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Abstract—Efficiently supporting inference tasks of deep neural
network (DNN) on the resource-constrained Internet of Things
(IoT) devices has been an outstanding challenge for emerging
smart systems. To mitigate the burden on IoT devices, one preva-
lent solution is to outsource DNN inference tasks to the public
cloud. However, this type of “cloud-backed” solutions can cause
privacy breach since the outsourced data may contain sensitive
information. For privacy protection, the research community
has resorted to advanced cryptographic primitives to support
DNN inference over encrypted data. Nevertheless, these attempts
are limited by the real-time performance due to the heavy IoT
computational overhead brought by cryptographic primitives.

In this paper, we proposed an edge-computing-assisted frame-
work to boost the efficiency of DNN inference tasks on IoT
devices, which also protects the privacy of IoT data to be out-
sourced. In our framework, the most time-consuming DNN layers
are outsourced to edge computing devices. The IoT device only
processes compute-efficient layers and fast encryption/decryption.
Thorough security analysis and numerical analysis are carried
out to show the security and efficiency of the proposed frame-
work. Our analysis results indicate a 99%-+ outsourcing rate of
DNN operations for IoT devices. Experiments on AlexNet show
that our scheme can speed up DNN inference for 40.6x with a
96.2% energy saving for IoT devices.

Index Terms—Deep Neural Network Inference, Privacy-
preserving Outsourcing, Internet of Things, Edge Computing

I. INTRODUCTION

UELED by the massive influx of data and advanced

algorithms, modern deep neural network (DNN) has sur-
prisingly benefited IoT applications in a spectrum of domains
[2], including visual detection, smart security, audio analytics,
health monitoring, infrastructure inspection, etc. In recent
years, enabling efficient integration of DNNs and IoT is
receiving increasing attention from both academia and industry
[3]-[5]. DNN-driven applications typically have a two-phase
paradigm: 1) a training phase wherein a model is trained
using a training dataset, and 2) an inference phase wherein
the trained model is used to output results (e.g., predication,
decision, recognition) for a piece of input data. With regard to
the deployment on IoT devices, the inference phase is mainly
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adopted to process data collected on the fly. Given the fact
that complex DNN inference tasks can contain a large amount
of computational operations, their execution on resource-
constrained IoT devices becomes challenging, especially when
time-sensitive tasks are taken into consideration. For example,
a single inference task using popular DNN architectures (e.g.,
AlexNet [6], FaceNet [7], and ResNet [8]) for visual detection
can require billions of operations. Moreover, many IoT devices
are powered by battery, which will be quickly drained by
executing these complex DNN inference tasks. To soothe IoT
devices from heavy computation and energy consumption,
outsourcing complex DNN inference tasks to public cloud
computing platforms has become a popular choice in the
literature. However, this type of “cloud-backed” system can
raise privacy concerns when the data sent to remote cloud
servers contain sensitive information [9], [10].

In order to protect the privacy of sensitive information, the
problem of privacy-preserving outsourcing of DNN inference
has attracted research efforts in recent years [1], [11]-[20].
These existing works can be classified into two categories
according to who is the owner of the trained DNN model: 1)
the trained model and input data are provided by the same user
and the external computing platform only provides computing
resources [1], [11]-[13]; 2) the external computing platform
provides the trained model and and users submit input data for
inference, which is known as “inference-as-a-service” [15]—
[20]. Technically, these existing works [11]-[20] in both cat-
egories mainly leverage powerful but expensive cryptographic
primitives, including homomorphic encryption and multi-party
secure computation, to enable the execution DNN inference
over encrypted data. Although strong privacy protection is
offered by these cryptographic primitives, their utilization also
introduces heavy computational and communication overhead.
Such a performance limitation makes these existing solutions
become efficient only for small-scale neural networks (i.e.,
millions of FLOPs in an inference), but are still far away from
practical support of complex inference tasks (e.g., billions
of FLOPs in an inference). Recent research [1] proposes an
online/offline privacy-preserving solution to support category-
1 outsourcing, wherein offline computation and storage are
used to trade the efficiency of online real-time inference
tasks. Ref [1] greatly improves efficiency of real-time privacy-
preserving DNN inference and can efficiently handle complex
DNN architectures (e.g., AlexNet that contains 2.27 billions
of FLOPs of each inference). However, this solution has to
update keys for each DNN inference request, which leads
to a large storage overhead and offline precomputation. For
example, to process 1000 AlexNex or FaceNet inference



requests, the keys need to be pre-stored on the IoT device in
ref [1] will be 20.49GB or 74.91GB respectively. Meanwhile,
obtaining new sets of keys will require a significant amount
of energy consumption of the IoT device due to computation
or communication cost.

In this paper, we proposed a two-edge-server framework
to enable efficient privacy-preserving outsourcing of DNN
inference for resource-constrained IoT devices. Our framework
offers privacy protection on the input and output data of
DNN inference. The proposed framework adopts a hybrid
outsourcing strategy, wherein DNN layers that occupy the
majority of computation [21] are outsourced while compute-
efficient layers are directly processed at local. Different from
existing “cloud-backed” designs, our framework leverages
edge computing to promote the efficiency of outsourcing data,
because it can effectively ameliorate the network latency and
availability issue [22]. More importantly, we propose a novel
encryption to assure that the real-time DNN inference over
encrypted data, which can be efficiently executed by gen-
eral edge computing devices (e.g., regular laptop computers).
Thus, our framework avoids the reliance on powerful cloud
servers for computing capabilities. To be specific, since linear
operations of DNNs over input data and random noise are
linearly separable, decryption of noise can be conveniently
precomputed. As a result, our encryption allows [oT devices
to securely outsource over 99% DNN operations to edge
devices. To further enhance the efficiency of our framework in
terms of communication, we integrate compression techniques
[23] to reduce the size of ciphertext during the transmission.
Besides privacy protection, we also discussed how to enable
IoT devices to check the integrity of computational results
returned by edge servers.

