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Abstract. Conditional differential attacks were proposed by Knellwolf
et al. at ASIACRYPT 2010 which targeted at cryptographic primitives
based on non-linear feedback shift registers. The main idea of condi-
tional differential attacks lies in controlling the propagation of a dif-
ference through imposing some conditions on public/key variables. In
this paper, we improve the conditional differential attack by introduc-
ing the mixed integer linear programming (MILP) method to it. Let
J = {fi(x,v) = γi|1 ≤ i ≤ N} be a set of conditions that we want to
impose, where x = (x1, x2, . . . , xn) (resp. v = (v1, v2, . . . , vn)) represents
key (resp. public) variables and γi ∈ {0, 1} needs evaluating. Previous
automatic conditional differential attacks evaluate γ1, γ2, . . . , γN just in
order with the preference to zero. Based on the MILP method, conditions
in J could be automatically analysed together. In particular, to enhance
the effect of conditional differential attacks, in our MILP models, we
are concerned with minimizing the number of 1’s in {γ1, γ2, . . . , γN} and
maximizing the number of weak keys.

We apply our method to analyse the security of Trivium. As a result,
key-recovery attacks are preformed up to the 978-round Trivium and
non-randomness is detected up to the 1108-round Trivium of its 1152
rounds both in the weak-key setting. All the results are the best known
so far considering the number of rounds and could be experimentally
verified. Hopefully, the new method would provide insights on conditional
differential attacks and the security evaluation of Trivium.
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1 Introduction

Recently non-linear feedback shift registers (NLFSR) are widely used in lightwei-
ght cryptographic primitives, for example, the eSTREAM finalist Trivium [3],
another eSTREAM finalist Grain-v1 [11] and the block cipher KATAN [2]. Ob-
serving that an input difference propagates slowly in an NLFSR, Knellwolf et al.
in [12] proposed conditional differential attacks against NLFSR-Based cryptosys-
tems. The main idea of conditional differential attacks is imposing conditions on
public/key variables to control the propagation of differences as many rounds
as possible. If the propagation of differences is effectively prevented, then key-
recovery attacks or distinguishing attacks could be established depending on the
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conditions. There are three types of conditions. Type 0 conditions only involve
public variables. Type 1 conditions involve both public and key variables. Type 2
conditions only involve key variables. Among the three types of conditions, Type
1 conditions are favorable for key-recovery attacks. If there is no type 1 condi-
tion, only distinguishing attacks could be mounted. Type 2 conditions imply a
class of weak keys.

Conditional differential attacks using the first order difference are mainly
applied to Grain-v1. Targeting at Grain-v1, many techniques were proposed to
improve conditional differential attacks, including tools to track the difference
trails and strategies to choose a good difference to attack more rounds, see [1,
16, 14]. Thus far, utilizing conditional differential attacks based on the first order
difference, attackers could do key-recovery attacks for Grain-v1 reduced to 120-
round of its 160 rounds [14].

The conditional differential attack was first extended to higher order deriva-
tives and applied to Grain-128 in [12], where the authors established key-recovery
and distinguishing attacks for the 213- and 215-round Grain-128 respectively. In
[13], the authors proposed automatic tools to find and analyze conditions. As a
result, they established some cryptanalytic results on the round reduced Trivi-
um and KATAN. In particular, for Trivium, they obtained a class of weak keys
that could be practically distinguished up to 961 rounds. In [26], the authors in-
troduced a method of arrangement of differences and conditions to obtain good
higher order conditional differential characteristics. They applied their method
to Kreyvium [4], which is a variant of Trivium with 128-bit security. As a re-
sult, they obtained a zero-sum distinguisher for the 730-round Kreyvium and
detected bias on the 899-round Kreyvium.

In this paper, we focus on conditional differential attacks against Trivium.
The most related cryptanalytic results on Trivium are obtained by cube attacks
[5]. After the cube attack was proposed, many variants of cube attacks including
experimental cube attacks, dynamic cube attacks, correlation cube attacks, and
division property based cube attacks were proposed.

In experimental cube attacks [5, 7, 18, 29], superpolies are recovered by ex-
perimental tests, i.e., linearity/quadraticity tests. Hence, in experimental cube
attacks, the sizes of cubes are typically confined to 40. Thus far, with experi-
mental cube attacks, attackers could do key-recovery attacks for the 802-round
Trivium based on cubes with size of 33−36 [29]. The authors in [28] proposed an
algebraic method to recover superpolies in cube attacks. Based on the recovered
superpolies, they could recover at least 5 key variables for the 838-round Trivium
under a set of about 271.75 weak keys. In division property based cube attacks
[22–25], due to the power of MILP solvers, large cubes could be explored. As a
result, attackers could do key-recovery attacks and distinguishing attacks on the
832- and 839-round Trivium respectively.

Rather than recovering the superpolies to retrieve key variables, in dynam-
ic cube attacks [6] and correlation cube attacks [15], attackers do key-recovery
attacks in some other ways. Dynamic cube attacks recover key variables by ex-
ploiting distinguishers on superpolies such as unbalanceness and constantness.
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Although in [8], the authors proposed dynamic cube attacks against the 721- and
855-round Trivium, quickly the attack against 721-Trivium was experimentally
verified to fail and some complexity analysis also indicated that the 855-round
attack was questionable in [10]. Correlation cube attacks recover key variables
by solving a system of probabilistic equations in key variables derived from
conditional correlation properties between superpolies and a set of simple key
expressions which is a basis of the superpoly. In [15], a correlation cube attack
was applied to the 835-round Trivium which could recover about 5-bit key in-
formation.

1.1 Motivation

In this paper, we focus on conditional differential attacks against NLFSR-Based
stream ciphers. Let F (x,v) be the polynomial representation of the first output
bit of a stream cipher, where x = (x1, x2, . . . , xn) represents n key variables and
v = (v1, v2, . . . , vm) represents m public variables. Choose a set of differences
a = {a1, a2, . . . , ad} in Fn+m

2 . In a single-key attack, differences are only applied
to public variables v. The derivative of F with respect to a is defined as

∆aF (x,v) = ⊕c∈L(a)F (x,v ⊕ c),

where L(a) denotes the set of 2d combinations of differences in a. Since NLFSR-
Based stream ciphers are iterative ciphers and very few state bits are updated
in one round, the propagation of the differences in a could be traced. Then in
a conditional differential attack, a set of conditions will be obtained to control
the propagation of the differences so that the derivative ∆aF (x,v) could be
analysed. Let J = {fi(x,v) = γi|1 ≤ i ≤ N}, be a set of N conditions in a
conditional differential attack where γi ∈ {0, 1}. The values of (x,v) satisfying all
the conditions in J are called valid inputs of J . The space of valid inputs is closely
related to the number of free public variables and the number of weak keys, which
are expected to be as large as possible. Generally, fi(x,v) is determined by the
internal state update function of a stream cipher, which is relatively fixed. To
prevent the propagation of the differences in a, it is expected that γ1, γ2, . . . , γN
to be 0’s, but in practice, when γ1, γ2, . . . , γN are 0’s, maybe there is no input
that could satisfy all the conditions in J . Thus, how to choose the values of
γ1, γ2, . . . , γN is important for successfully mounting a conditional differential
attack. Besides, the choices of γ1, γ2, . . . , γN also affect the algebraic normal form
(ANF) of the derivative ∆aF (x) which is clearly also important in a conditional
differential attack.

