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Abstract. Centralized pools and renting of mining power are considered
as sources of possible censorship threats and even 51% attacks for de-
centralized cryptocurrencies. Non-outsourceable Proof-of-Work schemes
have been proposed to tackle these issues. However, tenets in the folk-
lore say that such schemes could potentially be bypassed by using es-
crow mechanisms. In this work, we propose a concrete example of such a
mechanism which is using collateralized smart contracts. Our approach
allows miners to bypass non-outsourceable Proof-of-Work schemes if the
underlying blockchain platform supports smart contracts in a sufficiently
advanced language. In particular, the language should allow access to the
PoW solution. At a high level, our approach requires the miner to lock
collateral covering the reward amount and protected by a smart contract
that acts as an escrow. The smart contract has logic that allows the pool
to collect the collateral as soon as the miner collects any block reward.
We propose two variants of the approach depending on when the collat-
eral is bound to the block solution. Using this, we show how to bypass
previously proposed non-outsourceable Proof-of-Work schemes (with the
notable exception for strong non-outsourceable schemes) and show how
to build mining pools for such schemes.

1 Introduction

Security of Bitcoin and many other cryptocurrencies relies on so called Proof-of-
Work (PoW) schemes (also known as scratch-off puzzles), which are mechanisms
to reach fast consensus and guarantee immutability of the ledger. Security of such
consensus mechanisms is based on the assumption that no single entity controls a
large part of the mining power. For example, if a single entity controls 33% then
it can earn unproportionally more rewards using selfish mining [1], and with more
than 50% an adversary can do double spending or filter out certain transactions.
However, individually, it is more beneficial for a miner to join a pool despite the
fact that it is detrimental to the system as a whole since it causes concentration of
mining power. Another threat, especially for new cryptocurrencies are potential
Goldfinger attacks using hosted mining services to rent mining power in order to
mine (or attack) a cryptocurrency [2]. Non-outsourceable scratch-off puzzles have



been proposed to address these issues [3,4], whose primary goal is to discourage
pooled mining. Such approaches require reward spending to depend on some
trapdoor information used in solution generation. A notable example of a real
world implementation of this idea is Ergo [5], whose PoW, Autolykos [6], is based
on [4]. In this work, we describe how to bypass the non-outsourceability of many
such schemes, including Ergo. While our solution bypasses non-outsourceability,
which gives the ability to form pools, we still retain a level of decentralization
in our solution. In particular, our approach retains the censorship resistance
property of non-outsourceable puzzles (see Section 2.2 for details.

The rest of the paper is organized as follows. Section 2 contains an overview
of the current state of affairs in proof of work schemes and pooled mining along
a high level overview of non-outsourceable puzzles. Section 3 describes one ap-
proach for creating mining pools in many types of non-outsourceable puzzles,
specifically those of [4]. Section 4 describes another approach that covers a wider
range of puzzles [4,3]. We conclude the paper in Section 5 along with pointers
for future research.

2 Background

2.1 Proofs of Work

We first describe the vanilla PoW mechanism used in Bitcoin. A miner collects
a number of unconfirmed transactions and builds a Merkle tree on top of them.
The digest of this tree, denoted t here, is stored in a section of the block called
the block header, which also includes the hash of the previous block’s header
h and a random string n called the nonce. We use the term m to denote the
puzzle made of the concatenation of the Merkle tree digest and the hash of the
previous block. That is, m = t‖h and then the header is of the form m‖n. The
solution is also determined by another parameter λ > 1, called the difficulty.
Let H be a collision resistant hash function with output of 256 bits. The header
m‖n is considered a valid solution if H(m‖n) ≤ 2256/λ. A miner repeatedly tries
different values of n (and possibly m) until a solution is found. Since H is like
a random oracle, the probability of finding a solution in one attempt is 1/λ. All
PoW systems use the above idea of finding a value from a uniform distribution
that falls within some narrower range based on the difficulty parameter.