We implemented a prototype of our framework to evaluate
its practical performance in terms of efficiency, energy con-
sumption, and scalability. Formal security proof is provided
for our framework. The numerical analysis shows that our
framework can securely offload 99.86% and 99.38% com-
putation from the IoT device when using the well-known
AlexNet [6] and FaceNet [7] DNN architectures respectively.
Correspondingly, our experimental results demonstrate that
our framework is able to speed up 40.6x for the execution
of AlexNet Inference tasks using regular laptops as edge
devices. Compared with fully executing an AlexNet inference
without outsourcing, our framework also saves 96.2% energy
consumption for the IoT device.

The rest parts of this paper are organized as follows: In
Section II, we formulate the problem with system model and
threat model. We provides the detailed construction of our
framework in Section III. Section IV analyzes the security
of the proposed framework, which is followed by the perfor-
mance evaluation in Section V. We review and discuss related
works in Section VI and conclude this paper in Section VII.

II. BACKGROUND AND PROBLEM FORMULATION
A. Overview of DNN Inference

The computational flow of a DNN inference consists of
multiple linear and non-linear computational layers. The input

of each layer is a matrix or a vector, and the output of each
layer will be used as the input of the next layer unless the last
layer is reached. In this project, we investigate convolutional
neural network (CNN) [24] as an example, which is an
important representative of DNN. In CNN, linear operations
in an inference mainly performed in fully-connected (FC) and
convolution (CONV) layers. Non-linear layers (e.g., activation
layer and pooling layer) are typically placed after a CONV or
FC layer to perform data transformation.

In CONV and FC layers, dot product operation (DoT(-))
are repeatedly executed. To be specific, a FC layer takes a
vector v € R™ as input and outputs y € R™ using linear
transformation as y = W - v + b, where W € R™*"
is the weight matrix and b is the vector of bias. During
the calculation of W - v, m dot products are computed as
y[i] = DoT' (Wi, :],v)1<i<m- In a CONV layer, a X € R™*"
input matrix will be processed into H kernels. For a (k x k)
kernel K, it scans the matrix from top-left corner, and then
moves from left to right. Each scan is a linear transformation
that takes a (k x k) window in the input matrix and uses it
to compute a dot product with the kernel, which then adds a
bias term to the result.

Examples of the processing of COVN and FC layers are
presented in Fig.1. For more detailed description, please refer
to ref [24]
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Fig. 1. Examples of a Convolutional Layer and a Fully-connected Layer
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As depicted in Fig.2, our framework involves two non-
colluding edge computing servers, resource-constrained IoT
devices, and the device owner.

o Edge servers: we consider two non-colluding servers,
denoted as Edges and Edgep, that are deployed close
to IoT devices. Each edge server has the capability to
efficiently process DNN inference tasks over plaintext,
such as a regular laptop. Each edge server will obtain
linear layers of a trained DNN model from the de-
vice owner. Fdgey and Edgep will process encrypted
DNN inference requests from IoT devices in a privacy-
preserving manner. The multi-server architecture has been
widely adopted to balance the security and efficiency
in privacy-preserving outsourcing [16], [25], wherein at
least one server will not collude with the others.

e [oT devices: we consider resource-constrained IoT de-
vices that are deployed with limited computing capability
and battery life. These devices collect data and need to
process these data on the fly using DNN inference.

e Device owner: the device owner has pre-trained DNN
models and can deploy IoT devices for service.

In this project, we focus on designing a framework that an
IoT device can outsource the majority of computation in a
DNN inference task to two non-colluding edge servers in a
privacy-preserving manner. At the end of the inference, the
IoT device obtains the result over its input data, whereas two
edge servers do not learn the sensitive information of input
data, intermediate outputs, and the final inference result. As
all IoT devices are deployed by the owner, he/she has access to
all data collected and processed by his/her IoT devices when
necessary.

C. Threat Model

Edge servers in our setting are considered as “curious-but-
honest”, i.e., the edge servers will follow the protocol to
correctly perform storage, computation, and communication
requests, yet attempt to obtain the input and output of the
DNN inference outsourced by resource-constrained devices. In
addition, we assume that the two edge servers do not collude
with each other. Each edge server has access to architectures
and parameters of DNN layers outsourced to it, and encrypted
data submitted to it by IoT devices. The device owner and
his/her 10T devices are considered as fully trusted and will not
be compromised. Secure communication channels are assumed
between all entities.

Our framework targets at protecting the privacy of IoT
devices’ data submitted to edge servers and the outputs of
all outsourced DNN layers (including final result). We do
not protect the overall purpose of the DNN inference, since
multiple layers of the DNN model are known to the edge
servers. Our privacy protection goals are consistent with that
in [1]. For example, the edge servers may know the DNN
inference is used for prediction, yet do not learn the input and
the prediction results. To prevent edge servers from learning
information about the trained data by analyzing the trained
model, the IoT device owner can train it using a statistical
database in the differential privacy literature [26], [27]. The

research direction of privacy-preserving training is orthogonal
to this paper.

III. PRIVACY-PRESERVING OUTSOURCING OF DNN
INFERENCE

A. Overview

In our framework, the IoT device outsources the execution
of linear (CONV and FC) layers and keeps the compute-
efficient non-linear layers at local. Without loss of generality,
we consider a DNN that contains ¢ CONV and FC layers,
each of which is followed by non-linear activation layers
if necessary. We use p to denote the length (in bit) of an
element in the input matrix of CONV or input vector or
FC layers, and A to denote the security parameter. Random
numbers utilized in our design are A-bit generated using a
pseudorandom function F(-).