Previous automatic conditional differential attacks evaluated γ1, γ2, . . . , γN
in order with the preference to zero [13]. Assume that we have a set of conditions,
say J0 = {fi(x,v) = γi|1 ≤ i ≤ l}, and we want to add another condition
fl+1(x,v) to prevent the propagation of the difference for some internal state bit.
Then fl+1(x,v) = 0 is added to J0 if the set of the valid inputs J0∪{fl+1(x,v) =
0} is not empty and fl+1(x,v) = 1 otherwise. It can be seen that evaluating
γ1, γ2, . . . , γN in order could not guarantee that the number of 1’s attains the
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minimum. There may be better choice left. Besides, we do not think that the
number of 1’s is the unique standard for evaluating γ1, γ2, . . . , γN . The number
of rounds, free IV bits and the number of weak keys also should be taken into
consideration when we mount an attack. Hence, in the following of this paper,
we propose to combine traditional conditional differential attacks with MILP
methods, by which we could evaluate conditions more reasonably.

1.2 Our Contribution

MILP solvers are useful tools to solve many optimization problems, and they
have been widely used in cryptanalysis such as differential cryptanalysis, linear
cryptanalysis, integral cryptanalysis. Inspired by this, we introduce the MILP
method into conditional differential attacks to optimize the choices of γ1, γ2, . . . ,
γN mentioned in Subsection 1.1.

Let J = {fi(x,v) = γi|1 ≤ i ≤ N} be as in Subsection 1.1, where γ1, γ2, . . . ,
γN need to be determined. We represent every key/IV condition fi(x,v) by
linear constraints in an MILP model. In particular, in our MILP model, for each
input variable xi (resp. vi), we introduce an auxiliary variable Sxi ∈ {0c, 1c, δ} to
indicate whether the value of xi is fixed in the space of valid inputs of J , where
Sxi = 0c or 1c means that xi is fixed to be 0 or 1 and Sxi = δ means xi is not fixed.
Auxiliary variables in our MILP model are useful for optimizing the number of
weak keys vulnerable to our attack. We first set the objective function of our
model to be the minimal number of 1’s in γ1, γ2, . . . , γN . This aims to prevent
the propagation of differences as many rounds as possible. After we obtain the
minimum number B of 1’s in γ1, γ2, . . . , γN , we change the objective function by
minimizing the number of fixed input variables but add an upper bound B on
the number of 1’s with B slightly larger than B to the MILP model. This aims
to enlarge the number of weak keys when the number of 1’s in γ1, γ2, . . . , γN is
small enough. By this way, we could obtain a better tradeoff between controlling
the propagation of difference and the space of weak keys.

We apply the new technique to Trivium. As a result, we could do key-recovery
attacks up to the 978-round Trivium and detect non-randomness up to the
1108-round Trivium both in the weak-key setting. We compare our results with
the previous results on Trivium in Table 1. It can be seen that our results are
currently the best as far as the number of rounds is concerned.

1.3 Organization

The rest of this paper is organized as follows. Sect. 2 briefly reviews necessary
backgrounds. In Sect. 3, we describe the MILP-Aided conditional differential
attack in detail. In Sect. 4, we apply our new method to Trivium. Finally, con-
clusions are drawn in Sect. 5.
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Table 1. Summary of results on Trivium

# of rounds complexity type of attacks
# of

key size ref.
key bits

968/969/977/978 226.6 key recovery 1 228.5 Sect. 4.3
1108 – non-randomness – 228.5 Sect. 4.4
961 225 distinguishing – 226 [13]
802 238 key recovery 8 all [29]
832 270 key recovery 1 all [22, 23, 25]
838 237 key recovery 5 271.75 [28]
839 278 distinguishing – all [25]
855 274 key recovery 3 all [8]

2 Preliminaries

2.1 Mixed Integer Linear Programming

The mixed integer linear programming (MILP) is a kind of mathematical op-
timization with linear constraints and a linear objective, whose all or some of
the variables are constrained to be integers. Generally, there are variables, con-
straints, and an objective function in an MILP model M. In this paper, the
variables in M are denoted by M.var, the constraints in M are denoted by
M.con, and the objective function in M is denoted by M.obj. If there is no
objective function inM, then MILP solvers like Gurobi [9] will return whether
M is feasible. The following is a small example.

Example 1.

M.var ← a, b, c as binary

M.con← a+ c ≥ 2

M.con← b+ c ≥ 1

M.con← a+ 2b+ c ≤ 3

M.obj ← minimize a+ b+ 2c

The minimum value of a + b + 2c is 3, where (a, b, c) = (1, 0, 1) is an optimal
solution.

The MILP method was first applied to differential and linear cryptanalysis
by N. Mouha et al. in [17]. Since then, it has been applied to search character-
istics in many cryptanalysis techniques against block ciphers such as differen-
tial cryptanalysis [21, 20], impossible differential cryptanalysis [19] and integral
cryptanalysis based on the division property [27].
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2.2 Conditional Differential Attacks

Let E be an NFSR-based cipher whose internal state is of size l. Assume that
E is initialized with key variables x = (x1, x2, . . . , xn) and public variables v =
(v1, v2, . . . , vm). For the sake of convenience, we denote the internal state of E
after t rounds by s(t) = (st+1, st+2, . . . , st+l). Let h be the output function,
namely, the output bit z after r rounds is defined as follows:

z = h(sr+1, sr+2, . . . , sr+l).

Since E is initialized with x and v, the output bit z can be rewritten as a
polynomial on x,v, i.e.,

z = F (x,v).

Let a be difference in v. The main idea of conditional differential attacks is
to control the propagation of the difference a such that the derived polynomial

∆aF (x,v) = F (x,v)⊕ F (x,v ⊕ a)

can be distinguished from an ideal random polynomial. In order to control the
propagation of the difference a, it needs to impose a set of conditions on key/IV
variables. For example, when we want to control the propagation of a for the
first r rounds, it would lead to a set of conditions

{∆asi+l(x,v) = γi|1 ≤ i ≤ r},

where γi ∈ {0, 1}. The values of x1, . . . , xn, v1, . . . , vm satisfying all the condi-
tions are called valid inputs. If a bias of∆aF (x,v) can be detected, then it would
lead to a key-recovery attack or a distinguishing attack depending on whether
there is a condition involving both key and IV variables.

