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Abstract

We propose a new family of public key encryption (PKE) and key encap-

sulation mechanism (KEM) schemes based on the plain learning with errors

(LWE) problem. Two new design techniques are adopted in the proposed

scheme named SCloud: the sampling method and the error-reconciliation

mechanism. The new sampling method is obtained by studying the prop-

erty of the convolution of central binomial distribution and bounded uni-

form distribution which can achieve higher efficiency and more flexibility

w.r.t the parameter choice. Besides, it is shown to be more secure a-

gainst the dual attack due to its advantage in distinguish property. The

new error-reconciliation mechanism is constructed by combining the bina-

ry linear codes and Gray codes. It can reduce the size of parameters, and

then improve the encryption/decryption efficiency as well as communica-

tion efficiency, by making full use of the encryption space. Based on these

two techniques, SCloud can provide various sets of parameters for refined

security level.

1 Introduction and Design Rationale

We propose a new family of public key encryption (PKE) and key encap-

sulation mechanism (KEM) schemes based on the plain learning with errors (L-

WE) problem. The PKE schemes include SCloudCPAPKE and SCloudCCAPKE,

which achieve IND-CPA security and IND-CCA security respectively, and the

KEM scheme SCloudKEM achieves the IND-CCA security. Their relationship is

as follows. SCloudKEM is obtained by applying the Fujisaki-Okamoto transfor-

mation to SCloudCPAPKE, and SCloudCCAPKE is constructed by combining

SCloudKEM and a data-encapsulate mechanism.
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1.1 Design Rationale

Many current public-key post-quantum cryptosystems are based on the hard-

ness of the LWE problem. Simply speaking, the LWE problem is to solve a linear

equation system, with some of the equations are erroneous, modulo a known pos-

itive integer. The LWE problem is closely related to the computational lattice

problems. In 2005, Regev proves the hardness of the LWE problem by assum-

ing the quantum hardness of the Shortest Independent Vectors Problem (SIVP)

on random lattices. In 2009, Peikert presents a similar result assuming only the

classical hardness of another lattice problem. Besides, it is proved that the LWE

problem can be transformed into solving the Shortest Vector Problem (SVP) on a

related lattice.

Unstructured Lattices v.s. Structured Lattices. For the sake of com-

putational efficiency, some variants of the LWE problem, e.g., RLWE [23, 26],

MLWE [9, 21] and NTRU [29], are adopted in the construction of public-key cryp-

tosystems. Different to the random unstructured lattices related to the plain LWE

problem, these variant LWE problems are proved to be as hard as the problems

on lattices with algebraic structures [23, 21, 26], such as ideal lattices or module

lattices.

Though there is no variant LWE based cryptosystems can be cracked under

recommended parameters now, it is still risky to use structured lattices from the

security perspective. In [19, 20], an attack against NTRU can significantly reduce

the asymptotic complexity compared with that estimated by ignoring the structure

of related lattices. Recently, a polynomial-time quantum algorithm is proposed for

SVP with approximation factor 2Õ(
√
n) over a widely used class of rings [12], while

the best known algorithm can only achieves approximation factor 2O(n log logn/ logn)

for unstructured lattices [28].

As a result, the design of SCloud is based on the plain LWE problem (related

to unstructured lattices), rather than based on the variant LWE problems, such as

RLWE, MLWE, etc., (related to structured lattices). Though at a slight expense

of performance (in terms of public and private key size and operation efficiency),
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taking into consideration the future development of quantum computation, the

design of SCloud aims to provide a long term security against various attacks in

the future. Moreover, benefit from the new techniques adopted in our design,

SCloud is still efficient in most practical environment.

Our Technique. Two new design techniques are adopted in SCloud: the

sampling method and the error-reconciliation mechanism. The new sampling

method is obtained by studying the property of the convolution of central binomi-

al distribution and bounded uniform distribution. It can achieve higher efficiency

and more flexibility w.r.t the parameter choice. Besides, it is shown to be more

secure against the dual attack due to its advantage in distinguish property [11].

The new error-reconciliation mechanism is constructed by combining the binary

linear codes and Gray codes. It can reduce the size of parameters, and then im-

prove the encryption/decryption efficiency as well as communication efficiency, by

making full use of the encryption space.

Based on these two techniques, SCloud can provide various sets of parameters

for refined security level.

• High efficiency & Long message mode:

SCloud-f640, SCloud-f896 and SCloud-f1216 (see Table 1).

• High efficiency & Short message mode:

SCloud-fg640, SCloud-fg896 and SCloud-fg1216 (see Table 2).

• High security & Long message mode:

SCloud-q640, SCloud-q896 and SCloud-q1216 (see Table 3).

• High security & Short message mode:

SCloud-qg640, SCloud-qg896 and SCloud-qg1216 (see Table 4).

High security mode provides parameters that satisfy Regev’s reduction con-

dition [27] so as to keep security against known attacks including primal attack,

dual attack, BKW and algebra attack.
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High efficiency mode provides better performance and smaller size with prac-

tical security against primal attack and dual attack which are the most common

methods considered in lattice-based designs.

Long message mode refers to the message length is the double security level (in

bits), which takes into consideration the quantum acceleration of the exhaustive

search of message.

Short message mode refers to the message length is equal to the security level

(in bits).

Roadmap In Section 2, we give some basic notations and backgrounds. The

algorithm specification is presented in Section 3, while the sets of parameters are

provided in Section 4. In Section 5 and Section 6, we analysis the security and

performance respectively. Section 7 concludes the advantages and the limitations

of the proposed schemes.

2 Preliminary

2.1 Notations

We will use the following notations:

• Let bold lower-case letters denote vectors (e.g. a,b,v), the i-th entry of an

n-dimensional vector v is denoted by vi (0 ≤ i < n).

• Let bold upper-case letters denote matrices (e.g. A,B), the (i, j)-th entry

of an m × n matrix A is denoted by Ai,j (0 ≤ i < m and 0 ≤ j < n) and

the ith row is denoted by Ai = (Ai,0,Ai,1, · · · ,Ai,n−1).

• For a set D, the set of m-dimensional vectors with entries in D is denoted

by Dm, and the set of m×n matrices with entries in D is denoted by Dm×n.

• Let Z denote the ring of integers, and let Zq = Z/qZ denote the quotient

ring of integers modulo a positive integer q.
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• Given a distribution χ, let the e← χ denote sampling a value e from χ. Let

χn denote the n-fold product distribution of χ with itself.

• Let U(S) denote the uniform distribution on a finite set S.

• Let bac denote the largest integer less than or equal to a, and let bae =

ba+ 1/2c denote the closest integer to a.

• For a real vector v ∈ Rn, let ‖v‖ denote its Euclidean norm.

• For two n-dimensional vectors a,b, let 〈a,b〉 =
∑n−1

i=0 ai ·bi denote their inner

product.

• Let wH(v) denote the Hamming weight of a vector v.

2.2 Background

2.2.1 Lattices

An n-dimensional full rank lattice L is a discrete additive subgroup in Rn, such

that spanR(L) = Rn. The vectors in L can be represented as integer combinations

of a basis B = {b1,b2, · · · ,bn}, i.e.,

L = L(B) := B · Zn = {
n∑
i=1

zi · bi : zi ∈ Z},

where the vectors in B are linearly independent over R.

2.2.2 Gaussian Distribution over Lattices

Definition 1 (Gaussian Function). For a real number s > 0, the Gaussian func-

tion is defined as

ρs(x) := exp (−π‖x‖2/s2)

for x ∈ Rm where s is called the width.
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Definition 2 (Gaussian Distribution). For a real number s > 0, the Gaussian

distribution is denoted as Ds and its probability density function is Ds(x) = ρs(x)/s

where the standard deviation is σ = s/
√

2π"

Definition 3 (Discrete Gaussian Distribution). p For lattice L and width s, the

discrete Gaussian distribution Ds,L is defined as Ds,L = ρs(x)
ρs(L)

where x ∈ L and

ρs(L) =
∑

v∈L ρs(v).

2.2.3 The LWE Problem

Definition 4 (LWE Distribution). Let n, q be positive integers, and let χ be a

distribution on Z. Given s ∈ Znq , choosing a ← U(Znq ) and e ← χ, the LWE

distribution As,χ outputs (a, 〈a, s〉+ e mod q) ∈ Znq × Z.

There are two versions of the LWE problem, i.e., the search version and the

decision version. For the two versions of the LWE problem, the distribution of

s ∈ Znq can be considered as uniform (called uniform secret) or χn mod q (called

normal form secret).