2.2 Pooled Mining

Bitcoin allows mining pools, which roughly work as follows. The pool distributes
work based on a some m that it decides. Each miner tries to find a solution for
the given m and any solution found is sent to the network. A miner actually tries
to find a share, which is like a solution but with reduced difficulty (also decided
by the pool). Some of the shares may also be real solutions, which result in valid
blocks. A miner gets paid by the number of shares submitted. This is possible
because the Bitcoin PoW puzzle is a scratch-off puzzle [3], a type of PoW puzzle



that can be processed in parallel by multiple non-communicating entities with
an appropriate reduction in search time.

The pool generates the potential block candidates as if it was solo mining, and
then distributes that candidate to its miners for solving, which can be considered
workers for the pool. The shares have no actual value and are just an accounting
tool used by the pool to keep track of the work done by each worker. The
key observation with pools is that miners do work for some other entity who
then distributes the rewards back to the workers. Since the pool selects the
transactions that are to be included, this gives the pool greater control over the
entire blockchain network. We define this using three levels of (de)centralization
that a pool may operate at.

1. Level 1 (Centralized): The pool operator defines both m and the reward
address. Thus, a pool operator has full control over which transactions are
included (censorship) and also carries the risk of losing the rewards.

2. Level 2 (Censorship Resistant): The pool operator does not define m but
collects the rewards. This is resistant to censorship but still carries the risk
of losing the rewards.

3. Level 3 (Decentralized): There is no centralized pool operator but rather
another decentralized oracle that emulates the pool operator and rewards are
automatically given to the participants based on the shares they submitted
(see P2Pool [7] for Bitcoin and SmartPool [8] for Ethereum). In P2Pool, this
oracle is implemented using another blockchain, while in SmartPool, it is
implemented using a smart contract.

The following table summarizes the concepts.

Pool level Censorship Reward theft risk Example
L1 (Centralized) Yes Yes BTC.com
L2 (Censorship Resistant) No Yes ErgoPool (this work)
L3 (Decentralized) No No SmartPool[8], P2Pool [7]

The primary issue with pools is that they increase the potential of transaction
censorship and 51 percent attacks. One way to address this issue is to disallow
pools entirely. This is what non-outsourceable puzzles aim to achieve, and Ergo
is the first practical implementation of such puzzles [5]. Thus, such puzzles are
designed to provide the same level of security as an L3 pool.

We, however, note that disallowing pools entirely comes with its own set of
problems. For instance, at Ergo launch, the difficulty went up so quickly that
miners with single GPUs could not find any blocks in a reasonable time. Since
Ergo does not allow pools, such miners had no incentive to continue mining.
In fact, this research was motivated from the need to create a mining pool for
Ergo. However, we also want our solution to retain the security offered by lack
of pools, that is, resistance to censorship and 51% attacks.

Our solution is based on the observation that another way to address cen-
sorship and 51 percent attacks is to have pools operate at levels L2 or L3, where



these issues are not present. Thus, not only can we have decentralization in min-
ing but also have all the benefits of pools (such as regular income for miners
and thereby, stronger network). Our solution is designed for L2 but can also be
trivially extended to operate at L1. Additionally, it may be possible to extend
it to L3 using approaches similar to SmartPool or P2Pool, which we leave as a
topic for further research.

2.3 Non-Outsourceable Puzzles

We start with overviewing (non-)outsourceability definitions in existing litera-
ture expressed in different works, such as Non-outsourceable Scratch-Off Puz-
zles [3], 2-Phase Proof-of-Work (2P-PoW) [9], PieceWork [4], Autolykos [6]. The
details of these approaches are described in Sections 3 and 4. However, at a high
level, all these approaches can be broadly classified into two categories.

In the first one [6,4,9], which we call Type 1, a PoW scheme is considered
non-outsourceable if it is not possible to iterate over the solution space without
knowing some trapdoor information (such as a secret key) corresponding to some
public information (such as a public key) contained in the block header, with
block rewards locked by that trapdoor information. The reasoning here is that
in order to send the reward to a pool’s address, each miner must know the secret
corresponding to that address. However, a pool does not trust miners and so will
not give the secret away to them.