2.3 Cube Attacks and Dynamic Cube Attacks

Cube attacks were first proposed by Dinur and Shamir in [5]. Let F be a stream
cipher, which is initialized with key variables x = (x1, x2, . . . , xn) and public
IV variables v = (v1, v2, . . . , vm). Note that the output bit z of F could be
represented as a polynomial on x and v, i.e. z = f(x,v). Let I = {i1, i2, . . . , id}
be a subset of IV indices. Then f can be rewritten as

f(x,v) = tI · pI(x,v)⊕ q(x,v),

where tI =
∏

i∈I vi, pI does not contain any variable in {vi1 , vi2 , . . . , vid}, and
each term in q is not divisible by tI . For each value of the d variables indexed by
I, there is a corresponding function being derived from f . Then, the summation
of all the 2d derived functions is equal to pI , that is,⊕

(vi1 ,vi2 ,...,vid )∈Fd
2

f(x,v) = pI(x,v).
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In cube attacks, the public variables indexed by I are called cube variables,
while the remaining public variables are called non-cube variables. The set CI

of all 2d possible assignments of the cube variables is called a d-dimensional
cube, and the polynomial pI is called the superpoly of CI in f . For the sake of
convenience, we also call pI the superpoly of I in f .

A cube attack consists of the preprocessing phase and the online phase. In
the preprocessing phase, attackers try to find cubes with low-degree superpolies
to obtain low-degree polynomials on key variables. In the online phase, the pre-
viously found superpolies are evaluated under the real key. Then, by solving a
system of low-degree equations, some key variables could be recovered.

Dynamic Cube Attacks Dynamic cube attacks were first proposed in [6]. The
main idea of dynamic cube attacks is to simplify the ANFs of some intermediate
state bits by assigning dynamic constraints to public/key variables. As a result,
the ANF of the output bit could be simplified and so distinguishers might be
obtained. With distinguishers, attackers could do key-recovery attacks or distin-
guishing attacks depending on whether there is a condition involving both key
and IV variables.

2.4 Relationship between Dynamic Cube Attacks and Conditional
High Order Differential Attacks

Conditional differential attacks could be extended to higher order derivatives.
Let ai1 , ai2 , . . . , aid be d differences. Assume F (x,v) is the output function of
a stream cipher, where x and v are key variables and IV variables respectively.
The d-th order derivative of F with respect to ai1 , ai2 , . . . , aid is defined as

∆ai1 ,...,aid
F (x,v) = ⊕c∈L(ai1 ,...,aid

)F (x,v ⊕ c),

where L(ai1 , . . . , aid) is the set of all 2
d linear combinations of ai1 , . . . , aid . When

the Hamming weight of all aij is one, it can be seen that ∆ai1
,...,aid

F (x,v) is
the superpoly of CI in F , where I = {i1, i2, . . . , id}.

Originally, in conditional differential attacks, attackers utilize the bias of
derivative∆ai1 ,...,aid

F (x,v) to do key-recovery attacks or distinguishing attacks.
From the point of view of dynamic cube attacks, the conditions imposed to con-
trol the propagation of the chosen differences actually simplify the corresponding
superpoly. Therefore, by recovering the ANF of the derivative ∆ai1 ,...,aid

F (x,v),
i.e. the superpoly, we could do key-recovery attacks even if there is no condition
involving both key and IV variables.

3 The MILP-Aided Conditional Differential Attack

Let F (x,v) be the polynomial representation of the first output bit of a stream
cipher, where x = (x1, x2, . . . , xn) represents n key variables and v = (v1, v2, . . . ,
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vm) represents m IV variables. Let a = {a1, a2, . . . , ad}(d ≥ 1) be a set of
differences. Assume

J = {fi(x,v) = γi|1 ≤ i ≤ N}

is a set of N conditions which we want to impose to control the propagation of
a, where (γ1, γ2, . . . , γN ) ∈ FN

2 describes the differential characteristic. In this
section, we give an MILP-Aided method to determine the values of γ1, γ2, . . . , γN
in conditional differential attacks.

3.1 The Technique of Auxiliary Variables

In this subsection, we introduce the concept of auxiliary variables and define
their operation rules.

Recall that the condition fi(x,v) for (1 ≤ i ≤ N) is a polynomial in x =
(x1, x2, . . . , xn) and v = (v1, v2, . . . , vm). For each variable x ∈ {x1, x2, . . . , xn,
v1, v2, . . . , vm}, we add to it an auxiliary variable Sx ∈ {0c, 1c, δ} to indicate the
state of x, where 0c means that x is fixed to 0, 1c means that x is fixed to 1
and δ means that the value of x is not fixed∗. Next, we define operation rules of
auxiliary variables for XOR and AND. The rules for XOR are given by

1c ⊕ 1c = 0c,

0c ⊕ y = y, where y ∈ {0c, 1c, δ},
δ ⊕ y = δ, where y ∈ {0c, 1c},
δ ⊕ δ ⊕ y = 0c, where y ∈ {0c, 1c, δ}.

The rules for AND are given by
1c & y = y, where y ∈ {0c, 1c, δ},
0c & y = 0c, where y ∈ {0c, 1c, δ},
δ & δ = δ.

Then for a condition fi(x,v)(1 ≤ i ≤ N), we could determine the state of fi
with the above two rules according to the states of x1, x2, . . . , xn, v1, v2, . . . , vm.
We offer an illustrative example in the following.

Example 2. Let f = v1⊕x2x3⊕x4 be a polynomial on v1, x2, x3, x4. The auxiliary
variables of v1, x2, x3, x4 are Sv1 = 0c, Sx2

= 1c, Sx3
= δ, Sx4

= 1c. Then, Sf =
0c ⊕ 1c & δ ⊕ 1c = δ, namely, the value of f is not fixed.

Remark 1. For the XOR operation, the result of δ ⊕ δ ⊕ y is defined as 0c. This
rule is rational. For f(x,v), it is not necessary to fix each variable to a constant
to make f = 0. For example, to make f = v1 ⊕ x2 = 0, we do not need to fix
the values of v1 and x2 respectively but only to require that v1 = v2 instead. In
this case, Sv1 = Sx2 = δ and Sf = 0c.

∗Naturally, the state of the constant 0/1 is defined as 0c/1c.
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MILP Models of Basic Operations In this subsection, we show the MILP
models of the above two rules. In our models, for each variable x, we use two
binary variables, i.e. Ax and Fx, to describe the state of x. For simplicity, Ax and
Fx are called the assignment variable and the flag variable, respectively. With
Ax and Fx, we could represent the state of x properly as follows†:

– When Fx = 0 and Ax = 0, it means that x is fixed to 0, i.e., Sx = 0c.
– When Fx = 0 and Ax = 1, it means that x is fixed to 1, i.e., Sx = 1c.
– When Fx = 1 and Ax = 0, it means that the value of x is not fixed, i.e.,

Sx = δ.