Definition 5 (Search-LWE). Let n,m, q be positive integers and let χ be a distri-

bution on Z. The uniform-secret (normal-form-secret) search-LWE with parame-

ters (n,m, q, χ) (called SLWEn,m,q,χ or nf -SLWEn,m,q,χ) is that: given m LWE

samples with a fixed secret s ∈ Znq , find s.

Definition 6 (Decision-LWE). Let n,m, q be positive integers and let χ be a dis-

tribution on Z. The uniform-secret (normal-form-secret) decision-LWE with pa-

rameters (n,m, q, χ) (called DLWEn,m,q,χ or nf -DLWEn,m,q,χ) is that: given m

samples chosen form LWE distribution with a fixed secret s ∈ Znq or uniform dis-

tribution, decide which distribution the samples follow.

2.3 PKE and KEM

Definition 7 (Public Key Encryption). A public key encryption scheme PKE

is a tuple of probabilistic polynomial-time (PPT) algorithms (KeyGen, Encrypt,
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Decrypt) along with a message space M:

• KeyGen(1κ): The key generation algorithm takes as input the security pa-

rameter 1κ, then outputs a public/secret key pair (pk, sk).

• Encrypt(pk,m): The encryption algorithm takes as input a public key pk and

a message m ∈M and outputs a corresponding ciphertext C.

• Decrypt(sk, C):The decryption algorithm takes as input a secret key sk and

a ciphertext C and outputs a message m or ‘⊥’ (decryption failure).

Definition 8 (δ-correctness for PKEs [18]). A PKE shceme with message space

M is said to be δ-correct if

E
[
max
m∈M

Pr[PKE.Dec(sk, c) 6= m : c← PKE.Enc(pk,m)]

]
≤ δ,

where the expectation is taken over (pk, sk)←PKE.KeyGen().

Definition 9 (Key Encapsulation Mechanism). A key encapsulation mechanism

(KEM) is a tuple of PPT algorithms (KeyGen, Encaps, Decaps):

• KeyGen(1κ): The key generation algorithm takes as input the security pa-

rameter 1κ, then it outputs a public/secret key pair (pk, sk).

• Encaps(pk)µThe encapsulation algorithm takes as input a public key pk and

outputs a ciphertext C and an encapsulated key K ∈ K.

• Decaps(sk, C): The decapsulation algorithm takes as input a secret key sk

and a ciphertext C, then it outputs a key K.

Definition 10 (δ-correctness for KEMs [18]). A KEM shceme is said to be δ-

correct if

Pr [Decaps(sk, c) 6= K : (pk, sk)← KeyGen(1κ); (c,K)← Encaps(pk)] ≤ δ.
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Definition 11 (IND-CPA Security of PKE). Let PKE= (KeyGen, Encrypt, De-

crypt) be a public key encryption scheme. Let us define the following experiment

between an adversary A and a challenger:

Experiment IND-CPAb
PKE,A(k):

• The challenger runs (pk, sk)← KeyGen(params), and gives pk to A;

• The adversary A outputs two message (m0,m1) of the same length;

• The challenger computes Encrypt(pk,mb) and gives it to A;

• A outputs a bit b′; The challenger returns b′ as the output of the game.

The advantage of the adversary A for breaking the IND-CPA security of a PKE

is defined as

AdvIND−CPAPKE,A = |Pr[IND−CPA1
PKE,A(k) = 1]−Pr[IND−CPA0

PKE,A(k) = 1]|

then for any polynomial time adversary A and any k, if ε is a negligible func-

tion§condition AdvIND−CPAPKE,A ≤ ε(k) holds§we say that PKE is IND-CPA se-

cure.

Definition 12 (IND-CCA Security of KEM). Let KEM=(KeyGen, Encaps, De-

caps) be a key encapsulation mechanism. Let us define the following experiment

between an adversary A and a challenger:

Experiment IND-CCAb
KEM,A(k):

• The challenger runs (pk, sk)← KeyGen(params)§and gives pk to A;

• A queries to the decapsulation oracle Decaps(sk, ·);

• The challenger computes (c∗, K∗0) ← Encaps(pk) and K∗1 ← K, and the

challenger gives (c∗, K∗b ) to A;
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• A continues to query the decapsulation oracle, but may not be allowed to

query the ciphertext c∗. At the end, A outputs a bit b′. The challenger

returns b′ as the output of the game.

The advantage of A for breaking the IND-CCA security of KEM is defined as

AdvIND−CCAKEM,A = |Pr[IND−CCA1
KEM,A(k) = 1]−Pr[IND−CCA0

KEM,A(k) = 1]|

then for any polynomial time adversary A and any k, if ε is a negligible func-

tion§condition AdvIND−CCAKEM,A ≤ ε(k) holds§we say that KEM is IND-CCpA se-

cure.

3 Algorithm Description

To begin with, we introduce the two new techniques adopted in our schemes,

i.e., the sampler in Section 3.1 and the error-reconciliation method in Section 3.2.

3.1 A New Sampler

In a LWE-based cryptosystem, the error sampler works as a basis module

which not only influences the efficiency of the whole scheme, but also directly

affects the security against known attacks. In practice, three types of error sam-

plers are commonly used in lattice-based schemes, namely approximate discrete

Gaussian sampler, central binomial sampler and bounded uniform sampler. As for

approximate discrete Gaussian sampler and central binomial sampler, a random

number generator is needed. Generally, the efficiency of random number genera-

tor(i.e. the ratio between bits and seconds) is stable. Therefore, the efficiency of

sampling algorithm is determined by the utilization of random number (i.e. the

ratio between bits and samples) that outputted by the random number generator.

However, random sources are not needed for bounded uniform sampler. The error

following bounded uniform distribution is generated by taking a x ∈ Zq as input
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and calculating bxq
p
e(p < q). Therefore, the output of bounded uniform sampler

is deterministic and it follows the uniform distribution over [− q
2p
, q

2p
] under the

random assumption.

In this section, we propose a new sampler denoted as “mixed sampling ”. The

distribution that the proposed sampler follows is denoted as “mixed distribution”.

The mixed distribution is generated by the convolution of variables that follow cen-

tral binomial distribution and variables that follow bounded uniform distribution.

We firstly present the definition.

Definition 13 (mixed distribution). Let k1, k2 be positive integers, {X1, · · · , Xk1}
is a sequence of independent and identically distributed variables where Pr[Xi =

0] = 1/2, P r[Xi = 1] = Pr[Xi = −1] = 1/4, {Y1, · · · , Yk2} is a sequence of inde-

pendent and identically distributed variables where Yi ∼ U [−1, 0, 1], the variable X

following “mixed distribution” denoted as χ(k1, k2) is the convolution of {Xi}k1i=1

and {Yi}k2i=1, i.e.

X = X1 + · · ·+Xk1 + Y1 + · · ·+ Yk2 .

Lemma 1. Let X ∼ χ(k1, k2), then

E[X] = 0, D[X] =
k1

2
+

2k2

3
.

Proof. Since X ∼ χ(k1, k2), then it could be express of the following form,

X =

k1∑
i=1

(bi − b′i) +

k2∑
i=1

ui.

where bi, b
′
i ∼ U [0, 1] and Pr[b = 0] = Pr[b = 1] = 1/2, ui ∼ U [−1, 0, 1] and

Pr[ui = j] = 1/3 for j = −1, 0, 1. Therefore we have

E[X] = 2k1E[bi] + k2E[ui] = 0,

D[X] = 2k1D[bi] + k2D[ui] =
k1

2
+

2k2

3
.
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Mixed sampler outputs a convolution distribution of central binomial distri-

butions and bounded uniform distributions where more flexible choices in sampling

widths are allowed, compared to that for the central binomial sampler. Further-

more, by choosing parameters properly, the mixed sampler can also achieve better

efficiency and security compared with former samplers. We make a brief compar-

ison between mixed sampler and former samplers concerning security, efficiency

and parameter choice respectively.

