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Abstract. Aigis-Enc is an encryption algorithm based on asymmetri-
cal LWE. In this algorithm, the compression process is utilized during
both key generation and encryption (which is equivalent to add some
LWR noise). Then encapsulation is realized by FO transformation. It
is well known that FO transformation is not considered for discussing
CPA security. On the other hand, since the security reduction of LWR is
hard to proceed, it is not considered for discussing the CPA security of
Aigis-Enc. But compression must be put into consideration when we dis-
cuss decryption failure probability. In other words, when we discuss the
CPA security of Aigis-Enc, the compression and FO transformation are
ignored. But when decryption failure probability is discussed, compres-
sion should be taken into consideration while FO transformation remains
ignored.

According to the assumptions above, Aigis-Enc designers claim that
the CPA security of Aigis-Enc is approximately equal to that of the
symmetrical LWE scheme in the same scale, and the decryption failure
probability of Aigis-Enc is far below that of the symmetrical LWE scheme
in the same scale.

In this paper, we make a thorough comparison between Aigis-Enc
(with the recommended parameters) and the symmetrical LWE encryp-
tion scheme in the same scale. Our conclusion is as followed:

(1) The comparison on CPA security. The former’s is 160.898, and
the latter’s is 161.836.

(2) The comparison on computation complexity. In key generation
phase, the ratio of the former and the latter on sampling amount of

distribution
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]
is 5:4; In encryption phase, that ratio is 19:14. The

other computations remain the same.
(3) The comparison on decryption failure probability. The former’s

is 2−128.699, the latter’s is 2−67.0582. The comparison seems to be dra-
matic. But in fact, we can slightly increase some traffic to keep failure
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probability unchanged. In other words, by compressing less to keep de-
cryption failure probability unchanged. In specific: we change the param-
eters (d1, d2, d3) from (9, 9, 4) to (10, 10, 4), which means a large part of
the public key remains the same, the small part of the public key changes
from 9 bits per entry into 10bits. A large part of the ciphertext changes
from 9 bits per entry into 10 bits, the small part of the ciphertext re-
mains the same. As thus, the communication traffic increases less than
1
9
, while the decryption failure probability is lower than 2−128.699.

We generalize those attacks presented by designers of Aigis-Enc, in-
cluding primal attacks and dual attacks. More detailedly, our attacks
are more extensive, simpler, and clearer. With them, we obtain the op-
timal attacks and “the optimal-optimal attack” on Aigis-Enc and the
symmetrical LWE scheme in the same scale.

Keywords: LWE-based cryptosystem · primal attack · dual attack.

1 Preliminaries

LWE[1] is a quality cryptography primitive. The parameters of public key
algorithm based on LWE are {modulus, noise size, compression ratio, number
of rows, number of columns}, the optimization of these parameters will opti-
mize the performance of an algorithm. That is, make the optimal balance of
{calculated amount, security strength, decryption failure probability, communi-
cation traffic}.

Aigis-Enc[2] is an encryption algorithm based on asymmetrical LWE. In this
algorithm, the compression process is utilized during both key generation and
encryption (which is equivalent to add some LWR noise). Then encapsulation is
realized by FO transformation[3,4]. It is well known that FO transformation is
not considered for discussing CPA security. On the other hand, since the security
reduction of LWR is hard to proceed, it is not considered for discussing the CPA
security of Aigis-Enc. But compression must be put into consideration when we
discuss decryption failure probability. In other words, when we discuss the CPA
security of Aigis-Enc, the compression and FO transformation are ignored. But
when decryption failure probability is discussed, compression should be taken
into consideration while FO transformation remains ignored.

According to the assumptions above, Aigis-Enc designers claim that the CPA
security of Aigis-Enc is approximately equal to that of the symmetrical LWE
scheme in the same scale[5,6], and the decryption failure probability of Aigis-
Enc is far below that of the symmetrical LWE scheme in the same scale.

In this paper, we make a thorough comparison between Aigis-Enc (with the
recommended parameters) and the symmetrical LWE encryption scheme in the
same scale. Our conclusion is as followed:

(1) The comparison on CPA security. The former’s is 160.898, and the latter’s
is 161.836.

(2) The comparison on computation complexity. In key generation phase, the

ratio of the former and the latter on sampling amount of distribution

[
0 1
1
2

1
2

]
is



Analysis on Aigis-Enc: asymmetrical and symmetrical 3

5:4; In encryption phase, that ratio is 19:14. The other computations remain the
same.