In Propositions 1 and 2, we show MILP models for the basic operations AND
and XOR.

Proposition 1 (MILP Model for AND). Assume that d = a1&a2& · · ·&am.
Let Aai and Fai be the assignment variable and flag variable of ai (1 ≤ i ≤ m),
respectively. Then, Ad and Fd, the assignment variable and flag variable of d,
can be calculated as following

M.var ← Aa1
, Aa2

, . . . , Aam
as binary,

M.var ← Fa1 , Fa2 , . . . , Fam as binary,

M.var ← Ad, Fd, ba1 , ba2 , . . . , bam , td as binary,

M.con← bai = max(Aai , Fai) for i ∈ {1, 2, . . . ,m},
M.con← td = max(Fa1 , Fa2 , . . . , Fam),

M.con← Ad = min(Aa1 , Aa2 , . . . , Aam),

M.con← Fd = min(ba1 , ba2 , . . . , bam , td).

We explain the rationale of the MILP Model for AND from the following
three cases.

– Case 1: There exists some j ∈ {1, 2, . . . ,m} such that aj = 0.
- In this case, according to the operation rules, we have that d = 0, i.e.
Sd = 0c. Since aj = 0, we have that Faj = 0 and Aaj = 0. Hence, baj = 0
and so Ad = 0 and Fd = 0. Namely, the constraints added to the model
guarantee that d = 0.

– Case 2: ai = 1 for each 1 ≤ i ≤ m.
- In this case, according to the operation rules, we have that d = 1. Since
ai = 1 for 1 ≤ i ≤ m, we have that Aai = 1 and Fai = 0 for 1 ≤ i ≤ m.
It can be deduced that bai = 1 for 1 ≤ i ≤ m and td = 0. Hence, we have
that Fd = 0 and Ad = 1. Namely, the constraints added to the model
guarantee that d is equal to 1.

– Case 3: ai ̸= 0 for 1 ≤ i ≤ m and there exists some j ∈ {1, 2, . . . ,m} such
that aj is not fixed.

†Since there are only three states of the variable x, we add a constraint Ax ≤ 1−Fx

to discard the case of Fx = 1 and Ax = 1.
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- In this case, according to the operation rules, we have that d is not fixed.
Since ai ̸= 0 for 1 ≤ i ≤ m, we have that Aai + Fai = 1. Furthermore,
it can be deduced that Aaj = 0 and Faj = 1 for aj is not fixed. Then,
we have that bai = 1 for each 1 ≤ i ≤ m and td = 1. Hence, we know
that Ad = 0 and Fd = 1. Namely, the constraints added to the model
guarantee that d is not fixed.

According to the above illustrations, we know that the MILP model for AND
built above is in accordance with the rules of auxiliary variables for AND. In the
remainder of this paper, the above procedure is denoted by

(M, Ad, Fd)← AFAND(M, Aa1 , Aa2 , . . . , Aam , Fa1 , Fa2 , . . . , Fam)

for simplicity.

Proposition 2 (MILP Model for XOR). Assume that d = a1⊕a2⊕· · ·⊕am⊕
α, where α is a constant belonging to {0, 1}. Let Aai and Fai be the assignment
variable and flag variable of ai (1 ≤ i ≤ m), respectively. Then, Ad and Fd, the
assignment variable and flag variable of d, can be calculated as following

M.var ← Aa1 , Aa2 , . . . , Aam , T1, . . . , Tm, bd as binary ,

M.var ← Fa1 , Fa2 , . . . , Fam , βd as binary ,

M.con← βd =
⊕m

i=1 Aai ⊕ α‡,

M.con← bd = max(Fa1 , Fa2 , . . . , Fam),

M.con← Tj = min(F̃a1 , . . . , F̃aj−1 , Faj , F̃aj+1 , . . . , F̃am) for 1 ≤ j ≤ m,

M.con← Fd = T1 + T2 + · · ·+ Tm,

M.con← Ad = min(1− Fd, βd, 1− bd),

where F̃aj
= 1 − Faj

for 1 ≤ j ≤ m. We explain the rationale of the MILP
Model for XOR from the following three cases.

– Case 1: For 1 ≤ i ≤ m, xi is fixed to 0 or 1.
- In this case, according to the operation rules, we have that d =

⊕m
i=1 ai⊕

α. Since ai is fixed to 0 or 1, we have Fai = 0 for 1 ≤ i ≤ m. Hence,
bd = 0 and Tj = 0 for 1 ≤ j ≤ m. Then, it can be deduced that Fd = 0
and so Ad =

⊕m
i=1 Aai ⊕α. Namely, the constraints added to the model

guarantee that d =
⊕m

i=1 ai ⊕ α.
– Case 2: There is exactly one j ∈ {1, 2, . . . ,m} such that aj is not fixed, while

the remaining variables are fixed to 0 or 1.
- In this case, according to the operation rules, we have that d is not
fixed. Since aj is not fixed, Faj = 1. Then, we have Tj = 1 and Ti = 0
for i ̸= j. Hence, Fd = 1 and so Ad = 0. Namely, the constraints added
to the model guarantee that d is not fixed.

‡In MILP models, we could not add the constraint βd =
⊕m

i=1 Aai ⊕α directly. We
show how to describe βd =

⊕m
i=1 Aai ⊕ α with linear constraints in Appendix.
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– Case 3: There are at least two variables are not fixed.
- In this case, according to the operation rules, we have that d could
be fixed to 0, i.e. Sd = 0c. For simplicity, we assume that a1 and
a2 are not fixed. Since a1 and a2 are not fixed, we have that Fa1 =
Fa2 = 1. Then, Tj = 0 for 1 ≤ j ≤ m, and so Fd = 0. Since bd =
max(Fa1 , Fa2 , . . . , Fam) = 1, we have that Ad = 0. Namely, the con-
straints added to the model guarantee that d could be fixed to 0.

According to the above illustrations, we know that the MILP model for XOR
built above is in accordance with the rules of auxiliary variables for XOR. In the
remainder of this paper, the above process is denoted by

(M, Ad, Fd)← AFXOR(M, Aa1
, Aa2

, . . . , Aam
, Fa1

, Fa2
, . . . , Fam

, α)

for simplicity.

3.2 MILP Models to Determine Proper Differential Characteristics

In this subsection, we show how to build MILP models to determine a proper
differential characteristic, i.e. the values of γ1, γ2, . . . , γN . First, we introduce
how to build MILP models to determine the state of a polynomial f(x,v) ac-
cording to the states of x1, x2, . . . , xn, v1, v2, . . . , vm. Then, we show how to build
MILP models which could determine a proper value of γ1, γ2, . . . , γN with the
consideration of the space of valid inputs.