There are three major phases in our framework: Setup, Data
Encryption, and Privacy-Preserving Execution. In the Setup,
the owner prepares a pre-trained DNN model and generates the
encryption and decryption keys for the IoT device. When the
IoT device needs to perform DNN inference over its collected
data, it will execute the Data Encryption phase to encrypt
them and send them to two edge servers. The DNN inference
is then executed in the Privacy-Preserving Execution phase.
All outsourced DNN operations performed by edge servers are
over encrypted data.

We now present the detailed construction of our framework.
Important notations used in the construction are summarized
in Table L.

TABLE I
SUMMARY OF NOTATIONS

the number of CONV and FC layers in the
q DNN architecture
the length (in bit) of an element in a CONV
® or FC layer’s input
A the security parameter
{Si,in,Si,out} | encryption and decryption keys for the i;p,

1<i<q CONV or FC layer
X input of the i;;, CONV or FC layer
€ random noise
] ciphertext of X; sent to Edge 4 and Fdgep
Cia,Cip respectively
b; the bias adopted for the i¢;, CONV or FC layer
€ random noise
Oin, O outputs returned by Edge4 and Edgep of

the ¢4, CONV or FC layer
K k x k kernel of a CONV layer
weight matrix of the i;; FC layer

B. Detailed Construction

Setup: To setup the framework, the device owner prepares
a trained DNN model and sends its ¢ linear layers (CONV
and FC) to Fdges and Edgep. For the i, linear layer,
the owner generates a pair of encryption and decryption
keys {Si,in, Si,out }1<i<q- As presented in Algorithm 1, S ;p
for 44, linear layer will be randomly generated according
to input dimension of the layer, and each element in S;ip



will be a A-bit random number. S; oyt i the corresponding
output of the i, linear layer when taking S; ;5 as the input.
{8i,in, Si,out 1<i<q key pairs are deployed on the IoT device
for later on privacy-preserving DNN inference tasks.

Algorithm 1: Key Generation for the 74, Linear Layer

Input : ¢, linear layer
Output: {S; in, Siout }
1 Generate a random matrix (or vector) Sj in using
pseudorandom function F(-);
/I Si,in has the same dimension as the regular input of the
itp, linear layer.
2 Take S;,in as input for the i, linear layer, and get the
output S; out;
3 Si,out = Si,out — bs, where b; is the bias adopted by the i,
linear layer;

Data Encryption: When a DNN inference is needed for the
IoT device, it will outsource the execution of linear layers to
Edge s and Edgep in the privacy-preserving manner. To be
specific, for the ¢, linear layer, its input will be encrypted
and sent to Edges and Fdgep for processing. Intermediate
results returned by edge servers are decrypted by the IoT
devices, which are then fed into the follow up non-linear
layers. The output of non-linear layers will be used as the input
as the (i + 1)y, linear layer. This process will be interactively
conducted until all layers of the DNN are executed as shown
in Algorithm.2.

For the 4, linear layer with input data X;, the IoT device
generates a random input € that has the same dimension as
X, wherein each element is a A-bit random number generated
using F(-). X; is then encrypted as

Cia=2Xi+ Sijin+e€ (D
Cip=2Xi+Siin—¢ 2

C;,a and C; p are then sent to Edge 4 and Edgep respectively.
To reduce the communication cost, floating-point compression
[23] is applied on C; 4 and C; g, which is able to shrink the
size of them by 70 + % as shown in our evaluation results.

It is worth to note that e will be regenerated for each
DNN inference request. For convolution layers that contain
multiple matrices as input, each matrix requires a different
€. For instance, in a DNN-based image classification task,
raw image data as input contains three channels that lead to
three input matrices. € for each linear layer can be directly
discarded after encryption, since it will be required during
the decryption.

Privacy-preserving Execution: Edges and Edgep take
C;,4 and C; p as the input for the i, linear layer respectively,
and output O; 4 and O; . On receiving O; 4 and O; g from
edge servers, the IoT device decrypts them as

1
0, = §(Oi,A + Oi.B) — Siout 3)

where O; is the corresponding output when plaintext input
X; is fed into the linear layer. The IoT device executes the
non-linear activation layer with O; as input. The output from

Algorithm 2: Privacy-preserving DNN Inference Ex-
ecution

1 // ¢ CONV and FC layers in total;

2 Set Layer; = the first CONV or FC layer
sfori=1;9<qg+ 104+ + do

4 Edgea outputs O; 4 by executing the Layer; using
Ci,a as input;

5 Edgep outputs O; g by executing the Layer; using
C;,p as input;

6 The IoT device performs:

1) Decryption of O; 4 and O; p;

2) Execution of non-linear layers (if exist);

3) Encryption of input for the next layer (if exist);

7 return DNN inference result on the IoT device;

the activation layer will be encrypted and sent to E'dge and
Edgep for the next linear layer as shown in Algorithm.2.

The correctness of the decryption is guaranteed by the fact
that linear operations in CONV and FC layers over X; and
Siin + € (or Siin — €) are linearly separable. As discussed
in Section II-A, CONV and FC layers are composed by dot
product operations. Given the j;, scanned (k x k) window
of X;, say X;7, and the (k x k) kernel K in the i;;, CONV
layer, its execution over X;7 and corresponding encrypted data
obtain the same result as shown in Eq.4 and Eq.5.

k2

Plaintext : ZXij[l} * K[l] + b;[l] 4)
=1

Ciphertext : %(Oi,A + Oi,B) — Si,out 5)

= 3o LA KT 81+l = KU +bi1) ~ S

= %(Z(Xij (1) + S,en” [1] + € [1]) + K[1] + bi[1])

=1

+ %(Z(Xﬁ (1] + Siin” [1] — € [1]) % K[1] +b:[l]) — 87 g
=1
= X0+ K+ 5:l1) + (3 Sivin” 1] % K1) — S
k2

=> X [I] « K[I] + bi[l]

=1

Correspondingly, given the weight matrix W; of the i, FC
layer, its execution over X; and corresponding encrypted data
also obtain the same result as shown in Eq.6 and Eq.7.

