RSA AND REDACTABLE BLOCKCHAINS

DIMA GRIGORIEV AND VLADIMIR SHPILRAIN

ABSTRACT. A blockchain is redactable if a private key holder (e.g. a central authority) can change any
single block without violating integrity of the whole blockchain, but no other party can do that. In this
paper, we offer a simple method of constructing redactable blockchains inspired by the ideas underlying the
well-known RSA encryption scheme. Notably, our method can be used in conjunction with any reasonable
hash function that is used to build a blockchain. Public immutability of a blockchain in our construction
is based on the computational hardness of the RSA problem and not on properties of the underlying hash
function. Corruption resistance is based on the computational hardness of the discrete logarithm problem.

1. INTRODUCTION

A blockchain is a distributed database that is used to maintain a continuously growing list of records,
called blocks. Each block contains a link to the previous (or the next) block. A blockchain is typically
managed by a peer-to-peer network collectively adhering to a protocol for validating new blocks. By
design, blockchains are inherently resistant to modification of the data. Once recorded, the data in any
given block cannot be altered retroactively without the alteration of all preceding (or subsequent) blocks
and a collusion of the network majority.

A blockchain can be either public or private. Usually, when people talk about public blockchains,
they mean that anyone can write data. A typical example of a public blockchain is bifcoin. In contrast,
a private blockchain network is where the participants are known and trusted: for example, an industry
group, or a military unit, or in fact any private network, big or small. In particular, what is now called
by a popular name The Internet of things is a good example of a private network where the blockchain
technology could be very useful. The Internet of things (IoT) is the inter-networking of physical devices
(also referred to as “smart devices™), e.g. vehicles, or buildings, or other items embedded with elec-
tronics, software, sensors, and network connectivity which enable these objects to collect and exchange
data. The world of 10T is quickly evolving and growing at an exponential rate. Experts estimate that the
IoT will consist of about 30 billion objects by 2020.

Concerns have been raised that the Internet of things is being developed rapidly without appropriate
consideration of the profound security challenges involved. Most of the technical security issues are
similar to those of conventional servers, workstations and smartphones, but the firewall, security update
and anti-malware systems used for those are generally unsuitable for the much smaller, less capable,
IoT devices. In particular, computer-controlled devices in vehicles such as brakes, engine, locks, etc.,
have been shown to be vulnerable to attackers who have access to the on-board network. In some cases,
vehicle computer systems are Internet-connected, allowing them to be exploited remotely.

Blockchain technology would provide at least a partial solution to these security problems.

1.1. Immutable and redactable blockchains. The role of hash functions in a blockchain is similar to
that of page numbering in a book. There is, however, an important difference. With books, predictable
page numbers make it easy to know the order of the pages. If you ripped out all the pages and shuffled
them, it would be easy to put them back into the correct order where the story makes sense. With

blockchains, each block references the previous (or the next) block, not by the block number, but by the
1

2 RSA AND REDACTABLE BLOCKCHAINS

block’s hash function (the “fingerprint”), which is smarter than a page number because the fingerprint
itself is determined by the contents of the block.

By using a fingerprint instead of a timestamp or a numerical sequence reflecting the block number,
one also gets a nice way of validating the data. In any blockchain, you can generate the block fingerprints
yourself by using the corresponding hashing algorithm. If the fingerprints are consistent with the data,
and the fingerprints join up in a chain, then you can be sure that the blockchain is internally consistent.
There are several ways to securely join blocks in a chain. One of the ways is, informally, as follows.
Every block B; has a prefix, which is the hash (or, more generally, a one-way function) of the fingerprint
H(B;_1) of the previous block B;_;. If anyone wants to meddle with any of the data, they would have to
regenerate all the fingerprints from that point forwards and the blockchain will look different.

A blockchain is immutable if, once data has been written to a blockchain no one, not even a central
authority (e.g. a system administrator), can change it. This provides benefits for audit. As a provider of
data you can prove that your data has not been altered, and as a recipient of data you can be sure that the
data has not been altered. These benefits are useful for databases of financial transactions, for example.