MILP Models to Determine the State of A Condition Let f(x,v) =⊕
1≤j≤L (x||v)wj be a polynomial of size L, where wj = (w1

j , w
2
j , . . . , w

m+n
j ) ∈

Fm+n
2 and (x||v)wj =

∏n
i=1 xi

wi
j ·
∏m

i=1 vi
wn+i

j . Based on Propositions 1 and 2, we
could determine the states of f according to the state of x1, x2, . . . , xn, v1, v2 . . . ,
vm. For an MILP model M which contains Ax and Fx for each variable x ∈
{x1, x2, . . . , xn, v1, v2 . . . , vm}, Algorithm 1 shows how to build a new MILP
model which determines the state of f . In Algorithm 1, we first linearize the
polynomial f as f =

⊕
1≤j≤L yj , where yj = (x||v)wj . Then, in Line 6 of

Algorithm 1, we determine the state of yj , i.e. Ayj and Fyj , by applying the
procedure AFAND. Finally, by applying the procedure AFXOR directly, the
state of f can be determined according to the states of y1, y2, . . . , yL.

MILP Models to Determine A Proper Differential Characteristic In
this subsection, we show how to build an MILP model to determine a proper
differential characteristic. Algorithm 2 describes the detailed procedure. In Al-
gorithm 2, for each condition fi(1 ≤ i ≤ N), we determine the state of fi using
Algorithm 1. Then, we add constraints to make requirements on the number
of conditions which are fixed to 1. Finally, maximizing

∑
x∈X Fx is set as the

objective of our model, where X = {x1, . . . , xn, v1, . . . , vm}. In the following, we
make some explanations of Algorithm 2.
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Algorithm 1 Determine the state of a condition

1: procedure DetStaofCond(M,f)
2: Let T be the set of terms of f ;
3: Set j = 1;
4: for each term u ̸= 1 in T do
5: Let xi1 , xi2 , . . . , xid , vl1 , vl2 , . . . , vlq be the variables appearing in u;
6: Set Au = (Axi1

, . . . , Axid
, Avl1

, . . . , Avlq
);

7: Set Fu = (Fxi1
, . . . , Fxid

, Fxl1
, . . . , Fvlq

);

8: (M, Ay, Fy)← AFAND(M,Au,Fu)
9: Set j = j + 1;
10: end for
11: (M, Af , Ff ) ← AFXOR(M, Ay1 , Ay2 , . . . , Ayj−1 , Fy1 , Fy2 , . . . , Fyj−1 , a), where

a is the constant term of f ;
12: return (M, Ff , Af );
13: end procedure

– The parameterD in Line 6 of Algorithm 2 is a positive integer, which is much
larger than N . If there exists some j ∈ {1, 2, . . . , N} such that Ffj = 1, i.e.
the value of fj is not fixed, then we have that Xsum < 0. Namely, the
constraint Xsum ≥ 0 guarantees that the value of each condition is fixed to
0 or 1.

– The parameter B, which is set by the attackers, is used to bound the num-
ber of conditions which are fixed to 1. To determine a proper value of B,
minimizing the value of Xsum under the constraint Xsum ≥ 0 is set as the
objective of the model. Therefore, the attackers can obtain an lower bound
of B by solving the model, and so the attackers could set a proper value of
B accordingly.

– In conditional differential attacks, less variables which are fixed to constants
usually means a larger space of valid inputs. Hence, for the given bound B,∑

x∈X Fx is set as the objective of the model so that we could make the
number of the variables x1, x2, . . . , xn, v1, v2, . . . , vm which are not fixed as
large as possible.

Remark 2. In the rules of auxiliary variables for XOR, the result of δ ⊕ δ ⊕ y is
defined as 0c, where y ∈ {0c, 1c, δ}. It may lead to a contradiction. We show an
example in the following.

Example 3. Let f1 = x1 ⊕ x2 and f2 = x1 ⊕ x2 ⊕ 1 be two polynomials. When
Sx1 = Sx2 = δ, we have that Sf1 = 0c and Sf2 = 0c according to the operation
rules of auxiliary variables for XOR. This implies that f1 and f2 could be fixed
to 0 at the same time. However, since f1 = f2 ⊕ 1, f1 and f2 would never be
fixed to 0 at the same time.

Although our model can not avoid the similar case in Example 3, we could
remedy it by taking an extra step. Let ci be the value of fi(x,v) determined by



Title Suppressed Due to Excessive Length 13

Algorithm 2 Determine a proper differential characteristic

Input: The set J ′ = {f1, f2, . . . , fN}
1: Declare an empty MILP modelM;
2: Declare Ax1 , . . . , Axn , Av1 , . . . , Avm , Fx1 , . . . , Fxn , Fv1 , . . . , Fvm as the assignment

and flag variables of x1, x2, . . . , xn, v1, v2, . . . , vm;
3: for f ∈ J ′ do
4: (M, Af , Ff ) = DetStaofCond(M, f)
5: end for
6: M.con← Xsum = (

∑
f∈J′ Af −D × Ff );

7: M.con← Xsum ≥ 0;
8: M.con← Xsum ≤ B;
9: M.obj ← maximum

∑
x∈X Fx, where X = {x1, x2, · · · , xn, v1, v2, · · · , vm};

our model for 1 ≤ i ≤ N . Then, to check whether there is a contradiction, we
only need to solve the following system of equations

f1(x,v) = c1,
...

fN (x,v) = cN .

If this system of equations is unsolvable, then we know that there are contra-
dictions happening. In this case, we only need to remove this solution from the
model and search for another solution. We could repeat the above procedure
until we find a valid solution.

4 Application to Trivium

In this section, we apply the method to analyse the security of Trivium.

4.1 Specification of Trivium

Trivium is a bit oriented synchronous stream cipher which was selected as one
of eSTREAM hardware-oriented portfolio ciphers. The main building block of
Trivium is a 288-bit Galois nonlinear feedback shift register. For every clock cycle
there are three bits of the internal state updated by a feedback function and all
the remaining bits of the internal sate are updated by shifting. The internal
state of Trivium, denoted by (s1, s2, . . . , s288), is initialized by loading an 80-bit
secret key and an 80-bit IV into the registers, and setting all the remaining bits
to 0 except for the last three bits of the third register. Then, after updating the
internal state 1152 rounds, the algorithm would generate the output keystream
bits. Algorithm 3 describes the pseudo-code of Trivium. For more details, please
refer to [3].
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4.2 MILP Models for Trivium

When applying our method to Trivium, similar to [13], we choose the dif-
ference of Hamming weight one which are applied to IV variables only. Let
a = {ai1 , ai2 , . . . , aid} be the chosen differences. Denote I = {i1, i2, . . . , id}
by the set of indices of the chosen differences. For each single difference aij
(1 ≤ j ≤ d), we try to control the propagation of aij for the first r rounds.
In Algorithm 4, for the i-th round (1 ≤ i ≤ r), we first collect the conditions
derived from the three updated bits si1, s

i
94 and si178, where we use the software

Singular to calculate the ANFs of si1, s
i
94 and si178. Then, for the key variables

x1, x2, . . . , x80 and the IV variables v1, v2, . . . , v80, we add the corresponding as-
signment and flag variables, i.e. Ax1 , Fx1 , . . . , Ax80 , Fx80 , Av1 , Fv1 , . . . , Av80 , Fv80 ,
to the model. Besides, since ai (i ∈ I) is a chosen difference, the value of vi could
not be fixed to 0 or 1. Hence, in Line 21-24 of Algorithm 4, we add constraints
to make sure that the value of vi is not fixed.