(3) The comparison on decryption failure probability. The former’s is 2−128.699,
the latter’s is 2−67.0582. The comparison seems to be dramatic. But in fact, we
can slightly increase some traffic to keep failure probability unchanged. In other
words, by compressing less to keep decryption failure probability unchanged. In
specific: we change the parameters (d1, d2, d3) from (9, 9, 4) to (10, 10, 4), which
means a large part of the public key remains the same, the small part of the
public key changes from 9 bits per entry into 10bits. A large part of the cipher-
text changes from 9 bits per entry into 10 bits, the small part of the ciphertext
remains the same. As thus, the communication traffic increases less than 1

9 , while
the decryption failure probability is lower than 2−128.699.

We generalize those attacks presented by designers of Aigis-Enc, including
primal attacks and dual attacks. More detailedly, our attacks are more extensive,
simpler, and clearer. With them, we obtain the optimal attacks and “the optimal-
optimal attack” on Aigis-Enc and the symmetrical LWE scheme in the same
scale.

2 Aigis-Enc and symmetrical LWE scheme in the same
scale: with the recommended parameters without FO
transformation

2.1 Conventions and some special notations

Due to the MLWE[7,8] structure Aigis-Enc has, we use some special notations
to simplify our expression.

We name the square matrix


a0 a1 · · · a255
−a255 a0 · · · a254

...
...

. . .
...

−a1 −a2 · · · a0

 a 256× 256 rotation ma-

trix.

For a 256-dimension vector v =


v0
v1
...

v255

, we denote a 256 × 256 square

matrix T(v) =


v0 −v255 · · · −v1
v1 v0 · · · −v2
...

...
. . .

...
v255 v254 · · · v0

, and name it the transpose of vector v.
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For a 768-dimension vector v =


v0
v1
...

v767

, we denote a 256 × 768 matrix

T(v) =

T
 v0

...
v255

 ,T

v256
...

v511

 ,T

v512
...

v767


, and name it the transpose of

vector v.
It is easy to see that, if u,v are two 256-dimension or two 768-dimension

column vectors, T(u) · v = T(v) · u.
Probability distribution bη is a centered binomial distribution with parameter

η. In particular b1 is the probability distribution

[
−1 0 1
1
4

1
2

1
4

]
.

Modulus q = 7681.

2.2 Aigis-Enc with the recommended parameters: without
compression

Key generation: Set {η1, η2} = {1, 4}. A ∈ Z768×768
q is a special matrix which

generated from 9 256× 256 rotation matrices arranged in order.

Let b = As + e, where s
$←− b768

η1 , e
$←− b768

η2 . The public key is (A,b), and
the secret key is (s,A,b).

Encryption: First, transform matrix A to AT , where AT is the “transpose
matrix” of A with respect to the 256 × 256 rotation sub-matrices (rather than
with repect to entries).

Given a plaintext column vector µ=

 µ0

...
µ255

, calculate the ciphertext {c1, c2},

{
c1 = AT r + x1

c2 = [T(b)] · r + x2 + µ ·
⌈
q
2

⌉
where r

$←− b768
η1 , x1

$←− b768
η2 , x2

$←− b256
η2 .

Decryption: Calculate

c =

 c0
...

c255


= c2 − [T (s)] · c1
= µ

⌈q
2

⌉
+ x2 + [T (e)] · r− [T (s)] · x1

Obtain µi =

{
0 |ci| ≤ q

4
1 |ci| > q

4

.
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2.3 Aigis-Enc with the recommended parameters: with compression

Set {d1,d2, d3} = {9, 9, 4}.
Key generation: Set {η1, η2} = {1, 4}. A ∈ Z768×768

q is a special matrix which
generated from 9 256× 256 rotation matrices arranged in order.

Let b = As + e + e, where s
$←− b768

η1 , e
$←− b768

η2 ,

e = −(Ar + e(modq))(mod2d1). The public key is (A,b), and the secret
key is (s,A,b).

Encryption: Transform matrix A to AT .

Given a plaintext column vector µ=

 µ0

...
µ255

, calculate the ciphertext {c1, c2},

{
c1 = AT r + x1 + x1

c2 = [T(b)] · r + x2 + x2 + µ ·
⌈
q
2

⌉
where r

$←− b768
η1 , x1

$←− b768
η2 , x2

$←− b256
η2 , x1 = −(Ar + x1(modq))(mod2d2),

x2 = −([T(b)] · r + x2( mod q))( mod 2d3).
Decryption: Calculate

c =

 c0
...

c255


= c2 − [T (s)] · c1
= µ

⌈q
2

⌉
+ x2 + x2 + [T (e) + T (e)] · r− [T (s)] · (x1 + x1)

Obtain µi =

{
0 |ci| ≤ q

4
1 |ci| > q

4

.