• Security. As for LWE parameters, primal attack and dual attack are two

mainly methods in estimating the concrete hardness. The length of error

distribution is concerned in the calculation of primal attack while the width

of error distribution is closely related to the whole complexity of parame-

ters under dual attack. In the dual attack, the error distribution is usually

analyzed as the ideal discrete Gaussian distribution. Overall, the current

analysis uses width parameters of error distributions to measure the security

of error samplers and no attack that deals with the structures of error distri-

butions has been ever considered. Recently, [11] studies the distributions for

sampling errors by means of Fourier analysis. Instead of dealing with the er-

ror distribution as ideal discrete Gaussian distribution, it directly calculates

the distinguish advantage corresponding to concrete error distribution and

provides a measure model to describe the difference between practical distri-

butions and ideal Gaussian distribution under dual attack. The results show

that the approximate discrete rounded Gaussian sampler and the bounded

uniform sampler have gaps compared with the ideal Gaussian sampler while

the central binomial sampler shares the same property with ideal one under

the measure model. In order to ensure security, the mixed distribution in

our scheme also shares the same property with ideal discrete Gaussian dis-

tribution, that is, the lower bound of distinguish advantage is the current

estimation ε = e−πs
2l2/q2 and the complexity under dual attack of LWE pa-

rameters with error following mixed distribution is conservative. We give a

brief description of the distinguish property of error distributions and mixed

sampling algorithm in Appendix A and B. More detailed descriptions and
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proofs can be found in [11].

• Efficiency. The comparison of sampling efficiency of mixed sampling and

approximate discrete Gaussian sampling, central binomial distribution and

bounded uniform sampling is shown in Table 14. As is shown in Figure

7, mixed sampling with proper parameter choice behaves better when com-

pared with approximate discrete Gaussian sampling and central binomial

distribution.

• Parameter Choice. Two parameters k1, k2 are used in determining mixed

distribution while there is only one parameter in central binomial distri-

bution. Therefore, mixed distribution has a wider parameter choice when

compared central binomial distribution. Since the width of error distribu-

tion is closely related to the failure probability of the scheme and there are

mutually limitations among the width and parameters n, q in order to en-

sure the security of scheme, a wider range of parameter selection in error

distribution will make the overall parameters of the scheme more flexible

and improve the efficiency of the scheme.

3.2 Error-Reconciliation Mechanism

We design a new error-reconciliation method based on binary linear codes and

Gray codes.

Definition 14 (Binary Linear Codes). An [ne, le, de] binary linear code C is an

le dimensional linear subspace of Zne2 , such that the hamming distance between

any two distinct vectors is at least de. The decoding radius of C is defined to be

te = dde−1
2
e.

There are two algorithms associated with the binary linear code C, i.e., the

encoding algorithm BCE(·) and the decoding algorithm BCD(·).

• BCE(u): input a binary vector u ∈ {0, 1}le , output a binary vector c ∈
{0, 1}ne .
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• BCD(c): input a binary vector c ∈ {0, 1}ne . If there exists u ∈ {0, 1}le such

that wH(BCE(u) − c) ≤ te, then output u, else a decoding failure occurs

and output ’⊥’ (decoding failure).

Definition 15 (Gray Codes). An h-bit Gray code is an one-to-one map from the

binary vectors {0, 1}h to the set of integers Z2h, such that the pre-image of any

two adjacent integers differ in only 1 bits.

We denote by GrayE(·) the map from {0, 1}h to Z2h , and denote GrayD(·) its

inverse, i.e.,

• GrayE(v): input a binary vector v ∈ {0, 1}h, output an integer x ∈ Z2h .

• GrayD(x): input an integer x ∈ Z2h , output a binary vector v ∈ {0, 1}h.
For any x, x′ ∈ Z2h , we have |x − x′| = 1 mod 2h ⇒ wH(GrayD(x) −
GrayD(x′)) = 1.

3.2.1 Message Encoder and Decoder

Suppose ne = h× m̄× n̄ and 2h | q, then a function MsgEnc(·) is employed to

encode the binary message m ∈ {0, 1}le to a matrix K ∈ Zm̄×n̄q . The MsgEnc(·)
function, which is shown in Algorithm 1, consists of three steps. Firstly, the

message m is mapped to a binary vector u of length ne by the encoding function

BCE(·) of an [ne, le, de] binary linear code. Secondly, the binary vector u is mapped

to an m̄× n̄ matrix W over Z2h through the Gray code, i.e.,

Wi,j = GrayE(u(i,j)),∀0 ≤ i < m̄, 0 ≤ j < n̄,

where u(i,j) = (u(i+m̄j)h,u(i+m̄j)h+1, · · · ,u(i+m̄j)h+h−1). Thirdly, the matrix K ∈
Zm̄×n̄q is obtained by multiplying each position of W by q

2h
.

On the other hand, the function MsgDec(·), which is shown in Algorithm 2,

decodes the matrix K ∈ Zm̄×n̄q to the binary message m ∈ {0, 1}le by reversely
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Algorithm 1 MsgEnc

Input: Message m ∈ {0, 1}le
Output: Matrix K ∈ Zm̄×n̄q .

1: u← BCE(m)
2: for (i = 0; i < m̄; i← i+ 1) do
3: for (j = 0; j < n̄; j ← j + 1) do
4: Wi,j = GrayE(u(i,j))
5: end for
6: end for
7: Return K = q

2h
·W = q

2h
· (Wi,j)0≤i<m̄,0≤j<n̄

Algorithm 2 MsgDec

Input: Matrix K ∈ Zm̄×n̄q .
Output: Message m ∈ {0, 1}le

1: for (i = 0; i < m̄; i← i+ 1) do
2: for (j = 0; j < n̄; j ← j + 1) do

3: Wi,j ← b2h

q
·Ki,je

4: (u(i+m̄j)h,u(i+m̄j)h+1, · · · ,u(i+m̄j)h+h−1)← GrayD(Wi,j)
5: end for
6: end for
7: m← BCD(u)
8: Return m
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applying the inverse of the three steps. In fact, the error correction capacity can

be characterized by the following lemma.

Lemma 2. For any m ∈ {0, 1}le and E ∈ Zm̄×n̄q , it has MsgDec(MsgEnc(m) +

E) = m provided

∑
0≤i<m̄
0≤j<n̄

∣∣∣∣b2hq · Ei,je
∣∣∣∣ ≤ te. (1)

Proof. Denote u = BCE(m),W = GrayE(u),W′ = b2h

q
· (MsgEnc(m) + E)e, and

u′ = GrayD(W′). Since

W′ = b2h/q · (MsgEnc(m) + E)e

= 2h/q ·MsgEnc(m) + b2h/q · Ee

= W + b2h/q · Ee,

then
∑

0≤i<m̄
0≤j<n̄

|Wi,j −W′
i,j| mod 2h ≤ te. Therefore wH(u− u′) ≤ te according to

the property of Gray code. It follows that BCD(u′) = m.

3.3 Construction of IND-CPA PKE

Our IND-CPA secure PKE scheme, which is denoted by SCloudCPAPKE,

is described in Figure 1. The scheme includes three algorithms, i.e., SCouldP-

KE.KeyGen, SCloudCPAPKE.Enc and SCloudCPAPKE.Dec, which are shown in

Algorithm 3, Algorithm 4 and Algorithm 5 respectively.
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Initiator Responder

KeyGen()→ (pk, sk):
seedA ← {0, 1}κ
A = Gen(seedA) ∈ Zn×nq

S,E← χn×n̄

B = AS + E
sk ← S; pk ← (seedA,B)

Dec(c, sk)→m:
D = V −B′S
m = MsgDec(D)

pk−→

c←−

Enc(m ∈ Zle ,pk)→ c:
A = Gen(seedA)
S′,E′ ← χm̄×n;E′′ ← χm̄×n̄

B′ = S′A + E′

V = S′B + E′′ +MsgEnc(m) ∈ Zm̄×n̄
c← (B′,V)

Figure 1: IND-CPA PKE scheme SCloudCPAPKE

Algorithm 3 SCloudCPAPKE.KeyGen
Input: None.
Output: (pk, sk).

1: Choose a uniformly random seed seedA

2: Generate matrix uniformly at random A← Gen(seedA) ∈ Zn×nq

3: Sample the private key and error matrixs S,E← χn×n̄

4: Compute B = AS + E
5: Return the public key pk ← (seedA,B), and secret key sk ← S

Algorithm 4 SCloudCPAPKE.Enc

Input: Message m ∈ Zle , public key pk = (seedA,B).
Output: Ciphertext c.

1: Generate matrix uniformly at random A← Gen(seedA) ∈ Zn×nq

2: Generate error matrix S′,E′ ← χm̄×n, E′′ ← χm̄×n̄

3: Compute B′ = S′A + E′ and V = S′B + E′′ +MsgEnc(m)
4: Return the ciphertext c← (B′,V)

Algorithm 5 SCloudCPAPKE.Dec

Input: Ciphertext c = (B′,V) ∈ Zm̄×nq × Zm̄×n̄q , secret key sk = S ∈ Zn×n̄q .
Output: Message m.