W, - X;+b; (6)
1
§(Oi,A + 0i.B) — Si,out @)

Plaintext :

Cliphertext :

1
= §(W1 Cia+bi+ W, -Cip+b)— Siout

= %(Wz (X + Siin + €+ X + Sijin — €) + 2b;) — Siout
= (W1 . Xz + bz) + (Wz : Si,in) - Si,out
=W, - X;+b;



To this end, the IoT device is able to efficiently handle
each layer in a DNN. Compute-intensive linear (CONV and
FC) layers are securely outsourced to the edge using after
encryption. These compute-efficient layers are directly handled
by the IoT device. Since our privacy-preserving solution is a
general design, it can be customized and recursively plugged
into other DNN architectures.

C. Discussion - Integrity Checking

In this section, we discuss how to enable the IoT device
to check the integrity of calculation results returned by edge
servers for outsourced DNN layers. During the outsourcing,
calculation errors can be caused due to software and hardware
errors of edge servers. Motivated by the fact that results
returned by edge servers are a collection of encrypted dot
products, we propose an integrity checking solution based on
the random sampling strategy.

Given the i, outsourced linear layer, we denote its returned
result is a collection of €2; dot products, of which 6; (0 < 6; <
;) are calculated incorrectly. By randomly selecting Z; dot
products for recalculation using locally stored parameters of
the 74, outsourced linear DNN layer, the IoT device can detect
at least one error with a probability of

Pr(ED)=1-— (QZ_ 9)/@) (8)

If there are 1% of returned calculation results are incorrect, the
IoT device only needs to recalculate 460 dot products to ensure
an error detection rate Pr(ED) > 99%. Correspondingly, a
recalculation of 4603 dot products can ensure Pr(ED) > 99%
if there are 0.1% of returned calculation results are incorrect.
Taking AlexNet as an example, randomly checking 4603 dot
products for all 5 CONV layers only occupy 7.08% of the
total outsourced computation.

It is noteworthy that the combination of integrity checking
of multiple layers can further enhance the error detection rate.
To be specific, when grouping the checking of z layers, the
probability for the IoT device to detect at least one error
becomes

(=0, [

Pr(ED,) =1 1:[1(( Z )/(Z)) ©)
These layers can even come from different DNN requests.
Considering the worst case, i.e., there is only one error among
the all returned results of an outsourced layer, randomly re-
performing 20% computation of a single layer at local provides
20% error detection rate. By combining the integrity checking
of 11 and 22 outsourced layers, the error detection rates
becomes 91.4% and 99.3% respectively.

IV. SECURITY ANALYSIS

In this section, we first prove that the encryption algorithm
used in our framework is CPA-secure. Then, the security of
the overall DNN inference outsourcing is analyzed.
Definition IV.1. The CPA indistinguishability experiment

cpa

Priv(A) is defined as:

Analysis of Probability Distribution of Ciphertext

We present the probability distribution of the ciphertext using our
encryption, i.e., EnC(my) = my, + r, where my, is the p-bit input
message, and r is a A-bit (A > p) uniformly distributed random
number generated by a secure pseudorandom function F(-). We
denote the distribution function of my, as X (mp),0 < my, < 2K —1,
and the uniform distribution of r as Y(r), 0 < r < 2% — 1.
As the my, and r are independent with each other, the probability
distribution of EnC(my) can be represented as

Pr(EnC(my)] =Y X(mp) - Y (Enc(msy) — mp) (10)
=Y (Enc(mp) — myp) Z X (mp)
= 2% Z X (my)

where 0 < EnC(my) < 2% 42> —1 and Y (Enc(my) —myp) =
2%, since Y'(r) is uniformly distributed. Based on the value of
EnC(my), there are two cases for Pr[EnC/(mp)):

1) 2# < EnC(mp) < 2X. In this case, every value of
EnC(my,) has 2™b combinations of X (my)-Y (Enc(my)—
my), since every value of my, can be combined with a r value
to output Enc(my). Thus, we have 3°, X (m;) = 1 and
get

Pr[EnC(my)]

Py ZX(mb

2) EnC(mp) < 2 or EnC(mp) > 2*. In this case,
EnC(mp) has EnC(myp) + 1 combinations of X (my) -

Y (Enc(myp) — my). To be specific, we have

EnC(my)
PrEnC(mp)l = Y X(mp)-Y(Enc(mp) —my)

mp=0
1 EnC(my)
Tox Z X(myp) < 7
mp=0
or
Pr[EnC(mp)]
22 42k —1

> X(myp) - Y (Enc(mp) — my)
mp=EnC(myp)—2*
1 oA pol
DS

my=EnC(myp)—2*

QK

X(mp) < o

Therefore, the probability distribution of encryption output
Pr[EnC(mp)] is
= if 2# < EnC(my) < 22
2A SERCE) X (my) < 2% if EnC(my) < 29

/\ B [T
& anbenCl(mwf?A X(mp) < 2% if EnC(my) > 2

Fig. 3. Analysis of Probability Distribution of Ciphertext

e A key is generated by running the key generation algo-
rithm Gen(\).

o The adversary is given \ the access to the encryption
oracle EnC(-) and outputs a pair of messages mo and
mq of the same length.

o A uniform bit b € {0, 1} is chosen, and then a ciphertext
¢ < EnC(my) is computed and given to the adversary.



o The adversary continues to have oracle access to
EnC(-), and output a bit b'.

o The output of the experiment is 1 if ¥ = b, and 0
otherwise. In the former case, we say the adversary
succeeds.