2.4 Symmetrical LWE scheme in the same scale: with and without
compression

The scheme is almost the same as Aigis-Enc. The only difference is the sam-
pling parameters {η1, η2} = {2, 2} instead of {1, 4}.

3 Attack scenarios and resource (without compression)

3.1 Scenario 1 and resource

We randomly choose two plaintexts µ(1) and µ(2) and send them to the
Oracle. The Oracle randomly chooses one to encrypt and return the ciphertext to
us. Then we guess in { µ(1), µ(2)} which plaintext is encrypted. When we obtain
the returned ciphertext {c1, c2}, correct guess on the value of µ(i) enables us to
acquire 1024 LWE samples:
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(
c1

c2 − µ(i) ·
⌈
q
2

⌉) =

[
AT

T(b)

]
r +

(
x1

x2

)
,

in the equation every component of the secret vector r obeys the probability dis-

tribution bη1 , every component of the noise vector

(
x1

x2

)
obeys the probability

distribution bη2 .

3.2 Scenario 2 and resource

When we capture a random ciphertext {c1, c2}, we acquire 1024 LWE sam-
ples: (

c1
2c2

)
=

[
AT

2T(b)

]
r +

(
x1

2x2+µ

)
,

in the equation every component of the secret vector r obeys the probability
distribution bη1 , every component of x1 obeys the probability distribution bη2 ,
every component of 2x2+µ has the standard deviation larger than

√
2 times of

the standard deviation of bη2 .

3.3 Scenario 3 and resource

From public key we obtain the following 768 LWE samples:

b = As + e,

in the equation every component of the secret vector s obeys the probability
distribution bη1 , every component of the noise vector e obeys the probability
distribution bη2 .

3.4 Advantaged scenario and resource

Because the noise vector in scenario 2 is larger than that in scenario 1, and in
scenario 3 we obtain fewer LWE samples than in scenario 1, we believe scenario
1 is the advantaged attack scenario.

4 The security strength comparison under primal attacks

4.1 Traditional primal attack

d ∈ {770, 771, . . . , 1025}, we consider the d-dimension lattice generated by
the column vectors of the below matrix B.

B=

 cI768 0 c(AT )−1c1

−T(b)∗(AT )
−1

qId−769

(
c2 − µ(i)

⌈
q
2

⌉
−T(b)(AT )

−1 · c1
)∗

0 0 t


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In the equation T(b)∗ is the matrix constructed from d− 769 rows of T(b),(
c2 − µ(i)

⌈
q
2

⌉
−T(b)(AT )

−1 · c1
)∗

is the vector constructed from the corre-

sponding d − 769 components of c2 − µ(i)
⌈
q
2

⌉
−T(b)(AT )

−1 · c1, µ(i) is the
correct plaintext. c > 0, t > 0, (c, t) are the tunable parameters. We also know(
c · rT ,x∗T2 , t

)T
is a small vector of the regarding lattice, where x∗2 is the vector

constructed from d−769 components of the encryption noise vector x2. The size
of the small vector is

√
c2 × 768× η1

2 + (d− 769)× η2
2 + t2 approximately. The

aim of the attack is to find the small vector. It isn’t difficult to see “the tradi-
tional primal attack”[9,10,11] the designers of Aigis-Enc proposed is included in
our traditional primal attack.

4.2 Transformed primal attack

d ∈ {770, 771, . . . , 1793}, we consider the lattice generated by the column
vectors of the below matrix B.

B=


cI768 0 0[
AT

T(b)

]∗
qId−769

(
c1
c2

)∗
0 0 t


In the equation

[
AT

T(b)

]∗
is the matrix constructed from d−769 rows of

[
AT

T(b)

]
,(

c1
c2

)∗
is the vector constructed from the corresponding d− 769 components of(

c1
c2

)
. c > 0, t > 0, (c, t) are the tunable parameters. We also know

(
c · rT ,x∗T , t

)T
is the small vector of the regarding lattice, where x∗ is the vector constructed

from d − 769 corresponding components of the encryption noise vector

(
x1

x2

)
.