On the other hand, with a private blockchain, someone with higher privileged access, like a systems
administrator, may be able to change the data. So how do we manage the risk of an intruder chang-
ing data to his advantage if changing is made easy? The answer to that is provided by redactable
blockchains; these should involve hash functions with a trapdoor or, more generally, one-way functions
with a trapdoor. Trapdoor hash functions are a highly useful cryptographic primitive; in particular, it
allows an authorized party to compute a collision with a given hash value, even though the hash func-
tion is second pre-image resistant to those who do not know a trapdoor. This property is therefore very
useful in application to private blockchains since it makes it possible for an authorized party but not for
an intruder to make changes in a blockchain if needed. We give more details in Section[2]

The need for a blockchain (even a public one!) to be redactable is well explained in [S)]: “That
permanence has been vital in building trust in the decentralized currencies, which are used by millions
of people. But it could severely limit blockchain’s usefulness in other areas of financial services relied on
by billions of people. By clashing with new privacy laws like the “right to be forgotten” and by making
it nearly impossible to resolve human error and mischief efficiently, the blockchain’s immutability could
end up being its own worst enemy.”

2. REDACTABLE BLOCKCHAIN STRUCTURE

Recall that a blockchain is immutable if, once data has been written to a blockchain no one, not
even a central authority, can change it. This is achieved by using a hash function H to “seal” each
individual block, i.e., each block B; has a fingerprint H(B;), and then connecting blocks in a chain by
using another hash function (or just a one-way function) G, as described in our Section That way,
the blocks B; become connected in an immutable blockchain because if somebody tampers with one
of the blocks and changes it, he will have to change all blocks going forward (or backward), together
with their fingerprints, to preserve consistency of the whole blockchain. This is considered logistically
infeasible in most real-life scenarios.

Originally, blockchains were created to support the bitcoin network, which is public. Immutability
for such a network is crucial. More recently, as we have pointed out in the Introduction, with the idea of
the Internet of Things gaining momentum, private networks (small or large) have taken the center stage,
and this creates new challenges. In particular, it is desirable, while preserving the tampering detection
property, to allow someone with higher privileged access like a systems administrator or another author-
ity to be able to change the data or erase (‘“forget”) it [12]]. A blockchain that can be changed like that is
called redactable.

RSA AND REDACTABLE BLOCKCHAINS 3

To make a blockchain redactable, trapdoor hash functions are useful. Trapdoor hash functions have
been considered before (see e.g. [15]), but having just any trapdoor hash function is not enough to make
a blockchain redactable since the authority who wants to change a block B usually wants to change it to
a particular block B'. A way to make a blockchain redactable was first suggested in [1]]. Recently, [4]
claimed the first efficient redactable public blockchain construction. We also mention chameleon hash
functions 9] that were recently used [3]], [10] in redactable blockchain constructions.

Our approach is focused on private blockchains. It is quite different from [[1], [4] and other methods
and is simple and easily implementable. Notably, our method can be used in conjunction with any
reasonable hash function that is used to build a blockchain. Public immutability of a blockchain (see
Section [3.3) in our construction is based on the computational hardness of the RSA problem and not
on properties of the underlying hash function. Corruption resistance (see Section [3.4)) is based on the
computational hardness of the discrete logarithm problem.

2.1. A particular blockchain structure we use. There are several possible structures of a redactable
blockchain. Our general method should work with any known structure, but to make an exposition as
clear as possible we choose a very simple structure as follows. Each block B; will be in 3 parts: a
permanent prefix P;, the actual content C;, and a redactable suffix X;. There is also a hash h; = H(P;,C;),
where H is a public hash function, and a public one-way function F such that F(h;,X;) = P,;. To
make such a blockchain redactable, a central authority should have a private key that would allow for
replacing C; with an arbitrary C; of his/her choice, so that upon a suitable selection of the new suffix X/,
the equality F (h},X]) = P41 would still hold.

Instead of having the prefix of B;y; depend on the block B;, one can have the prefix of B;_; depend
on B;, in which case the integrity check will have the form F(h;,X;) = P;—;. Our method, with minor
modification, works with this structure just as well.

We emphasize again that the hash function H and the one-way function F should be public since
anyone should be able to create a new block in the chain as well as verify the integrity of the blockchain.

3. AN RSA-BASED IMPLEMENTATION

A particular implementation of the general redactable blockchain structure described above is inspired
by the ideas underlying the well-known RSA encryption scheme [13] (see also [2]], [7], [8] for later
developments).

Public information:

— a large integer n, which is a product of two large primes

— a hash function H, e. g. SHA-256. (We emphasize again that our method can be used with any
reasonable hash function, so the reader can replace SHA-256 here with his/her favorite hash function.)

Private information:
— prime factors of n = pq. These p and ¢ should be safe primes (see e.g. [2]), as in modern imple-
mentations of RSA. A safe prime is of the form 2r + 1, where r is another prime.