In the other category [3], called Type 2, a PoW scheme is considered non-
outsourceable if for any solved block, a miner can generate another block effi-
ciently with non-negligible probability. The motivation behind this definition is
that a miner can get paid for shares by trying to generate a block that pays the
reward to the pool. In case of successful block generation, however, the miner
could generate and broadcast another block that sends the reward to the miner
instead of the pool. We further classify Type 2 into weak if the identity of the
miner stealing the rewards can be ascertained and strong if the identity remains
secret.

At a technical level, both Type 1 and 2 approaches rely on a miner’s ability
to steal the pool’s rewards. The difference lies in the way this occurs. In Type
1 schemes, the miner is able to steal the reward after the block gets finalized.
In Type 2, the reward can only be stolen before a block is finalized into the
blockchain.

We note that all Type 2 schemes have an inherent problem that allows ma-
licious actors to flood the network with a large number of valid but distinct
solutions, thereby causing network partitions and instability. This causes the
network to converge very slowly or result in several forks. Hence, we don’t con-
sider Type 2 schemes to be robust in reaching consensus, thereby making them
impractical in the real world. We call this the forking attack. Strong Type 2
schemes are even more prone to this attack because there is no fear of detection.

In this work, we bypass the non-outsourceability of all Type 1 and weak Type
2 schemes assuming that their platforms support some minimal smart contract
capability. The following table summarizes this.



Puzzle type Thief’s identity When rewards stolen Forking attack Bypassed
1 revealed after block acceptance no yes
2 (weak) revealed before block acceptance yes yes
2 (strong) secret before block acceptance yes no

2.4 Execution Context in Smart Contracts

To give understanding of how a smart contract can bypass non-outsourceability,
we first explain what kind of data the contract can access.

In PoW currencies, a block contains a compact section called the header,
which is enough to verify the PoW solution and check integrity of other sections
(such as block transactions).

Execution context is what is available to a contract during execution. Con-
sidering UTXO-based cryptocurrencies, such as Bitcoin and Ergo, we can think
about following components of the execution context. At the bare minimum, the
first level, the smart contract should have access to the contents of the UTXO it
is locking (i.e., its monetary value and any other data stored in it). At the second
level, the smart contract may additionally have access to the spending transac-
tion, that is, all its inputs and outputs. At the third level, the smart contract
may have access to block header data in addition to the data at the second level.
For example, in Ergo, the last ten block headers and also some parts of the next
block header (which are known in advance before the next block is mined) are
also available in the execution context. Finally, at the fourth level, the execution
context may contain the entire block with all sibling transactions. Note that
since the execution context must fit into random-access memory of commodity
hardware, accessing the full blockchain is not a realistic scenario. The following
table summarizes possible execution context components.

Context level UTXO Transaction Header Block Example
C1 Yes No No No Bitcoin [10]
C2 Yes Yes No No –
C3 Yes Yes Yes No Ergo [5]
C4 Yes Yes Yes Yes –

3 Pooled Mining in Type 1 Puzzles

In a nutshell, Type 1 puzzles use a combination of two approaches: (1) The first
approach is to replace the hash function with a digital signature (i.e., use public-
key cryptography instead of symmetric key cryptography for obtaining the final
solution) and (2) The second approach is to tie the public key to the rewards.

3.1 Using Public-Key Cryptography

The method requires a randomized signature scheme that is strongly unforgeable
against adaptive chosen message attacks (s-UFCMA) and outputs signatures



uniformly spread over some range irrespective of how the signer behaves. Schnorr
signature is one such scheme [11].

A candidate block header is constructed using transactions as in Bitcoin along
with a public key p. A valid block header is a candidate block header along with
a signature d that (1) verifies with this public key and (2) satisfies the difficulty
constraints as before (i.e., is less than a certain value). The difficulty parameter
is automatically adjusted as in Bitcoin.