The size of the small vector ` =
√
c2 × 768× η1

2 + (d− 769)× η2
2 + t2. The aim

of the attack is to find the small vector. It isn’t difficult to see “the transformed
primal attack 1” and “the transformed primal attack 2”[12,13] the designers of
Aigis-Enc proposed are included in our transformed primal attack.

4.3 Optimal primal attack

The classic complexity of our primal attack is 20.292b (The quantum complex-
ity is 20.265b), the parameter b is as small as possible, while satisfying b ∈ [100, d],
and (

b

d

) 1
2

·
(

(πb)
1
b · b

2πe

) d2−2bd+d
2(b−1)(d−1)

≤ (det(B))
1
d

`

The above inequality comes from the work of previous contributors[14], we
no longer take time to verify its rationality. Notice the following five facts:
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(1) The left part of the above inequality is independent of the tunable pa-
rameters (c, t);

(2) The left part of the above inequality is a decreasing function of b when
b ∈ [100, d];

(3) No matter in the traditional or the transformed primal attack scenario,
the right part of the above inequality has the same expression f(c, t), and

f(c, t) =
c

768
d · q d−769

d · t 1
d√

c2 × 768× η1
2 + (d− 769)× η2

2 + t2
;

(4) For any fixed t > 0, lim
c→0+

f(c, t) = 0, lim
c→+∞

f(c, t) = 0;

(5) For any fixed c > 0, lim
t→0+

f(c, t) = 0, lim
t→+∞

f(c, t) = 0.

Take all the five facts above into consideration, we know that if f(c, t) has a
single stationary point (c0, t0) in {c > 0, t > 0}, it must be the global maximum
point of f(c, t). Put (c0, t0) into the above inequality we can acquire the minimum
point of b. In other words, the primal attack using (c0, t0) as parameters is the
optimal primal attack. Fortunately, f(c, t) does have a single stationary point
(c0, t0) in {c > 0, t > 0}, where

(c0, t0) =

{
(2,
√

2), when η1 = 1, η2 = 4
(1, 1), when η1 = η2 = 2

Notice that the stationary point (c0, t0) is independent of dimension d. Therefore,
we obtain Proposition 1:

Proposition 1. For any fixed dimension d ∈ {770, . . . , 1793},
(1) The parameters of the optimal primal attack on Aigis-Enc are (c, t) =

(2,
√

2).
(2) The parameters of the optimal primal attack on the symmetrical LWE

scheme in the same scale are (c, t) = (2,
√

2).

4.4 The comparison of the complexity of the optimal primal attack
and “the optimal-optimal primal attack”

We provide 13 sets of data in Table 1, under 13 different value of d, we list
the classic complexity of the optimal attack on Aigis-Enc and the symmetrical
LWE scheme in the same scale.

The so-called “the optimal-optimal primal attack” is the optimal attack with
a further optimized dimension d. It can be observed in Table 1 that the com-
plexity of the “the optimal-optimal primal attack” on Aigis-Enc is 2162.542, that
on the symmetrical LWE scheme in the same scale is 2163.443.

5 The security strength comparison under dual attacks

5.1 Our dual attack

We consider the following 768 “trivial LWE samples”:

o = −I768r + r,
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Table 1. The classic complexity of the optimal primal attack

d on Aigis-Enc
on the symmetrical
LWE scheme in the
same scale

1022 2194.977 2209.027

1025 2194.226 2208.03

1175 2171.152 2177.275

1325 2163.538 2166.178

1369 2162.808 2164.757

1395 2162.601 2164.186

1415 2162.542 2163.866

1440 2162.579 2163.596

1490 2162.98 2163.443

1519 2163.388 2163.56

1540 2163.755 2163.728

1619 2165.604 2164.899

1793 2171.659 2169.751

where o ∈ Z768
q is a column vector which components are all 0s. Therefore, we

have the following 1792 LWE samples in total: o
c1

c2 − µ(i)
⌈
q
2

⌉
 =

−I768AT

T(b)

 r +

 r
x1

x2

 .

Set d ∈ {769, . . . , 1792}, and we only consider the d LWE samples below: o(
c1

c2 − µ(i)
⌈
q
2

⌉)∗
 =

 −I768[
AT

T(b)

]∗ r +

 r(
x1

x2

)∗ ,

we denote A∗ =

[
AT

T(b)

]∗
∈ Z(d−768)×768

q , then we have

[
A∗ Id−768

] [−I768
A∗

]
(modq)

is a matrix which entries are all 0s. Now the rationality of Lemma 1 is obvious.

