
AKCN-E8: Compact and Flexible KEM from Ideal Lattice∗

Zhengzhong Jin
Department of Computer Science, Johns Hopkins University, USA

Yunlei Zhao
Department of Computer Science, Fudan University, China

Abstract
A remarkable breakthrough in mathematics in recent years is
the proof of the long-standing conjecture: sphere packing (i.e.,
packing unit balls) in the E8 lattice is optimal in the sense
of the best density [V17] for sphere packing in R8. In this
work, based on the E8 lattice code, we design a mechanism
for asymmetric key consensus from noise (AKCN), referred
to as AKCN-E8, for error correction and key consensus. As a
direct application of the AKCN-E8 code, we present highly
practical key encapsulation mechanism (KEM) from the ideal
lattice based on the ring learning with errors (RLWE) problem.
Compared to the RLWE-based NewHope-KEM [NH-NIST],
which is a variant of NewHope-Usenix [NH-USENIX] and is
now a promising candidate in the second round of NIST post-
quantum cryptography (PQC) standardization competition,
our AKCN-E8-KEM has the following advantages:

• The size of shared-key is doubled.

• More compact ciphertexts, at the same or even higher
security level.

• More flexible parameter selection for tradeoffs among
security, ciphertext size and error probability.

1 Introduction

Advancements in quantum computing have spurred the devel-
opment of new public-key cryptographic primitives that are
conjectured to be secure against quantum attacks. One promis-
ing class of these primitives is based on lattices, leading to
key encapsulation mechanisms (KEM) based on the learn-
ing with errors (LWE) problem [NIST]. For cryptographic
usage, compared with the classic hard lattice problems such
as SVP and CVP, the LWE problem is proven to be much
more versatile [Reg09]. Nevertheless, LWE-based cryptosys-
tems are usually less efficient, which was then resolved by

∗Preliminary version of this work appeared at https://arxiv.org/
abs/1611.06150, Version 3, 16 Feb 2017.

the introduction of the ring-LWE (RLWE) problem [LPR10]
from ideal lattice. Among RLWE-based asymmetric primi-
tives, NewHope-KEM [NH-NIST] is one of the prominent
KEM schemes, which is a variant of NewHope-Usenix [NH-
USENIX] (winner of the 2016 Internet Defense Prize), and is
now a promising candidate in the second round of NIST post-
quantum cryptography (PQC) standardization competition.

In this work, we review the modular and generalized frame-
work, explicitly proposed in [JZ16, JZ19], for designing and
analyzing KEM schemes from LWE and its variant (in partic-
ular, RLWE). This modular and generalized framework brings
us to focus on one key building block for achieving KEMs
from LWE and its variants, which is referred to as asymmet-
ric key consensus (AKC). Putting into this framework, the
underlying (one-dimensional) AKC mechanisms proposed
in [Reg09, LPR10, LP11] encode one key bit per polynomial
coefficient. One-dimensional AKC was further optimized
in [JZ16, JZ19]. The work [PG13] extended one-dimensional
reconciliation mechanisms into multi-dimensional ones based
on the lattice code in D2 (resp., D4), by encoding one key
bit into two (resp., four) polynomial coefficients. This multi-
dimensional approach can allow to either increase the error
and therefore improve the security of the resulting scheme or
to decrease the probability of decryption failures. The D4 code
was adapted into key exchange scheme in [NH-USENIX] and
later into KEM schemes in [JZ16, NH-NIST] (NewHope-
KEM is actually based on the lattice code in Z4). But KEM
schemes based on the code in D4 or Z4 has the following
disadvantages: Compared to the D2-based approach, KEM
schemes based on the D4 code improve the ability of error cor-
rection but at the cost of halving the key size. In particular, it
limits the flexibility in choosing parameters and in balancing
security vs. performance.

1.1 Our Contributions

The encoding and decoding algorithms of E8 were proposed
by Conway and Sloane [CS82]. Recently, a remarkable break-
through in mathematics is the proof of the long-standing con-

1

https://arxiv.org/abs/1611.06150
https://arxiv.org/abs/1611.06150

jecture: sphere packing in the E8 lattice is optimal in the sense
of the best density [V17] for packing in R8. However, to ap-
ply the algorithms of [CS82] to our KEM setting, we need to
specify a one-to-one mapping from binary strings to lattice
points in E8. A natural way to specify such a mapping is to
choose a base for the lattice E8. Then, transforming the lattice
points to the binary strings may involve Gaussian elimina-
tion. Compared to this method, our encoding and decoding
algorithms integrate the coding of E8 and the mapping from
binary strings to E8 together. This improves the efficiency
by avoiding Gaussian elimination. Finally, we adapt the inte-
grated E8 code into the KEM setting, by combining it with
the AKCN scheme of [JZ16]. The resultant code is referred
to as AKCN-E8.

As a direct application of the AKCN-E8 code, we present
highly practical KEM scheme based on the RLWE assump-
tion, which is referred to as AKCN-E8-KEM. Compared with
NewHope-KEM [NH-NIST], our AKCN-E8-KEM has the
following advantages:

• The size of shared-key is doubled.

• More compact ciphertexts, at the same or even higher
security level.

• More flexible parameter selection for tradeoffs among
security, ciphertext size and error probability.

On the importance and desirability of larger shared-
key size. The shared-key size of NewHope-512 (resp.,
NewHope-1024) is 128 (resp., 256) bits. Recently, the variant
of NewHope-Compact proposed in [ABC19] has the shared-
key of size of 192 bits. In comparison, the shared-key size of
AKCN-E8-512 (resp., -768, -1024) is 256 (resp., 384, 512)
bits. Here, we would like to highlight the importance and
desirability of larger shared-key size.

• Doubling the shared-key size means more powerful and
economic ability of key transportation, at about the same
level of security and bandwidth.

• Doubling the shared-key size is important for the tar-
geted security level against Grover’s search algorithm,
and against the possibility of more sophisticated quan-
tum cryptanalysis in the long run.

• Larger key size is indeed needed in many cryptographic
standards. For example, according to different security
levels (specifically, 128, 192, 256 bit security), in TLS
1.3 [TLS1.3] it mandates three options for the mas-
ter secrecy size: 256, 384 and 521, by employing the
secp256r1, secp384r1 and secp521r1 curves respectively.

1.2 Related Work
Leech lattice is also proven to be the densest for sphere
packing in dimension 24 [CKM+17], and has already

been used for error correction in communication protocols
[CS93, VB93], for example in the IEEE 802.11a WLAN
standard https://standards.ieee.org/standard/802_
11-2016.html. On the one hand, its encoding and decoding
are more complex and less efficient than the AKCN-E8 code.
On the other hand, and more importantly, it is difficult to find
parameters of RLWE [Pop16], since it is a 24-dimension lat-
tice. For RLWE-based cryptosystems, we usually use number-
theoretic transform (NTT) algorithms to speed up the polyno-
mial multiplications. The NTT algorithms can make the most
use of the computational resource when the dimension of
RLWE is a power of 2. However, one cannot hope for setting
the parameter n to be a power of 2 and a multiple of 24 at the
same time. The same issue also occurs when setting the key
length for Leech lattice, since the key size usually will be a
multiple of 12. In comparison, the E8 lattice doesn’t have the
aforementioned problems.