Block structure. In each block B;, there will be a prefix P;, the actual content C; (e. g. a transaction
description), and a suffix X;, which is a nonzero integer modulo n. We also want X; not to have order 2,
1.e., X,-2 # 1 (mod n). Thus, whoever builds a block B;, selects X; at random on integers between 1 and
n— 1 and then checks if X? # 1 (mod n). If X? = 1 (mod), random selection of X; is repeated. Once a
proper X; is selected, a public hash function H (e. g. SHA-256) is applied to concatenation of P; and C;
to produce h; = H(P;,C;), and h; is then converted to an integer d; modulo n. The prefix Py of the next
block is then computed as P, = (X;)% (mod n).

4 RSA AND REDACTABLE BLOCKCHAINS

3.1. Private redactability. Now suppose the central authority, Alice, who is in possession of the private
key, wants to change the content of a block B; from C; to C; but does not want to change any other block.
Then Alice computes the hash A, = H(P;,C}) and converts it to an integer d/ modulo n. The number d/
should be relatively prime to ¢(n), the Euler function of n. If it is not, then Alice should use a padding
to have d! relatively prime to ¢(n). Once it is, Alice finds the inverse ¢} of d/ modulo ¢(n). Then she
d _

(mod n). The integrity check now gives: (X/)% = (Peg)4 = P,;1 (mod n) because

/
I _ pCi
computes X; = P (e

i+1
e/d! =1 (mod ¢(n)) and (P 1)®™ = 1 (mod n).

3.2. Padding. Note that since n = pq, we have ¢(n) = (p —1)(¢ — 1). If d! is not relatively prime to
¢(n), this means that either (1) d! is even, or (2) d! is odd but is divisible by a large prime (recall that p
and ¢ are safe primes, i.e., % and q;zl are primes). Thus, our padding is going to be as follows. We
will add a random number of, say, 0 bits to the block C!. Since the hash function H is assumed to pass
all standard statistical tests [14], with probability % the result of hashing will be a bit string that converts

to an odd integer d/, and with very high probability this d; is also going not to be divisible by % or
q%l. Thus, after just a few attempts at padding as described above, we will get a d! relatively prime to

o(n).

3.3. Public immutability. As can be seen from the “Block structure” paragraph above, a party who
would like to change the content of a single block, would have to essentially solve the RSA problem:
recover X from n, X¢ (mod n), and d, where d is relatively prime to ¢(n). This is considered computa-
tionally infeasible for an appropriate choice of n and a random d, 0 < d < n.

3.4. Corruption resistance. Another way of unauthorized modification of a block in a blockchain is
corruption, i.e., changing the content of the block to something meaningless. To do that, the intruder
can start with a random X; and then look for a number d; such that (X;)% = P, (mod n), for a given
Pi41((mod n)). The mathematical problem that the intruder would have to solve in this case is known
as the discrete logarithm problem and is considered computationally infeasible if 7 is sufficiently large.

Two-step attack. If the hash function H used in our blockchain were not preimage-resistant enough,
the following “two-step” corruption attack would be possible. Suppose the integrity condition is Py =
(X;)% (mod n), and suppose the attacker was able to find out that the block B; was changed so that
(X;)% = (X/)% (mod n), and that the attacker got a hold of X;, X/, d;, and d!. We will now omit the index
i to make the following easier to read.

The attacker can corrupt this block (i.e., change it to something meaningless) as follows. Generi-
cally, g.c.d.(d,d") = 1, so we may assume that there are a,b € Z, such that da+d'b = 1. Then X =
((X")2x")4". Now if X" = (X")°X? and d” = d'd, then (X")*" = ((X")*X?)4 = (((x")2x?)?)4 = x“.
Thus, if the attacker can find another suffix, X", and d” such that (X”)d” = X, they can therefore corrupt
the block B;.

The problem is, however, that d” should be the hash of something, i.e., the attacker will face an
additional problem of finding a preimage of d” under the hash function H.

If preimage-resistance of the hash function H is a concern, the integrity condition is P = (X;)% (mod n)

can be replaced by P, = (X,-)di2 *+1 (mod n) for an extra layer of security.

4. OTHER AUTHENTICATED DATA STRUCTURES

A “chain”, or a path, is the simplest kind of a connected graph. This type is adequate and sufficient
for public data structures such as cryptocurrencies, except that in those, occasional “forks” may exist, in
which case the underlying graph is a free. Authenticated data structures built on trees were considered

RSA AND REDACTABLE BLOCKCHAINS 5

before (see e.g. [11]), albeit not in the context of the present paper (i.e., not in terms of redactability).
Here we explain how to make a data structure redactable if the underlying graph has a node of degree
greater than 2. The following procedure easily generalizes to an arbitrary underlying graph.