One real-world implementation of this concept is Autolykos [6], the PoW
algorithm of Ergo [5]. Autolykos uses a variation of Schnorr signatures [11],
where the goal of a miner is to output d such that d < 2256/λ and λ is the
difficulty parameter. The value d is to be computed as follows. First compute
r = H(m‖n‖p‖w) where m is the transactions digest, n is a nonce, p is a public
key (an elliptic curve group element) and w is an ephemeral public key that
should never be reused in two different blocks. Let x be the corresponding private
key of w. Compute d = xr − s, where s is the private key corresponding to p.

3.2 Tying Public-Key to Rewards

The second technique in making a Type 1 pool-resistant scheme is to tie the
rewards to the public key p contained in the block solution. That is, the platform
enforces that any mining rewards are protected by the statement prove knowledge
of secret key corresponding to the public key p (from the block solution)

We consider Ergo as an example here. Rather than enforcing this logic within
the protocol, Ergo uses smart contracts to enforce it. In particular, this rule is
enforced in a so called Emission box3, a UTXO which contains all the ergs
(Ergo’s primary token) that will ever be emitted in rewards. The box is protected
by a script that enforces certain conditions on how the rewards must be collected.
In particular, it requires that a reward transaction has exactly two outputs,
such that the first is another emission box containing the remaining ergs and
the second is a box with the miners reward protected with the following script:
prove knowledge of the discrete logarithm (to some fixed base g) of group element
p AND height is greater than or equal to the box-creation height plus 720. This
is possible because Ergo’s (level C3) context includes the block solution.

The above approach ensures that the private key used for finding the block
solution is also needed for spending the rewards. Consequently, anyone who
finds a block also has the ability to spend those rewards. If we try to create
any standard type of pool, we find that anyone having the ability to find a
solution also has the ability to spend (i.e., steal) the reward. In fact, any standard
pool must share the same private key among all participants, thereby making
it impossible to determine the actual spender. This restriction also applies to
decentralized schemes such as P2Pool and SmartPool because they both require
that rewards be sent to addresses not under the miner’s control.

3 A box is just a fancy name for a UTXO. We will use these two terms interchangeably.



3.3 Creating a Mining Pool

We now describe a pooling strategy for bypassing any Type 1 scheme, provided
that the underlying smart contract language supports context level C3 or higher
(see Section 2.4). Hence one way to mitigate our method would be to restrict
the smart contract language to level C2 or lower. Our concrete implementation
uses Ergo as the underlying platform, which supports C3 context.

We will follow the pay-per-share approach, where the reward is distributed
among the miners based on the number of shares they submitted since the last
payout. Our pool is designed to operate at centralization level L2, where the
pool only collects the rewards but does not select transactions (see Section 2.2).
Hence, it provides resistance against censorship and does not encourage 51%
attacks that are possible at L1. Note that the pool could also operate at L1 by
creating miner-specific blocks using pair-wise shared public keys. However, this
increases computational load on the pool and overall network usage, thereby
reducing efficiency.

Basic variant: We first describe a basic version that is insecure, and thereby
does not work in practice. We then incrementally enhance this version to patch
the vulnerability to obtain the full version.

The key observation in our approach is that in a valid share, the reward need
not necessarily be sent directly to the pool’s address. What is actually necessary
is that an amount equivalent to the reward is sent to the pool’s address. This
simple observation allows us to create a pool with the following rules:

1. Each miner can send the reward to his own public key p, whose secret key
only he knows (reward transaction).

2. The block must also have another transaction sending the same amount as
the reward to the pool address (pool transaction).

A valid share is a solution to a block with the above structure. A miner can
efficiently prove that a share is valid without having to send the entire block to
the pool. It can simply send the pool transaction along with the Merkle proof
that validates that the transaction [12]. A pool operator collects such shares
(along with the proofs) and any funds thus received when a block is solved
are distributed among the miners using the pay-per-share algorithm. To ensure
that miners generate valid blocks, the pool randomly asks miners to provide full
blocks corresponding to some of their shares and penalize those who cannot.