The recommended parameter set of NewHope-KEM aims
for about 256-bit classic security and about 230-bit post-
quantum security (pq-sec). For the KEM proposals in the
second round of NIST PQC standardization, the LAC algo-
rithm [LAC-NIST] is another RLWE-based KEM scheme.
To our knowledge, NewHope-KEM and LAC are the only
two RLWE-based KEM proposals left in the second round of
NIST PQC standardization. LAC uses a different approach
for building KEM from RLWE: it uses a small q = 251 that is
not NTT-friendly, and uses error correction code to lower the
failure probability. LAC also proposes parameters for about
256-bit classic security but with a relatively higher failure
probability. As a consequence, NewHope-KEM and LAC are
incomparable in general.

2 Preliminaries

A string or value α means a binary one, and |α| is its binary
length. For any real number x, bxc denotes the largest integer
that less than or equal to x, and bxe= bx+1/2c. For any pos-
itive integers a and b, denote by lcm(a,b) the least common
multiple of them. For any i, j ∈ Z such that i < j, denote by
[i, j] the set of integers {i, i+1, · · · , j−1, j}. For any positive
integer t, we let Zt denote Z/tZ. The elements of Zt are repre-
sented, by default, as [0, t−1]. Nevertheless, sometimes, Zt is
explicitly specified to be represented as [−b(t−1)/2c,bt/2c].

If S is a finite set, then |S | is its cardinality, and x← S is
the operation of picking an element uniformly at random from
S . For two sets A,B ⊆ Zq, define A+B , {a+b|a ∈ A,b ∈
B}. For an addictive group (G,+), an element x ∈ G and a
subset S⊆ G, denote by x+S the set containing x+ s for all
s ∈ S. For a set S, denote by U(S) the uniform distribution
over S. For any discrete random variable X over R, denote
Supp(X) = {x ∈ R | Pr[X = x]> 0}.

We use standard notations and conventions below for writ-
ing probabilistic algorithms, experiments and interactive pro-
tocols. If D denotes a probability distribution, x←D is the

2

https://standards.ieee.org/standard/802_11-2016.html
https://standards.ieee.org/standard/802_11-2016.html

operation of picking an element according to D . If α is neither
an algorithm nor a set, x←α is a simple assignment statement.
If A is a probabilistic polynomial-time (PPT) algorithm, then
A(x1,x2, · · · ;r) is the result of running A on inputs x1,x2, · · ·
and coins r. We let y← A(x1,x2, · · ·) denote the experiment
of picking r at random and letting y be A(x1,x2, · · · ;r). By
Pr[R1; · · · ;Rn : E] we denote the probability of event E, af-
ter the ordered execution of random processes R1, · · · ,Rn. A
function f (λ) is negligible, if for every c > 0 there exists an
λc such that f (λ)< 1/λc for all λ > λc.

2.1 Key Encapsulation Mechanism (KEM)
We review the definition of KEM given in [D02,
HHK17]. A key encapsulation mechanism KEM =
(KeyGen,Encaps,Decaps) consists of three algorithms. On
a security parameter κ, the PPT key generation algorithm
KeyGen outputs a key pair (pk,sk), where pk also defines a
finite key space K . The PPT encapsulation algorithm Encaps,
on input pk, outputs a tuple (K,c) where c is said to be an
encapsulation of the key K which is contained in key space K .
The deterministic polynomial-time decapsulation algorithm
Decaps, on input sk and an encapsulation c, outputs either
a key K := Decaps(sk,c) ∈ K or a special symbol ⊥/∈ K
to indicate that c is not a valid encapsulation. We call KEM
δ-correct if

Pr[Decaps(sk,c) 6= K|(pk,sk)← KeyGen(1κ);
(K,c)← Encaps(pk)]≤ δ.

The security notion, indistinguishability under chosen ci-
phertext attacks (CCA), is defined w.r.t. Figure 1. For any PPT
adversary A , define its CCA-advantage as AdvCCA

KEM(A) :=
|Pr[GAME CCA outputs 1]]−1/2|. We say the KEM scheme
is CCA-secure, if for any sufficiently larger security parameter
and any PPT adversary A , AdvCCA

KEM(A) is negligible.

GAME IND-CCA

(pk,sk)← Gen

b $←{0,1}
(K∗0 ,c

∗)← Encaps(pk)
K∗1

$←K
b′← ADECAPS(c∗,K∗b)
return [b′ = b]

DECAPS(c 6= c∗)

K := Decaps(sk,c)
return K

Figure 1: CCA game for KEM

2.2 Public-Key Encryption (PKE)
We review the definition of PKE given in [FO13, HHK17].
A public-key encryption scheme is given by a triple of algo-
rithms, PKE = (K ,E ,D), where for every sufficiently large
κ ∈ N.

• KeyGen, the key-generation algorithm, is a probabilistic
polynomial-time (in κ) algorithm which on input 1κ

outputs a pair of strings, (pk,sk), called the public and
secret keys, respectively. This experiment is written as
(pk,sk)← KeyGen(1κ).

• E , the encryption algorithm, is a probabilistic
polynomial-time (in κ) algorithm that takes public key
pk and message M from the message space MSP, draws
coins r uniformly from coin space COIN, and produces
ciphertext C := Epk(M;r). This experiment is written as
C← Epk(x).

• D, the decryption algorithm, is a deterministic
polynomial-time (in κ) algorithm that takes secret key
sk and ciphertext C ∈ {0,1}∗, and returns message M ∈
MSP.

We say a PKE scheme is δ-correct, if for every sufficiently
large κ ∈ N, every (pk,sk) generated by KeyGen(1κ) and ev-
ery M ∈ MSP, we always have E[maxM∈MSP Pr[Dsk(Epk(M)) 6=
M]]≤ δ.

Definition 2.1 (CCA-security). Let PKE = (KeyGen,E ,D)
be an asymmetric encryption scheme, and A = (A1,A2) be
an adversary for PKE. For κ ∈ N, define the following CCA-
advantage:

AdvCCA
A (κ) = 2 ·Pr[(pk,sk)← KeyGen(1κ);

(M0,M1,st)← ADsk
1 (pk);

b←{0,1};C∗← Epk(Mb) :

ADsk
2 (C∗,st) = b]−1.

We say that the PKE scheme is CCA-secure, if for every suf-
ficiently large security parameter κ, and PPT adversary A ,
its CCA-advantage AdvCCA

A is negligible in κ. We say the
PKE scheme is secure against chosen plaintext attacks (CPA-
secure, for short), if the advantage of A is negligible when
the access to the decryption oracle Dsk is denied.

