
MCU intrinsic group features for component

authentication

Frank.Schuhmacher@segrids.com

2020-02-01

Abstract

We provide a solution for the authentication of a component, acces-
sory, smart card or tag by a main device via challenge-response-tests of
two MCU intrinsic features: Progression in the execution of test programs
(measured in processor clocks) and peripheral feedback to internal stim-
ulation. The main device will be called challenger and the other device
responder. Our solution requires that the authentic responders are char-
acterized by a dedicated MCU model and a common responder ID in
read-only MCU registers. Its main application is the detection/lock-out
of counterfeit batteries, cartridges, sensors, or control units. The solution
also suits as a redundant authentication factor in high security applica-
tions, such as payment, or conditional access.

Contents

1 Introduction 2
1.1 Problem Definition . 2
1.2 Progression . 2
1.3 Peripheral Feedback . 3
1.4 Responder Authentication . 3

2 The Authentication Scheme 4
2.1 The Challenger Application . 4
2.2 The Responder Application . 4

3 The Test Program 5
3.1 The Electronic Logbook . 6
3.2 The Feedback Loop . 6
3.3 The Timer Interrupt Handlers . 8

4 The Test Matrix 8
4.1 The Test Plan . 9
4.2 NVIC . 10
4.3 FMC . 10
4.4 GPIO . 11
4.5 CRC . 12

5 Rationale 13

1

1 Introduction

1.1 Problem Definition

For anti-counterfeiting, cryptography is either vulnerable or expensive: cryp-
tographic authentication is broken as soon as a single responder’s secret key
is disclosed. Due to immense revenues in product counterfeiting [1], a strong
attack potential must be presumed. Cryptographic authentication without cer-
tified secure elements is most likely vulnerable to SPA, DPA, or fault injection
attacks [2]. Certified secure elements are expensive for consumer mass products,
and even certified secure elements are sometimes vulnerable [3].

Available non-cryptographic solutions are not practical: non-cryptographic
PUF authentication schemes [4], [5] are based on responder specific challenge-
response-pairs (CRPs). Each time a challenger meets an unknown responder,
it has to request a responder specific CRP from a back-end server with access
to a CRP database. This makes it unpractical for anti-counterfeiting.

We present an authentication solution which is secure, practical, and cheap.
It is secure, because, first, it is a non-cryptographic authentication scheme. No
secret key is required thus, there is no risk of a key disclosure. Secondly, the
solution is based on two MCU intrinsic features, which are laborious to simulate:
progression and peripheral feedback. They will be introduced in the subsequent
paragraphs. A realistic malicious responder within a counterfeit product will
not be able to simulate them in real time.

It is practical because it is based on group features. In consequence, a CRP
is suitable for the test of any responder. Challengers can either maintain their
own CRP-list or incorporate a reference response generator. No connectivity
between the challenger and a back-end is required.

It is cheap because it can be implemented purely in software with a moderate
memory footprint.

1.2 Progression

If a processor or micro-controller executes a program, progression shall refer to
the map of processor clock cycles to program execution states. Progression is
an aspect of the processor’s behavior [6]. It is a characteristics of processors or
of micro-controllers with identical processor and bus system [7], [8].

Progression will be tested within test programs in two complementary vari-
ants: by sampling processor clock counts at dedicated program states, or, by
sampling program states at dedicated processor clock counts. The test output
is an electronic logbook of progression data.

The fact that sampling processor clock counts is sometimes used as a source
of random data [9] shows that the program code and program initialization has
to fulfill certain requirements in order to get a deterministic logbook: no caching,
same clock source for CPU, memory and peripherals, pre-scaler synchronization,
etc. Our first important observation is that determinism can be achieved at
least for the tested micro-controller models SAM3x8e (Cortex-M3 processor)
and HT32F52352 (Cortex-M0+ processor).

2

1.3 Peripheral Feedback

A complementary behavioral aspect of a micro-controller is its feedback to inter-
nal stimuli1. In our context, internal stimulus just means that the CPU writes a
word into an addressable register, and feedback just means that the CPU reads
a word from an addressable register. A feedback is a peripheral feedback, if this
register belongs to a peripheral module of the MCU but not to the processor.