Lemma 1. For any real number c > 0,



10 Yupu Hu et al.

(1)
[
A∗ cId−768

] [−I768
1
cA
∗

]
(modq) is a matrix which entries are all 0s.

(2)
[
A∗ cId−768

] o

1
c

(
c1

c2 − µ(i)
⌈
q
2

⌉)∗
 (mod q)

=
[
A∗ cId−768

] r

1
c

(
x1

x2

)∗ (modq).

We consider the lattice generated by the row vectors of the below matrix B:

B =

[
qI768 0
A∗ cId−768

]
where c > 0 is a tunable parameter. From Lemma 1 (1), this lattice is the entire
set of row vectors v which satisfy

v

[
−I768
1
cA
∗

]
(modq) = (0, . . . , 0)

Searching for a small vector v (row vector) on the lattice. From Lemma 1
(2), we can calculate

v

 o

1
c

(
c1

c2 − µ(i)
⌈
q
2

⌉)∗
 (modq) = v

 r

1
c

(
x1

x2

)∗ (modq)

The aim of our attack is to distinguish v

 r

1
c

(
x1

x2

)∗ (modq) from some

uniform value. Our attack includes all the dual attacks the designers of Aigis-
Enc proposed, including “the traditional dual attack”[15], “the transformed dual
attack 1”, “the transformed dual attack 2”[13] and “the transformed dual attack
3”[16]. To be more specific:

(1) “The traditional dual attack” and “the transformed dual attack 1” the
designers of Aigis-Enc proposed is equivalent to our dual attack when c = 1;
“The transformed dual attack 3” the designers of Aigis-Enc proposed is equiv-

alent to our dual attack when c = 2
√
d−768√
768

. And we can prove: for any d ∈
{769, . . . , 1792}, the parameter of the optimal dual attack on Aigis-Enc is c = 2

rather than c = 1 or c = 2
√
d−768√
768

.

(2) “The transformed dual attack 2” the designers of Aigis-Enc proposed is
equivalent to our dual attack when c = 2. Although it indeed is the optimal dual
attack on Aigis-Enc, but they only declare the attack is superior to the attack
when c = 1.
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5.2 Optimal dual attack

From the work of the previous contributors, the complexity of dual attack is

max

{
1,

exp(4π2τ2)

20.2075·b · 16

}
e0.292b,

where τ = `·`′√
d·q , ` is the size of the small vector v on the lattice. `′ is the size of

the small vector operating inner product with v on the lattice. The small vector

is

 r

1
c

(
x1

x2

)∗, and the size of it is

`′ =
1

c

√
c2 × 768× η1

2
+ (d− 768)× η2

2
.

The size of the small vector v on the lattice is estimated to be ` =
(

(πb)
1
b · b

2πe

) d
2(b−1) ·

(det (B))
1
d . Therefore, we have:

` · `′ =

(
(πb)

1
b · b

2πe

) d
2(b−1)

· q 768
d · c

−768
d ·

√
c2 × 768× η1

2
+ (d− 768)× η2

2
.

For any fixed (d, b) , 0 < b < d, it satisfies lim
c→0+

` ·`′ = +∞, lim
c→+∞

` ·`′ = +∞.

Therefore, if a single stationary point of ` · `′ in c > 0 exists, it will be the global
minimum point where the classic complexity of dual attack is the lowest. In [13],
the contributor indicates that when η1 = η2, the single stationary point is c = 1,
that means the parameter of the optimal dual attack is c = 1. The designers
of Aigis-Enc indicate that when (η1, η2) = (1, 4), the dual attack can be more
effective if we choose c = 2 rather than c = 1. Our conclusion is the following
Proposition 2.

Proposition 2. For any d ∈ {769, . . . , 1024, 1537, . . . , 1792}, the parameter of
the optimal dual attack on Aigis-Enc is c = 2.

The value of c is determined, it is time to determine the value of b. Since we
only have b ≤ d, the value of b is hard to be determined. Therefore, we make a
conservative estimation, its classic complexity is

min
100≤b≤d

{
max

{
1,

exp
(
4π2τ2

)
20.2075b · 16

}
· 20.292b

}
.
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5.3 The comparison of the complexity of the optimal dual attack
and “the optimal-optimal dual attack”

It is trivial to obtain that the classic complexity of the optimal dual attack
on Aigis-Enc is

min
100≤b≤d

max

1,

exp

(
4π2
(

(πb)
1
b · b

2πe

) d
b−1 · 7681

1536−2d
d · 2 d−1536

d

)
20.2075b · 16

 · 20.292b
 ,

and that on the symmetrical LWE scheme in the same scale is

min
100≤b≤d

max

1,

exp

(
4π2
(

(πb)
1
b · b

2πe

) d
b−1 · 7681

1536−2d
d

)
20.2075b · 16

 · 20.292b
 .