An encryption scheme 11 = (Gen, Enc, Dec) is CPA-secure
[28], if for all probabilistic polynomial time (PPT) adversaries
A there is a negligible function negl(\) such that
1

PriPrivit(A) =1] < 3T negl(\) (11)
Theorem IV.2. If F(.) is a secure pseudorandom function,
then the encryption in our framework is CPA-secure for
message with elements of length n against a PPT adversary

A

Proof. Given an arbitrary PPT adversary A, let U(\) be an
upper bound on the number of queries that .4 to its encryption
oracle, where U(-) is upper-bounded by some polynomial.

Given any pu-bit message m, the encryption oracle to query
in Priv71;(\) now becomes EnC(m) = m+F(-). For every
time a message m is encrypted in Privff)‘ﬁ()\), a new random
number is generated using F(-). Let 7* denotes the random
number used when generating the ciphertext EnC(m;). There
are two possibilities:

1) r* is never used when answering any of A’s encryption-

oracle queries. There are two sub-cases

e 20 < EnC(my) < 2*. In this sub-case, the value of
EnC(my) has the same probability distribution as r*
as analyzed in Fig.3, i.e., uniformly distributed with a
probability of 5 for each value between 2%, 2*]. Hence
A learns nothing about r* from its interaction with the
encryption oracle. As far as 4 is concerned, the value
EnC(my) is uniformly distributed and independent of
the rest of the experiment, and so the probability that A
outputs b’ = b in this case is exactly %

e EnC(myp) < 2* or EnC(my) > 2. In this sub-case, A
can output b’ = b once my < EnC(m;p) < my, since
EnC(my) > EnC(mp). For the worst case, we use 1
for the probability that A outputs ' = b in this case, i.e.,
A always succeeds. As presented in Fig.3, the probability
this sub-case will be < 2 % g—; = ﬁ, which can be
controlled to as a negligible value by adjusting the value
of A\ according to the value of y, e.g., make ﬁ <
ot [28].

Based on the two-sub cases, the probability of A to succeed

in Privy{;(\) becomes

Pr[Priv{y(A) = 1] (12)
< Pr[Privih(N) = 1&subi] + Pr[Privi1(A) = 1&subs]
1 . epa 1 1

< 3T Pr{Privyh(\) = 1&suby] < 5t oo

2) r* is used when answering at least one of .A’s encryption-
oracle queries: In this case, A may easily determine whether
mg or m; was encrypted. This is so because if the encryption
oracle ever returns a ciphertext encrypted using r*, A learns

m + r*. However, since A makes at most /() queries to
its encryption oracle (and thus at most U(X) values of r

are used when answering A’s encryption-oracle queries), and
since 7* € {0,1}* is uniformly distributed, the probability of
this event is at most M2(;\).

By denoting the above two cases as gt;gpeat and Repeat,

the probability of A to succeed in Privy7;(A) becomes

Pr[Privf{%()\) =1] (13)
= Pr[Privi{1;(\) = 1&Repeat] + Pr[Priv{{;(A) = 1&Repeat]

< Pr[Repeat] + Pr[Priv}{{;()\) = 1&Repeat]

U Repeat
< 2(A> + Pr{Priv%(\) = 1&Repeat)
un 1 1
R

1 _ U L
< 5 + negl()\), negl(A) - 27)\ + 2A—p—1

By setting the value of A\ according the upper bound on the
number of queries and the input size, the output of negl(\)
can be adjusted to a negligible values.

Theorem IV.2 is proved according to the Definition IV.1.
O

We now discuss the security of the overall DNN inference.
Without loss of generality, we use layer-i to denote the i,
linear layer that needs to be outsourced, X; and O; are the
input and output of layer-i. With regards to the outsourcing
of layer-i, X; is encrypted using our encryption, which has
been proved to be secure as shown in Theorem IV.2. When
moving to the next layer, i.e., layer-(i+1), O; is processed
through non-linear layers by the IoT device to generate the
input of layer-(i+1) as X (;11). Before being outsourced, each
element m in X ;1) is encrypted by adding a random number
from uniform distribution. By selecting an appropriate security
parameter A, there will be only a negligible probability ﬁ
that m affects the uniform looking of the ciphertext as proved
in Theorem IV.2, where v is the length of m in bits. To be
specific, by re-encrypting the input of each outsourced layer
in our scheme, the negligible additional advantages introduced
by each outsourced layer for the adversary to learn its input
and output will not be accumulated for later layers in the DNN
inference. Therefore, the security of the overall DNN inference
is achieved in our scheme with proper selection of .

V. PERFORMANCE EVALUATION

In this section, we first evaluate our framework using
numerical analysis, and then validate the practical performance
via the prototype implementation.