One drawback of this is that each miner must have sufficient collateral to
cover the reward amount at any time, even though the reward becomes spendable
only after a ‘cooling-off period’ (720 blocks in Ergo). Thus, there is a minimum
period during which the collateral is spent but the reward is locked and cannot
be used as further collateral. Therefore, for uninterrupted mining, each miner
must keep the reserved amount of at least 2 rewards (possibly more depending
on the expected time to find a block).

To overcome this drawback, a pool may provide incentives such as allowing
the miner to keep a fraction of the reward (example for the current reward of
67.5 ergs in Ergo, the pool may require only 65 ergs to be sent to it).



The broadcast attack: Let Alice be a miner with public key alice. If
such a system is used in, say Bitcoin, then the system becomes insecure. Once
the pool-paying transaction is publicized, anyone (not necessarily Alice) may
broadcast it (possibly by using it as their own pool transaction).

Enhanced variant: The enhanced protocol mitigates the above attack. This
is possible because ErgoScript allows us to use the block solution in the context,
using which we can secure the pool transaction as follows. Instead of paying to
the pool from an arbitrary box (or boxes), Alice will instead store this collateral
in a special box protected by the following script:

minerPubKey == alice

A box with this script does not require a signature because the above state-
ment only fixes the miner’s public key to alice and does not enforce any other
spending condition. Thus, anyone can create a transaction spending this box.
However the transaction is valid only if the block that includes it is mined by
Alice. This ensures that the box can only be spent if and when Alice mines a
block. Alice creates her pool transaction using this box as input and submits her
shares and proofs to the pool as before. She need not even use a private channel
for this purpose and can broadcast this publicly. This enables the possibility of
L3 decentralization level that requires public shares [7,8] (see Section 2.2).

The above variant prevents the broadcast attack because knowing the pool
transaction does not help the attacker in any way (since anyone can create
that transaction without Alice’s help). An attacker might try to spend Alice’s
collateral in a transaction paying to some address other than the pool address.
However, Alice will discard such transactions when creating a candidate block
and only include her pool paying transaction that spends the collateral. In the
worst case, if Alice does not check for others spending her collateral, the mined
block will still include her own pool-paying transaction double-spending the same
collateral, thereby making the entire block invalid.

Full variant: Observe that the above collateral box is not spendable until
Alice actually mines a block. Depending on her hardware and the global hash
rate, this may take a very long time, and her funds will be stuck till then. We
would like Alice to be able to withdraw her collateral at any time she decides
to stop participating in the pool. This can be done as follows. Alice first sets
another public key aliceWithdraw that she will use to withdraw the collateral
(it is possible to keep aliceWithdraw = alice). The modified script is:

(minerPubKey == alice) || aliceWithdraw

The first condition, minerPubKey == alice, ensures that when used to fund
the pool output, the miner must be Alice as in the enhanced variant. The second
condition, bob, ensures that the coins are not stuck till Alice finds a block,
because it allows Alice may withdraw the collateral at any time. Alice should
fund the pool transaction by satisfying only the first condition and never the
second condition, otherwise the broadcast attack becomes possible. The second
condition is be used only for withdrawing collateral.



Note that the above allows everyone to create a transaction spending Alice’s
collateral box as long as Alice mines the transaction. Alice may have more than
one collateral box protected by identical scripts. Thus, an attacker may try to
spend Alice’s box that is not used in the pool funding transaction. Of course,
Alice should not include such transactions in her block. This requires Alice to
implement additional checks. An easier solution is for Alice to use another public
key, aliceLock, as below to ensure that only she can create a valid transaction.

((minerPubKey == alice) && aliceLock) || aliceWithdraw

The above broadcast attack mitigation strategy requires C3 context level (i.e.,
access to minerPubKey) and will not work in lower levels. One may envisage a
hiding strategy at C2 context level, where the pool transaction is not revealed
in a share (only a commitment is revealed). The actual transaction is revealed
only if a block is found or when a miner later proves to the pool that the
shares were correct. However, this is also insecure. First note that there are two
types of broadcast attacks. The first is the leak-from-share attack. The second
is the leak-from-orphaned-block attack, where the transaction is extracted from
a mined block that ends up getting orphaned. The hiding strategy mitigates the
first attack but not the second.