Therefore, the rationality of below Proposition 3 is obvious.

Proposition 3. When dimension d < 1536, the classic complexity of the opti-
mal dual attack on Aigis is no higher than that on the symmetrical LWE scheme
in the same scale; when dimension d ≥ 1536, the classic complexity of the opti-
mal dual attack on Aigis is no lower than that on the symmetrical LWE scheme
in the same scale.

We provide 13 sets of data in Table 2, under 13 different value of d, we list the
classic complexity of the dual attack on Aigis-Enc and the symmetrical LWE
scheme in the same scale.

It can be observed in Table 2 that the complexity of the “the optimal-optimal
dual attack” on Aigis-Enc is 2160.898, that on the symmetrical LWE scheme in
the same scale is 2161.836.

5.4 Comparison on the CPA classic security strength (without
compression)

Combine the content of section 4 and sub-sections 5.1∼5.3, the CPA classic
security strength of Aigis-Enc is 160.898, the CPA classic security strength of
the symmetrical LWE scheme is 161.836.

6 Comparison on calculated amout

A basic calculation is the sampling of probability distribution χ =

[
0 1
1
2

1
2

]
.

In the key generation phase, χ is sampled (8+2)×768 = 7680 times in Aigis,
and (4+4) × 768 = 6144 times in the symmetrical LWE scheme in the same
scale, the former is the 5

4 times of the latter. Certainly, sampling of χ may be
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Table 2. The classic complexity of the optimal dual attack

d on Aigis-Enc
on the symmetrical
LWE scheme in the
same scale

1022 2192.102 2205.835

1300 2162.385 2165.408

1354 2162.275 2163.406

1380 2161.013 2162.767

1400 2160.914 2162.4

1420 2160.898 2162.131

1480 2161.285 2161.836

1500 2161.542 2161.888

1520 2161.855 2162.005

1535 2162.125 2162.134

1544 2162.3 2162.227

1600 2163.602 2163.049

1649 2165.004 2164.071

not accounted for the main calculated amount in key generation phase, because
the public key matrix is also sampled uniformly.

In the encryption phase, χ is sampled 2 × 768 + 8 × 1024 = 9728 times in
Aigis, and 4×768+4×1024 = 7168 times in the symmetrical LWE scheme in the
same scale, the former is the 19

14 times of the latter. More importantly, sampling
of χ is accounted for a significant part of the calculated amount in encryption
phase.

As for other calculated amount, there is no difference bewteen Aigis and the
symmetrical LWE scheme in the same scale.

7 Comparison on decryption failure probability (with
compression)

The decryption error vector is x2 +x2 +(T (e) + T (e)) ·r+T (s) ·(x1 + x1),
the decryption failure probability is identical to the probability of the random
event below:

4

q
|x2 + x2 + (T (e) + T (e)) · r + T (s) · (x1 + x1)| ≥ 1
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The probability distribution of 4
q (x2 + (T (e) + T (e)) · r + T (s) · (x1 + x1))

can be regarded as normal distribution, but that of 4
q ·x2 can only be regarded as

uniform distribution. Therefore, we need to find in the probability of the event,
where the sum of a normal variable and uniform variable is no lower than 1. Our
simplified method is to approximate the uniform variable to a variable which
has equal probabilities on 41 points. The result of our approximate calculation
is as followed:

The decryption failure probability of Aigis-Enc is 2−128.699,
The decryption failure probability of the symmetrical LWE scheme in the

same scale is 2−67.0582. The comparison seems to be dramatic. But in fact, we
can slightly increase some traffic to keep the decryption failure probability un-
changed. In other words, by compressing less to keep the decryption failure prob-
ability unchanged. In specific: we change the parameters (d1, d2, d3) from (9, 9, 4)
to (10, 10, 4), which means a large part of the public key remains the same, the
small part of the public key changes from 9 bits per entry to 10 bits, a large part
of the ciphertext changes from 9 bits per entry to 10 bits, the small part of the
ciphertext remains the same. As thus, the communication traffic increases less
than 1

9 , while the decryption failure probability is lower than 2−128.699.
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