1: Compute D = V −B′S
2: Return message m = MsgDec(D)
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3.3.1 Correctness

The decryption algorithm SCloudCPAPKE.Dec computes:

V −B′S = S′B + E′′ +MsgEnc(m)− (S′AS + E′S)

= S′AS + S′E + E′′ +MsgEnc(m)− S′AS− E′S

= S′E + E′′ − E′S +MsgEnc(m).

Write E′′′ = S′E + E′′ −E′S, then by Lemma 2 the scheme decrypt successfully if

and only if E′′′ satisfies the condition in (1).

Note that every single element of the matrix E′′′ can be viewed as the sum of

2n+ 1 independent random variables. Among them, 2n variables are the product

of two independent Gaussian variables generated χ, and the rest one is a Gaussian

variable generated by χ. We write the sum of these 2n+1 variables as the variable

χ′, the decryption failure probability can be expressed as

perror = 1−
∑

∑
|b(2h/q)·E′′′i,je|≤t

∏
i,j

χ′(E′′′i,j).

3.4 Construction of IND-CCA KEM

In this subsection, we use the Fujisaki-Okamoto transformation [14] and ob-

tain our IND-CCA scheme from a one-way-secure PKE scheme in the classi-

cal random oracle model. Particularly, we follow the approach adopted in [25],

and construct an IND-CCA KEM scheme by using SCloudCPAPKE and two

hash functions. Our KEM scheme SCloudKEM is described in Figure 2. The

scheme includes algorithms SCloudKEM.KeyGen, SCloudKEM.Encaps and S-

CloudKEM.Decaps, which are in shown in Algorithm 6, Algorithm 7 and Algo-

rithm 8 respectively.
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Initiator Responder

KeyGen()→ (pk, sk′):
(pk, sk)← PKE.KenGen()
s← {0, 1}l
sk′ ← (sk, pk, s)

Decaps(sk′,B′,C,d)→ ss′:
m′ ← PKE.Dec(B′,C, sk)
(r′,k′,d′)← G(pk||m′)
if (B′,C) = PKE.Enc(m′, pk; r′)

and d = d′

then ss′ ← F (B′||C||k′||d)
else ss′ ← F (B′||C||s||d)

pk−→

(B′,C,d)←−−−−−

Encaps(pk)→ (ss,B′,C,d):
m← {0, 1}k
r,k,d← G(pk||m)
(B′,C)← PKE.Enc(m, pk; r)

ss← F (B′||C||k||d)

Figure 2: IND-CCA KEM scheme SCloudKEM.

Algorithm 6 SCloudKEM.KeyGen
Input: None.
Output: Public and secret key (pk, sk′).

1: Generate uniformly random seed s||seedE||z
2: Generate pseudorandom seed seedA ← H(z)
3: Use random seed seedA to generate matrix A ∈ Zn×nq : A← Gen(seedA)
4: Use random seed seedE to sample matrixs S,E← χn×n̄

5: Compute B← AS + E
6: Return pk ← (seedA,B) and sk′ ← (s, seedA,B,S)

Algorithm 7 SCloudKEM.Encaps()

Input: pk = (seedA,B).
Output: Ciphertext (B′,C,d).

1: Choose uniformly random message m
2: Generate pseudorandom values r,k,d← G(seedA||B||m)
3: Use random seed r to sample matrixs S′,E← χm̄×n,E′′ ← χm̄×n̄

4: Generate matrix A← Gen(seedA)
5: Compute B′ ← S′A + E
6: Compute V← S′B + E′′

7: Compute C← V +MsgEnc(m)
8: Compute ss← F (B′||C||k||d)
9: Return the ciphertext B′,C,d and shared session key ss
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Algorithm 8 SCloudKEM.Decaps()

Input: Ciphertext B′,C,d, secret key sk′ ← (s, seedA,B,S).
Output: Agreement session key ss.

1: Compute D = C−B′S
2: Compute m′ ←MsgDec(D)
3: Generate pseudorandom values r′,k′,d′ ← G(seedA||B||m′)
4: Use random seed r′ to generate error matrix S′,E′ ← χm̄×n,E′′ ← χm̄×n̄

5: Generate matrix A← Gen(seedA)
6: Compute B′′ ← S′A + E′

7: Compute V← S′B + E′′

8: Compute C′ ← V +MsgEnc(m′)
9: if (B′||C = B′′||C′) and (d = d′) then

10: return ss← F (B′||C||k′||d)
11: else
12: return ss← F (B′||C||s||d)
13: end if

3.4.1 Correctness

The decryption failure probability of IND-CCA SCloudKEM is the same as

that of the previous IND-CPA SCloudCPAPKE.

3.5 Construction of IND-CCA PKE

Our IND-CCA secure PKE scheme SCloudCCAPKE is constructed based on

the IND-CCA secure KEM scheme SCloudKEM and a data-encapsulation mecha-

nism (DEM), which follows from the approach proposed by Cramer and Shoup[13].

The detail of the scheme can be found in Figure 3 and the algorithms SCloudC-

CAPKE.KeyGen, SCloudCCAPKE.Enc and SCloudCCAPKE.Dec are specified in

Algorithm 9, Algorithm 10 and Algorithm 11 respectively.

Algorithm 9 SCloudCCAPKE.KeyGen
Input: None.
Output: Public and secret keys (pk, sk′).

1: Use SCloudKEM.KeyGen() to generate public and secret keys (pk, sk′)
2: Return public key pk and secret key sk′
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Initiator Responder

KeyGen()→ (pk, sk′):
(pk, sk′)←KEM.KenGen()

Decaps(sk′,B′,C,d,K)→ms′

ss′ ←KEM.Decaps(B′,C,d, sk′)
ms← DEM−1(ss′, c2)

pk−→

(B′,C,d,c2)←−−−−−−

Enc(ms ∈ Zlm ,pk)→ (B′,C,d,K)
(ss,B′,C,d)←KEM.Encaps(pk)
c2 = DEM(ss,ms)

Figure 3: IND-CCA PKE scheme SCloudCCAPKE

Algorithm 10 SCloudCCAPKE.Enc

Input: Message ms ∈ Zlm , public key pk.
Output: Ciphertext c.

1: Use SCloudKEM.Encaps(pk) to encapsulate (ss,B′,C,d)
2: Use DEM to encapsulate encryption message c2 = DEM(ss,ms)
3: Return ciphertext c← (B′,C,d, c2)

Algorithm 11 SCloudCCAPKE.Dec

Input: Ciphertext c = (B′,C,d, c2), secret key sk′.
Output: Decryption message ms.

1: Use SCloudKEM.Decaps(B′,C,d, sk′) to decapsulate ss′

2: Use DEM−1(ss′, c2) to decrypt ms
3: Return message ms
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3.6 Cryptographic Primitives

The following cryptographic primitives are involved in our schemes, of which

the security requirement is specified below.

• Gen: A public function used to generate the pseudorandom matrix A. In

our scheme, we recommend SM3 [30] hash algorithm as Gen function.

• G: A pseudorandom number generator to generate the random seeds required

in KEM. We recommend SM3 [30] hash algorithm as G function.

• F: A pseudorandom number generator to generate the final agreement session

key in KEM. We recommend SM3 [30] hash algorithm as F function.

• H: A pseudorandom number generator to generate random seed in KEM and

PKE. We recommend SM3 [30] hash algorithm as H function.

• DEM: We use (AES-GCM)— encryption algorithm as DEM.

4 Parameters

In this section, we provide the following four sets of parameters for different

security level and message length of SCloud.

• High efficiency & Long message mode:

SCloud-f640, SCloud-f896 and SCloud-f1216 (see Table 1).

• High efficiency & Short message mode:

SCloud-fg640, SCloud-fg896 and SCloud-fg1216 (see Table 2).

• High security & Long message mode:

SCloud-q640, SCloud-q896 and SCloud-q1216 (see Table 3).

• High security & Short message mode:

SCloud-qg640, SCloud-qg896 and SCloud-qg1216 (see Table 4).
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High security mode provides parameters that satisfy the LWE reduction con-

dition proposed in [27, 26] (σ ≥
√
n

2π
) so as to keep security against known attacks

including primal attack, dual attack, BKW and algebra attack.

High efficiency mode provides better performance and smaller size with prac-

tical security against primal attack and dual attack which are the most common

methods considered in lattice-based designs.

Long message mode refers to the message length is the double security level (in

bits), which takes into consideration the quantum acceleration of the exhaustive

search of message.

Short message mode refers to the message length is equal to the security level

(in bits).