2.3 The LWE, and Ring-LWE (RLWE) prob-
lems

Given positive continuous σ > 0, define the real Gaussian
function ρσ(x), exp(−x2/2σ2)/

√
2πσ2 for x ∈R. Let DZ,σ

denote the one-dimensional discrete Gaussian distribution
overZ, which is determined by its probability density function
DZ,σ(x), ρσ(x)/ρσ(Z),x ∈ Z. Finally, let DZn,σ denote the
n-dimensional spherical discrete Gaussian distribution over
Zn, where each coordinate is drawn independently from DZ,σ.

Given positive integers n and q that are both polynomi-
als in the security parameter λ, an integer vector s ∈ Zn

q, and
a probability distribution χ on Zq, let Aq,s,χ be the distribu-
tion over Zn

q×Zq obtained by choosing a ∈ Zn
q uniformly

at random, and an error term e← χ, and outputting the pair

3

(a,b = aT s+ e) ∈ Zn
q×Zq. The error distribution χ is typi-

cally taken to be the discrete Gaussian probability distribution
DZ,σ defined previously; However, as suggested in [BCD+16]
and as we shall see in Section 5, other alternative distribu-
tions of χ can be taken. Briefly speaking, the (decisional)
learning with errors (LWE) assumption [Reg09] says that,
for sufficiently large security parameter λ, no probabilistic
polynomial-time (PPT) algorithm can distinguish, with non-
negligible probability, Aq,s,χ from the uniform distribution
over Zn

q×Zq. This holds even if A sees polynomially many
samples, and even if the secret vector s is drawn randomly
from χn [ACPS09].

For the positive integer m that is polynomial in the secu-
rity parameter λ, let n , ϕ(m) denote the toties of m, and
K ,Q(ζm) be the number field obtained by adjoining an ab-
stract element ζm satisfying Φm(ζm) = 0, where Φm(x)∈Z[x]
is the m-th cyclotomies polynomial of degree n. Moreover,
let R , OK be the ring of integers in K . Finally, given a
positive prime q = poly(λ) such that q≡ 1 (mod m), define
the quotient ring Rq , R /qR .

We briefly review the RLWE problem, and its hardness
result [LPR10, LPR13b, DD12]. In this work, we focus on a
special case of the RLWE problem defined in [LPR10]. Let
n≥ 16 be a power-of-two and q= poly(λ) be a positive prime
such that q ≡ 1 (mod 2n). Given s← Rq, a sample drawn
from the RLWE distribution An,q,σ,s over Rq×Rq is gener-
ated by first choosing a←Rq,e←DZn,σ, and then outputting
(a,a · s+ e) ∈ Rq×Rq. Roughly speaking, the (decisional)
RLWE assumption says that, for sufficiently large security
parameter λ, no PPT algorithm A can distinguish, with non-
negligible probability, An,q,σ,s from the uniform distribution
over Rq×Rq. This holds even if A sees polynomially many
samples, and even if the secret s is drawn randomly from the
same distribution of the error polynomial e [DD12, ACPS09].
Moreover, as suggested in [NH-USENIX], alternative distri-
butions for the error polynomials can be taken for the sake of
efficiency while without essentially reducing security.

Recently, a polynomial-time (quantum) reduction from
worst-case ideal lattice problems directly to the decision
version of Ring-LWE is presented in [PRS17]. In particu-
lar, the reduction works for any modulus and any number
field. Besides the above special version of the RLWE problem
[LPR10], another suggested version of the RLWE problem is
defined over the polynomial ring Rn = Z[x]/Φn+1(x), where
n+1 is a safe prime and Φn+1(x) = xn +xn−1 + · · ·+x+1 is
the (n+1)-th cyclotomic polynomial. This ring has a wider
range of n to choose from.

Alice
σ1

k1 ∈ Zm

v ← Con(σ1, k1, params)

Bob
σ2

k2 ← Rec(σ2, v, params)

v

≈

Figure 2: Depiction of AKC

3 A Modular and Generalized Framework for
PKE/KEM from Ring-LWE

3.1 Building Block: Asymmetric Key Consen-
sus

Before presenting the definition of asymmetric key consen-
sus (AKC) scheme, we first introduce a new function | · |q
relative to a positive integer q≥ 1: |x|q = min{x mod q,q−
x mod q}, ∀x ∈ Z, where the result of modular operation is
represented in {0, ...,(q−1)}. For instance, |−1|q =min{−1
mod q,(q+ 1) mod q} = min{q− 1,1} = 1. For any x =
(x0,x1,x2,xµ−1)

T ∈ Zµ
q, where µ is a positive integer, denote

by ‖x‖q,1 the sum |x0|q + |x1|q + · · ·+ |xµ−1|q.

Definition 3.1. An asymmetric key consensus scheme AKC =
(params,Con,Rec) is specified as follows:

• params = (q,m,g,d,aux) denotes the system parame-
ters, where q, 2 ≤ m,g ≤ q,1 ≤ d ≤ b q

2c are positive
integers, and aux denotes some auxiliary values that are
usually determined by (q,m,g,d) and could be set to be
empty.

• v← Con(σ1,k1,params): On input of (σ1 ∈ Zµ
q,k1 ∈

Zµ′
m ,params), where µ is a positive integer, the

polynomial-time conciliation algorithm Con outputs the
public hint v ∈ Zµ

g.

• k2 ← Rec(σ2,v,params): On input of (σ2 ∈ Zµ
q,v ∈

Zµ
g,params), the deterministic polynomial-time algo-

rithm Rec outputs k2 ∈ Zµ′
m .

Correctness: An AKC scheme is correct, if it holds k1 = k2
for any σ1,σ2 ∈ Zµ

q such that ‖σ1−σ2‖q,1 ≤ d.
Security: An AKC scheme is secure, if v is independent of k1
whenever σ1 is uniformly distributed over Zµ

q. Specifically,
for arbitrary ṽ ∈ Zµ

g and arbitrary k̃1, k̃′1 ∈ Zµ′
m , it holds that

Pr[v = ṽ|k1 = k̃1] = Pr[v = ṽ|k1 = k̃′1], where the probability
is taken over σ1← Zµ

q and the random coins possibly used by
Con.

4

Initiator
seed← {0, 1}κ

a = Gen(seed) ∈ Rq
x1, e1 ← DZn,σ

y1 = (a · x1 + e1)

Responder

k2 ∈ Zn/µm

a = Gen(seed)
x2, e2 ← DZn,σ

y2 = b(a · x2 + e2)/2
te

e′2 ← DZn,σ

σ2 = y1 · x2 + e′2 ∈ Rq
v← Con(σ2,k2, params)

σ1 = 2ty2 · x1 ∈ Rq
k1 ← Rec(σ1,v, params)

seed,y1 ∈ Rq

y2 ∈ Rq,v ∈ Rg

Figure 3: Depiction of RLWE-based CPA-secure PKE from AKC

3.2 CPA-Secure PKE from AKC

Denote by (λ,n,q,σ,AKC) the system parameters, where λ

is the security parameter. q ≥ 2 is a positive prime number,
σ parameterizes the discrete Gaussian distribution DZn,σ, n
denotes the degree of polynomials in Rq where for simplic-
ity we assume µ|n, and Gen is a pseudorandome generator
(PRG) generating a ∈ Rq from a small seed seed←{0,1}κ.
Let AKC = (params,Con,Rec) be a correct and secure AKC
scheme, where params= (q,g,m,d). In this work, we mainly
consider m= 2. The AKC-based PKE from RLWE is depicted
in Figure 3 (page 5). Here, (seed,y1) serves as the public key,
while (y2,v) is the ciphertext. In the protocol description, for
presentation simplicity, the Con and Rec functions are ap-
plied to polynomials, meaning they are applied to each group
of µ coefficients respectively. For NewHope µ = 4, while for
AKCN-E8 µ = 8. For presentation simplicity, we also referred
to k1 = k2 as the shared-key.