Peripheral feedback provides an MCU intrinsic hardware feature which de-
pends on the hardware architecture, the peripheral module’s behaviour and the
behavioural dependency between different peripheral modules. Peripheral feed-
back will be tested by system self-tests. System self-tests will be specified in
Section 3.2 via sequences of test items to be executed within a feedback loop.
Examples will be provided in Section 4.

1.4 Responder Authentication

The combination of progression and peripheral feedback fulfills the SIMPL
paradigm ”Simulation possible, but laborious” defined in [10]. Cycle accurate
simulation of the processor plus peripherals would provide progression and pe-
ripheral feedback as well. However, cycle accurate simulation of the processor
alone is already laborious: simulation would take considerably longer on realistic
malicious hardware than execution on authentic hardware.

Progression tests are suitable for the authentication of the processor type of
a responder: in a simple variant, a challenger sends a program with progres-
sion test as a challenge to the responder; the responder executes the program;
the program samples progression data in an electronic logbook and sends the
electronic logbook as response back to the challenger.

A progression logbook or a hash sum over a progression logbook is suitable
for processor authentication, but not for program authentication: most program
modifications will change progression, but progression invariant program mod-
ifications exist, e.g. the replacement of an ALU instruction by a different ALU
instruction, if the result of the instruction has no influence of the instruction
flow later on.

A second important result of this article is that by extending a deterministic
progression test by a program self-test, one can achieve a simultaneous processor-
program authentication. In a suitable extension, the electronic logbook covers
program data in addition to progress data. Hashing the electronic logbook is
required here, in order to prevent program data replacement after test execution.

By extending the electronic logbook by sampled payload data, one can even
achieve a simultaneous processor-program-payload authentication. Payload is
restricted to data which cannot be modified by a malicious component before –
or by a third party during – program execution. Examples are data in read-only
memory or a peripheral register value generated at run-time.

For the responder authentication, we apply simultaneous processor-program-
payload authentication to the use case where payload covers two sorts of data:

1. The peripheral feedback of a set of peripherals that characterizes the re-
sponder’s MCU model at least among all MCU models with the same
processor type.

1We use the pairing ”stimulus-feedback” instead of ”stimulus-response”, since in authen-
tication ”response” is already used in ”challenge-response”.

3

2. The responder ID, which characterizes authentic responders among all
responders with the same MCU model.

In this setup, the simultaneous processor-program-payload authentication is a
responder authentication. We suggest the acronym HELLO for ”Hashing ELec-
tronic LOgbooks”.

2 The Authentication Scheme

2.1 The Challenger Application

For the authentication of a responder, the challenger application performs one
challenge-response-test (CRT) or a sequence of more than one CRTs with a
refresh operation in between. The challenger accepts responses only within a
dedicated response time frame, and compares a response received in time with
a reference response. The challenger either stores a CRP-list and selects for
each CRT a CRP from the list, or the challenger is able to generate challenges
randomly and encloses a reference responder for the generation of suitable refer-
ence responses. The first variant reduces challenger hardware costs. The second
variant is necessary if refreshes are always required to achieve security for the
given field of application and if the challenger has no access to a CRP server.
The question wheather the first variant is sufficient is formally analyzed in the
reference [11]. This reference also specifies the challenger implementation for the
two variants and proves the security of authentication with ”choked refresh” for
the first variant in fields of application where replay attacks are not a realistic
threat, and authentication with ”always refresh” for the second variant.

2.2 The Responder Application

The responder is typically an accessory device or device component with a
responder application in addition to the normal device control functionality.
The responder application has four jobs:

1. Receive a challenge.

2. Load a test program in a challenge dependent way to the responder MCU’s
internal SRAM.

3. Execute the test program.

4. Send the test program’s output as response to the challenger.

In this section, we focus on the second item.

2.2.1 The Reference Test Program

The responder is programmed with a fixed reference test program in the respon-
der application’s data segment in flash memory. The reference test program is
identical for all responders. The reference test program complies with the test
program specification in Section 3.

4

2.2.2 Swapping

A swap is the exchange of two 16-bit instructions in a 32-bit code word. The
reference test program is implemented in such a way that a 256-byte block of its
code segment consists of 64 pairs of 16 bit instructions, and each test program
obtained by the application of swaps to these pairs again complies with the test
program specification of Section 3.