Table 1: Parameters of high efficiency & long message mode
f640 f896 f1216

security level(bit) 128 192 256
n 640 896 1216
q 214 214 215

(m̄, n̄) (9, 11) (12, 14) (13, 15)
σ 2.12 2.12 2.12

length of message m(bit) 256 384 512
(k1, k2) in χk1,k2 (5,3) (5,3) (5,3)

decryption failure probability 2−135 2−206 2−295

[ne, le, de] binary linear code [292,256,9] [474,384,21] [552,512,9]
h-bit Gray Code 3 3 3
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Table 2: Parameters of high efficiency & short message mode
fg640 fg896 fg1216

security level(bit) 128 192 256
n 640 896 1216
q 214 214 215

(m̄, n̄) (7, 8) (8, 12) (9, 11)
σ 2.12 2.12 2.12

messagem 128 192 256
(k1, k2) in χk1,k2 (5,3) (5,3) (5,3)

decryption failure probability 2−168 2−214 2−299

[ne, le, de] binary linear code [168,128,11] [282,192,21] [292,256,9]
h-bit Gray code 3 3 3

Table 3: Parameters of high security & long message mode
q640 q896 q1216

security level(bit) 128 192 256
n 640 896 1216
q 216 217 218

(m̄, n̄) (9, 11) (12, 12) (13, 14)
σ 4.10 4.83 5.85

message m 256 384 512
(k1, k2) in χk1,k2 (15,14) (20,20) (30,29)

decryption failure probability 2−135 2−206 2−295

[ne, le, de] binary linear code [292,256,9] [474,384,21] [552,512,9]
h-bit Gray code 3 3 3

5 Security Analysis

5.1 Security Reductions

5.1.1 IND-CPA Security of SCloudCPAPKE

Theorem 1. Let n, q, m̄, n̄ be positive integers, and let χ be a distribution on Z.

Assume that the matrix A← U(Zn×nq ). For any quantum algorithm A against the

IND-CPA security of SCloudCPAPKE§there exist quantum algorithms F1 and
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Table 4: Parameters of high security & short message mode
qg640 qg896 qg1216

security level(bit) 128 192 256
n 640 896 1216
q 216 217 218

(m̄, n̄) (6, 9) (8, 9) (8, 12)
σ 4.10 4.83 5.85

messagem 128 192 256
(k1, k2) in χk1,k2 (15,14) (20,20) (30,29)

decryption failure probability 2−128 2−192 2−264

[ne, le, de] binary linear code [152,128,7] [216,192,7] [283,256,7]
h-bit Gray code 3 3 3

F2 against the decision version of the normal-form LWE such that

Advind−cpaSCloudCPAPKE(A) ≤ n̄ ·Advnf−dlewn,q,χ (F1) + m̄ ·Advnf−dlewn,n+n̄,qχ(F2).

where the running time of F1 and F2 are approximately that of A"

Proof. The proof is similar to that of Theorem 1 in [22].

5.1.2 IND-CCA Security of SCloudKEM

Theorem 2. Let PKE be a δ-correct PKE scheme, which includes algorithms

(KeyGen, Enc, Dec) with message space M. Let G and F be independent random

oracles. Assume A to be any classical algorithm against the IND-CCA security of

SCloudKEM, and A makes qG and qF queries of its G and F. Then there exists a

classical algorithm F against the IND-CPA security of PKE such that

Advind−ccaSCloudKEM(A) ≤ 4 · qRO + 1

|M|
+ qRO · δ + 3 ·Advind−cpaPKE (F)

where qRO = qG + qF . The running time of F is about that of A"

Theorem 3. Let PKE be a δ-correct PKE scheme, which includes (KeyGen, Enc,

Dec) with message spaceM. Let G and F be independent random oracles. Assume
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A to be any quantum algorithm against the IND-CCA security of SCloudKEM,

and A makes qG and qF queries of its G and F. Then there exists a quantum

algorithm F against the IND-CPA security of PKE such that

Advind−ccaSCloudKEM(A) ≤ 9 · qRO ·

√√√√q2
RO · δ + qRO ·

√
Advind−cpaPKE (F) +

1

|M|

where qRO = qG + qF . Here the running time of F is about that of A.

Proof of Theorem 2 and Theorem 3. The proofs are similar to that of Theorem

5.1 and Theorem 5.2 in [25].

5.1.3 IND-CCA Security of SCloudCCAPKE

Note that our SCloudCCAPKE is constructed based on SCloudCCAKEM via

the approach proposed by Cramer and Shoup [13], then its IND-CCA security is

guaranteed by the IND-CCA security of SCloudCCAKEM. A similar deduction

can also be found in [5].

5.2 Cryptanalytic Attacks

In this section, we introduce the commonly used methods of analyzing the

LWE problem and then estimate the security of our scheme. The methods can be

divided into two types according to the number of LWE samples that an attacker

can obtain. When only O(n) LWE samples are available, the BKZ-type attacks are

usually taken into consideration, namely primal attack and dual attack. If more

samples are available, the combinational-type attacks, namely algebraic attack [4]

and BKW attack [19], are also calculated where O(nc)(c > 1) and 2O(n) samples are

needed respectively. Next, we introduce the two BKZ-type attacks. The algebraic

attack and BKW attack are given in Appendix C, D.
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5.2.1 BKZ-type Attacks

The BKZ [10] algorithm can be seen as a generalized version of LLL algorithm,

which iteratively searches the shortest vector in the b-dimensional space instead of

the 2-dimensional space. Therefore, it outputs vectors of better quality (that is,

shorter vectors are outputted) than LLL algorithm. In terms of the running time,

LLL algorithm can be strictly proved to be a polynomial time algorithm, however,

the running time of BKZ algorithm is closely related to the block size b and it may

need exponential operations.

It is difficult to estimate the exact running time of BKZ algorithm. The BKZ

algorithm with block size b needs to call the b-dimensional SVP oracle polynomial

times iteratively. According to the result of [17], the basis outputted by a BKZ

algorithm after n2 log n/b2 round iterations is closed to the final result of the algo-

rithm. Taking the possible improvements of algorithms into consideration, a pop-

ular way to estimate the running time of BKZ algorithm in the attack is to consider

the time of running b-dimensional SVP oracle, i.e. the “core-SVP0complexity is

considered which is very conservative.

Among all konwn algorithms that can solve the b-dimensional SVP, the algo-

rithm with lowest asymptotic complexity is sieving algorithm with its asymptotic

complexity being 2cb+o(b)(where c is a constant and it has been widely studied).

For the classical sieving algorithm, the constant is cC = log2

√
3/2 ≈ 0.292 which

is obtained in [7]; for the quantum algorithms, this constant is cQ = log2

√
13/9 ≈

0.265. Since all the variants of sieving algorithm need to establish a vector list

with size (
√

4/3)b, we can regard cP = log2

√
4/3 ≈ 0.2075 as the lowest bound of

the time complexity of plausible sieving algorithm. When estimating the time of

sieving algorithm, the item o(b) is ignored.

Notice that the above estimation is very conservative compared with the actu-

al application of [24]. In the practical experiment, the complexity of sieve algorithm

is about 20.405b+11 when the block size b is between [60, 80].
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5.2.2 Primal Attack

The primal attack is to construct a lattice with the unique shortest vector from

an instance of LWE problem, and then use BKZ to solve the unique shortest vector

problem. Concretely, given a LWE instance (A,b = As+e), we can construct a d-

dimensional (for d = m+n+1) lattice Λ = {x ∈ Zm+n+1 : (A|Im|−b)x = 0mod q}
with volume qm. It is easy to see that the unique shortest vector in Λ is v = (s, e, 1)

with length λ ≈ σ
√
n+m. m ∈ [0, 2n] is the number of samples used and its

specific value can be determined by the optimization of the attack. Therefore,

combined with the above-mentioned complexity of the core-SVP, we only need to

estimate the smallest block size used in BKZ algorithm.

Based on the well known GSA assumption of BKZ algorithm, we can treat

{‖b∗i ‖}d−1
i=0 as the geometric series ‖b∗i ‖ = δd−2i−1 · vol(L)1/d. If the projection

length of the shortest vector v in the last b-dimensional space is shorter than

‖b∗d−b‖, then it can be obtained by BKZ algorithm. Therefore, it can be concluded

that the primal attack is successful if σ
√
b ≤ δ2b−d−1 · qm/d, where the parameter

δ = ((πb)1/b b
2πe

)1/(2(b−1)). Moreover, we can get the smallest block size b, and then

the complexity estimation of the BKZ algorithm is obtained by combining the

block size with the difficulty of the core-SVP.