4.3 Key-Recovery Attacks on the Round-Reduced Trivium

With respect to the structure of Trivium, similar to [13], we choose the differences
at a distance of three. First, we perform experiments for I1 = {0, 3, 6, . . . , 69},
namely, {e0, e3, . . . , e69} are the chosen differences.

In our experiments§, we attempt to control the propagation of each differ-
ence ei (i ∈ I1) for the first 200 rounds. As a result, we obtain a set J1 =
{f1, f2, . . . , f652} of 652 conditions. Denote by NC1 the order of the set {f =
1|f ∈ J1}. Then, by solving MILP models, we obtain that NC1 ≥ 3 under the
condition that each f ∈ J1 is fixed to 0 or 1. Hence, we set the parameter B = 3
and set maximizing the number of key variables which are not fixed (denoted

§We use the MILP solver Gurobi to solve the generated MILP models. Besides, all
our experiments are performed on a PC with an i7-7700K CPU and 32G RAM.

Algorithm 3 Pseudo-code of Trivium

1: (s1, s2, . . . , s93)← (x1, x2, . . . , x80, 0, . . . , 0);
2: (s94, s95, . . . , s177)← (v1, v2, . . . , v80, 0, . . . , 0);
3: (s178, s179, . . . , s288)← (0, . . . , 0, 1, 1, 1);
4: for i from 1 to N do
5: t1 ← s66 ⊕ s93 ⊕ s91s92 ⊕ s171;
6: t2 ← s162 ⊕ s177 ⊕ s175s176 ⊕ s264;
7: t3 ← s243 ⊕ s288 ⊕ s286s287 ⊕ s69;
8: if i > 1152 then
9: zi−1152 ← s66 ⊕ s93 ⊕ s162 ⊕ s177 ⊕ s243 ⊕ s288;
10: end if
11: (s1, s2, . . . , s93)← (t3, s1, . . . , s92);
12: (s94, s95, . . . , s177)← (t1, s94, . . . , s176);
13: (s178, s179, . . . , s288)← (t2, s178, . . . , s287);
14: end for
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by NAx) as the objective of the model. By solving the corresponding MILP
model, which could be solved with Gurobi in seconds under a PC, we obtain the
following condition:

Algorithm 4 Determine proper differential characteristics for Trivium

Input: The set of indices of chosen differences: I, The number of difference-controlled
rounds: r

1: Set J = ∅;
2: for i ∈ I do
3: for j from 1 to r do
4: f ← ∆eis

j
1(x,v);

5: if f ̸= 1 and f ̸= 0 then
6: J ← J ∪ f
7: end if
8: f ← ∆eis

j
94(x,v);

9: if f ̸= 1 and f ̸= 0 then
10: J ← J ∪ f
11: end if
12: f ← ∆eis

j
178(x,v);

13: if f ̸= 1 and f ̸= 0 then
14: J ← J ∪ f
15: end if
16: end for
17: end for
18: Declare an empty MILP modelM;
19: Declare Ax1 , . . . , Ax80 , Fx1 , . . . , Fx80 as 160 MILP variables ofM corresponding to

the assignment and flag variables of secret variables x1, x2, . . . , x80;
20: Declare Av1 , . . . , Av80 , Fv1 , . . . , Fv80 as 160 MILP variables ofM corresponding to

the assignment and flag variables of IV variables v1, v2, . . . , v80;
21: for i ∈ I do
22: M.con← Avi = 0;
23: M.con← Fvi = 1;
24: end for
25: for f ∈ J do
26: (M, Af , Ff ) = DetStaofCond(M, f)
27: end for
28: M.con← Xsum =

∑
f∈J(Af −D × Ff );

29: M.con← Xsum ≥ 0;
30: M.con← Xsum ≤ B;
31: M.obj ← maximum

∑
f∈J Vf ;
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C1 : (v1, v2, v4, v5, v7, v8, v10, v11, v13, v14, v16, v17, v19, v20,

v22, v23, v25, v26, v28, v29, v31, v32, v34, v35, v37, v38, v40,

v41, v43, v44, v46, v47, v49, v50, v52, v53, v55, v56, v58, v59,

v61, v62, v64, v65, v67, v68, v70, v71, v73, v74, v76, v77, v79) = 053;

(k1, k2, k4, k5, k7, k8, k10, k11, k13, k14, k16, k17, k19, k20,

k22, k23, k25, k26, k28, k29, k31, k32, k34, k35, k37, k38, k40,

k41, k43, k44, k46, k47, k49, k50, k52, k53, k55, k56, k58, k59,

k61, k62, k64, k65, k67, k68, k70, k71, k73, k74, k76, k77, k79) = 053;

k66 = 1;

Furthermore, we try to increase B to 4 and set maximizing NAx as the
objective of the model. As a result, we obtain several conditions, and we list two
of them as follows:

C2 : (v1, v2, v4, v5, v7, v8, v10, v11, v13, v14, v16, v17, v19, v20,

v22, v23, v25, v26, v28, v29, v31, v32, v34, v35, v37, v38, v40,

v41, v43, v44, v46, v47, v49, v50, v52, v53, v55, v56, v58, v59,

v61, v62, v64, v65, v67, v68, v70, v71, v73, v74, v76, v77, v79) = 053;

(k1, k2, k4, k5, k7, k8, k10, k11, k13, k14, k16, k17, k19, k20,

k22, k23, k25, k26, k28, k29, k31, k32, k34, k35, k37, k38, k40,

k41, k43, k44, k46, k47, k49, k50, k52, k53, k55, k56, k58, k59,

k61, k62, k64, k65, k66, k68, k70, k71, k73, k74, k76, k77, k79) = 053;

k67 = 1;

C3 : (v1, v2, v4, v5, v7, v8, v10, v11, v13, v14, v16, v17, v19, v20,

v22, v23, v25, v26, v28, v29, v31, v32, v34, v35, v37, v38, v40,

v41, v43, v44, v46, v47, v49, v50, v52, v53, v55, v56, v58, v59,

v61, v62, v64, v65, v67, v68, v70, v71, v73, v74, v76, v77, v79) = 053;

(k1, k2, k4, k5, k7, k8, k10, k11, k13, k14, k16, k17, k19, k20,

k22, k23, k25, k26, k28, k29, k31, k32, k34, k35, k37, k38, k40,

k41, k43, k44, k46, k47, k49, k50, k52, k53, k55, k56, k58, k59,

k61, k62, k64, k65, k66, k67, k68, k70, k71, k73, k74, k76, k77, k79) = 054;