The responder loads the reference test program code from flash to SRAM
while swapping words in the swappable code block according to the first 64 bits
of the challenge.

The progression of the test program obtained by a random challenge will be
very different from the progression of the reference test program. This is due to
the different timing of bus accesses. It is laborious to translate the progression
logbook of the reference test program to the progression logbook of the challenge
dependent test program.

2.2.3 Braiding

The data segment of the reference test program contains a 4x25 test matrix as
depicted in Figure 1. A row in the test matrix will be interpreted as a test
thread in Section 3.

Figure 1: Test Matrix

The responder application contains a lookup table of 16 permutation of
the set {1, 2, 3, 4} and maps 100 bits of the challenge to a sequence of 25 of
these permutations. It loads the test matrix into RAM while applying the i-th
permutation to the i-th column, for i = 1, ..., 25, as depicted in Figure 1, for
i = 5. This will be referred to as braiding. It will be explained in Section 3 how
braiding again messes up the electronic logbook generated by the test program.

2.2.4 The Initial Hash Value

The responder application writes 128 bits of the challenge to a buffer. It will
be used as initial hash value by a hash function of the test program. Then
the initialization of the challenge dependent test program is complete. The
responder application branches to its entry point.

3 The Test Program

As described in Section 2.2, the responder application derives a test program
from a reference test program stored in flash and a challenge. This section
defines the challenge invariant structure of the test program’s code section.

The test program covers a feedback loop and two timer interrupt handlers.
A hash function is shared between feedback loop and interrupt handlers.

5

3.1 The Electronic Logbook

The responder’s response to the challenge is a hash sum over an electronic log-
book. The electronic logbook covers progression, program, and payload data.
These three categories are not strictly disjoint, sometimes program or progres-
sion data are also considered as payload. Other examples of payload are read-
only data and peripheral feedback. The complete electronic logbook is not saved
or transmitted, only its hash sum is relevant.

We use a hash function with 4 word hash buffer shared by the feedback
loop and the timer interrupt handlers. The hash function is a Merkle-Damg̊ard-
construction without length padding and a lightweight compression function.
After bit-wise addition of a hash buffer word with the compression output, the
resulting word of the hash buffer is rotated by a clock counter dependent value.
This ensures a strong dependency of the hash function by the progression.

The complete challenge-response function is the composition:

challenge 7→ hash(logbook(prog(challenge))).

3.2 The Feedback Loop

Figure 2 depicts the feedback loop between the hash buffer and the system. It
is the machinery for system self-test. In the feedback loop, the hash buffer has
two functions: first, it’s a source of pseudo-random stimulus data, and secondly,
hashing the system feedback.

System

Hash

feedbackstimulus

Figure 2: Feedback Loop

3.2.1 Test Items

The feedback loop requires a sequence of test items, consisting of two ad-
dresses and three masks: a WriteAddress defines where to write the stimulus,
a ReadAddress defines where to read the feedback.

Different bits in a word at WriteAddress are treated differently: dedicated
bits are set, cleared, left unchanged, or changed pseudo-randomly (using the
hash buffer as pseudo-random source). The bit assignment is realized by four
masks defined in Table 1.

To save memory space, we encode these four masks in two words WriteMask0

6

Mask Purpose

SetMask Stimulus bits to be set to 1.
ClearMask Stimulus bits to be set to 0.
KeepMask Bits to remain unchanged by stimulus.
PrngMask Bits to be changed pseudo randomly.

Table 1: Stimulus bit assignment

and WriteMask1 defined as follows:

WriteMask0 :=SetMask|KeepMask
WriteMask1 :=SetMask|ClearMask

Here, the | denotes the bit-wise or. Some bits of the feedback are to be ignored.
The bits to be considered are selected by a ReadMask. A test item has a five-
words encoding:

(WriteMask0, WriteMask1, WriteAddress, ReadMask, ReadAddress)

The feedback loop loops column-by-column and row-by-row over the test matrix.
In each round of the feedback loop, one test item is processed. Processing a test
item covers four steps:

1. Derive the stimulus from the original value at WriteAddress, a pseudo-
random value, i.e. a word of the current hash buffer, and the four masks
of Table 1.