Weak Broadcast security: We can obtain a weaker form of broadcast
security for C2 context level by assuming a trusted pool as follows. A pool-paying
transaction is created as before by spending some arbitrary input and paying to
the pool address. The miner sends the shares along with the proofs to the pool
over a private channel. The pool is trusted not to misuse the transaction. This
addresses the leak-from-share attack. To address the leak-from-orphaned-block
attack, the following strategy is used. Assume that the box funding the pool
transaction contains a unique identifier of Alice (such as her public key) and a
script that enforces any spending transaction to pay the pool. Lets us call this
Alice’s funding box. The pool then enforces the following rules internally.

1. Any transaction it receives from Alice’s funding box that was not mined by
Alice is considered irregular.

2. Any irregular transaction using Alice’s funding box is not considered for pool
reward disbursement and the funds are refunded back to Alice.

It is possible for everyone to verify that a given pool transaction is irregular
if everyone knows Alice’s public key. Thus, a pool cannot deny the existence
of an irregular transaction. Refunds can also be made verifiable in many ways,
such as by requiring the pool to create another funding box for Alice, which can
be publicly verified. We can additionally require that the new funding box be
created in a transaction that consumes the irregular transaction’s output.

4 Pooled Mining with Type 2 Puzzles

In Type 2 puzzles, a miner can produce (with non-negligible probability) an
alternative block for the same PoW solution [3]. For concreteness, we will use



public key cryptography to illustrate this, as we did for Type 1 puzzles. However,
our approach will work for any other implementation of such puzzles.

Recall that a Type 1 puzzle comprises of two steps: (1) embedding a public
key p in the block header, whose private key is needed in generating the solution,
and (2) tying the block rewards to p. A Type 2 puzzle can be considered a
variation of a Type 1 puzzle, where Step 1 remains the same but Step 2 is
modified so that the block rewards are not tied to p but instead to another public
key a that is certified by p. In other words, the complete solution is defined using
a tuple (p, a, certp(a)), where certp(a) is a signature on a that verifies with p.

The rationale behind non-outsourceability is that a cheating miner knowing
the private key of p can steal the reward as follows. When claiming shares, the
miner behaves correctly. That is, it constructs the block so that rewards go to
the pool public key a. However, if a real solution is found, the rewards are sent
to the miner public a′ by creating a certificate certp(a′). Thus, as in Type 1
puzzles, the pool risks losing rewards if it shares secrets with miners.

Watermarking: In the basic Type 2 scheme, a pool can make it possible to
identify stolen rewards by publicly fixing a watermark identifying its blocks in
advance [3]. A watermark in this context is something that is preserved even if
the pool key a is replaced by the miner key a′. A few examples are the certifying
key p or, say, half the bits of the nonce. If such a watermark is used then it
becomes possible to identify the cases when the block rewards are stolen.

Strong Type 2 puzzles: In the above design, it is possible to determine
when the rewards are stolen. For instance, using the public key p as a watermark,
a pool may declare in advance that for a given p, it only considers the pair (p, a)
as valid and any other pair (p, a′) indicates a theft. The stronger variant of Type
2 puzzles replaces signatures with zero knowledge proofs so that the two cases
(block rewards stolen or not) become indistinguishable. Any Type 2 puzzle that
is not strong is called weak.

We describe a smart contract that bypasses both Type 1 and (weak) Type 2
schemes. For sake of brevity, however, we only describe the Type 2 solution here.
Recall that for such schemes, it is possible to detect when a particular watermark
is being used in the block. In our approach, this watermark is attached to the
miner instead of the pool. Thus, the pool with share pair-wise watermarks with
every miner. Similar to the previous approach, we will also require the miner to
lock some collateral that can be used by the pool to cover any rewards taken by
the miner. We also require the smart contract language to make available in the
execution context the block solutions for not only the current block header but
also the last L block header prior to the current one.