5.2.3 Dual Attack

The dual attack is a method to solving decision-LWE and its core idea can be

concluded as following: first find the short vectors in dual lattice w = (w1,w2) ∈
Λ′ = {(x,y) ∈ Zm × Zn : Atx = y mod q} by BKZ algorithm, then use the short

vectors w to distinguish the LWE sample, i.e. calculate the value z := wt
1 · b =

wt
1As + wt

1e = wt
2s + wt

1e mod q.

Notice that the dimension of dual lattice Λ′ is d = m+n and its volume is qn.

A BKZ algorithm with block size b outputs the short vector with length l = ‖b0‖ =

δd−1qn/d. If (A,b) is an instance of LWE distribution, then z = wt
2s + wt

1e mod q

follows a Gaussian distribution with standard deviation lσ, else z follows U(Zq).
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The maximum distance between two distributions is ε = 4 exp (−2π2τ 2), τ = lσ/q.

Therefore an attacker can distinguish LWE samples from random samples with

advantage ε.

The small advantages ε are not relevant and an attacker needs an advan-

tage of at least 1/2 to significantly decrease the search space. Therefore, we

needs about 1/ε2 short vectors. Since running a sieving algorithm once can

provide 20.2075b vectors, the attack needs to be repeated at least R times where

R = max(1, 1/(22075bε2)). In short, the total complexity of dual attack is R · 2cb

and attacker needs to choose optimal b to make the complexity as small as possible.

In Table 5, the complexity of primal attack and dual attack with efficiency

parameters are given. In this table, the ‘primal’ represents the primal attack, the

‘dual’ represents the dual attack, the ‘classical’ represents the known classical com-

plexity, the ‘quantum’ represents the known quantum complexity, the ‘plausible’

represents the best possible algorithm complexity, the ‘m’ represents the number

of samples required, and the ‘b’ denotes the block size of BKZ algorithm.

Table 5: The hardness of efficiency parameters
parameters (n, q, σ) attack (m,b) classical quantum plausible
f640:(640, 214, 2.12) primal (655,495) 145 131 103

dual (737,489) 143 130 101
f896:(896, 214, 2.12) primal (924,741) 216 196 153

dual (972,734) 214 195 153
f1216:(1216, 215, 2.12) primal (1199,976) 285 259 203

dual (1297,968) 283 257 201

6 Performance Analysis

The PKE scheme SCloudCPAPKE includes three algorithms named key gen-

eration, encryption and decryption. Their performances can be calculated by con-

sidering the complexities of calling random generator, making matrix operations

and running encode/decode process.
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In the key generation process, the random generator needs to output n2 ran-

dom integers in Zq and support 2nn̄ samplings. For matrix operations, we need

a matrix multiplication between one matrix of the size n × n and the other of

the size n × n̄ as well as a matrix addition between two n × n̄ matrixes. As a

result, in the key generation process, we need n2n̄ multiplications, n2n̄ additions

and n2 log q+ 2nn̄×Eχ random bits where Eχ denotes the expectation number of

bits needed to sample from the distribution χ.

In the encryption process, the random generator needs to output n2 random

integers in Zq and support 2m̄n+ m̄n̄ samplings. For matrix operations, we need

a matrix multiplication between one matrix of the size m̄ × n and the other of

the size n× n, a matrix multiplication between one matrix of the size m̄× n and

the other of the size n × n̄, a matrix addition between two m̄ × n matrixes and

a matrix addition between two m̄ × n̄ matrixes. Besides, an encoding process

should be conducted. As a result, in the encryption process, we need n2m̄+ m̄n̄n

multiplications, n2m̄ + m̄n̄n additions, n2 log q + (2m̄n + m̄n̄) × Eχ random bits

combined with an encoding call which needs about le(ne− le) Xor operations, m̄n̄

table check and m̄n̄ multiplications.

In the decryption process, we need a matrix multiplication between one matrix

of the size m̄×n and the other of the size n×n̄, a matrix addition between two m̄n̄n

matrixes and a decoding process. As a result, in the decryption process, we need

m̄n̄n multiplications, m̄n̄n additions combined with a decoding call which needs

about m̄n̄ table check, m̄n̄ multiplications and 2 ·mextne(de − 1) Xor operations

[6] where mext = 8 for the parameters fg640, qg640, qg896 and mext = 9 for other

parameter sets.

It should be remarked that the efficiency of generating random bits are decided

by the performance of random source. When taking SM3 as the random source,

we need 2-5 clock cycles to obtain a random bit, and we will use 5 clock cycles/bit

in the following computations [30].

The performance of SCloudCPAPKE with high efficiency & long message

parameters is shown in table 6 and its size can be found in Table 9.
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The algorithms of SCloudKEM are derived by the three basic algorithms of

SCloudCPAPKE whose performances can be computed similarly. We conclude

performance of SCloudKEM using high efficiency parameters in table 7 and its

size in Table 10. Besides, the scheme SCloudCCAPKE is designed by combing

SCloudKEM with DEM where 256-bit AES-GCM is used, the performance of

SCloudCCAPKE can be found in Table 8 and the size in Table 11.

Table 6: Performance of SCloudCPAPKE with high efficiency & long message
mode

parameters f640 f896 f1216
key generation(clock cycle) 3.88× 107 8.07× 107 1.58× 108

encryption(clock cycle) 3.71× 107 7.75× 107 1.52× 108

decryption(clock cycle) 2.46× 104 3.99× 104 5.65× 105

Table 7: Performance of SCloudKEM with high efficiency & long message mode
parameters f640 f896 f1216

key generation(clock cycle) 3.88× 107 8.07× 107 1.58× 107

encapsulation(clock cycle) 3.71× 107 7.75× 107 1.52× 108

decapsulation(clock cycle) 3.71× 107 7.75× 107 1.52× 108

Table 8: Performance of SCloudCCAPKE with high efficiency & long message
mode

parameters f640 f896 f1216
key generation(clock cycle) 1.88× 107 4.14× 107 8.07× 107

encryption(clock cycle) 1.71× 107 3.82× 107 7.48× 107

decryption(clock cycle) 1.71× 107 3.82× 107 7.48× 107

Table 9: Size of inputs and outputs of SCloudCPAPKE with high efficiency & long
message mode

parameters f640 f896 f1216
public key(bit) 9.88× 104 1.76× 105 2.76× 105

secret key(bit) 9.86× 104 1.76× 105 2.74× 105

ciphertext(bit) 8.2× 104 1.53× 105 2.40× 105

message(bit) 256 384 512
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Table 10: Size of inputs and outputs of SCloudKEM with high efficiency & long
message mode

parameters f640 f896 f1216
public key(bit) 9.88× 104 1.76× 105 2.74× 105

secret key(bit) 1.98× 105 3.52× 105 5.48× 105

ciphertext(bit) 8.23× 104 1.53× 105 2.40× 105

shared secret(bit) 256 384 512

Table 11: Size of inputs and outputs of SCloudCCAPKE with high efficiency &
long message mode

parameters f640 f896 f1216
public key(bit) 9.88× 104 1.76× 105 2.74× 105

secret key(bit) 1.98× 105 3.52× 105 5.48× 105

ciphertext(bit) 8.25× 104 1.53× 105 2.41× 105

message(bit) 256 384 512

7 The Advantages and Limitations

7.1 Advantages

• Quantum resistance: Our scheme is based on the LWE problem, which is

proved at least as hard as the SVP problem on unstructured lattices. So far,

the SVP problem over unstructured lattices is believed to be more difficult

than that over structured lattices (e.g., the ideal lattices), and there is no

efficient quantum algorithm to solve it up to now. So our scheme can be

considered to be quantum resistant.

• Improved sampling algorithm: Compared with other sampling methods, our

approach can achieve higher efficiency and more flexibility w.r.t the param-

eter choice. Besides, it is shown to be more secure against the dual attack

due to its advantage in distinguish property.

• New error-reconciliation method: Long binary codes and Gray codes are

combined in our new error-reconciliation scheme to improve both the trans-

mission and computation efficiency. Moreover, our new method is more
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adaptive w.r.t the choice of parameters.