2. Write the stimulus to the WriteAddress.

3. Read the value at the ReadAddress.

4. Mask the read value with the ReadMask to obtain the feedback.

During the processing of a test item, eight data words are appended to the
electronic logbook and hashed:

• The test-item in five-word encoding (program data).

• The feedback (progression, program or payload data, depending on the
test item).

• The program counter and stack pointer (program data).

3.2.2 Payload

Payload is authentic if the responder MCU reads it from the authentic mem-
ory address and appends it unmodified to the electronic logbook. Malicious
responders might modify the authentic test program by address redirection or
payload data manipulation for mocking authentic payload. As a countermea-
sure, payload data is read within the feedback loop. For some test items the
ReadAddress points to payload data. In other words, payload data is handled a
system feedback, even if it is read-only. Due to braiding, the access to payload
data is difficult to predict from the perspective of a malicious responder. Mock-
ing of an authentic responder by a malicious responder necessarily requires a
coarse program modification, which will be detected by the progression logbook.

7

3.2.3 Test Threads

We specify system self-tests as short sequences of test items. Examples are
system internal peripheral tests and will be provided in Section 4. As depicted in
Figure 1, the rows of the reference test matrix are concatenations of system self-
tests. We interpret these concatenations as four test threads, and the feedback
loop as a system self-test multi-threading. The braiding of the test matrix is a
challenge dependent scheduling of the four test threads.

For responder MCUs with little SRAM, test items can be read directly from
flash while the braiding is done within the feedback loop. The cost is a small
increase of run-time.

3.3 The Timer Interrupt Handlers

We simply say timer for a timer/counter module of the responder MCU. We
clock timers by the same clock source as the CPU. If timer clocks are pre-scaled,
the responder application needs to run a sync procedure in order to enter the
test program always at the the same clock phase of each active timer. This is a
pre-requisite for a deterministic progression.

We implement interrupt handlers for at least two timers. A timer interrupt
will be triggered by a timer reaching the value of a compare value register.

The compare value will be changed multiple times during the run of the test
program in order to interrupt the feedback loop at pseudo-random run-times.
This makes progression difficult to predict. Additionally, the timer interrupt
handlers have the following jobs:

1. Sample the program state at the interrupt time and append it as progres-
sion data to the electronic logbook. The program state includes at least
the stacked return address.

2. Sample program data in a pseudo-random order and append it to the
electronic logbook. This is realized by using the return address as a pointer
to program data. The interrupt handler logs several consecutive code
words starting from the return address. The timer interrupts have to
occur sufficiently often to achieve full code coverage with high probability.
By changing interrupt priorities dynamically, it can be achieved that the
two timer interrupt handlers append their code mutually to the electronic
logbook.

3. The first timer interrupt handler modifies the configuration of the second
timer pseudo-randomly and vice-versa. A suitable modification is to set
the timer compare value register to the current timer value plus a pseudo-
random offset.

4. Swap code dynamically. This is an additional simulation countermeasure.
A suitable code word to be swapped is selected again with the help of the
stacked return address.

4 The Test Matrix

As described in Section 2.2, the responder application derives a test program
from a reference test program stored in flash, and a challenge. The test program

8

consists of a program code, as specified in Section 3, and a test matrix as
program data.

As specified in Section 2.2, the responder application derives the test matrix
from the challenge and a reference test matrix stored in flash memory.

In this section, we describe the construction of a reference test matrix. The
reference test matrix is MCU model specific. Its rows are concatenations of
systems self tests. Each system self test is defined by a short sequences of test
items (and the program code).

System self-tests are intended for testing peripheral modules, or dependen-
cies between peripheral modules. Peripheral either refers to a processor or a
processor external MCU peripheral. System self-tests are MCU model specific.
For convenience we focus on an example MCU in this section: we have chosen
the Holtek HT32F52352, since the manufacturer offers the MCU customization
by a factory programmable three-word custom ID.

We assume that Holtek and the responder manufacturer fix a responder ID
as custom ID for all MCUs delivered by Holtek to the responder manufacturer
and ensure (by contracts and suitable organizatorial means) that no third party
will ever have access to HT32F52352 MCUs with the fixed responder ID as
custom ID.