It is well established that, under the assumptions that (1)
the underlying AKC scheme is both correct and secure, and
(2) the (decisional) RLWE is hard, the above modular con-
struction of PKE scheme is CPA-secure [Reg09,LPR10,LP11,
JZ16, BCD+16, JZ19]. The above modular and generalized
framework for CPA-secure PKE from LWE and its variants
was explicitly proposed by Jin and Zhao [JZ16], by explicitly
defining and studying the underlying building tool AKC. All
the previous works used AKC implicitly in a non-black-box
way. The literature should appreciate such an effort of abstrac-
tion and generalization. In general, abstraction and general-
ization are fundamental to natural science (e.g., mathematics,
physics), and are particularly important to cryptography. For

example, in the area of signature, Schnorr signature is general-
ized via Fiat-Shamir transformation [FS86], with abstraction
of Σ-protocol [CDS94]. The similar abstraction and general-
ization also plays a fundamental role in CCA-secure PKE,
and in many more areas of modern cryptography. Abstraction
and generalization are particularly helpful and expected for
lattice-based cryptography, as they are usually less easy to
understand and evaluate, and are related to the ongoing NIST
post-quantum cryptography standardization [NIST].

3.3 Transformation from CPA-PKE to CCA-
KEM

There are well-established approaches from CPA-secure PKE
to CCA-secure KEM [FO99, FO13, TU16, HHK17, HKSU18,
JZM19], with concrete security estimation in the quantum
random oracle model (QROM). In this work, for presentation
simplicity and ease of comparison, we use the same CCA
transformation approach adopted by NewHope-KEM. The
reader is referred to [NH-NIST] for more details.

4 Design and Analysis of AKCN-E8

According to the above modular and generalized framework
from AKC to RLWE-based CPA and CCA secure KEMs, all
left is to develop a practical AKC scheme, which is referred
to AKCN-E8 to be developed and analyzed in this section. At
the heart of AKCN-E8 is a novel lattice code in E8.

We divide the coefficients of the polynomial σσσ1 and σσσ2
into n̂ = n/8 groups, where each group is composed of
8 coefficients. In specific, denote R = Z[x]/(x8 + 1),Rq =

5

R/qR,K = Q[x]/(x8 + 1) and KR = K⊗R ' R[x]/(x8 + 1).
Then the polynomial σσσ1 can be represented as σσσ1(x) =
σ0(xn̂)+σ1(xn̂)x+ · · ·+σn̂−1(xn̂)xn̂−1, where σi(x) ∈ Rq for
i = 0,1, . . . n̂. σσσ2 can be divided in the same way. Then we
only need to construct the reconciliation mechanism for each
σi(x), and finally combine the keys together. To do this, we
need to first introduce the lattice E8 and its encoding and
decoding.

We construct lattice E8 from the Extended Hamming Code
in dimension 8, which is denoted as H8 for presentation sim-
plicity. H8 refers to the 4-dimension linear subspace of 8-
dimension linear space Z8

2.

H8 = {c ∈ Z8
2 | c = zH mod 2,z ∈ Z4}

where

H =


1 1 1 1 0 0 0 0
0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1
0 1 0 1 0 1 0 1


The encoding algorithm is straightforward: given a 4-bit

string k1, calculate k1H. This operation can be done effi-
ciently by bitwise operations. The complete algorithm is
shown in Algorithm 1.1

Algorithm 1 AKCN-E8: Con with encoding in E8

1: procedure Con(σσσ1 ∈ Z8
q,k1 ∈ Z4

2,params)

2: v =
⌊

g
q

(
σσσ1 +

q−1
2 (k1H mod 2)

)⌉
mod g2

3: return v
4: end procedure

The decoding algorithm finds the solution of the closest
vector problem (CVP) for the lattice E8. For any given x∈R8,
CVP asks which lattice point in E8 is closest to x. Based on the
structure of E8, we propose an efficient decoding algorithm.

Figure 4: Structure of E8.

Let C = {(x1,x1,x2,x2,x3,x3,x4,x4) ∈ Z8
2 | x1 + x2 + x3 +

x4 = 0 mod 2}. In fact,C is spanned by the up most three rows

1For simplicity, we assume q is a prime and directly use q−1
2 in Con

(rather than bq/2e). The construction and analysis can be trivially changed to
work with q+1

2 in Con. Also, when q is an even number (e.g., power-of-two),
it should be q

2 .

of H. Hence, E8 =C∪ (C+c), where c = (0,1,0,1,0,1,0,1)
is the last row of H. For a given x ∈ R8, to solve CVP of x in
E8, we solve CVP of x and x− c in C, and then choose the
one that has smaller distance. For a pictorial representation of
E8, refer to Figure 4.

Algorithm 2 AKCN-E8: Rec with decoding in E8

1: procedure Rec(σσσ2 ∈ Z8
q,v ∈ Z8

g,params)

2: k2 = DecodeE8

(⌊
q
g v
⌉
−σσσ2

)
3: return k2
4: end procedure

Then we consider how to solve CVP in C. For
an x ∈ R8, we choose (x1,x2,x3,x4) ∈ Z4

2, such that
(x1,x1,x2,x2,x3,x3,x4,x4) is closest to x. However, x1 + x2 +
x3 + x4 mod 2 may equal to 1. In such cases, we choose the
4-bit string (x′1,x

′
2,x
′
3,x
′
4) such that (x′1,x

′
1,x
′
2,x
′
2,x
′
3,x
′
3,x
′
4,x
′
4)

is secondly closest to x. Note that (x′1,x
′
2,x
′
3,x
′
4) has at most

one-bit difference from (x1,x2,x3,x4). The detailed algorithm
is depicted in Algorithm 3. Considering potential timing at-
tack, all the “if” conditional statements can be implemented
by constant time bitwise operations. In practice, Decode00

C
and Decode01

C are implemented as two subroutines.

For Algorithm 3 (page 7), in DecodeE8 , we calculate costi,b,
where i = 0,1, . . . ,7,b ∈ {0,1}, which refer to the contribu-
tion to the total 2-norm when xi = b. Decode00

C solves the
CVP in lattice C, and Decode01

C solves the CVP in lattice
C + c. Then we choose the one that has smaller distance.
Decodeb0b1

C calculates the ki, i = 0,1,2,3 such that q−1
2 (k0⊕

b0,k0⊕ b1,k1⊕ b0,k1⊕ b1,k2⊕ b0,k2⊕ b1,k3⊕ b0,k3⊕ b1)
is closest to x. We use mind and mini to find the second clos-
est vector. Finally, we check the parity to decide which one
should be returned.