7.2 Limitations

• Despite the advantages of using a powerful error-reconciliation method, the

implementation of the involved BCH codes has to be constant time to avoid

the timing attack, which may slightly affects the efficiency.
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A The Distinguishing Advantages of Error Dis-

tribution

For a variable X = (x1, · · · ,xn) where xi ∼ f(x) for 1 ≤ i ≤ n are indepen-

dent and identically distributed variables over Zq and a vector v 6= 0 ∈ Znq , we

consider the new variable 〈v,X〉 and calculate its Fourier transform. According

to the property of Fourier transform, we have

f̂〈v,X〉(1) =
n∏
j=1

f̂vjxj(1) =
n∏
j=1

f̂(vj). (2)

It is obvious that f̂〈v,X〉(1) = 0 if X ∼ U(Znq ) and v 6= 0 since

q−1∑
j=0

e
−2πijk

q = 0.

However, the f̂〈v,X〉(1) 6= 0 may hold for a suitable vector v and xi ∼ χ that χ is

other error distribution (i.e., f̂(vj) 6= 0 for all components of v). A positive lower

bound of |f̂〈v,X〉(1)| can be regarded as a distinguishing advantage. Therefore, as

is shown in (2), the distinguish advantage corresponding to the vector v in the

dual lattice is not only related to the length, but also the components.

The Fourier transform of practical error distributions is calculated in [11].

Theorem 4 ([11]). • For the variable X following approximate rounded Gaus-

sian distribution f(x), we have∣∣∣f̂(k)− Ψ̂s,q(k)
∣∣∣ ≤ 2e

−πR2

s2

where k ∈ Zq and
2

π
e
−πs

2k2

q2 6 Ψ̂s,q(k) 6 2e
−πs

2k2

q2 .

• For the variable X following central binomial distribution B(h), let k ∈ Zq,
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we have

f̂(k) = cos2h(
πk

q
).

• For the variable X ∼ U [−a,−a+ 1, · · · , 0, 1, · · · , b], we have

|f̂(k)|2 =
1− cos 2π(a+b+1)k

q

(a+ b+ 1)2(1− cos 2πk
q

)

where k = 1, 2, · · · , b q
2
c.

It is shown that the component of the vector has influence on the complexity

of distinguish. On the one hand, ε(‖v‖) = e
−πs

2‖v‖2

q2 is used currently in estimating

the distinguish advantage whatever the concrete error distribution is. On the other

hand, the estimation under Fourier transform
∏n

j=1 f̂(vj) reveals the difference of

error distribution. A natural question is to make a comparison between ε(‖v‖)
and

∏n
j=1 f̂(vj), therefore, we define local width s(k).

Definition 16 (Local Width). For a given random variable X over Zq and its

probabilistic function f(x), if 1 6 k 6 b q
2
c and f̂(k) 6= 0, the local width s(k) is

defined to be

s(k) =
q

k

√
− ln |f̂(k)|

π
.

The local width of practical error distributions is calculated and comparison

between local width and given width is estimated in [11].

Theorem 5 ([11]). 1. For the central binormal distribution B(h), we have

s(k)2 ≥ s2 + 2πh

(
kπ

q

)2(
1

12
+

1

45

(kπ
q

)2
+

17

2520

(kπ
q

)4
)
,

for k = 1, 2, · · · , b q
2
c − 1 where s =

√
hπ.

2. For the bounded uniform distribution U [−a,−a+1, · · · , 0, · · · , b] with a+b ≥
7, we have

s(k)2 +
5(16qk − 3q2)

8k2
< s2,
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for k ∈ {1, 2, · · · , bq/2c} with exceptions that k ≥ 3q
16π

and for any integer

`, |dkπ
q
− `π| ≥ π

24
. Here s =

√
π (a+b+1)2−1

6
.

As for central binomial distribution, the lower bound of local width is the given

width, therefore taking ε = e−πs
2l2/q2 as the distinguish advantage is conservative.

However, as for bounded uniform distribution, the local width is lower than given

width in some intervals, which shows that the distinguish advantage corresponding

to certain vectors is bigger than ε. It is noted that for the approximate rounded

Gaussian distribution, the above theorem does not give the theoretical relationship

between local width and given width as the comparison would closely related to

the sampling method, truncation and other factors. Moreover, we can analyze the

specific distribution directly. Taking the scheme parameters of the above three

distributions as an example, the characteristics of the local width are given in the

following.

• The error in Frodo scheme follows approximated rounded Gaussian distribu-

tion. Take one of the given parameters as example, that is

(n, q, σ) = (640, 32768, 2.8),

and the probability function is shown in Table 12.

Table 12: The Error Distribution in Frodo
standard deviation 0 ±1 ±2 ±3 ±4 ±5 ±6 ±7 ±8 ±9 ±10 ±11 ±12

2.8 9288
65536

8720
65536

7216
65536

5264
65536

3384
65536

1918
65536

958
65536

422
65536

164
65536

56
65536

17
65536

4
65536

1
65536

The width is s0 = σ
√

2π = 7.02. The comparison between local width s(k)

and s0 is shown in Figure 4.

As is shown in Figure 4, the local width is lower than s0 when k > q/3.

Therefore vectors of length ` > q/3 in the dual lattice have different dis-

tinguish advantage. For example, for a vector v of length q/2, if it has a
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Figure 4: Comparison between local width s(k) and given width s0 in Frodo. The
abscissa is the value of k in local width and the ordinate is the value of local width
and given width.

component bigger than q/3, the lower bound of its distinguish advantage is

e−π( 4
9
s( q

3
)2+ 5

9
s20)‖v‖2/q2 ≈ e−π( 4∗5.632

9
+ 5∗7.022

9
)‖v‖2/q2 ≈ e−π6.432‖v‖2/q2

which is obviously bigger than e−πs
2
0‖v‖2/q2 . Furthermore, if the components

of vector v are all smaller than q/3, its corresponding distinguish advantage

is close to e−πs
2
0‖v‖2/q2 .

• The NewHope scheme is based on RLWE problem and its error follows central

binomial distribution. We take one of its parameters as example, that is

(n, q, σ) = (512, 12289, 2),

where the error e ∼ B(8). The comparison between local width s(k) and

s0 = 2
√

2π ≈ 5.01 is shown in Figure 5 .

It is shown that s(k) is always bigger than s0 for any k 6 q/2. Furthermore,

the value s(k) − s0 increases with k increasing which is consistent with the
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Figure 5: Comparison between local width s(k) and given width s0 in NewHope.
The abscissa is the value of k in local width and the ordinate is the value of local
width and given width.

result in Theorem 5. Moreover, it shows that taking e−πs
2
0‖v‖2/q2 as the

estimation of distinguish advantage is conservative.

• The Saber scheme is based on MLWR problem. The (M)LWR problem

is usually treated as LWE problem with error following bounded uniform

distribution. Take one of parameters in Saber as example, that is

(n, q, σ) = (768, 8192, 2.29),

where e ∼ U [−3,−2,−1, 0, 1, 2, 3, 4]. The comparison between local width

s(k) and s0 = 2
√

2π ≈ 5.01 is shown in Figure 6 .

As is shown in Figure 6, there are gaps between s(k) and s0 for certain

k′s, e.g. s(k) is strictly smaller than s(0) when k ≥ q/5. The property

is consistent with the result in Theorem 5. Similarly, it shows that some

vectors in the dual lattice correspond to bigger distinguish advantage when

compared the current estimation.
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Figure 6: Comparison between local width s(k) and given width s0 in Saber. The
abscissa is the value of k in local width and the ordinate is the value of local width
and given width.

B Mixed Sampler

According to the definition of mixed distribution, we can prove that the local

width of mixed sampler is always bigger than the given width.

Theorem 6 ([11]). Let q be an integer and the variable X ∼ χ(k1, k2), if k1 > k2,

we have

s(j) > s0

for j = 1, 2, · · · , bq/2c where s0 =
√

2πD[X] =
√

(k1 + 4k2/3)π.

Mixed sampling can be implemented efficiently by taking the central binomial

sampler and the uniform sampler on {−1, 0, 1} as underlying algorithms. The

sampling algorithm is listed as follows.

Mixed sampling algorithm

Input: The parameter (k1, k2).

Next page
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Mixed sampling algorithm

Output: The value of variable following the distribution χ(k1, k2).

1: To sample from a central binomial distribution, first set a random number

generated by a 2-bit random source and output an integer a that subjects

to a central binomial distribution. For example, when the random input is

00\01\10\11 respectively, the output is −1\0\0\1.

2: Repeat the central binomial distribution sampling k1 times, then calculate

the sum of k1 values. That is, let the i-th output is ai for i = 1, · · · , k1, then

calculate A = a1 + a2 + · · ·+ ak1 .

3: Take a random number generated by f = dlog2(3k2)e bits random source.