4.1 The Test Plan

As requested in Section 1.4, the system self tests shall cover tests of a set of
peripherals whose behaviour characterizes the MCU model at least among all
MCU products with a Cortex-M0+ processor. For HT32F52352, we choose the
set of peripherals depicted in Figure 3.

Figure 3: Test Plan

The figure assigns peripheral modules to the four rows of the test matrix (i.e.
to the four test threads, see Section 3.2.3). The first column covers modules
providing a very characteristic functionality and well-suited for internal testing:
the Cortex internal peripherals SCB and NVIC, the Flash Controller FMC, the
GPIO module, and the CRC module.

The second column assigns different timer modules to the four threads.
Timer modules are well-suited for testing: on one hand-side for testing their
own functional behaviour, and on the other hand-side for sampling additional
progression data.

The third column assigns different peripheral direct memory access (PDMA)
channels to the four threads. PDMA channels are tested in combination with a
second peripheral. PDMA is well-suited for testing the MCU specific memory
arbiter. Furthermore, activation of a PDMA increases the complexity of cycle
accurate simulation.

The fourth column, ranging over all four rows, lists test candidates to be
tested in all threads. The internal tests are not well-suited for testing the com-

9

munication interfaces (I2C, SPI, UART, ...). We restrict the testing on the
read-write behaviour of their configuration registers. Since the testing always
includes the register addressing, these tests are still valuable for the MCU char-
acterization.

Figure 3 only provides a vertical assignment. Tests within the rows will be
mixed such that in the end the structure of the test matrix is as in Figure 1.
Several test items in each row will have a pointer to code and the custom ID as
read address.

To demonstrate the specification of system self-tests in detail, we describe
the first test of each row of our reference test matrix of the HT32F52352 in the
subsequent paragraphs.

4.2 NVIC

The nested vectored interrupt controller (NVIC) is an ARM-v6 specific proces-
sor peripheral. In our HT32F52352 example, the test program has interrupt
handlers for the timer modules BFTM0 and BFTM1 described in Section 15
of [12]. Their interrupt numbers are 17 and 18. The role of the timer interrupt
handlers was specified in Section 3.3 .

We implement system tests, where the two interrupts are disabled, enabled,
set to pending by software, and where the priorities of the two interruts are
changed. One example of such a test covers the following six steps:

1. Write to the ”Interrupt 16-19 Priority Register” to set the priority of
interrupt 17 to one. Read a code word.

2. Write a random bit to the ”Interrupt Clear Enable Register” to disable
interrupt 17 maybe. Read next code word.

3. Write a random bit to the ”Interrupt Set Enable Register” to enable in-
terrupt 17 maybe. Read next code word.

4. Write a bit to the ”Interrupt Set Pending Register” to set interrupt 17
pending. Read next code word.

5. Write to the ”Interrupt Set Enable Register” to enable interrupt 17 for
sure. Read the ”Interrupt Control and State Register”.

6. Write to the ”Interrupt 16-19 Priority Register” to set the priority of
interrupt 17 to zero. Read next code word.

Refer to the product user manual [12] for the register descriptions. The corre-
sponding sequence of six test items is depicted in Table 2. All numbers in the
table are hexadecimal.

The read addresses 0x1220-0x1230 point to the interrupt handlers that re-
main in flash memory.

4.3 FMC

The FMC is the flash memory controller of the HT32F52352. We apply stimuli
to the FMC module to mess up the timing of flash memory accesses and in

10

Test Item 0 1 2

WriteAddress e000e410 e000e180 e000e100

SetMask 100 0 0

clearMask 0 0 0

KeepMask fffffeff fffffdff fffffdff

PrndMask 0 200 200

ReadAddress 1220 1224 1228

ReadMask ffffffff ffffffff ffffffff

Test Item 3 4 5

WriteAddress e000e200 e000e100 e000e410

SetMask 200 200 0

ClearMask 0 0 100

KeepMask fffffdff fffffdff fffffeff

PrndMask 0 0 0

ReadAddress 122C e000ed04 1230

ReadMask ffffffff ffffffff ffffffff

Table 2: NVIC test example

consequence mess up the progression. Two bits of the ”Flash Cache and Pre-
fetch Control Register” are suitable: bit 12 enables the branch cache, and bit 4
enables the pre-fetch buffer. We will not change the setting of flash wait states
(bits 2:0), since this caused non-deterministic progression in our tests.