The following theorem gives a condition of success of
the encoding and decoding algorithm in Algorithm 1 and
Algorithm 2. For simplicity, for any σσσ = (x0,x1, . . . ,x7) ∈ Z8

q,
we define ‖σσσ‖2

q,2 = ∑
7
i=0 |xi|2q.

Theorem 4.1. If ‖σσσ1 − σσσ2‖q,2 ≤ (q− 1)/2−
√

2
(

q
g +1

)
,

then k1 and k2 calculated by Con and Rec are equal.

Proof. The minimal Hamming distance of the Extended Ham-
ming code H8 is 4. Hence, the minimal distance in the lattice

we used is 1
2

√(
q−1

2

)2
×4 = (q−1)/2.

We can find εεε,εεε1 ∈ [−1/2,1/2]8,θθθ ∈ Z8 such that⌊
q
g

v
⌉
−σσσ2 =

q
g

v+ εεε−σσσ2

=
q
g

(
g
q

(
σσσ1 +

q−1
2

k1H
)
+ εεε+θθθg

)

6

Algorithm 3 Decoding in E8 and C

1: procedure DecodeE8(x ∈ Z8
q)

2: for i = 0 . . . 7 do
3: costi,0 = |xi|2q
4: costi,1 = |xi − q−1

2 |2q
5: end for
6: (k00,TotalCost00)← Decode00C (costi∈0...7,b∈{0,1})
7: (k01,TotalCost01)← Decode01C (costi∈0...7,b∈{0,1})
8: if TotalCost00 < TotalCost01 then
9: b = 0

10: else
11: b = 1
12: end if
13: (k0, k1, k2, k3)← k0b

14: k2 = (k0, k1 ⊕ k0, k3, b)
15: return k2

16: end procedure
17: procedure Decodeb0b1C (costi∈0...7,b∈{0,1} ∈ Z8×2)
18: mind = +∞
19: mini = 0
20: TotalCost = 0
21: for j = 0 . . . 3 do
22: c0 ← cost2j,b0 + cost2j+1,b1

23: c1 ← cost2j,1−b0 + cost2j+1,1−b1
24: if c0 < c1 then
25: ki ← 0
26: else
27: ki ← 1
28: end if
29: TotalCost← TotalCost+ cki
30: if c1−ki − cki < mind then
31: mind ← c1−ki − cki
32: mini ← i
33: end if
34: end for
35: if k0 + k1 + k2 + k3 mod 2 = 1 then
36: kmini ← 1− kmini

37: TotalCost← TotalCost+mind

38: end if
39: k = (k0, k1, k2, k3)
40: return (k,TotalCost)
41: end procedure

7

+ εεε1−σσσ2

= (σσσ1−σσσ2)+
q−1

2
k1H+

q
g

εεε+ εεε1 +θθθq

Hence, the bias from q−1
2 k1H is no larger than ‖σσσ1−σσσ2‖q,2+

q
g‖εεε‖+

√
2≤‖σσσ1−σσσ2‖q,2+

√
2
(

q
g +1

)
. If this value is less

than the minimal distance (q− 1)/2, the decoding will be
correct, which implies k1 = k2.

Proposition 4.1. AKCN-E8 is secure. Specifically, if σσσ1 is
subject to uniform distribution over Z8

q, then v and k1 are
independent.

Proof. For arbitrary fixed k1, k1H mod 2 is fixed. Since σσσ1
is uniform random, σσσ1 +

q
2 (k1H mod 2) is uniform random

over Zq. Thus, v is subject to the distribution b g
q ue mod g,

where u is uniform random over Zq. Hence, v is independent
of k1.

4.1 Failure Rate Analysis
Now, with respect to the CPA-secure PKE scheme described
in Figure 3 with the underlying AKC is replaced with AKCN-
E8, we analyze the correctness property by calculating its
failure rate.

Denote εεε = ax2 + e2−2tb(ax2 + e2)/2te. We have

σσσ1−σσσ2 = x1(2ty2)− (y1x2 + e′2)
= 2tx1b(ax2 + e2)/2te− ((ax1 + e1)x2 + e′2)
= x1(ax2 + e2− εεε)− (ax1x2 + e1x2 + eee′2)

= x1(e2− εεε)− (e1x2 + e′2)

From RLWE assumption, (a,ax2 + e2) is indistinguishable
with (a,u), where u is subject to the uniform distribution.
Then, εεε should be closed to u−2tbu/2te. We can roughly re-
gard each coefficients of polynomials in u−2tbu/2te as uni-
form distribution over [−2t−1,2t−1]n. Let σt be the standard
deviation of uniform distribution over [−2t−1,2t−1]n. Then
we can calculate the standard deviation of each coefficients
of polynomials in σσσ2−σσσ1, denote it as s. We have

s2 = nσ
2 (2σ

2 +σ
2
t
)
+σ

2

= nσ
2
(

2σ
2 +

(1+2t)2−1
12

)
+σ

2

By the Central Limit Theorem, each coefficient of the poly-
nomials in σσσ2−σσσ1 is close to a Gaussian distribution. From
Theorem 4.1, the AKCN-E8 scheme is correct with probabil-
ity

Pr
[

d′← χ
2(8) :

√
d′ ≤

(
q−1

2
−
√

2
(

q
g
+1
))

/s
]

We provide a script to calculate the concrete failure rate,
which is (anonymously) available from http://github.
com/AKCN-E8.

5 Parameters and Implementation

The AKCN-E8-KEM scheme resulted from the modular and
generalized framework described in Section 3, with the under-
lying AKC mechanism replaced with the AKCN-E8 scheme
presented in Section 4, works on any hard instantiation of the
RLWE problem. But if n is power of 2, and prime q satisfies
q mod 2n = 1, then number-theoretic transform (NTT) can be
used to speed up polynomial multiplication. The performance
can be further improved by using the Montgomery arith-
metic and AVX2 instruction set [NH-USENIX, NH-NIST].
As in [NH-NIST], the underlying noise distribution is the
centered binomial distribution Sη: for some positive integer
η, sample (a1, · · · ,aη,b1, · · · ,bη)←{0,1}2η and then output
∑

η

i=1(ai−bi). For the centered binomial distribution Sη, its
standard deviation is σ =

√
η/2. In NEWHOPE [NH-NIST],

q = 12289, n = 512 or n = 1024, η = 8. For ease of com-
parison, we use the same CCA transformation and the same
values of (q,n) of NewHope [NH-NIST] for the construction
and implementation of AKCN-E8-KEM.