To obtain further results, we slide the differences chosen above, i.e. {e1, e4, . . . ,
e70} are the chosen differences and I2 = {1, 4, 7, . . . , 70}. Then, we perform simi-
lar experiments as above. As a result, we obtain three different conditions C4, C5

and C6 given by

¶The condition C2 is the same as the condition derived in [13].
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C4 : (v0, v2, v3, v5, v6, v8, v9, v11, v12, v14, v15, v17, v18, v20,

v21, v23, v24, v26, v27, v29, v30, v32, v33, v35, v36, v38, v39,

v41, v42, v44, v45, v47, v48, v50, v51, v53, v54, v56, v57, v59,

v60, v62, v63, v65, v66, v68, v69, v71, v72, v74, v75, v77, v78) = 053;

(k0, k2, k3, k5, k6, k8, k9, k11, k12, k14, k15, k17, k18, k20,

k21, k23, k24, k26, k27, k29, k30, k32, k33, k35, k36, k38, k39,

k41, k42, k44, k45, k47, k48, k50, k51, k53, k54, k56, k57, k59,

k60, k62, k63, k65, k66, k68, k69, k71, k72, k74, k75, k77, k78) = 053;

k67 = 1;

C5 : (v0, v2, v3, v5, v6, v8, v9, v11, v12, v14, v15, v17, v18, v20,

v21, v23, v24, v26, v27, v29, v30, v32, v33, v35, v36, v38, v39,

v41, v42, v44, v45, v47, v48, v50, v51, v53, v54, v56, v57, v59,

v60, v62, v63, v65, v66, v68, v69, v71, v72, v74, v75, v77, v78) = 053;

(k0, k2, k3, k5, k6, k8, k9, k11, k12, k14, k15, k17, k18, k20,

k21, k23, k24, k26, k27, k29, k30, k32, k33, k35, k36, k38, k39,

k41, k42, k44, k45, k47, k48, k50, k51, k53, k54, k56, k57, k59,

k60, k62, k63, k65, k67, k68, k69, k71, k72, k74, k75, k77, k78) = 053;

k66 = 1;

C6 : (v0, v2, v3, v5, v6, v8, v9, v11, v12, v14, v15, v17, v18, v20,

v21, v23, v24, v26, v27, v29, v30, v32, v33, v35, v36, v38, v39,

v41, v42, v44, v45, v47, v48, v50, v51, v53, v54, v56, v57, v59,

v60, v62, v63, v65, v66, v68, v69, v71, v72, v74, v75, v77, v78) = 053;

(k0, k2, k3, k5, k6, k8, k9, k11, k12, k14, k15, k17, k18, k20,

k21, k23, k24, k26, k27, k29, k30, k32, k33, k35, k36, k38, k39,

k41, k42, k44, k45, k47, k48, k50, k51, k53, k54, k56, k57, k59,

k60, k62, k63, k65, k66, k67, k68, k69, k71, k72, k74, k75, k77, k78) = 054;

For I1 (resp. I2), we recover the derivatives for the output bits of some
Trivium variants with no less than 960 rounds, i.e. the superpolies, of the chosen
differences under conditions C1, C2 and C3 (resp. C4, C5 and C6). We summarise
our results in Table 2∥. According to Table 2, we have 6× 226 ≈ 228.6 weak keys
totally. For each class of weak keys with 226 elements, we could recover one key bit
with a complexity of 224 for the 977-/968-/978-/969-round Trivium respectively.
Therefore, for a weak key in each class of weak keys, we could recover it with a
complexity of 225 + 224.

∥We put the detailed superpolies in the supporting materials.
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Table 2. The derivatives of I1 and I2 under different conditions

Differences condition B # of weak keys # of rounds degree of derivatives

I1

C1 3 226 968 1

C2 4 226

960 3
961 2
962 2
977 2

C3 4 226 968 2

I2

C4 3 226 969 1

C5 4 226
960 2
961 1
978 3

C6 4 226 969 2

4.4 Non-Randomness of the Round Reduced Trivium

In the above subsection, for I1 = {0, 3, 6, . . . , 69}, the IV variables v72, v75 and
v78 are not involved in the conditions C1, C2 and C3. Hence, under the conditions
C1, C2 and C3, we evaluate the degrees of the superpolies of the cube CI3 in
the first output bit of Trivium variants with no less than 960 rounds, where
I3 = {0, 3, 6, . . . , 69, 72, 75, 78}. When evaluating the degrees of the superpolies,
we use the method proposed in [24] which could return upper bounds of degrees
of the superpolies. Table 3 summarises the upper bounds of degrees of superpolies
of CI3 .

Table 3. Upper bounds of degrees of superpolies of CI3

j+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

j = 960, C1 3 2 3 3 3 5 5 4 0 2 3 4 5 7 5 3 2 3 3 3 2 6 8 7 5 4
j = 960, C2 0 0 0 1 2 4 4 5 4 2 2 1 2 2 4 4 3 0 1 2 4 3 4 5 7 8
j = 960, C3 4 4 4 4 4 6 6 4 0 4 5 7 7 7 5 4 4 4 4 4 4 7 9 9 6 5
j = 986, C1 4 7 7 5 6 6 3 3 3 6 6 9 11 11 10 6 7 6 7 9 10 9 13 16 15 13
j = 986, C2 4 5 5 5 4 6 6 7 4 2 3 4 6 8 8 10 10 7 5 5 6 7 7 8 10 13
j = 986, C3 7 8 9 7 8 8 4 4 4 7 7 11 12 13 10 6 8 9 9 10 10 9 15 17 17 14
j = 1012, C1 13 12 12 13 14 13 11 7 9 11 13 14 17 18 17 17 12 12 14 14 15 15 18 17 16 13
j = 1012, C2 10 7 8 9 9 9 11 10 11 10 8 9 11 12 12 14 13 12 11 8 13 15 15 16 17 16
j = 1012, C3 14 14 13 14 14 14 11 9 10 13 14 16 18 20 20 17 14 14 15 16 17 17 20 19 17 15
j = 1038, C1 15 16 16 18 20 19 19 14 14 15 19 18 19 21 22 22 19 17 20 20 20 20 20 19 18 19
j = 1038, C2 14 11 10 12 15 16 18 20 18 16 16 15 15 16 16 19 21 18 16 17 17 17 19 21 21 19
j = 1038, C3 16 17 19 21 21 22 20 15 16 18 21 21 22 24 25 24 20 19 21 22 21 21 23 21 20 21
j = 1064, C1 19 21 23 24 26 23 23 22 20 22 23 25 26 26 26 26 26 23 25 26 26 26 26 26 26 26
j = 1064, C2 15 16 18 19 20 20 21 21 17 17 18 20 20 21 22 24 24 20 17 18 20 22 23 25 26 26
j = 1064, C3 21 22 25 26 26 26 26 24 22 24 24 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26
j = 1090, C1 26 26 26 26 26 26 26 26 26 26 26 – – – – – – – – – – – – – – –
j = 1090, C2 24 22 22 25 24 25 24 26 26 24 23 – – – – – – – – – – – – – – –
j = 1090, C3 26 26 26 26 26 26 26 26 26 26 26 – – – – – – – – – – – – – – –

Similarly, we do the same experiments for I4 = I2 ∪ {73, 76, 79} under the
conditions C4, C5 and C6 respectively. We summarise the upper bounds of the
degrees of superpolies of CI4 in Table 4.