Five FMC read-only registers are suitable for the MCU and responder char-
acterization and will serve as peripheral feedback: the ”Flash Page Number
Status Register”, ”Flash Page Size Status Register”, and the three ”Custom
ID” registers. An example for a system test consisting of a single test item is
shown in Tabel 3. We instanciate this test multiple times within the test matrix
variating only the read address.

Test Item 0

WriteAddress 40080200

SetMask 0

ClearMask 0

KeepMask ffffffed

PrndMask 00000012

ReadAddress 40080310

ReadMask ffffffff

Table 3: FMC test example

4.4 GPIO

For testing the general purpose IO module (GPIO), we focus on port C and
assume that the pins C11 and C12 are connected via a 50 Ohm resistor as loop-
back. The test program initialization shall cover the clocking the alternative
function IO module (AFIO), and the GPIO port C, and the configuration of
pin C11 as output and pin C12 as input. We provide a test example covering
the following steps:

1. Write bit 11 of the ”Port C Output Set and Reset Control Register”

11

pseudo-randomly to set pin C11. Read the pin C12 status.

2. Write bit 12 of the ”GPIO Port C AFIO Configuration Register 1” pseudo-
randomly to select an alternative function for pin C11 between 0 and 1.
Read the pin C12 status.

3. Clear bit 12 of the ”GPIO Port C AFIO Configuration Register 1” to
select alternative function 0 for pin C11. Read the pin C12 status.

4. Write bit 12 of the ”Port C Pull-Down Selection Register” pseudo-randomly.
Read the pin C12 status.

5. Write bit 11 of the ”Port C Open Drain Selection Register” pseudo-
randomly. Read the pin C12 status.

6. Write bit 12 of the ”Port C Pull-Up Selection Register” pseudo-randomly.
Read the pin C12 status.

An implementation of this test as sequence of test items is depicted in Table 4.

Test Item 0 1 2

WriteAddress 400b4024 40022034 40022034

SetMask 0 0 0

ClearMask 0 0 1000

KeepMask fffffbff ffffefff ffffefff

PrndMask 400 1000 0

ReadAddress 400b401c 400b401c 400b401c

ReadMask 1000 1000 1000

Test Item 3 4 5

WriteAddress 400b400c 400b4010 400b4008

SetMask 0 0 0

ClearMask 0 0 0

KeepMask ffffefff fffffbff ffffefff

PrndMask 1000 400 1000

ReadAddress 400b401c 400b401c 400b401c

ReadMask 1000 1000 1000

Table 4: GPIO test example

4.5 CRC

The CRC module of the HT32F52352 has a big variety of configurations which
makes it well suited for testing. We provide a test example of the CRC in
combination with the PDMA module covering the following steps:

1. Write a 16-bit random value into the ”CRC Control Register”. Read the
first custom ID word.

2. Write a random value into the ”CRC Seed Register”. Read the second
custom ID word.

3. Write a RAM address of the test program code to the ”PDMA channel 3
Source Address Register”. Read the third custom ID word.

12

4. Write the address of the ”CRC Data Register” into the ”PDMA channel
3 Destination Address Register”. Read a code word.

5. Set the PDMA transfer size to 4 blocks à 250 bytes. Read the next code
word.

6. Write the ”PDMA Control Register” in order to assign random priority
to PDMA channel 3, use circular dest address mode, and start transfer.
Read the PDMA interrupt status.

7. Write a pseudo-random value to a RAM buffer. Read the ”PDMA Current
Transfer Size Register”.

8. Write a pseudo-random value to a RAM buffer. Read the ”CRC Checksum
Register”.

An implementation of this test as sequence of test items is depicted in Table 5.