Suppose three blocks By, By, and B3 are connected in a chain By — B, — B3 as usual, but the block B,
is also connected to another block B’, which means that in the underlying graph the node corresponding
to the block B, has degree 3. Suppose now a central authority wants to modify content of the block B;.
If she follows our procedure from Section 3} she would have to find a suffix X} for the block B, such that

(Xz’)dézJrl — P; and at the same time (X})% ™! = P’, where P’ is the prefix of the block B'. This system of
equations will not have a solution if P3 # P’. A way around this is introducing an “intermediate” block
Bi, between B, and B'. The prefix of B;, will be the same as that of Bj, i.e., equal to (Xé)déz“. The

content of B;, can just indicate that this block is intermediate, i.e., does not have any other function. The

2
suffix X;, will be selected following the procedure in Section 1.€., so that Xi"”“ = P;.

Acknowledgement. Both authors are grateful to the Hausdorff Research Institute for Mathematics, Bonn
for its hospitality during the work on this project.

REFERENCES

1. G. Ateniese, B. Magri, D. Venturi, E. Andrade, Redactable blockchain — or — rewriting history in bitcoin and friends,
in: 2017 IEEE European Symposium on Security and Privacy, INSPEC Accession Number: 17011479. (See also https:
//eprint.iacr.org/2016/757.pdf)

2. J. Benaloh, Dense probabilistic encryption, First Ann. Workshop on Selected Areas in Cryptology, 1994, 120-128.

3. D. Derler, K. Samelin, D. Slamanig, and C. Striecks, Fine-grained and controlled rewriting in blockchains: chameleon-
hashing gone attribute-based, in: Network and Distributed Systems Security (NDSS 2019).

4. D. Deuber, B. Magri, S. A. K. Thyagarajan, Redactable blockchain in the permissionless setting, in: 2019 IEEE Symposium

on Security and Privacy, 124-138. (See also https://arxiv.org/abs/1901.03206)

. Downside of bitcoin: A ledger that can’t be corrected, The New York Times, 2016. https://tinyurl.com/ydxj1f9e

. J. von zur Gathen, 1. E. Shparlinski, Generating safe primes, J. Math. Cryptol. 7 (2013), 333-365.

S. Goldwasser. S. Micali, Probabilistic encryption, J. Comput. Syst. Sci. 28 (1984), 270-299.

. D. Grigoriev, 1. Ponomarenko, Homomorphic public-key cryptosystems and encrypting Boolean circuits, Appl. Algebra

Engrg. Comm. Comput. 17 (2006), 239-255.

9. H. Krawczyk and T. Rabin, Chameleon signatures, in: Network and Distributed System Security Symposium (NDSS 2000).

10. S. Krenn, H. C. Pohls, K. Samelin, D. Slamanig, Chameleon-hashes with dual long-term trapdoors and their applications,
in: Progress in Cryptology — AFRICACRYPT 2018, Lecture Notes Comp. Sci. 10831, 11-32.

11. R. C. Merkle, A digital signature based on a conventional encryption function, in: Advances in Cryptology — CRYPTO
’87. Lecture Notes Comp. Sci. 293 (1987), 369-378.

12. I. Puddu, A. Dmitrienko, S. Capkun, uchain: How to forget without hard forks, preprint,
https://eprint.iacr.org/2017/106.pdf

13. R. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public-key cryptosystems, Communica-
tions of the ACM 21 (1978), 120-126.

14. Secure Hash Standard (SHS), https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

15. E-Y. Yang, Improvement on a trapdoor hash function, Int. J. Network Security 9 (2009), 17-21.

®© W

CNRS, MATHEMATIQUES, UNIVERSITE DE LILLE, 59655, VILLENEUVE D’ ASCQ, FRANCE
Email address: Dmitry.Grigoryev@univ-lille.fr

DEPARTMENT OF MATHEMATICS, THE CITY COLLEGE OF NEW YORK, NEW YORK, NY 10031
Email address: shpil@groups.sci.ccny.cuny.edu

https://eprint.iacr.org/2016/757.pdf
https://eprint.iacr.org/2016/757.pdf
https://arxiv.org/abs/1901.03206
https://tinyurl.com/ydxjlf9e
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

	1. Introduction
	1.1. Immutable and redactable blockchains

	2. Redactable blockchain structure
	2.1. A particular blockchain structure we use

	3. An RSA-based implementation
	3.1. Private redactability
	3.2. Padding
	3.3. Public immutability
	3.4. Corruption resistance

	4. Other authenticated data structures
	References

