementation is slightly faster than SIDH.

Our future work includes to expand the search of more efficient eSIDH primes for
all the four security levels considered in [2]. Building on the work presented in [13], we
would also like to explore more aggressive approaches for parallelizing the SIDH isogeny
computations and evaluations. The algorithmic ideas discussed here might be useful for
the B-SIDH construction [6], where given the large size of the prime factors involved
in the factorization of p± 1, parallel implementations of SIDH become mandatory. We
also would like to explore applications of eSIDH to the client-server scenarios discussed
in [6].
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parallel variant of SIDH. CHES 2018 Rump session, 2018. https://eprint.iacr.
org/2019/1145.

[5] D. Cervantes-Vázquez and F. Rodŕıguez-Henŕıquez. A note on the cost of computing
odd degree isogenies. Cryptology ePrint Archive, Report 2019/1373, 2019. https:
//eprint.iacr.org/2019/1373.

[6] C. Costello. B-SIDH: supersingular isogeny Diffie-Hellman using twisted torsion.
Cryptology ePrint Archive, Report 2019/1145, 2019. https://eprint.iacr.org/

2019/1145.

[7] C. Costello and H. Hisil. A simple and compact algorithm for SIDH with arbitrary
degree isogenies. In T. Takagi and T. Peyrin, editors, Advances in Cryptology -
ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications
of Cryptology and Information Security Part II, volume 10625 of Lecture Notes in
Computer Science, pages 303–329. Springer, 2017.

[8] C. Costello, P. Longa, and M. Naehrig. Efficient algorithms for supersingular isogeny
Diffie-Hellman. In M. Robshaw and J. Katz, editors, Advances in Cryptology -
CRYPTO 2016 - Part I, volume 9814 of Lecture Notes in Computer Science, pages
572–601. Springer, 2016.

[9] C. Costello, P. Longa, M. Naehrig, J. Renes, and F. Virdia. Improved classical crypt-
analysis of the computational supersingular isogeny problem. Cryptology ePrint
Archive, Report 2019/298, 2019. https://eprint.iacr.org/2019/298.
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faster software implementation of the supersingular isogeny Diffie-Hellman key ex-
change protocol. IEEE Transactions on Computers, pages 1–1, 2018.

19

https://eprint.iacr.org/2019/1145
https://eprint.iacr.org/2019/1145
https://eprint.iacr.org/2019/1373
https://eprint.iacr.org/2019/1373
https://eprint.iacr.org/2019/1145
https://eprint.iacr.org/2019/1145
https://eprint.iacr.org/2019/298
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