Test Item 0 1 2 3

WriteAddress 4008a000 4008a004 4009004c 40090050

SetMask 0 0 20001000 4008a00c

ClearMask 0 0 dfffefff bff75ff3

KeepMask ffffff00 0 0 0

PrndMask ff ffffffff 0 0

ReadAddress 40080310 40080314 40080318 123C

ReadMask ffffffff ffffffff ffffffff ffffffff

Test Item 4 5 6 7

WriteAddress 40090058 40090048 20002000 20002000

SetMask 400fa 021 0 0

ClearMask fffbff05 cde 0 0

KeepMask 0 fffff000 0 0

PrndMask 0 300 ffffffff ffffffff

ReadAddress 1240 4009005c 40090120 4008a008

ReadMask ffffffff ffff0000 7fffffff ffffffff

Table 5: CRC test example

5 Rationale

A test program covering a feedback loop as specified in Section 3.2 and two
timer interrupt handlers as specified in Section 3.3 is suitable for simultane-
ous processor-program-payload-authentication, and in consequence for respon-
der authentication:

Coarse program modifications lead to a modified progression and will be
detected by the sampling of progression data in the feedback loop and in the
interrupt handlers.

Progression invariant modifications will still be detected. Modifications in
the feedback loop by sampling program code at pseudo-random program ad-
dresses within the interrupt handlers; modifications in the interrupt handlers
by sampling program code by indirect reads within the feedback loop.

13

Modifications of entries in the test matrix will be detected since test items
are appended to the electronic logbook in the feedback loop. Modifications in
order to mock authentic payload require coarse program modifications.

Modification of electronic logbook data after the termination of the feedback
loop and re-computation of the hash sum is not possible: the hash function
strongly depends on progression and is thus bound to the authentic program
execution on the authentic MCU.

Mocking an authentic responder is as laborious as a cycle accurate simulation
of the responder MCU processor and the characteristic MCU peripherals. A
realistic malicious responder will not be able to do this within the response
time frame.

References

[1] Michigan State University, “Defining the threat of product counterfeiting,”
2019. https://www.michiganstateuniversityonline.com/resources/

acapp/threat-of-product-counterfeiting/.

[2] “Requirements to perform integrated circuit evaluations,” May
2013. https://www.commoncriteriaportal.org/files/supdocs/

CCDB-2013-05-001.pdf.

[3] M. Wagner and S. Heyse, “Single–trace template attack on the DES round
keys of a recent smart card,” Cryptology ePrint Archive, Report 2017/057,
2017. https://eprint.iacr.org/2017/057.

[4] R. S. Pappu, “Physical one-way functions,” PhD thesis, MIT, 2001.

[5] S. Devadas, G. E. Suh, S. Paral, R. Sowell, T. Ziola, and V. Khandelwal,
“Design and implementation of PUF-based “unclonable” RFID ICS for
anti-counterfeiting and security applications,” International Conference on
RFID, pages 58–64, 2008.

[6] W. Prenninger and A. Pretschner, “Abstractions for model-based testing,”
2004. https://mediatum.ub.tum.de/doc/1246353/1246353.pdf.

[7] M. Reshadi and N. Dutt, “Generic pipelined processor modeling and high
performance cycle-accurate simulator generation,” Proceedings of the Con-
ference on Design, Automation and Test in Europe—Volume 2, Washing-
ton, DC, USA: IEEE Computer Society, p. 786–791, 2005.

[8] J. Bauer and F. Freiling, “Towards cycle-accurate emulation of cortex-M
code to detect timing side channels,” 11th International Conference on
Availability, Reliability and Security, IEEE, 2016.

[9] S. Müller, “CPU time jitter based non-physical true random
number generator,” https://pdfs.semanticscholar.org/af73/

17c970fd416646b2e46659c9624108be4fcc.pdf.

[10] U. Rührmair, “SIMPL systems as a keyless cryptographic and security
primitive,” D. Naccache (Editor), Cryptography and Security: From The-
ory to Applications - Essays Dedicated to Jean-Jacques Quisquater on the

14

Occasion of His 65th Birthday. Lecture Notes in Computer Science, Vol.
6805, Springer, 2012.

[11] F. Schuhmacher, “Relaxed freshness in component authentication,” 2020.

[12] Holtek, “HT32F52342/HT32F52352 user manual, holtek 32-bit microcon-
troller with ARM Cortex-M0+ core.” Revision: V1.30, September 28,
2018.

15