We use the same script of NewHope-KEM [NH-NIST] for
concrete security estimation against the underlying RLWE
problem by the best known quantum attacks, and omit the
details here for presentation simplicity. The reader is re-
ferred to [NH-NIST] for the method and script of concrete
security estimation, which is also available from https:
//newhopecrypto.org/. NewHope-1024 (resp., NewHope-
5512) aims for 233-bit (resp., 101-bit) post-quantum secu-
rity (pq-sec, for short), but gets consensus on the shared-key
k1 = k2 of size 256 (resp., 128) bits by using a technique first
described in [PG13] that encodes one key bit into four polyno-
mial coefficients. We suggest that the shared-key size might
not match the target security level in the post-quantum era, in
view of the quadratic speedup by Grover’s search algorithm
and the possibility of more sophisticated quantum cryptanal-
ysis in the long run. Indeed, it is commonly expected that
symmetric-key cryptographic primitives like AES need larger
key sizes in the post-quantum era. And, in some more critical
areas than public commercial usage, larger key sizes actually
have already been mandated nowadays. NewHope-KEM is
less flexible to increase its shared-key size; for example, if we
want a 512-bit shared-key with NewHope-KEM, we have to
use a polynomial of degree 2048 that can be significantly less
efficient. Thanks to the powerful E8 lattice code, AKCN-E8-
1024 (resp., AKCN-E8-512) reaches the shared-key of size
512 (resp., 256) bits.

The parameters and performance of AKCN-E8-KEM are
given in Table 1. For both AKCN-E8-512 and AKCN-E8-
1024, we present three sets of parameters: “S" stands for
higher security level, “E" stands for lower error probability,
and “C" stands for smaller ciphertext size. Compared with
NewHope-KEM [NH-NIST], AKCN-E8 always doubles the
size of shared-key, which is important to ensure the target se-
curity level in the post-quantum era against advanced quantum

8

http://github.com/AKCN-E8
http://github.com/AKCN-E8
https://newhopecrypto.org/
https://newhopecrypto.org/

|K| n q η g t pq-sec err pk (B) cipher (B)
NewHope-512-CPA 128 512 12289 8 23 0 101 2−213 928 1088

AKCN-E8-512-S-CPA 256 512 12289 14 24 3 110 2−224 928 960
AKCN-E8-512-E-CPA 256 512 12289 8 24 4 101 2−256 928 896
AKCN-E8-512-C-CPA 256 512 12289 8 23 4 101 2−150 928 832

NewHope-512-CCA 128 512 12289 8 23 0 101 2−213 928 1120
AKCN-E8-512-S-CCA 256 512 12289 14 24 3 110 2−224 928 992
AKCN-E8-512-E-CCA 256 512 12289 8 24 4 101 2−256 928 928
AKCN-E8-512-C-CCA 256 512 12289 8 23 4 101 2−150 928 864
NewHope-1024-CPA 256 1024 12289 8 23 0 233 2−216 1824 2176

AKCN-E8-1024-S-CPA 512 1024 12289 10 24 2 240 2−274 1824 2048
AKCN-E8-1024-E-CPA 512 1024 12289 8 24 3 233 2−280 1824 1920
AKCN-E8-1024-C-CPA 512 1024 12289 4 23 3 214 2−500 1824 1792

NewHope-1024-CCA 256 1024 12289 8 23 0 233 2−216 1824 2208
AKCN-E8-1024-S-CCA 512 1024 12289 10 24 2 240 2−274 1824 2080
AKCN-E8-1024-E-CCA 512 1024 12289 8 24 3 233 2−280 1824 1952
AKCN-E8-1024-C-CCA 512 1024 12289 4 23 3 214 2−500 1824 1824

Table 1: Parameters for AKCN-E8-KEM and comparison with NewHope-KEM [NH-NIST]. |K| refers to the size of shared-key
k1 = k2, “pk(B)" refers to the size of (y1,seed) in bytes; “cipher(B)" refers to the size of (y2,v); “pq-sec" refers to the security
of the underlying RLWE problem against the best known quantum attacks.

attacks like Grover algorithms. On the proposed parameters,
AKCN-E8 also has more compact ciphertexts than NewHope-
KEM. Besides the double of shared-key size, for AKCN-E8-
512-S and AKCN-E8-1024-S, they also have stronger security,
lower error probability, and smaller ciphertext size simulta-
neously, in comparison with the corresponding versions of
NewHope-KEM. For AKCN-E8-512, we recommend to use
AKCN-E8-512-C, as its error probability 2−150 has already
been sufficiently lower than the targeted 101-bit post-quantum
security level. The error probability 2−213 of NewHope-512
is unnecessarily low for the target security level. The perfor-
mance advantages of AKCN-E8, as well as its flexibility in
parameter selection, are largely enabled by the underlying E8
lattice code, which is much more dense than the underlying
Z4 lattice code used by NewHope-KEM [NH-NIST, PG13].
Actually, a remarkable breakthrough in mathematics in recent
years is that sphere packing (i.e., packing unit balls) in the
E8 lattice is proved to be optimal in the sense of the best
density [V17] for packing in R8.

5.1 Implementation and Benchmark

As we use the same CCA-transformation of NewHope-KEM
[NH-NIST], we only present the specifications of CPA-secure
AKCN-E8-KEM, which are given in Algorithm 4, 5, 8. Simi-
lar to NewHope-KEM [NH-NIST], we also use NTT to speed
up the multiplication of the polynomials. The benchmark re-
sult for the implementation of AKCN-E8-1024-C-CCA is
given in Table 2. The source code is (anonymously) available
from http://github.com/AKCN-E8.

In Algorithm 4, the key generation algorithm randomly
samples a seed, and then use the seed to deterministically
generate seedPublic and seedPrivate. Then the value â is

generated honestly using seedPublic. The seed seedPublic is
set to be part of the public key pk. The Encode(ŷ1) algorithm
gathers each 14-bit coefficient in ŷ1 together.

Algorithm 4 Key Generation
1: function KEYGEN
2: seed←{0,1}256

3: (seedPublic,seedPrivate) = H(seed)
4: â = GenA(seedPublic)
5: x1← SampleNoise(seedPrivate,0)
6: x̂1← NTT(x1)
7: e1← SampleNoise(seedPrivate,1)
8: ê1← NTT(e1)
9: ŷ1← â◦ x̂1 + ê1

10: return pk = (Encode(ŷ1),seedPublic),sk =
Encode(x̂1)

11: end function

Algorithm 5 Encryption
1: function ENCRYPT(pk,msg)
2: (ŷ1,seedPublic) = Decode(pk)
3: â = GenA(seedPublic)
4: x2,e2,e

′
2← SampleNoise()

5: x̂2← NTT(x2)
6: ê2← NTT(e2)
7: ê′2← NTT(e′2)
8: y2 = NTT−1(â◦ x̂2 + ê2)
9: σσσ2 = NTT−1(ŷ1 ◦ x̂2 + ê′2)

10: v← Con(σσσ2,msg)
11: return ct= CompressAndEncode(y2,v)
12: end function

9

http://github.com/AKCN-E8

We use the following Algorithm 6 to encode and compress
the ciphertext. In more detail, for each coefficient in y2, we
round it to the range [0,211− 1]. For each coefficient in v,
we round it to the range [0,23−1]. Then we put the rounded
11-bit coefficients in y2 in high position, and rounded 3-bit
coefficients in v in low position to get 14-bit integers. To speed
up the rounding and other operations, we use bit-operations.
Finally we invoke the Encode algorithm to gather the 14-bit
integers together. In Algorithm 7, we use a similar algorithm
to decompress and decode y2 and v.