If the value of the random number in binary is greater than 3k2 , then enter a

random number generated by the f bits random source again until the value

is not greater than 3k2 . Let the random number be expressed as a k2 ternary

string, then count the number of 0, 2 which is denoted respectively as b0, b2,

output B = b2 − b0;

4: Output the value S = A+B mod q.

The efficiency of mixed sampling algorithm is proved.

Theorem 7 ([11]). The mixed sampling algorithm outputs a sample distributed as

χ(k1, k2) correctly and the expectation of bits used to output a sample is

2k1 +
dk2 log2 3e2dk2 log2 3e

3k2
.

The comparison of variance, local width and efficiency between different sam-

plers is shown in Table 14. It should be noted that there is no close lower bound of

local width for bounded uniform sampling. Therefore we make comparison of effi-

ciency and variance among other samplers (that is, we give the comparison among

mixed sampling, central binormal sampling and discrete Gaussian sampling). The

comparison is shown in Figure 7.
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Table 14: Comparison among different samplings.

sampling algorithm bits variance
lower bound

of local width

discrete Gaussian (πs2 log2 e)/4 s2/(2π) s

mixed sampling 2k1 + f ′2f
′
/3k2 k1/2 + 2k2/3

√
(k1 + 4k2/3)π

central binomial 2k k/2
√
kπ

bounded uniform f2f/3k 2k/3 no lower bound

*

f = dlog2(3k)e, f ′ = dlog2(3k2)e.

C Algebraic Attack

Algebraic attack was first proposed by Arora and Ge [4], it is an alternative

approach to solving Search-LWE by setting up a system of noise-free non-linear

polynomials of which the secret s is a root. This approach can find s directly.

In particular, the algorithm proceeds by assuming that the error always falls

in the rang [−t, t] (t ∈ Z, d = 2t + 1 < q), then the polynomials are constructed

from the observation that the error is always a root of the polynomial P (x) =

x
∏t

i=1(x+ i)(x− i). Moreover, we know the secret s is a root of P (a · x− b).

In the Arora-Ge algorithm [4], the system of nonlinear equations constructed

delete??this way is solved by replacing each monomial with a new variable and

solving the resulting linear system. This can be improved by using Gröbner

basis technique [1], which needs less equations but more operations.

Theorem 8 (Theorem 5 in [1] ). Let (n, q, σ) be parameters of an LWE instance,

2 ≤ ω < 3 denote the linear algebra constant and let DAG = 8σ2 log n+1. If DAG ∈
o(n) then the Arora-Ge algorithm solves Search-LWE in time complexity

O(2
ω·DAG log n

DAG · σq log q) = O(28ωσ2 logn(logn−log(8σ2 logn)) · ploy(n)),

and memory complexity

O(2
2·DAG log n

DAG · σq log q) = O(216σ2 logn(logn−log(8σ2 logn)) · ploy(n));
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Figure 7: Efficiency comparison of sampling algorithms

*‘DGS’ stands for discrete Gaussian sampling, ‘Binormal’ stands for central binormal sampling and ‘Mixed’ stands
for discrete Gaussian sampling.
*The s-axis denotes the sampler’s width and longitudinal axis is the bits in the sampling algorithm. The square
symbol denotes the width and bits under proper choice of parameters (k1, k2) in mixed sampling.
*Let y be the bits of sampling, then

y =


1.1331s2, when it is discrete Gaussian sampling;

0.6366s2, when it is binormal sampling;

0.4442s2 + 3.9269s− 23.7935, when it is mixed sampling.

If n ∈ o(DAG) then the Arora-Ge algorithm solves Search-LWE in time complexity

O(2ω·n log
DAG
n · σq log q) = O(2ωn log(8σ2 logn)−ωn logn · ploy(n)),

and memory complexity

O(22·n log
DAG
n · σq log q) = O(22n log(8σ2 logn)−2n logn · ploy(n)).

Taking σ =
√
n as an example, we give the asymptotic complexity of the

two algorithms. The asymptotic complexity of the basic Arora-Ge algorithm
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is O(2(2+ε)ωn log logn) [3]. Combined with Gröbner base, the time complexity is

O(22.35ωn+1.13n), the storage complexity is O(25.85n) and the number of samples

needed is m = exp (πn/4) [3].

D BKW Attack

The BKW algorithm was firstly proposed by Blum, Kalai and Wasserman [8]

and its core idea is to select a few samples by generalized birthday attack so as to

make the sum of selected samples being zero vector. Then it can be used as the

distinguisher of LWE instances.

In more detail, BKW constructs the vi as follows. Given samples A ∈Mm×n,

BKW splits the n components into a blocks each of width b = n/a. There are

a stages of the algorithm in which the algorithm creates tables by searching for

collisions in the appropriate b coefficients of A. In the i-th stage, the samples that

its elements in i − th blocks are zeros, are obtained by collisions. Assuming that

the initial number of samples is 2aqb, at the end of the algorithm in the optimal

case, we can obtain qb short vectors with the length of
√

2a.

Next, the BKW attack uses the short vector to distinguish LWE distribution

from uniform distribution, which is similar with the dual attack introduced in

Section 5.3.2. The advantage of each short vector is ε = exp (−2π2 · 2a(σ
q
)2), then

BKW attack requires about 1/ε2 short vectors to enlarge the success rate. Because

BKZ algorithm can generate qb vectors, the condition of 1/(exp (−2π2 · 2a(σ
q
)2))2 ≤

qn/a should be satisfied by carefully selecting the parameter a.

Using BKW algorithm to solve LWE problem is firstly proposed by Albrecht

et al. on PKC 2014[2]. In the next year, the two algorithms, i.e., [16] and [19], are

independently proposed to improve BKW algorithm. Here, we use the expression

in [16] which called the improved algorithm as coded-BKW algorithm. The other

[15] combines the coded-BKW algorithm and sieve which can get the optimal time

complexity.
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Theorem 9. [15] Let (n, q, σ) be the parameters of LWE instance, and q = ncq , σ =

ncs"The time and storage complexity of coded-BKW combined with sieving both

are 2(c+o(1))n, where

c =
1

1− e−λ(1+2(cq−cs))/cs
,

λ = 0.292 in classical case and λ = 0.265 in quantum case.

Theorem 10. [15] If c > λ and cs
λ

ln cq
cs
< 2(cq − cs) + 1, the expected cost of the

coded-BKW algorithm using BKW as preprocess to distinguish LWE distribution

from uniform distribution is 2(c+o(1))n, where

c = (λ−1(1− cs
cq

) + c−1
q (2(cq − cs) + 1− cs

λ
ln
cq
cs

))−1

λ = 0.292 in classical case and λ = 0.265 in quantum case.

Using the Regev’s LWE instance that q = n2 and σ = n1.5/(
√

2π log2
2 n) as

example, the complexity of BKW algorithm according to Theorem 10 is 20.895n

which is the best result at present.

As for our schemes, (1) in the efficient parameter scheme, the secret will be

changed regularly and the adversary cannot get the number of samples needed

for algebraic attack, so BKW attack cannot be implemented. (2) In the quantum

security scheme, according to theorem 6, we give the attack complexity of BKW

algorithm with sieving on different parameters, as shown in Table 6.

E Security against BKW Attack and Algebra

Attack
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Table 15: Security of SCloud in high security & long message mode against BKW
with sieving

q640 q896 q1216

security level(bit) 128 192 256

(n, q, σ) (640, 216, 4.10) (896, 217, 4.83) (1216, 218, 5.85)

classical 2145 2206 2284

quantum 2138 2196 2271

Table 16: Security of SCloud in high security & long message mode against algebra
attack

q640 q896 q1216

security level(bit) 128 192 256

(n, q, σ) (640, 216, 4.1) (896, 217, 4.83) (1216, 218, 5.85)

time complexity O(2620.8ω) O(2923.4ω) O(21467ω)

space complexity O(21242) O(21847) O(22933)

Table 17: Security of SCloud in high security & short message mode against BKW
with sieving

qg640 qg896 qg1216

security level(bit) 128 192 256

(n, q, σ) (640, 216, 4.10) (896, 217, 4.83) (1216, 218, 5.85)

classical 2145 2206 2284

quantum 2138 2196 2271

Table 18: Security of SCloud in high security & short message mode against algebra
attack

qg640 qg896 qg1216

security level(bit) 128 192 256

(n, q, σ) (640, 216, 4.1) (896, 217, 4.83) (1216, 218, 5.85)

time complexity O(2620.8ω) O(2923.4ω) O(21467ω)

space complexity O(21242) O(21847) O(22933)
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