A. Numerical Analysis

The theoretical analysis of our framework is summarized in
Table II. For expression simplicity, we use one floating point
operation (FLOP) to denote an addition or a multiplication.
Compared with ref [1] and outsourcing the CONV layer (or
FC layer) without privacy protection, our framework achieve
the same computational cost on each edge server. While
our framework doubles the computational cost on the IoT
device compared with ref [1], it is significantly less than the
amount of outsourced computation as shown in Table II. With
regards to the communication cost, our framework introduces



TABLE II
NUMERICAL ANALYSIS SUMMARY

IoT Computation (FLOPs) Comp. Cost Comm. Cost Storage
Input Input Results of each Edge (Elements) Overhead
Size (Support z Requests)
Encryption Decryption (FLOPs) (Elements)
CONYV Layer
. nxn 9 b2 2DHE?x 2(Dn’+ Dn?+
This Paper «p | 2Pmt | 2HOSTRE AT ke Sy | greshie gy | p(eckiz gy
nxn 9 k42 9 2DHE* x Dn’+ 2(Dn*+
Ref [1] xD Dn H(% + 1) (n7k+2p 4 1)2 H(nfk+2p 4 1)2 H(nkaer + 1)2)
Outsourcing without | n x n 2DHE?x Dn?+
N/A N/A N/A
Privacy Protection xD (n=ht2p 4 )2 | g(n=kEE2e 4 q)2
FC Layer
This Paper m 2m 2T 2mT 2(m+1T) m+T
Ref [1] m m T 2mT m+T m+T
Outsourcing without |, N/A N/A omT m+T N/A
Privacy Protection

In this table: D is the number of input matrix, s is the stride, p is the size of padding, H is the number of kernels, k£ X k is the size of kernels of a CONV
layer; T" is the number of neurons of a fully-connected layer. Each element is 20 Bytes.

two times of the elements as that in ref [1]. This is caused
by the two-edge server design, since the IoT device needs
to communicate with both edge servers in our framework.
Fortunately, we integrate data compression technique [23]
into our design, which can significantly shrink the size of
ciphertext that causes communication by 70%-+. As a result,
the proposed framework achieves a better communication
performance compared with ref [1] as shown in the study cases
of AlexNet and FaceNet (next paragraph). More importantly,
ref [1] has the bottleneck in storage overhead, which increases
linearly to the number of DNN requests to be executed. Each
DNN inference requires ref [1] to pre-store a new set of
keys to support its privacy-preserving outsourcing. If the IoT
device in ref [1] generates a new set of keys for one DNN
inference on-the-fly, the computational cost will be the same
as executing the a complete DNN inference, which is not only
time consuming on the IoT device but also drains the battery
life of IoT device quickly. As a comparison, the proposed
framework in this paper only requires the IoT device to store
one set of keys for the entire deployment life cycle.

TABLE III
NUMERICAL ANALYSIS OF ALEXNET AND FACENET

AlexNet FaceNet
Computation on This Paper | 2.8 million 19.92 million
IoT (FLOPs) Ref [1] 2.8 million 19.92 million
Outsourced This Paper | 2.27 billion | 3.19 billion
Computation (FLOPs) | Ref [1] 2.27 billion | 3.19 billion
Outsourced This Paper | 99.86% 99.38%
Computation (%) Ref [1] 99.86% 99.38%
Communication This Paper | 11.32 MB 40.5 MB
Cost Ref [1] 20.49 MB 7491 MB
Storage Overhead This Paper | 20.49 MB 7491 MB
(one request) Ref [1] 20.49 MB 74.91 MB
Storage Overhead This Paper | 20.49 MB 7491 MB
(z requests) Ref [1] 20.49z MB | 7491z MB

We now use the well-know DNN architectures AlexNet
[6] and FaceNet [7] as the study cases for analysis. The
architectures of AlexNet and FaceNet are depicted in Table IV.

AlexNet consists of 5 CONV layers and 3 FC layers. FaceNet
consists of 11 CONV layers and 3 FC layers. An AlexNet in-
ference request requires 2.27 billion FLOPs for CONV and FC
layers, and 1.75 million FLOPs for other non-linear layers. For
a FaceNet inference request, 3.19 billion FLOPs are required
for CONV and FC layers, and 15.99 million FLOPs for other
non-linear layers. As presented in Table III, our framework
is able to outsource 99.86% and 99.38% computational cost
for AlexNet and FaceNet respectively, which are same as that
in ref [1]. The computation left on the IoT device in our
framework comes from the encryption/decryption cost, the
processing of non-linear layers. These cost are significantly
less than the total cost of a complete inference request as
shown in Table III. The communication cost in our framework
is also reduced compared with that in ref [1]. While the IoT
device in our framework needs to communicate with two edge
servers, we compress the ciphertexts sent to/from the edge
servers to reduce the total amount of communication. With
regard to the storage overhead, our framework has the same
cost as that in ref [1] if the IoT device is deployed to support
only one inference request. When the support of multiple
requests are taken into consideration (say z requests in total),
ref [1] has to pre-store z sets of keys, which are 20.492:MB
and 74.912MB for AlexNet and FaceNet respectively. In such
a case, handling only 1,000 DNN inference requests (e.g.,
object recognition) indicates over 20GB and 74GB storage
overhead on the IoT device in ref [1]. As a comparison, our
framework eliminates this limitation and makes the storage
overhead constant to the number of DNN requests.

B. Prototype Evaluation

We implemented a prototype of our framework using Python
2.7. In our implementation, TensorFlow and Keras libraries are
adopted to support DNN operations. The resource-constrained
IoT device is a Raspberry Pi (Model A) with Raspbian Debian
7, which has 700 MHz single-core processor, 256MB memory,
and 16GB SD card storage. The edge server and the IoT



TABLE IV
ARCHITECTURES OF ALEXNET AND FACENET

device owner are Macbook Pro laptops with OS X 10.13.3,
3.1 GHz Intel Core i7 processor, 16GB memory, and 512GB
SSD. The IoT device and the edge server are connected using
WiFi in the same subnet. The security parameter A is set
as 160 in our implementation and AlexNet [6] is adopted
as the DNN architecture for evaluation. The architecture of
AlexNet is presented in Table IV. To compare with our
framework with homomorphic encryption-based solutions, we
also implemented and evaluated CryptoNets [11] on AlexNet
as an example.

1) Efficiency: In our framework, the owner sets up the
framework by generating encryption and decryption keys,
which only takes 114ms and is one-time cost. As a compari-
son, the setup time of ref [1] is linear to the total number of
DNN inference requests the IoT device plans to support. For
example, the setup will cost 5 minutes if it is going to handle
2600 inference requests.