We implement the algorithms on Ubuntu Linux 16.04, GCC
version 5.4.0. We run the benchmark on Intel(R) Core(TM)
i7-4712MQ CPU @ 2.30GHz, with HyperThreading off. The
code is compiled with the option -O3 -fomit-frame-pointer -
march=native. The result is in Table 2. We run key generation,
encryption and decryption each for 1000 times. The reported
time and CPU cycles in Table 2 are the average numbers.

Algorithm 6 Compress and Encode
1: function COMPRESSANDENCODE(y2,v)
2: c = 0
3: for i = 1 . . .1024 do
4: hi= ((y2[i]� 11)+6144)/12289
5: lo= ((v[i]� 3)+6144)/12289
6: c[i] = (hi� 3)+ lo
7: end for
8: return Encode(c)
9: end function

Algorithm 7 Decode and Decompress
1: function DECODEANDDECOMPRESS(ct)
2: c = Decode(ct)
3: for i = 1 . . .1024 do
4: hi= (c[i]� 3) & 0x7FF
5: lo= c[i] & 3
6: y′2[i] = (hi∗12289+0x400)� 11
7: v′[i] = (lo∗12289+0x4)� 3
8: end for
9: return (y′2,v

′)
10: end function

Algorithm 8 Decryption
1: function DECRYPT(sk,ct)
2: x̂1 = Decode(sk)
3: (y′2,v

′) = DecodeAndDecompress(ct)
4: ŷ′2← NTT(ŷ′2)
5: σσσ1← NTT−1(ŷ′2 ◦ x̂1)
6: return Rec(σσσ1,v′)
7: end function

AKCN-E8-1024 CCA NewHope-1024-CCA
Time(us) Cycle Time(us) Cycle

Gen 80 185361 91 210020
Enc 128 294398 129 295629
Dec 177 405440 148 338754

Table 2: Benchmark of AKCN-E8

References

[NH-USENIX] E. Alkim, L. Ducas, T. Pöppelmann, and P.
Schwabe. Post-quantum Key Exchange — A
New Hope. 25th USENIX Security Symposium
(USENIX Security 16), pages 327–343. Winner
of the 2016 Internet Defense Prize (https://
internetdefenseprize.org/)

[ABC19] E. Alkim, Y. A. Bilgin, and M. Cenk. Compact
and Simple RLWE Based Key Encapsulation
Mechanism. LATINCRYPT 2019: 237-256.

[ACPS09] B. Applebaum, D. Cash, C. Peikert, and A. Sa-
hai. Fast Cryptographic Primitives and Circular-
Secure Encryption Based on Hard Learning
Problems. CRYPTO 2009: 595-618.

[BCD+16] J. Bos, C. Costello, L. Ducas, I. Mironov, M.
Naehrig, V. Nikolaenko, A. Raghunathan, and
D. Stebila. Frodo: Take off the Ring! Practi-
cal, Quantum-Secure Key Exchange from LWE.
ACM CCS 2016: 1006-1018.

[CKM+17] H. Cohn, A. Kumar, S. D. Miller, D. Radchenko,
M. Viazovska. The Sphere Packing Problem in
Dimension 24. Annuals of Mathematics, 185 (3):
1017-1033, 2017.

[CS82] J. Conway and N. Sloane. Fast quantizing and
decoding algorithm for lattice quantizers and
codes. IEEE Transactions on Information The-
ory, 28 (2): 227-232, 1982.

[CS93] J. Conway and N. Sloane. Sphere Packings, Lat-
tices, and Groups. Springer- Verlag, New York,
1993.

[CDS94] R. Cramer, I. Damgård and B. Schoenmakers.
Proofs of Partial Knowledge and Simplified De-
sign of Witness Hiding Protocols. CRYPTO
1994: 174–187.

[D02] A. W. Dent. A Designer’s Guide to KEMs. Cryp-
tology ePrint Archive, Report 2002/174, 2002.

[DD12] L. Ducas and A. Durmus. Ring-LWE in Polyno-
mial Rings. PKC 2012: 34-51.

10

https://internetdefenseprize.org/
https://internetdefenseprize.org/

[FS86] A. Fiat and A. Shamir. How to Prove Yourself:
Practical Solutions to Identification and Signa-
ture Problems. CRYPTO 1986: 186–194.

[FO99] E. Fujisaki and T. Okamoto. How to Enhance the
Security of Public-Key Encryption at Minimum
Cost. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sci-
ences Volume 83, Issue 1, pages 24-32, 1999.

[FO13] E. Fujisaki and T. Okamoto. Secure Integra-
tion of Asymmetric and Symmetric Encryption
Schemes. Journal of Cryptology, Volume 26,
Issue 1, pages 80—101, 2013.

[HHK17] D. Hofheinz, K. Hövelmanns, and E. Kiltz.
A Modular Analysis of the Fujisaki-Okamoto
Transformation. TCC (1) 2017: 341-371.

[HKSU18] K. Hövelmanns, E. Kiltz, S. Schäge, and D. Un-
ruh. Generic Authenticated Key Exchange in the
Quantum Random Oracle Model. Cryptology
ePrint Archive, Report 2018/928.

[JZM19] H. Jiang, Z. Zhang, and Z. Ma. Tighter Security
Proofs for Generic Key Encapsulation Mecha-
nism in the Quantum Random Oracle Model.
PQCrypto 2019: 227-248.

[JZ16] Z. Jin, and Y. Zhao. Optimal Key Consensus
in Presence of Noise. CoRR, abs/1611.06150
(2016) https://arxiv.org/abs/1611.
06150

[JZ19] Z. Jin, and Y. Zhao. Generic and Practical Key
Establishment from Lattice. ACNS 2019: 302-
322. (Best Student Paper)

[LP11] R. Lindner and C. Peikert. Better Key Sizes (and
Attacks) for LWE-Based Encryption. CT-RSA
2011: 319-339.

[LAC-NIST] X. Lu, Y. Liu, D. Jia, H. Xue, J. He, Z.
Zhang, Z. Liu, H. Yang, B. Li, K. Wang.
Supporting documentation: LAC. Techni-
cal report, National Institute of Standards
and Technology. https://csrc.nist.gov/
Projects/Post-Quantum-Cryptography/
round-2-submissions

[LPR10] V. Lyubashevsky, C. Peikert, and O. Regev. On
Ideal Lattices and Learning with Errors over
Rings. EUROCRYPT 2010: 1-23.

[LPR13b] V. Lyubashevsky, C. Peikert, and O. Regev. A
Toolkit for Ring-LWE Cryptography. EURO-
CRYPT 2013: 35-54.

[LS19] V. Lyubashevsky and G. Seiler. NTTRU: Truly
Fast NTRU Using NTT. CHES 2019: 180-201.