Title Suppressed Due to Excessive Length 19

Table 4. Upper bounds of degrees of superpolies of CI4

j+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

j = 960, C4 3 2 3 2 1 4 6 4 2 0 2 3 4 5 5 2 2 3 2 1 2 3 5 7 7 5
j = 960, C5 0 0 0 0 0 2 3 3 3 3 2 1 2 1 4 4 2 1 0 1 2 3 2 3 5 8
j = 960, C6 3 3 3 3 2 6 6 5 3 0 3 4 5 6 6 3 2 3 2 2 3 3 5 8 8 5
j = 986, C4 4 5 6 5 3 6 7 2 1 4 4 6 9 11 10 8 7 6 5 8 9 8 12 14 15 14
j = 986, C5 7 2 3 4 4 4 5 5 4 4 2 2 4 6 6 9 8 7 4 3 4 5 5 6 8 11
j = 986, C6 5 6 7 7 6 7 7 2 1 4 5 7 10 12 10 8 7 7 7 8 9 8 14 16 17 14
j = 1012, C4 10 12 11 12 12 14 12 9 8 8 11 13 14 17 16 16 14 11 12 14 13 13 14 15 17 13
j = 1012, C5 11 10 6 7 9 8 7 10 10 9 9 9 9 11 10 11 13 12 9 11 11 11 13 13 14 14
j = 1012, C6 10 12 12 12 12 14 12 10 9 10 12 14 15 17 17 17 16 11 12 14 15 15 16 17 17 14
j = 1038, C4 13 14 14 16 17 19 18 16 14 13 16 17 17 17 21 21 21 17 19 21 20 19 18 19 19 17
j = 1038, C5 12 11 10 10 11 15 16 18 18 15 13 13 14 14 14 16 18 18 14 14 16 16 16 18 20 19
j = 1038, C6 15 15 16 18 18 19 19 16 14 15 17 18 19 19 22 23 22 18 21 21 21 20 19 20 19 18
j = 1064, C4 18 18 19 24 23 23 22 23 21 20 20 22 23 26 26 26 26 24 21 23 25 26 26 26 26 26
j = 1064, C5 16 14 14 18 18 17 19 20 20 16 16 18 18 18 18 19 22 20 18 16 17 21 20 21 23 25
j = 1064, C6 18 20 21 24 25 25 26 24 21 21 21 22 24 26 26 26 26 25 23 25 26 26 26 26 26 26
j = 1090, C4 25 26 26 26 26 26 26 26 26 24 26 26 26 26 26 26 26 26 26 26 26 – – – – –
j = 1090, C5 24 22 22 21 23 23 23 23 25 24 23 23 26 26 26 25 26 26 24 25 25 – – – – –
j = 1090, C6 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 – – – – –

According to Tables 3 and 4, it can be seen that there are many rounds such
that the degrees of the superpolies of CI3/CI4 are less than 10. For example,
for I3 under the condition C2, the degree of its superpoly in the first output
bit of the 1031-round Trivium is 8 < 10. Furthermore, for the I4 (resp. I3)
under the condition C5 (resp. C2), the degree of superpoly is not larger than 23
(resp. 24) for Trivium reduced to 1108 (resp. 1100) rounds. The probability of
a random polynomial in 26 variables of degree not larger than 24 is 2−27, since
each term occurs in a random polynomial with the probability 1/2 and there are
27 terms of degree larger than 24 not appearing in the polynomial. Similarly, a
random polynomial in 26 variables of degree not larger than 23 is 2−327. Note
that our superpoly contains 26 variables. Thus, our observation that the degree
of the superpoly is not larger than 24 or 23 shows a kind of non-randomness for
Trivium in terms of algebraic property.

Remark 3. As comparisons, we estimate the degree of the superpolies of CI1

under another two conditions C7 and C8. In C7, a natural condition which could
be obtained by observing the structure of Trivium, we set k3·i+1 = 0 for 0 ≤ i ≤
26 and k3·i+2 = 0 for 0 ≤ i ≤ 25. Under the condition C7, we could observe the
similar nonrandomness for Trivium reduced to 1072 rounds. Furthermore, we do
similar experiments on C8 which is obtained by randomly add one condition on
key variables, i.e. k0 = 0, to C7. Under the condition C8, we could observe the
similar nonrandomness for Trivium reduced to 1072 rounds. It can be seen that
there is a gap between 1072 and 1108. It indicates that the conditions found by
our method are superior to those natural conditions.

5 Conclusion

In this paper, we focus on conditional differential attacks. Deriving and analysing
the conditions imposed to control the propagation of the chosen differences is
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a key step of conditional differential attacks. To determine a proper differential
characteristic of a set of derived conditions automatically, we apply the MILP
method to conditional differential attacks. Our new method enables us to con-
sider all the derived conditions together as well as take the space of valid input
into account. As illustrations, we apply our method to Trivium. Combining with
the idea of cube attacks, we do key-recovery attacks for up to the 978-round
Trivium in the weak-key setting. Furthermore, we could detect non-randomness
up to the 1108-round Trivium in the weak-key setting.

Appendix

In [17], the authors introduce how to describe the b = a1 ⊕ a2 with linear
constraints, which is shown in the following.


M.con← b+ a1 + a2 ≥ 2d

M.con← d ≥ b

M.con← d ≥ a1

M.con← d ≥ a2

The above procedure is denoted by (M, b) ← Xor2(M, a1, a2). Based on this
method, Algorithm 5 shows how to describe y = x1 ⊕ x2 ⊕ · · · ⊕ xm for m ≥ 2
with linear constraints. In Algorithm 5, we first convert y = x1 ⊕ x2 ⊕ · · · ⊕ xm

to y = y1 ⊕ y2 ⊕ · · · ⊕ y⌈m/2⌉, where yi = xi ⊕ xi+1 (y⌈m/2⌉ = xm is m is an odd
integer). Then, we do this operation repeatedly until there are only two variables
being involved in the XOR operation. Finally, by applying the procedure Xor2
to the final two variables, we could represent y = x1 ⊕ x2 ⊕ · · · ⊕ xm with linear
constraints. With the above procedure, we could build an MILP model which
describes y = x1 ⊕ x2 ⊕ · · · ⊕ xm equivalently.
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