Then a weak Type 2 scheme can be bypassed as follows. In order to partici-
pate in the pool, Alice creates an unspent box that locks collateral with the guard
script: payable to pool public key if at least one of the last L headers contains
the watermarked solution. The same solution will also work for Type 1 schemes
there because the block header cannot be efficiently altered without also altering
the embedded public key. In ErgoScript, for example, this can be implemented
as: poolPubKey && lastHeaders.exists( .minerPubKey == alice).



The method exists of lastHeaders takes as input another method, say f ,
that takes as input an header and outputs a Boolean. The method f is applied
to every element of lastHeaders and the output of exists is the OR of the
outputs of f . In this case, f outputs true if the miner public key in the header
is Alice’s public key.

A miner is permitted to send the reward to any chosen address, since as soon
as a valid block is generated, the collateral becomes spendable by the pool. One
way the miner can try to save the collateral is to generate L blocks after the one
with the watermark, but this case is unlikely for a pool user if L is big enough.
In Ergo, for example, L = 10, and the chance to generate 11 consecutive blocks
is very small [10].

Note that the above script locks the collateral until Alice find a block, which
may never happen. Hence, as in the Type 1 case, we need to allow Alice to
withdraw collateral if she desires. However, the solution used in Type 1 (i.e.,
simply appending ‘|| aliceWithdraw’) will not work here because the pool
does not immediately get the collateral when Alice gets the reward, but rather
after at most L blocks. If we allow Alice to withdraw the collateral at any time,
the she can withdraw it in the same block as the reward. One solution would be
to allow Alice to withdraw the collateral only after some fixed height H, while
her participation in the pool using this collateral ends at height H − L, after
which she must use new collateral. For simplicity, we skip this deadline condition
for withdrawing the collateral by the miner in case a block is not found for a
long time. However, a real world implementation must consider this.

5 Conclusion and Further Work

Non-outsourceable puzzles have been proposed as a possible workaround for
attacks that arise due to pool formation in PoW blockchains. Such solutions
fall into two broad categories: Type 1, where the reward is directly bound to
some trapdoor information used for generating the block solution (and thus,
that information is needed while spending), and Type 2, where the reward is
indirectly bound to the trapdoor information via a certificate. Type 2 schemes
can be further classified into weak, where the identity of the miner is revealed,
and strong, where the identity remains hidden.

In this paper we proposed two approaches to bypass non-outsourceability
of Type 1 and weak Type 2 schemes to create mining pools, thereby ‘breaking’
them. Our pools operates at level L2 (censorship resistance), where the pool does
not control transactions to be included in blocks but only collects the rewards
(see Section 2.2). Such pools do not pose stability threats that L1 level pools do.
Although our pools are most efficient when operating at L2, they can operate
at L1 simply by having the pool create miner-specific blocks using their public
keys. Note that both L1 and L2 carry the risk of funds loss due to operator
compromise. A topic of further investigation is to have the pools operate at L3,
where there is no risk of losing funds.



Only strong Type 2 schemes (where a miner does not provide a block solution
in the clear, but rather provides an encrypted solution along with zero-knowledge
proof of its correctness) remain unbroken. However, it should also be noted that
strong schemes are not very practical as they require a generic zero-knowledge
proof system which imposes heavy burden on both the prover and verifier. Thus,
such schemes currently have no implementations in the real world. Additionally,
we note that Type 2 schemes in their entirety have an inherent weakness that
make them impractical for real world use: the high possibility of forking attacks.

Both our approaches rely on smart contracts acting as decentralized escrows
and require the underlying programming language to allow predicates at context
level C3 or higher (i.e., access to the block solution; see Section 2.4). Thus, one
way to invalidate our methods would be to restrict the language context to level
C2 or lower. Note that even level C2 contracts allow sophisticated applications
such as non-interactive mixing, rock-paper-scissors, and even an ICO [13].

Another open issue in mining pools is that of block withholding [14], where
the miner tries to attack the pool by submitting valid shares but discarding
actual solutions. The need for collateral in our schemes may possibly affect the
attacker’s strategy. This will be considered in a follow-up work.
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