[NIST] NIST. Post-Quantum Cryptography Stan-
dardization. https://csrc.nist.gov/
Projects/Post-Quantum-Cryptography/
Post-Quantum-Cryptography-Standardization

[PRS17] C. Peikert, O. Regev and N. Stephens-
Davidowitz. Pseudorandomness of Ring-LWE
for Any Ring and Modulus. STOC 2017: 461-
473.

[Pop16] A.V. Poppelen, Cryptographic Decoding of the
Leech Lattice. Cryptology ePrint Archive, Re-
port 2016/1050, 2016.

[NH-NIST] T. Pöppelmann, E. Alkim, R. Avanzi, J.
Bos, L. Ducas, A. Piedra, P. Schwabe, D.
Stebila, M. Albrecht, E. Orsini, V. Osheter,
K. Paterson, G. Peer, and N. Smart. Sup-
porting documentation: Newhope. Technical
report, National Institute of Standards and
Technology. https://csrc.nist.gov/
Projects/Post-Quantum-Cryptography/
round-2-submissions

[PG13] T. Pöppelmann and T. Güneysu. Towards Prac-
tical Lattice-Based Public-Key Encryption on
Reconfigurable Hardware. SAC 2013: 68-85.

[Reg09] O. Regev. On Lattices, Learning with Errors,
Random Linear Codes, and Cryptography. Jour-
nal of the ACM (JACM), Volume 56, Issue 6,
pages 34, 2009.

[TLS1.3] E. Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.3, RFC 8446, 2018.

[TU16] E. E. Targhi and D. Unruh. Post-Quantum Secu-
rity of the Fujisaki-Okamoto and OAEP Trans-
forms. TCC 2016-B: 192-216.

[VB93] A. Vardy, and Y. Be’ery. Maximum Likelihood
Decoding of the Leech Lattice. IEEE Transac-
tions on Information Theory, 39(4):1435-1444,
1993.

[V17] M. S. Viazovska. The Sphere Packing Problem
in Dimension 8. Annuals of Mathematics,
185(3): 991-1015, 2017.

[ZXZ+18] S. Zhou, H. Xue, D. Zhang, K. Wang, X. Lu, B.
Li, and J. He. Preprocess-then-NTT Techniques
and Its Applications to Kyber and NewHope.
Inscrypt 2018: 117-137.

11

https://arxiv.org/abs/1611.06150
https://arxiv.org/abs/1611.06150
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/round-2-submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/round-2-submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/round-2-submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/round-2-submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/round-2-submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/round-2-submissions

[ZPL19] Y. Zhu, Y. Pan and Z. Liu. When NTT Meets
Karatsuba: Preprocess-then-NTT Technique Re-
visited. Cryptology ePrint Archive, 2019/1079.

A More Parameters of AKCN-E8-KEM

The standard NTT technique requires that q mod 2n = 1.
Recent advances on the variants of NTT [ZXZ+18, LS19,
ABC19, ZPL19] allow us to choose the module q in a more
flexible way. For example, we can use q = 7681 and q = 3329

for AKCN-E8-1024 and AKCN-E8-512. The NTT technique
proposed in [LS19] (resp., in [ABC19]) allows us to use
q = 7681 (resp., q = 3457) for AKCN-E8-768. A variant of
the NTT technique [LS19] also allows us to use q = 7681 for
AKCN-E8-640. More parameters of AKCN-E8 enabled by
the recent advances of NTT techniques are given in Table 3
and Table 4. We may prefer to the AKCN-E8-7681 parameter
sets, as they share the same module q = 7681 for AKCN-E8-
512, AKCN-E8-640, AKCN-E8-768 and AKCN-E8-1024.

12

|K| n q η g t pq-sec err pk (B) cipher (B)
AKCN-E8-512-CPA-Recom 256 512 7681 4 23 4 98 2−132 864 768
AKCN-E8-512-CPA-Option 256 512 7681 6 23 3 104 2−204 864 832
AKCN-E8-512-CCA-Recom 256 512 7681 4 23 4 98 2−125 864 800
AKCN-E8-512-CCA-Option 256 512 7681 6 23 3 104 2−204 864 864
AKCN-E8-640-CPA-Recom 320 640 7681 4 23 3 129 2−299 1072 1040
AKCN-E8-640-CPA-Option 320 640 7681 6 23 3 137 2−159 1072 1040
AKCN-E8-640-CCA-Recom 320 640 7681 4 23 3 129 2−299 1072 1072
AKCN-E8-640-CCA-Option 320 640 7681 6 23 3 137 2−159 1072 1072
AKCN-E8-768-CPA-Recom 384 768 7681 4 23 3 161 2−245 1280 1248
AKCN-E8-768-CPA-Option 384 768 7681 2 23 4 147 2−197 1280 1152
AKCN-E8-768-CCA-Recom 384 768 7681 4 23 3 161 2−245 1280 1280
AKCN-E8-768-CCA-Option 384 768 7681 2 23 4 147 2−197 1280 1184
AKCN-E8-1024-CPA-Recom 512 1024 7681 4 24 3 227 2−303 1696 1792

AKCN-E8-1024-CPA-Option-S 512 1024 7681 6 24 2 239 2−267 1696 1960
AKCN-E8-1024-CPA-Option-C 512 1024 7681 2 23 3 208 2−471 1696 1664
AKCN-E8-1024-CCA-Recom 512 1024 7681 4 24 3 227 2−303 1696 1824

AKCN-E8-1024-CPA-Option-S 512 1024 7681 6 24 2 239 2−267 1696 1992
AKCN-E8-1024-CCA-Option-C 512 1024 7681 2 23 3 208 2−471 1696 1696

Table 3: Recommended parameters for AKCN-E8-7681. “Recom" (resp., “Option") stands for “Recommended" (resp., “Op-
tional"). We recommend to use the same q = 7681 and η = 4 for all the three sets of parameters: AKCN-E8-512, 768 and
1024.

|K| n q η g t pq-sec err pk (B) cipher (B)
AKCN-E8-3329-512-CPA 256 512 3329 2 23 3 101 2−164 800 768
AKCN-E8-3329-512-CCA 256 512 3329 2 23 3 101 2−164 800 800

AKCN-E8-3329-1024-E-CPA 512 1024 3329 2 24 2 230 2−303 1568 1792
AKCN-E8-3329-1024-C-CPA 512 1024 3329 2 23 2 230 2−178 1568 1664
AKCN-E8-3329-1024-E-CCA 512 1024 3329 2 24 2 230 2−303 1568 1824
AKCN-E8-3329-1024-C-CCA 512 1024 3329 2 23 2 230 2−178 1568 1696

Table 4: Parameters for AKCN-E8-3329

13

	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Key Encapsulation Mechanism (KEM)
	Public-Key Encryption (PKE)
	The LWE, and Ring-LWE (RLWE) problems

	A Modular and Generalized Framework for PKE/KEM from Ring-LWE
	Building Block: Asymmetric Key Consensus
	CPA-Secure PKE from AKC
	Transformation from CPA-PKE to CCA-KEM

	Design and Analysis of AKCN-E8
	Failure Rate Analysis

	Parameters and Implementation
	Implementation and Benchmark

	More Parameters of AKCN-E8-KEM