TABLE V
SUMMARY OF EVALUATION RESULTS

IoT .

Only This Paper Ref [1]

Local | Local | Edge | Local | Edge

Computation 1), 95 | 195 | 003 | 135 | 011
(Second)
Communication
(Second) N/A 1.13 2.05
Total

(Second) 124.99 3.08 3.51
Speedup N/A 40.6X 35.6X

With regard to the execution of privacy-preserving outsourc-
ing of real-time DNN inference, we summarize the result
in Table V. By adopting our proposed framework, a 40.6x
speedup rate is achieved compared with fully executing an
AlexNet inference on the IoT device. As a comparison to ref
[1], our framework achieves an enhanced performance while
overcoming the limitation of storage overhead in ref [1]. In
our framework, the saving of communication overhead comes
the compression of ciphertext sent to and returned from two
edge servers. While the compression and decoding introduce
additional computational overhead to the IoT device, it still
benefits the overall performance. More importantly, the storage

AlexNet FaceNet
Parameters Input Size Parameters Input Size Parameters Input Size
n=227, H=96 1=220, H=64 n=14, H=256
Conv-1 kol 1, 5ot 227%227%3 Conv-1 ke, 52 220%220x3 | Conv-5a el se1 14x14x256
Conv2 | P=27, H=256 27x27x96 Conv-2a | "% H=04 1 5o 5564 | Conv-5 n=14, H=256 14x 14x256
k=5, s=1 k=1, s=1 k=3, s=1
Conv-3 | D=I3, H=384 13x13x256 Conv-2 | "% H=192 1 55 5564 | Conv-6a n=14, H=256 14x14x256
k=3 s=1 k=3, s=1 k=1, s=1
Conv-4 “:]£3’3H:384 13x13x384 Conv-3a | =25 =192 1 0 085192 | Conv-6 n=14, H=256 14x14x256
=3 s=1 k=1, s=1 k=3, s=1
Conv-5 n=l£,3 }S{:fs 6 13x13x384 Conv-3 n=k2§,3 }ijs“ 28x28x192 | FC-1 m=12544, T=4096 12544
FC-1 m=9216, T=4096 9216 Conv-4a "113’1 Pijs“ 14x14x384 | FC-2 m=4096, T=4096 4096
FC-2 m=4096, T=4096 4096 Conv-4 “:klj% H;2156 14x14x384 | FC-3 m=4096, T=128 4096
FC3 m=4096, T=1000 4096

overhead of our framework is constant, i.e., 20.49MB, for
any number of AlexNet inference requests. As a comparison,
the storage overhead in ref [1] increases linearly to the
number of DNN inference requests to be executed. In practice,
IoT devices are typically deployed to support services for a
while, which indicates a number of continues DNN inference
requests. Furthermore, new keys need to be reloaded to the IoT
device in ref [1] when the pre-stored keys are used up. Such a
reloading process either requires the IoT device to compute the
keys by itself or asks the device owner to remotely reload keys.
These operations can quickly drain the batter life of the IoT
device due to computation or communication. Specifically, the
generation of each new set of keys requires the same amount
of computation as executing a complete DNN inference.

To compare our framework with homomorphic encryption-
based solution [11] for DNN inference, we also implemented
AlexNet using the CryptoNets scheme proposed in [11],
denoted as A-CryptoNets. During our implementation, we use
the same linear approximation and YASHE cryptosystem [29]
as that in [11]. Table VI shows the cost of executing the entire
AlexNet inference in our framework and the first convolutional
layer of AlexNet using A-CryptoNets. Due to the large input
size required in AlexNet, A-CryptoNets requires 459.93s for
encrypting the input data on the IoT device, and 625.86s
for the convolutional operations over ciphertext on the edge
device. This level of computational cost makes CryptoNets
become hardly to satisfy time-sensitive tasks with complex
DNN inference. As a comparison, our framework can process
the entire AlexNet using 3.08s.

TABLE VI
COMPARISON WITH CRYPTONNETS

This Paper CryptoNets
(Entire AlexNet) (First Layer of AlexNet Only)
Total: Encrypti.on 459.93 seconds
3.08 seconds Convolution | 625.86s seconds
Total 1085.79 seconds

2) Scalability: To evaluate the scalability of our framework,
we analyzed the outsourcing performance on CONV and
FC layers with different complexities. As presented in Table



VII, our framework maintains a high outsourcing rate, i.e.,
> 99.9%, for CONV and FC layers that require different
levels of computation, from 8.19 million FLOPs to 0.89 billion
FLOPs. Therefore, our framework is promising to be scaled
up and support more complex DNN architectures according to
practical requirements.

TABLE VII
SCALABILITY ANALYSIS ON ALEXNET

IoT Outsourced Outsourced
Computation | Computation | Percentage
(FLOPs) (FLOPs)

Conv-1 444987 210,830,400 99.79%
Conv-2 256,608 895,795,200 99.97%
Conv-3 108,160 299,040,768 99.96%
Conv-4 129,792 448,561,152 99.97%
Conv-5 108,160 299,040,768 99.96%
FC-1 13,312 75,497,472 99.98%
FC-2 8,192 33,554,432 99.98%
FC-3 5,096 8,192,000 99.94%

3) Energy Consumption: Compared with fully executing
AlexNet inference tasks on the IoT device, our framework
significantly saves the energy consumption for computation
of the IoT device while introducing slight extra energy con-
sumption for communication. In our evaluation, the IoT device
(Raspberry Pi Model A) is powered by a 5V micro-USB
adapter. The voltage and current is measured using a Powerjive
USB multimeter [30] and the power is calculated by the
multiplication of voltage and current. Table VIII shows the
average IoT power consumption under different IoT device
status. The IoT device has a power cost of 0.81W when exe-
cuting AlexNet locally without network connection. Such an
execution power indicates an energy consumption of 101.24J
when fully executing an AlexNet inference on the IoT device
with 124.99 seconds. Differently, our framework leaves a
limited amount of computation and communication on the IoT
device, and hence reducing its energy consumption to 3.85J, in
which 2.25] is for computation and 1.6J is for communication.
Therefore, our framework can save IoT energy consumption
by 10L24-3.85 _ gg 9% Compared with ref [1] that has an

101.24
energy consumption at 4.49J, our framework saves by 14.25%.

TABLE VIII
POWER AND ENERGY CONSUMPTION EVALUATION

Energy
Power (W) Consumption (J)
IoT IoT Local Executing
Onl AlexNet without 0.81 101.24
y Network Connection
This foT 1.17 2.25
Computation
Paper ToT
.. 1.42 1.6
Communication
IoT
Ref [1] Computation L7 1.58
loT 1.42 291
Communication

VI. RELATED WORK

The problem of privacy-preserving neural network inference
(or prediction) has been studied in recent years under the cloud
computing environment [1], [11]-[20]. These works focus on
the “machine learning as a service” scenario, wherein the
cloud server has a trained neural network model and users
submitted encrypted data for predication. One recent line of re-
search uses somewhat or fully homomorphic encryption (HE)
to evaluate the neural network model over encrypted inputs
after approximating non-linear layers in the neural network
[11]-[14]. Combining multiple secure computation techniques
(e.g., HE, Secure multi-party computation (MPC), oblivious
transfer (OT)) is another trend to support privacy-preserving
neural network inference [15], [17], [18], [20]. The idea behind
these mixed protocols is to evaluate scalar products using HE
and non-linear activation functions using MPC techniques. In
particular, SecureML [15] utilized the mixed-protocol frame-
work proposed in ABY [18], which involves arithmetic shar-
ing, boolean sharing, and Yao’s garbled circuits, to implement
both privacy-preserving training and inference in a two-party
computation setting. In [20], MiniONN is proposed to support
privacy-preserving inference by transforming neural networks
to the corresponding oblivious version with the Single Instruc-
tion Multiple Data (SMID) batch technique. Trusted third-
party is invoked in Chameleon [19] and hence greatly reducing
the computation and bandwidth cost for a privacy-preserving
inference. In [17] GAZELLE is proposed by leveraging lattice-
based packed additive homomorphic encryption (PAHE) and
two-party secure computation techniques. GAZELLE deploys
PAHE in an automorphism manner to achieve fast matrix
multiplication/convolution and thus boosting the final run-time
efficiency. A multi-sever solution, named SecureNN, is pro-
posed in [16], which greatly improves the privacy-preserving
inference performance, i.e., 42.4x faster than MiniONN [20],
and 27x, 3.68x faster than Chameleon [19] and GAZELLE
[17].

While the performance of evaluating neural network over
encrypted data for inference keeps being improved, the exist-
ing research works only focus on small-scale neural networks.
Taking the state-of-the-art SecureNN [16] as an example, the
network-A evaluated (also used by [15]) only requires about
1.2 million FLOPs for an inference, which costs 3.1s with
wireless communication in their 3PC setting. As a comparison,
the AlexNet evaluated in our framework contains 2.27 billion
FLOPs for one inference, which costs 3.08s in our framework
with similar wireless transmission speed. It is also worth
to note that SecureNN utilizes powerful cloud server (36
vCPU, 132 ECU, 60GB memory) for evaluation, whereas the
edge computing device in this paper is just a regular laptop
computer. Scaling up the network size is not a trivial task. For
example, compared with the type-A network in [17], its type-C
network with 500 x multiplication increases the computational
cost and communication cost to 430x and 592 x.

Recent research [1] proposed to adopt an online/offline
strategy to trade the efficiency of online real-time DNN infer-
ence on [oT devices using offline precomputation. While this
scheme boosts the efficiency on complex DNN architecture,



it is limited in practical deployment due to its bottleneck of
storage overhead. To be specific, each set of pre-computed
keys stored on the IoT device can only be used for one
DNN inference request. In practice, IoT devices are typically
deployed to continually collect and process data (using DNN
inference in ref [1]). Taking AlexNex and FaceNet examples,
the pre-computed keys in ref [1] will occupy 20.49GB or
74.91GB respectively for supporting only 1,000 requests. If
the IoT device needs to generate by a new set of keys by itself,
the computational cost will be the same as the execution of a
complete DNN inference.

VII. CONCLUSION

In this paper, we proposed a two-edge-server framework
that enables resource-constrained IoT devices to efficiently
execute DNN inference requests with privacy protection. The
proposed framework uniquely designs a lightweight encryption
scheme to provide private and efficient outsourcing of DNN
inference tasks. By discovering the fact that linear operations
in DNNs over input and random noise can be separated,
our scheme generates decryption keys to remove random
noises and thus boosting the performance of real-time DNN
requests. By integrating local edge devices, our framework
ameliorates the network latency and service availability issue.
Moreover, the proposed framework also makes the privacy-
preserving operation over encrypted data on the edge device as
efficient as that over unencrypted data. In addition, the privacy
protection in our framework does not introduce any accuracy
loss to the DNN inference, since no approximation is required
for all DNN operations. A random sampling-based integrity
checking strategy is also proposed in our framework, which
enables the IoT devices to detect computation errors contained
in the results returned by edge servers. Thorough security
analysis is provided to show that our framework is secure
in the defined threat model. Extensive numerical analysis as
well as prototype implementation over the well-known DNN
architectures demonstrate the practical performance of our
framework.
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